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Carbon nanotubes band assignation, topology, Bloch states, and selection rules

T. Vuković,* I. Milošević, and M. Damnjanovic´
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~Received 14 December 2000; revised manuscript received 13 September 2001; published 8 January 2002!

Various properties of the energy band structures~electronic, phonon, etc.!, including systematic band de-
generacy, sticking and extremes, following from the full line group symmetry of the single-wall carbon
nanotubes are established. The complete set of quantum numbers consists of the angular and linear quasimo-
menta and parities with respect to theU axis and, for achiral tubes, the mirror planes. The assignation of the
electronic bands is performed, and the generalized Bloch symmetry adapted eigen functions are derived. The
most important physical tensors are characterized by the quantum numbers. All this enables application of the
presented exhaustive selection rules. The results are discussed by some examples, e.g., allowed interband
transitions, conductivity, Raman tensor, etc.
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I. INTRODUCTION

It is well known that single-wall carbon nanotube1

~SWCT’s!, in addition to the translational periodicity alon
the tube axis~z axis, by convention!, possess a screw ax
and pure rotational symmetries. Consequently, in calc
tions of the electronic energy band structure the conser
quantum numbers of linear2 k, or helical3 k̃, quasimomenta
together withz projection of the orbital angular momentu
~related to rotational symmetries! are used. On the contrary
the parity quantum numbers following from the full lin
group symmetry4 including horizontalU axis and, in the zig-
zag and armchair cases, vertical and horizontal mirror
glide planes, have not been used in band assignation.
important to complete this task, since it yields many imp
tant exact properties of the electronic band structures, s
of them being quite independent of the model consider
Let us mention only the band degeneracies, systematic
Hove singularities and the precise selection rules relevan
the processes in nanotubes. Further, some general predic
on the topology of band sticking may be a priori predicte

All the geometrical symmetries of chiral (n1 ,n2), zig-zag
(n,0), and armchair~n, n! SWCT’s ~C, Z, andA tubes for
short! are gathered in the line groups4 ~the factorized and the
international notation are given!:

L C5Tq
r Dn5Lqp22, ~1a!

LZA5T2n
1 Dnh5L2nn /mcm. ~1b!

Here, n is the greatest common divisor ofn1 and n2 , q
52(n1

21n1n21n2
2)/nR with R53 or R51 whether (n1

2n2)/3n is integer or not, while the helicity parametersr
andp are expressed in terms ofn1 andn2 by number theo-
retical functions.5 The elements of the groups~1! are ~the
coordinate system and the positions of the symmetry a
and planes are presented in Fig. 1!:

l ~ t,s,u,v !5~Cq
r una/q! tCn

sUusx
v , ~2!

where (Cq
r una/q) t ~Koster-Seitz notation;a is the transla-

tional period of the tube! for t50,61,..., are the elements o
0163-1829/2002/65~4!/045418~9!/$20.00 65 0454
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the helical group~screw axis! Tq
r . The rotationsCn

s , s
50,...,n21, around thez axis form the subgroupCn . Fi-
nally, U is the rotation byp around thex axis (u50,1), and
sv the vertical mirrorxz plane in the case of the achira
tubes, i.e.,v50, 1 for Z andA tubes, andv50 for C ones.
Each carbon atom on the tube is obtained from a single
C000 by the action of the elementl (t,s,u,0). This enables us
to enumerate the atoms asCtsu . The isogonal point groups
are

PC5Dq , PZA5D2nh . ~3!

The electronic eigen states~in the form of the generalized
Bloch functions! and eigenenergies~organized as the energ
bands! are assigned by the complete set of the symme
based quantum numbers in Sec. II. The derived general ti
binding dispersion relations are considered also in the s
plest approximation. Then, in Sec. III, the general forms
various tensors~e.g., dielectric permeability, Raman, condu
tivity ! are presented, enabling application of the select
rules~given in the Appendix in the analysis of different pro
cesses. Basic conclusions are reviewed in the last sectio

FIG. 1. Symmetry and neighbors. Perpendicular to the figure
h is theU axis ~assumed to be thex axis!, while sh/v

Z/A stands for
vertical and horizontal mirror planes ofZ andA tubes. Atoms Cts0

and Cts1 are differed ass and d. Nearest neighbors of the atom
C000, denoted by 0, are the atoms 1, 2, and 3.
©2002 The American Physical Society18-1
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II. ELECTRONIC p BANDS

At first, we consider briefly the degeneracy of the ban
imposed by the symmetry. Among two sets of quantum nu
bers used in literature for the chiral tubes,6–8 we use the one
related to the linear and total angular momenta. A state
~quasi!particle propagating along thez axis with the quasi
momentumk and thez component of the angular momentu
m is denoted asukm&, or ukm6&. The parities invoked byU
axis and, for the achiral tubes, mirror planes, combine th
states in the degenerate multiplets, related to irreducible
resentations of the group~A or B for singlet, E for dublet,
andG for quadruplet!.

