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Carbon nanotubes band assignation, topology, Bloch states, and selection rules
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Various properties of the energy band structuigsctronic, phonon, etg.including systematic band de-
generacy, sticking and extremes, following from the full line group symmetry of the single-wall carbon
nanotubes are established. The complete set of quantum numbers consists of the angular and linear quasimo-
menta and parities with respect to tbleaxis and, for achiral tubes, the mirror planes. The assignation of the
electronic bands is performed, and the generalized Bloch symmetry adapted eigen functions are derived. The
most important physical tensors are characterized by the quantum numbers. All this enables application of the
presented exhaustive selection rules. The results are discussed by some examples, e.g., allowed interband
transitions, conductivity, Raman tensor, etc.
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. INTRODUCTION the helical group(screw axi$ Tr,. The rotationsC;, s
=0,...n—1, around thez axis form the subgrou,. Fi-

It is well known that single-wall carbon nanotubes nally, U is the rotation byr around thex axis (u=0,1), and
(SWCT’s), in addition to the translational periodicity along 4 the vertical mirrorxz plane in the case of the achiral
the tube axigz axis, by conventiop possess a screw axis tubes, i.e.p =0, 1 for Z and A tubes, and)=0 for C ones.
and pure rotational symmetries. Consequently, in calculagach carbon atom on the tube is obtained from a single one
tions of the electronic energy band structure the conserve@000 by the action of the elemeit,s,u,0). This enables us
quantum numbers of lineak, or helicaf k, quasimomenta to enumerate the atoms &5;,. The isogonal point groups
together withz projection of the orbital angular momentum are
(related to rotational symmetrieare used. On the contrary,
the parity quantum numbers following from the full line
group symmetr§including horizontall axis and, in the zig- Pc=Dgq, Pz4=Dapp. 3
zag and armchair cases, vertical and horizontal mirror and
glide planes, have not been used in band assignation. It is
important to complete this task, since it yields many impor-  The electronic eigen statés the form of the generalized
tant exact properties of the electronic band structures, somBloch function$ and eigenenergie®rganized as the energy
of them being quite independent of the model consideredpands are assigned by the complete set of the symmetry
Let us mention only the band degeneracies, systematic vasased quantum numbers in Sec. Il. The derived general tight-
Hove singularities and the precise selection rules relevant fdsinding dispersion relations are considered also in the sim-
the processes in nanotubes. Further, some general predictiopiest approximation. Then, in Sec. Ill, the general forms of
on the topology of band sticking may be a priori predicted. various tensorge.g., dielectric permeability, Raman, conduc-

All the geometrical symmetries of chirah{,n,), zig-zag tivity) are presented, enabling application of the selection
(n,0), and armchaitn, n) SWCT's (C, Z, and A tubes for  rules(given in the Appendix in the analysis of different pro-
shory are gathered in the line grodpéhe factorized and the cesses. Basic conclusions are reviewed in the last section.
international notation are givén

Le=T.Dy=L0,22, (18

L z4=T3,Dpn=L2n,/mcm (1b)

Here, n is the greatest common divisor of;, and n,, q
=2(nf+n.n,+n3)/nR with R=3 or R=1 whether
—n,)/3n is integer or not, while the helicity parametars
andp are expressed in terms of andn, by number theo-
retical functions. The elements of the groupd) are (the

coordinate system and the positions of the symmetry axes Z o

Oy

and planes are presented in Fig. 1
FIG. 1. Symmetry and neighbors. Perpendicular to the figure at
I(t,s,u,v)=(Cg|na/q)'CiU" oy, (2)  Ois theU axis (assumed to be the axis), while o7 stands for
vertical and horizontal mirror planes &f and.A tubes. Atoms ¢,
where Cg[na/q)' (Koster-Seitz notationa is the transla-  and Gg; are differed asO and ®. Nearest neighbors of the atom
tional period of the tubefor t=0,+1,..., are the elements of Cgy, denoted by 0, are the atoms 1, 2, and 3.
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Il. ELECTRONIC 7 BANDS Then, for the double degeneraiebands of the chiral tube