As for C tubes, m takes on the integer values from
(2q/2,q/2#. All the equalities in k and m are assumed
modulo these intervals. Due toU-axis symmetry, the state
ukm& and u2k,2m& form degenerate doublet for anyk
P(0,p/a), making a double degenerate band. At the po
k50, for m50, q/2 there are nondegenerate even and o
states,u006& andu0,q/2,6&. For p even, atk5p/a there are
additional singletsup,2p/2,6& and up,(q2p)/2,6&. The
mirror planessv andsh5Usv yield new parities forZ and
A tubes. Even and odd states with respect tosv are labeled
by A andB. The parity of the horizontal mirror planesh is
denoted as that ofU, i.e., ‘‘1’’ and ‘‘ 2’’ now points to the
even and odd states with respect to either one of th
z-reversing operations. For eachm51,...,n21 and k
P(0,p/a) the statesukm&, uk,2m&, u2km&, and u2k,2m&
form four fold degenerate band. Only form50, n, when the
states posses sharp parityA/B the degeneracy remains two
fold: ukm,A/B& and u2km,A/B&. In k50, the statesu00,
6,A/B& and u0n,6,A/B& are nondegenerate, while for th
remainingm51,...,n21, the statesu0m6& and u0,2m6&
are double degenerate. Atk5p/a, for integermP(0,n/2)
the fourfold degenerate statesupm&, up,2m&, up,n2m&,
and up,m2n& appear, while for m50, n, the states
up0,A/B& and upn,A/B& as well as the states~only for n
even! up,n/2,6& and up,2n/2,6& are double degenerate.

The same quantum numbers may characterize sev
eigenstates with equal or different eigenenergies. In s
cases the indexF differing between such states is added.
the considered model for eachm there are two electronic
bands, with eigenenergiesem

6(k) and the vectorsukm;6&,
u2k,2m;6& distinguished byF56.

The tight binding hamiltonian including a singlep orbital
utsu& per siteCtsu is

H5(
tsu

(
t8s8u8

Htsu,t8s8u8utsu&^t8s8u8u

The electronic bands for such a Hamiltonian in the appro
mation of the nearest neighbors interaction and orthogo
atomic orbitals have been calculated and assigned byk andm
only.2,3 Here, within less crude approximations, we compl
the assignation by the additional parities.

It is convenient to introduce the phases

cm
k ~ t,s!5

kan12pmr

q
t1

2pm

n
s. ~4!
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Then, for the double degenerateE bands of the chiral tube
the dispersion relations and the corresponding eigen vec
are obtained solving the eigenproblem of

Hm~k!5S hm
0 ~k! hm

1* ~k!

hm
1 ~k! hm

0 ~k!
D , ~5a!

hm
u ~k!5(

ts
Htsue

ick
m

~ t,s! ~u50,1!, ~5b!

with Htsu5H000,tsu . For eachm one finds two bands

em
6~k!5hm

0 ~k!6uhm
1 ~k!u ~6a!

with the corresponding generalized Bloch eigenfunctions

ukm;6&5(
ts

e2 icm
k

~ t,s!~ uts0&6eihm
k
uts1&),

u2k,2m;6&5(
ts

eicm
k

~ t,s!~ uts1&6eihm
k
uts0&), ~6b!

wherehm
k 5Arg@hm

1 (k)#.
Note that the atoms withu50 andu51 contribute only

to the diagonal and off diagonal terms ofHm(k), respec-
tively. Consequently, in the dispersion relations~6a!, the in-
teractions ofC000 with Cts0 atoms determine for eachk the
average energy of two bands, while the interactions withCts1
atoms shifts up and down symmetrically this average to
eigenenergies. This result is not restricted to approxim
choice of the interacting neighbors and includes the lo
distortions induced by the cylindrical geometry. Further, n
thatHtsu,t8s8u8 would be equal tôtsuuHut8s8u8& if and only
if the atomic orbitalsutsu& were orthonormal basis. Sinc
expressed in terms ofHtsu,t8s8u8 matrix elements, Eqs.~6!
refer to the realistic nonorthonormal case~therefore the re-
sulting Bloch functions are not orthonormalized!. To take
advantage of the calculated9–12 elementŝ tsuuHut8s8u8& and
the overlap integralŝ000utsu& one uses another matrix hav
ing also the form~5!, but with ^000uHutsu& instead ofHtsu .
Multiplying Eq. ~5a! by the inverse of the analogous matr
of the overlap integrals, one getsHm(k) completely in terms
of the known Slater-Koster elements and the overlap in
grals.

Also, the result~6a! is general in the sense that th
eigenenergies at the edges of the irreducible domain ca
obtained from this expression by substituting the limiti
values ofk numbers; the nondegenerate ones single out
states withU parity. For theZ and A tubes the dispersion
relations can be derived, too: onlyn15q/25n andn250 for
the zig-zag orn15n25n for the armchair tubes should b
used. In these cases Eq.~6a! is the same form and 2m,
reflecting the anticipated general conclusion that the band
the achiral tubes are fourfold degenerate apart from
double degeneratem50, n bands. These double degenera
bands are with evensv parity for Z tubes, while they form
two pairs with oppositesv parity in A tubes. Nevertheless
the corresponding symmetry adapted vectors in these c
cannot be in general derived from Eq.~6b!.
8-2
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CARBON NANOTUBES BAND ASSIGNATION, . . . PHYSICAL REVIEW B 65 045418
As for the most usual orthogonal orbitals nearest nei
bors approximation, the sums in Eq.~5! are restricted to the
constant termH000 in hm

0 (k) and to the three nearest neig
bors inhm

1 (k). TakingH00050, i.e., shifting the energy scal
for H000, and substituting in Eq.~4! for the nearest neighbor
~Fig. 1! the parameters

t152
n2

n
, s15

2n11~11rR!n2

qR ,

t25
n1

n
, s25

~12rR!n112n2

qR ,

t35t11t2 , s35s11s2 ,

one gets for eachm the pair of equally assigned bands

eEm
6 ~k!56U(

i 51

3

Htisi1
eicm

k
~ t i ,si !U. ~7!

Finally, the rolling up induced differences in the inte
atomic distances of the honeycomb lattice are frequently
glected~homogeneous distortions approximation!, which is
achieved by settingHtisi1

5V for the nearest neighbors~V is
estimated between23.003 and22.5 eV!. All the dispersion
relations and the corresponding eigen states~in the form of
generalized Bloch sums! are given in the Table I for this
approximation, and in Fig. 2 the assignation of these ba
for several tubes is presented.

III. SELECTION RULES

One of the most important benefits from the assignat
by all quantum numbers comes through the applications
the selection rules in various calculations of physical pr
erties of nanotubes. In fact, each allowed pair~k, m!, together
with the parities when necessary~Sec. II!, singles out one
multiplet ~irreducible representation!. In this sense, a multip
let is specified by (kmP), whereP stands for all possible
parities. If the multiplet is degenerate~doublets and quadru
plets! the ‘‘raw’’ index r running from 1 to its degeneration i
used to enumerate its states~with the same eigenenergy!.
Altogether, the state is denoted asukmPr ;F&. For example,
the symmetry adapted eigenstates of thekEm electronic
bands ofC tubes ~Sec. II are now denoted asukm1;6&
5ukm;6& and ukm2;6&5u2k,2m;6&. Analogously, the
quantum numbers are associated to the componentsQr

(kmP)

of the physical tensorQ, giving their transformation rules
under the line group symmetry operations. Then, the ma
elements ofQ are expressed in the Wigner-Eckart form13

~kfmfP f r f ;F f uQr
~kmP!ukimiP i r i ;Fi&

5^kfmfP f r f ukmP,r ;kimiP i r i&

3Q~kfmfP f ;F f ikmPikimiP i ;Fi !. ~8!

Here,Q(kfmfP f ;F f ikmPikimiP i ;Fi), the reduced matrix
element, is independent on the indicesr, r i , and r f . The
Clebsch-Gordan coefficientŝkfmfP f r f ukmPr ;kimiP i r i&,
04541
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being independent onQ, area priori given by the symmetry
of the system; the matrix elements are thus subjected to
selection rules showing when these coefficients are nonz

The Clebsch-Gordan coefficients comprise complete
formation on the selection rules. For the SWCT symme
groups~1! they are given in the Appendix. Generally the
reflect conservation laws of the linear momentumDk5kf
2ki8k and paritiesP f5PP i ~assuming11 for ‘‘ 1’’ or A,
and 21 for ‘‘ 2’’ and B!. As for the z component of the
quasiangular momentumDm5mf2mi8m1Kp. HereK is
integer, which is nonzero in the Umklapp processes~see the
Appendix!. WheneverKp is not a multiple ofq, m is not
conserved quantity; in fact it is related to the isogonal gro
rotationsCq

s , and onlyCn
s among them are symmetries o

the nanotube!.
The symmetry properties of the most interesting tens

are expressed14 in terms of the three-dimensional vector re
resentationsDp and Da ~polar and axial! of L , since these
tensors are functions of the radius vectorr , momentump,
electrical fieldE ~polar vectors!, angular momentuml, and
magnetic fieldH ~axial vectors!. The irreducible component
of the corresponding representations are given in the Ta
II. For all of themk50, causing that only direct processe
are encountered and nowm is also a conserved quantum
number ~since ki5kf yields K50!. This means that their
symmetry properties are related to the isogonal groups~3!.