) . . the dispersion relations and the corresponding eigen vectors
. At first, we consider briefly the degeneracy of the bandsare obtained solving the eigenproblem of
imposed by the symmetry. Among two sets of quantum num-

bers used in literature for the chiral tufe€ we use the one

0 1x
: hem(k)  he (k)
related to the linear and total angular momenta. A state of Ho(k)={ 1 0 , (53
(quasjparticle propagating along the axis with the quasi him(k)  hy(k)
momentunk and thez component of the angular momentum
mis denoted askm), or |km=). The parities invoked by Ui Tt
axis and, for the achiral tubes, mirror planes, combine these hm(")‘% Hisu®™ (u=0.D), (5b)

states in the degenerate multiplets, related to irreducible rep-
resentations of the groufA or B for singlet, E for dublet,  With Hisy=Hogossu- FOr eachmone finds two bands
and G for quadruplek . 0 1

As for C tubes, m takes on the integer values from €m(K)=hp(K) =[hp (k)| (6a)
(—q/2,9/2]. All the equalities ink and m are assumed
modulo these intervals. Due td-axis symmetry, the states
|km) and |—k,—m) form degenerate doublet for anky K K
e (0,7/a), making a double degenerate band. At the point [km; )= e n(tS)(|ts0) + eMmts1)),
k=0, for m=0, g/2 there are nondegenerate even and odd '
states)00+) and|0,q/2,+ ). Forp even, ak= 7/a there are
additional singlet§ 7,—p/2,+) and |7,(q—p)/2,=). The |—k,—m; =)=, e‘¢rkn(t’5)(|tsl>te‘hrn|tso>), (6b)
mirror planeso, ando,= U, yield new parities forZ and ts
A tubes. Even and odd states with respectrjoare labeled k _ 1
by A andB. The parity of the horizontal mirror plane;, is wherehg, = Argl (k) 1.
denoted as that df, i.e., “+” and “ —" now points to the
even and odd states with respect to either one of the
z-reversing operations. For eacm=1,..n—1 and k
e (0,m/a) the stateskm), |k,—m), |—km), and|—k,—m)
form four fold degenerate band. Only for=0, n, when the
states posses sharp parkyB the degeneracy remains two-
fold: |km,A/B) and |—km,A/B). In k=0, the stateg00,
+,A/B) and|0On,*=,A/B) are nondegenerate, while for the
remainingm=1,..n—1, the stategOm=) and|0,—m=)
are double degenerate. At=m/a, for integerme (0,n/2)
the fourfold degenerate statésm), |7,—m), |7,n—m),
and |7,m—n) appear, while form=0, n, the states
|770,A/B) and |7n,A/B) as well as the state®@nly for n

with the corresponding generalized Bloch eigenfunctions

Note that the atoms with=0 andu=1 contribute only

to the diagonal and off diagonal terms Hf, (k), respec-
St(;f‘\/ely. Consequently, in the dispersion relatidés), the in-
teractions ofCgyqq with C,, atoms determine for eadhthe
average energy of two bands, while the interactions With
atoms shifts up and down symmetrically this average to the
eigenenergies. This result is not restricted to approximate
choice of the interacting neighbors and includes the local
distortions induced by the cylindrical geometry. Further, note
thatH s, 1'so Would be equal t@tsu/H|t’s’u’) if and only

if the atomic orbitals|ts) were orthonormal basis. Since
expressed in terms dfl g, /sy, Matrix elements, Eqs6)
refer to the realistic nonorthonormal cagbkerefore the re-
sulting Bloch functions are not orthonormalizedo take
even |m,n/2,+) and|m, —n/2,~) are double degenerate.  ,qyantage of the calculatéd?elementstsulH|t’s'u’) and
_The same guantum numbers may characterize severgly oyeriap integral€000tsu) one uses another matrix hav-
e|genstate§ with gqual or different eigenenergies. In suc|”||1g also the form(5), but with (000 H|tsu) instead ofH,q,.
cases the indek differing between such states is added. 'nMuItipIying Eq. (58 by the inverse of the analogous matrix

the consi_dereq model f_or+eacrh there are two elegﬁonic of the overlap integrals, one geits, (k) completely in terms
bands, with eigenenergieg, (k) and the vectorskm; =), o the known Slater-Koster elements and the overlap inte-

| —k,—m; =) distinguished byF=*. grals.
The t|ght bmdmg hamiltonian including a singteorbital Also, the result(6a is general in the sense that the
ltsw per siteCyg, is eigenenergies at the edges of the irreducible domain can be
obtained from this expression by substituting the limiting
H= Hiow o ltsuMt's'u’ values ofk numbers; the nondegenerate ones single out the
gﬂ t,sE,u/ tsus'u|tSUX states withU parity. For theZ and A tubes the dispersion