To facilitate the application of Eq.~8! we discuss the gen
eral forms of some of the tensors indicated in Table II be
related to the optical properties15 of nanotubes. In the linea
approximation the tensor of the dielectric permeability in t
weak external electric field E is «@ i j #(E)5«@ i j #(0)
1(ka@ i j #kEk . For the chiral tubes, the general form of th
zero field permeability tensor4 is «(0)5diag(«xx,«xx,«zz). As
the frequency number of the trivial representation0A0

1 in the
a@ i j #k is equal to one, the single parametera, determined by
the tube microscopic properties, controls the field-depend
dielectric permeability behavior

«~E!5S «xx 0 aEy

0 «xx 2aEx

aEy 2aEx «zz

D .

Thus, the optical activity ofC tubes is changed by the pe
pendicular electric field, and instead of one there are t
optic axes whose direction depend on the applied field.
the Z and A tubes the external field does not change th
optical symmetry, since no trivial component appears in
decomposition.

The electromagnetic response to a weak applied fiel
characterized by the dielectric function« i j (k,v). Although
optical absorption and diffraction are well described with
the long-wavelength limit, for the optical activity the term
of « i j linear in the components of the wave vectork ~having
different symmetry from thek-independent ones! should be
considered. These linear terms define the tensorg i jk and its
symmetric and antisymmetric16 parts with respect to the las
two subscriptsg i jk5@]« i j (k,v)/]kl #k505 i (g i $ j l %

A 1g i @ j l #
S ).

For theZ and A tubes there is no linear optical respon
8-3
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TABLE I. Bands and symmetry-adapted eigenvectors of the carbon nanotubes. For each irreducible representation the corr
frequency numberN, energye in the simplest~orthogonal orbitals, nearest neighbors, homogeneous distortions! model, and generalized
Bloch functionsukmP& of the corresponding bands are given.g5Arg@V12Veika/2cos(pm/n)#.

C N e Generalized Bloch functions

0Am
P 1 VP(112c2i (mp/q)) umP&5

1

AuLCu
(
ts

e2 icm
0

~ t,s!~ uts0&1Puts1&)

pAm
P 1 2VP upmP&5

1

AuLCu
(
ts

e2 icm
p

~ t,s!~ uts0&1Puts1&)

kEm 2 6uV( ie
icm

k (t i ,si )u ukm;6&5
1

AuLCu
(
ts

e2 icm
k

~ t,s!~ uts0&6eihm
k
uts1&)

u2k,2m;6&5
1

AuLCu
(
ts

eicm
k

~ t,s!~ uts1&6eihm
k
uts0&)

Z N e Generalized Bloch functions

0Am
P 1 VP(112ei (mp/n)) u0mPA&5A 2

uLZu (ts
e2 i ~mp/n! t~ uts0&1Puts1&)

0Em
P 1 VPS112 cos

mp

n D u0mP&5A 2

uLZu (ts
e2 i ~mp/n! ~2s1t !~ uts0&1Pei ~2mp/n!uts1&)

u0,2m,P&5A 2

uLZu (ts
ei ~mp/n! ~2s1t !~ei ~2mp/n!uts0&1Puts1&)

kEm
A 2 6uVuA514ei ~mp/n! cos

ka

2
ukmA;6&5A 2

uLZu (ts
e2 i ~~mp/n!1~ka/2!!t~ uts0&6eihm

k
uts1&)

u2k,m,A;6&5A 2

uLZu (ts
e2 i ~~mp/n!2~ka/2!!t~ uts1&6eihm

h
uts0&)

pEn/2
P 1 2VP

Up,
n

2
,PL5A 2

uLZu (ts
~21!s1t~ uts0&1Puts1&)

Up,2
n

2
,P L 5A 2

uLZu (ts
~21!s~ uts0&1Puts1&)

kGm 2 6uVuA114 cos
ka

2
cos

mp

n
14 cos2

mp

n
ukm;6&5A 2

uLZu (ts
e2 i ~ka/2!te2 i ~mp/n!~ t12s!~ uts0&6eigei ~2mp/n!uts1&)

uk,2m;6&5A 2

uLZu (ts
e2 i ~ka/2!tei ~mp/n!~ t12s!~ei ~2mp/n!uts0&6eiguts1&)

u2k,m;6&5A 2

uLZu (ts
ei ~ka/2!te2 i ~mp/n!~ t12s!~ei ~2mp/n!uts1&6eiguts0&)

u2k,2m;6&5A 2

uLZu (ts
ei ~ka/2!tei ~mp/n!~ t12s!~ uts1&6eigei ~2mp/n!uts0&)

A N e Generalized Bloch functions

0Pm
1 1 VP(112ei (mp/n))

u0m1P&5A 2

uLAu (ts
e2 i ~mp/n!t~ uts0&1Puts1&)

0Em
1 2 6uVuA514 cos

mp

n
u0m1;6&5A 2

uLAu (ts
e2 i ~mp/n!~2s1t !~ uts0&6eihm

0
uts1&)

u0,2m,1;6&5A 2

uLAu (ts
ei ~mp/n!~2s1t !~ uts1&6eihm

0
uts0&)
045418-4
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TABLE I. ~Continued!.

A N e Generalized Bloch functions

kEm
P 1 VPS112ei~mp/n! cos

ka

2 D ukmP&5A 2

uLAu (ts
e2 i ~~mp/n!1~ka/2!!t~ uts0&1Puts1&)

u2k,m,P&5A 2

uLAu (ts
e2 i ~~mp/n!2~ka/2!!t~ uts0&1Puts1&)

pEn/2
P 1 2VP

Up,
n

2
,PL5A 2

uLAu (ts
~21!s1t~ uts0&1Puts1&)

Up,2
n

2
,P L 5A 2

uLAu (ts
~21!s~Puts0&1uts1&)

kGm 2 6uVuA114 cos
ka

2
cos

mp

n
14 cos2

ka

2
ukm;6&5A 2

uLAu (ts
e2 i ~ka/2!te2 i ~mp/n!~ t12s!~ uts0&6eihm

k
uts1&)

uk,2m;6&5A 2

uLAu (ts
e2 i ~ka/2!tei ~mp/n!~ t12s!~ uts1&6eihm

k
uts0&)

u2k,m;6&5A 2

uLAu (ts
ei ~ka/2!te2 i ~mp/n!~ t12s!~ uts0&6eihm

k
uts1&)

u-k,2m;6&5A 2

uLAu (ts
ei ~ka/2!tei ~mp/n!~ t12s!~ uts1&6eihm

k
uts0&)
s

-

s
-

e
ed
while for the chiral tubes the antisymmetric partg i $ j l %
A is

determined by two independent parameters involved in
nonvanishing tensor elementsg xyz

A 5g yzx
A 52g xzy

A 52g yxz
A

are related to the interband transitions0A0
6↔0E1 ,

kEm↔kEm11 (kP@0,p#), 0Aq/2↔0Eq/221 @this follows
from Eq. ~8! when the operatorspx , py , l x , andl y are sub-
stituted forQ#, while g zxy

A 52g zyx
A are related to the inter

band transitions0A0
6↔0A0

7 and 0Aq/2
6 ↔0Aq/2

7 ~now pz and
l z are used!. The single independent parameter ofg i @ j l #

S is
involved in the four nonvanishing tensor elements:gxyz

S

5gxzy
S 52gyxz

S 52gyzx
S related to the interband transition

induced by the symmetric operator1
2 ( ẑp̂y1 ŷp̂z1H.c.).

The conductivity tensors i j of a system in a sufficiently
weak magnetic fieldH is well approximated quadratically:
04541
ix s i j ~H!5s@ i j #~0!1 (
k51

3

r$ i j %kHk1 (
k51

3

(
l 51

3

b@ i j #@kl#HkHl ,

where the symmetry4,17 allows a symmetric tensors@ i j #(0)
5diag(sxx,sxx,szz). The third rank tensorr$ i j %k is respon-
sible for the linear contribution of the field~Hall effect!,
while the fourth rank tensorb@ i j #@kl# introduces a small cor-
rection to the main effect. Because of the symmetry,r$ i j %k is
of the same form for all SWCT’s~C, Z, A!: two independent
parametersr1 andr2 define its six nonvanishing tensor com
ponents rxyz52ryxz5r1 , rxzy52rzxy5rzyx52rzxy
5r2 . Also b@ i j #@kl# is of the same form for the chiral and th
achiral SWCT, with six independent parameters involv
within altogether 21 nonzero componentsbxxxx5byyyy
rs
ar
TABLE II. Symmetry of the tensors of SWCT’s. The decompositions onto irreducible representations of the most frequent tenso~given
in the last column! of the chiral~column 2! and the zig-zag and the armchair~column 3! SWCT’s. Tensors are obtained by multiplying pol
and axial vectors, and the type of the products~^, @¯# and $¯% for the direct, symmetrized, and antisymmetrized! is in the first column.