. o _relations can be derived, too: onty =q/2=n andn,=0 for
The electronic bands for such a Hamiltonian in the approXithe zig-zag om;=n,=n for the armchair tubes should be
mation of the nearest neighbors interaction and orthogonajsed. In these cases E@a) is the same fom and —m,
atomic orbitals have been calculated and assignddandm  reflecting the anticipated general conclusion that the bands of
only.”* Here, within less crude approximations, we completethe achiral tubes are fourfold degenerate apart from the

the assignation by the additional parities. double degeneratm=0, n bands. These double degenerate
It is convenient to introduce the phases bands are with evemn, parity for Z tubes, while they form
two pairs with oppositer, parity in A tubes. Nevertheless,
K (ts)= kan+2wmrt+ 27Tms @ the corresponding symmetry adapted vectors in these cases
mh = q n = cannot be in general derived from E@b).
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As for the most usual orthogonal orbitals nearest neighbeing independent 0@, area priori given by the symmetry
bors approximation, the sums in E&) are restricted to the of the system; the matrix elements are thus subjected to the
constant termH g, in h%(k) and to the three nearest neigh- selection rules showing when these coefficients are nonzero.
bors inhﬁq(k). TakingH 9= 0, i.e., shifting the energy scale The Clebsch-Gordan coefficients comprise complete in-
for Hgoo, and substituting in Eq4) for the nearest neighbors formation on the selection rules. For the SWCT symmetry

(Fig. 1) the parameters groups(1) they are given in the Appendix. Generally they
reflect conservation laws of the linear momentwk= k¢
n, 2n;+(1+rR)n, —k;=k and paritied1;=IIII; (assuming+1 for “ +" or A,
bW=-7 Sl:q—R' and —1 for “—" and B). As for the z component of the
guasiangular momentusm=m;—m;=m+Kp. HereK is
n, (1-rR)n;+2n, integer, which is nonzero in the Umklapp proces@se the
t=—", So=— >, Appendix. WheneverKp is not a multiple ofg, mis not

n o L X
ar conserved quantity; in fact it is related to the isogonal group

rotationsCZ, and onlyC; among them are symmetries of
the nanotube
one gets for eachn the pair of equally assigned bands The symmetry properties of the most interesting tensors
are expressédlin terms of the three-dimensional vector rep-
resentationdDP and D? (polar and axigl of L, since these
tensors are functions of the radius vectormomentump,
electrical fieldE (polar vectory angular momentunh, and
Finally, the rolling up induced differences in the inter- magnetic fieldH (axial vector$. The irreducible components
atomic distances of the honeycomb lattice are frequently nesf the corresponding representations are given in the Table
glected (homogeneous distortions approximafiowhich is  Il. For all of themk=0, causing that only direct processes
achieved by settingitisilzv for the nearest neighbot¥ is  are encountered and nom is also a conserved quantum

estimated betweer3.003 and—2.5 eV). All the dispersion ~number (since ki=k; yields K=0). This means that their
relations and the corresponding eigen stdteshe form of ~ Symmetry properties are related to the isogonal grd@ps
generalized Bloch sumsare given in the Table | for this To facilitate the application of Ed8) we discuss the gen-

approximation, and in Fig. 2 the assignation of these bandgral forms of some of the tensors indicated in Table I being
for several tubes is presented. related to the optical properti®sof nanotubes. In the linear

approximation the tensor of the dielectric permeability in the

weak external electric fieldE is &p1(E)=egp;;7(0)