Type C tubes Z andA tubes Tensor

Dp
0A0

210E1 0A0
210E1

1 r i ,pi ,Ei

Da5$Da/p2
% 0A0

210E1 0B0
110E1

2 l i ,Hi ,R$ i j %

Da/p2 20A0
110A0

2120E110E2 20A0
110B0

1120E1
210E2

1 r$ i j %k ,Ri j

@Da/p2
# 20A0

110E110E2 20A0
110E1

210E2
1 e@ i j # ,s@ i j # ,R@ i j #

Dp
^ Da 20A0

110A0
2120E110E2 0A0

2120B0
2120E1

110E2
2 g i $ jk%

A

Dp
^ @Da/p2

# 0A0
1130A0

2140E1120E210E3 30A0
210B0

2140E1
1120E2

210E3
1 a@ i j #k ,g i @ j l #

S

Dp3 30A0
1140A0

2160E1130E210E3 40A0
2130B0

2160E1
1130E2

210E3
1 g i jk

@Da/p2
# ^ @Da/p2

# 60A0
1120A0

2160E1150E2120E310E4 60A0
1120B0

1160E1
2150E2

1120E3
210E4

1 b@ i j #@kl#
8-5
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FIG. 2. Symmetry assigned electronic ban
of SWCT’s. ~a! For the chiral tube~8, 2! ~line
group T28

11D25L281822, a5A7a056.5 Å! the
bands are double degenerate in the interior of
while at the edges1 or 2 emphasize the
U-parity of singlets;m is given at the both edge
of the band.~b! and~c!: The bands of the zig-zag
~10, 0! and the armchair~10, 10! tubes ~line
group T20

1 D10h5L2010/mcm, aZ5)a0

54.26 Å, and aA5a0! are either fourfold
(kGm ,d) or double degenerate~ kE0/10

A/B , s, sv
parity A or B given next tom!; z-reversal parity
~1 or 2! and nondegenerate states~box! appear
at the edges of ID.
5b1, bzzzz5b2 , bxxyy5byyxx5b3 bxyxy5bxyyx5byxxy
5byxyx5

1
2 (b12b3), bxxzz5byyzz5b4 , bxzxz5bxzzx

5byzyz5byzzy5bzxxz5bzxzx5bzyyz5bzyzy5b5 , bzzxx
va

ic

-

-
s
.

s

04541
5bzzyy5b6. So, the conductivity tensors of SWCT’s in the
presence of the weak magnetic fieldH, up to the square
terms in the applied field, is of the form
s~H!5s1S b1Hx
21b3Hy

21b4Hz
2 r1Hz1~b12b3!HxHy r2Hy12b5HxHz

2r1Hz1~b12b3!HxHy b3Hx
21b1Hy

21b4Hz
2 2r2Hx12b5HyHz

2r2Hy12b5HxHz r2Hx12b5HyHz b6~Hx
21Hy

2!1b2Hz
2
D .
r-
s.
be

on

the
s is

f
to

ers
In general, the Raman~polarizability! tensorRi j relates
induced polarization to the external electric field18 Pi

5( jRi j Ej . Therefore, Table II combined with Eq.~A2!
gives the selection rules of the Raman scattering: the rele
transitions are between the states withkm numberskf2ki

50 and Dm5mf2mi50,61,62; for the achiral tubes
z-reversal parity of these states is different ifDm51 and
same if Dm even. For the frequently important symmetr
part R@ i j # and its anisotropic componentR@ i j #

a ~the last one

transforms according to@Dp2
#20A0

1!, the momenta selec
tion rules are same, while both thez reversal~and the vertical
mirror for achiral tubes! parity is conserved ifDm50. The
isotropic componentR@ i j #

s transforms according to the iden
tity representation0A0

1 , and involves only the transition
between the states with the coincident quantum numbers
for the antisymmetric partR$ i j % , Dm50,61; if Dm50 the
relevant transitions are between the states with oppo
nt

As

ite

U-parity for the chiral tubes and equal horizontal mirror pa
ity but the opposite vertical mirror parity in the achiral case
Of course, in the concrete calculations, these rules can
further specified according to the incident light polarizati
and direction.

IV. CONCLUDING REMARKS

The assignation of the energy bands of SWCT’s by
complete set of the symmetry based quantum number
discussed. Parametrized by the quasimomentumk, the bands
carry the quantum number of the angular momentumm, and
parities 6 and A/B, related to specific symmetries o
SWCT’s. The ranges ofm has been redefined compared
the one used in the nanotube literature2 to get the standard
quantum mechanical interpretation of thez projection of the
orbital angular momentum. The momenta quantum numb
are imposed by the rototranslational subgroupL (1)5Tr

qCn ,
8-6
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and characterize all the quasi-1D crystals. Indeed, in t
symmetryL (1) is always present as the maximal abelian pa
thus causing no degeneracy. AdditionalU andsv parties of
SWCT’s introduce band degeneracy. Relating the quan
numbers to the irreducible representations of the symm
groups this assignation immediately gives the band deg
eracies and information on nonaccidental band sticking.

The bands have specific symmetry with respect to thk
50 andk5p/a; therefore, the domain sufficient to chara
terize the entire band is the non-negative half of the Brillo
zone @0,p#. At the edge pointsk50, p/a, either the band
stick to the another one or the corresponding eigenstate
z-reversal parity6. The U-axis symmetry reverses both th
linear and angular momenta causing at least double de
eracy of the bands within~0, p!. For theZ andA tubes, the
vertical mirror plane implies degeneracy ofm and 2m
bands. Thus the bands are fourfold degenerate, excepm
50, n ones, which aresv odd or even and double degene
ate.

At k50 m and2m bands are sticked together. The scre
axis imposes additional band sticking, most easily revea
by the relations between thekm-quantum numbers used her
and k̃m̃ ones alternatively considered in the literatur3

Namely, the bands6m are sticked together atk50, as well
as the bandsm andm1p at p/a. Altogether, the set ofq/n
km bands are continued in a singlek̃m̃ band. Further, it can
be shown that only the bands ending up withU-parity even
or odd states are not sticked to the another ones, with the
Hove singularities and the halved degeneracy at their
points. These are general topological properties of
~quasi! particle energy bands of SWCT’s. All other ban
sticking or increased degeneracy, if any, are accidental,
related to the Hamiltonian under study. Note that only with
spin independent models theU axis imposed double degen
eracy coincides with that introduced by the time rever
symmetry, since both operations reverse linear and orb
angular momenta.

According to this general scheme the complete assig
tion of the SWCT electronic tight-binding bands is pe
formed. The generalized Bloch functions are found and ch
acterized by the full set of (kmP) quantum numbers. All
these functions contain two parts: the two halves of SW
consisting ofCts0 and Cts1 atoms~black and white ones in
the Fig. 1! contribute to the state by different phase facto
This form is useful in calculations and comparison to t
STM images,19 again manifests the existence of theU sym-
metry which interrelate the two halves.

A brief comment on the SWCT conductivity within th
present context may enlighten some of the discussed q
tions. Recall that the simplest~tight-binding nearest neigh
bors and homogeneous distortions! model with the bands
given in the Table I, predicts2,3 that the tubes withn12n2
divisible by 3 should be conductors due to the crossing20 of
the two bandsmF at kF : when R53 then kF52p/3 and
mF5nr (modq), while kF50 and mF56q/3 for R51.
This extra degeneracy at the Fermi level is a model dep
dent accidental one, being not induced by symmetry. On
contrary, the symmetry based noncrossing rule prevents
04541
ir
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conductivity except in the armchair tubes, since the mome
quantum numbers of the crossing bands are the same;
for the armchair tubes, whenmF5n these bands also carr
the opposite vertical mirror parity. So, as verifie
experimentally21 and in the more subtle theoretical models20

the secondary gap must be opened except for the armc
tubes, for which the accidental crossing pointkF is shifted to
the left. In these cases the metallic plato19,22 is ended by the
systematic van Hove singularities.

The major benefit from the complete assignation of ba
and corresponding generalized Bloch functions comes fr
the selection rules. The momenta conservation selection r
~A1! emerge from the rototranslational subgroupTq

r Cn mak-
ing these rules also applicable to all other nanotubes~multi-
wall, BN, etc.! and stereoregular polymers. The novel co
served parities refine the momenta conservation rules.
coincidence of thez-reversal odd and even states with t
systematic van Hove singularities proves substantial in
ence of the parities to the physical processes in nanotu
and related spectra.16,23 Therefore, these additional rule
must not be overlooked in calculations.

To illustrate further the relevance of the derived par
selection rules, let us briefly discuss armchair tubes and
parallel component of the dielectric tensore i j (k,v), which
is the corner stone in the analysis of various opti
properties.16 The contribution of the direct interband trans
tions caused by the electric field along thez axis are to be
included in calculations. As the perturbation field has odz
reversal and even vertical mirror parities, it transforms
cording to the representation0A0

2 . Therefore, the absorption
may be realized only by the~vertical! transitions em

2(k)
→em

1(k), and this exhausts the selection rules imposed
the rototranslational subgroup. Nevertheless, the eigen s
of the pairs of the double degenerate bands withm50, n
have differentsv parity, and the transitions between the
bands are forbidden for anyk. Thus, only the transitions
between the fourfold degeneratekGm bands are allowed forz
polarized light. Also in the Raman scattering processes
selection rules besides the momenta strongly involve p
ties.

Finally, the tensor properties of some physical quantit
were established, to make the use of the selection rules q
straightforward. We emphasize that the considered ten
interrelate vector~polar or axial! quantities making that all of
them are associated to quantum numberk50. This provides
full conservation of momenta~e.g., vertical optical transi-
tions!, although in generalm is not conserved.

APPENDIX: CLEBSCH-GORDAN COEFFICIENTS

The Clebsch-Gordan coefficients are given for the ir
ducible representations of the line groupsLC and LA pre-
sented in Ref. 7. These coefficients reflect the conserva
laws of z components of the linear and angular quasi m
menta, as well as of the parities with respect to theU axis
and the mirror planessv or sh . The addition of quasimo-
menta is performed modulo their range, which is indica
by 8:
8-7
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k1ki8k1ki12Kp/a, ~A1a!

m1mi8m1mi1Mq, ~A1b!

where K and M are the integers providing the results
(2p/a,p/a# and (2q/2,q/2#, respectively. In the following
expressions the value of the paritiesP may be61 for even
and odd states or 0 for all the other states with undefi
parity. When this value is explicitly given~or absent! in ex-
pression, all the other quantum numbers are restricted to
compatible values. For given values (k,m,P) and
04541
d

he

(ki ,mi ,P i), the Clebsch-Gordan coefficients are nonvani
ing only if kf85k1ki and mf8m1mi1pK, where K
5(k1ki2kf)a/2p is an integer, andP f5PP i when both
P and P i are defined. ForZ and A tubes p5n and P f
5PP i refers to conservation of each parities separately
all these cases the value of the CG coefficient is 1,

^kf ,mf ,P f ukmP;kimiP i&51, ~A2!

with the following exceptions.
~1! Chiral tubes:
^kf ,mf ukm;kimi2&521, if k,0, or k50, m,0, or k5p/a, m¹F2
p

2
,
q2p

2 G ,
^kf ,mf ukm2;kimi&521, if ki,0, or ki50, mi,0, or ki5p/a, mi¹F2

p

2
,
q2p

2 G ,

^kf ,mf ,6uk,m;ki ,mi&55 6
1

&
, k,0, or k50, m,0 or k5p, mi¹F2

p

2
,
q2p

2 G ,
1

&
, otherwise.

~A3!

~2! Achiral tubes~only the cases withk50 are considered;ux is the negative step function, being 1 whenx,0 and zero
otherwise; especiallyuPs is shorten tous , for s5h, v, U!:

^0,mf ,PhPhiu0,m,B,Ph;0,mi ,Phi&521, if mi,0,

^0,mf ,PhPhiu0,m,Ph;0,mi ,B,Phi&521, if m,0,

^0,mf ,PvPv iu0,m,Pv,2;ki ,mi ,Pv i&5^ki ,mf u0,m,2;ki ,mi&521, if ki,0,

^p/a,mf ,2PhPUiu0,m,B,Ph;p/a,2n/2,PUi&521;

^kf ,mf u0,m,Pv,Ph;ki ,mi&5^kf ,mf u0,m,Ph;ki ,mi&5~21!uhuki
1uvumi,

^p/a,mf u0,mPh;p/a,mi ,PUi&5~21!~uh1uUi
!~um1umi

!,

^0,mf ,Pv,PhPhiu0,m,Ph;0,mi ,Phi&5
~21!uvum

&
, ~A4!

K p

a
,mf ,PU fU0,m,Ph;ki ,0,Pv i L 5

~21!~uU f
1uh!uki

1uv i
um

&
,

K kf ,0,Pv fU0,m,Ph;
p

a
,mi ;PUi L 5

~21!~uUi
1uh!~umi

1um!1uv f
um

&

^kf ,mf ,Pv f u0,m,Ph;ki ,mi&5
~21!uhuki

1uv f
um

&
,

^kf ,mf ,PU f u0,m,Ph;ki ,mi&5
~21!~uU f

1uh!uki

&
.
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