+ 2yarijkEx . For the chiral tubes, the general form of the
One of the most important benefits from the assignatiorzero field permeability tensbis &(0)= diagEy, x50 AS

by all quantum numbers comes through the applications ofne frequency number of the trivial representati@ in the

the selection rules in various calculations of physical Prop-u;jy is equal to one, the single parametgrdetermined by

erties of nanotubes. In fact, each allowed gkijm), together  the tube microscopic properties, controls the field-dependent

with the parities when necessafgec. 1), singles out one dielectric permeability behavior

multiplet (irreducible representationin this sense, a multip-

t3:tl+t2, S3:SJ_+ Sz,

3

-k
+ _ ts;
EEm(k)—i |:21 HtiSileI'JIm(l Sj)

- )

Ill. SELECTION RULES

let is specified by KmII), wherell stands for all possible e 0 aE
.. . . XX y

parities. If the multiplet is degeneratdoublets and quadru-

plets the “raw” index r running from 1 to its degeneration is e(E)=| O exx T aky

used to enumerate its statésith the same eigenenergy aEy, —aE, &,

Altogether, the state is denoted |&snllr;F). For example,

the symmetry adapted eigenstates of &, electronic Thus, the optical activity o€ tubes is changed by the per-
bands ofC tubes (Sec. Il are now denoted d&ml;=) pendicular electric field, and instead of one there are two
=|km; =) and |km2;+)=|—k,—m;*). Analogously, the optic axes whose direction depend on the applied field. For
quantum numbers are associated to the compo@ﬁ&“) the Z and A tubes the external field does not change their
of the physical tensof, giving their transformation rules Optical symmetry, since no trivial component appears in the
under the line group symmetry operations. Then, the matriflecomposition.

elements ofQ are expressed in the Wigner-Eckart fdfm The electromagnetic response to a weak applied field is
characterized by the dielectric functien; (k,»). Although
(kemeITer ¢ Fe| QUMD |k my ITir;  Fy) optical absorption and diffraction are well described within
the long-wavelength limit, for the optical activity the terms
= (kym¢IIgr ¢[kmlL,rkimy L) of &;; linear in the components of the wave veckothaving

different symmetry from thé-independent ong¢should be
considered. These linear terms define the tenggrand its
Here, Q(kimI1; ;F¢|kmlII|kim;IT; ;F;), the reduced matrix Symmetric and antisymmetfitparts with respect to the last
element, is independent on the indicesr;, andr;. The two subscriptSyijk=[asij(k,w)/ak|]k:0=i(yﬁj|}+ yﬁj,]).
Clebsch-Gordan coefficientgkym¢IT¢r ¢|kmITr;kimILir;), For the Z and A tubes there is no linear optical response

X Q(kemyIIy; FllkmIl|[kimiIL; ;F;).  (8)
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TABLE |. Bands and symmetry-adapted eigenvectors of the carbon nanotubes. For each irreducible representation the corresponding
frequency numbeN, energye in the simplest(orthogonal orbitals, nearest neighbors, homogeneous distortioadel, and generalized
Bloch functions|kmII) of the corresponding bands are given= Arg[V + 2V e ¥Zcosmin)].

C N € Generalized Bloch functions
) 1 )
Al 1 VIT(1+ 2¢2 (Ml Imily=——— > e "n(t9)(|ts0)+ I1|ts1))
\ |LC ts
AR 1 - VIl |7l T)= ] “Wm(t9)(|ts0) + 11 |ts1))
E 2 + |Vl ) Ky +)= ~ 10k (19)(|ts0) + @Ml ts1
K m = s0) = e'"m|ts
m | i | | > m = (| ) | ))
—k,—m; =)= el ¥n(t9)(|ts1) + en|tsO
| ) mé (|ts1)=€"n|ts0))
Z N € Generalized Bloch functions
) 2 )
Al 1 VIT(1+ 2¢€/(M™/m) |omIIA)= mZ e '(MTM t(|ts0) +1T|ts1))
Zl ts
mar
Em 1 vn(1+2 cosT) |omiIT)= ||_ 2 e (M7 (2s+0(|ts0) + [Te!(2M™/M|ts1))
Zl ts
|0'7 m,H) ||_ Z gi(mm/n) (25+t)(e|(2mrr/n)|tso>+H|tsl>)

. ka 2 . )
«En 2 +|V|\/5+4e'(mm cos— [kmA +)= mZ e~ i((min)+ (Kal2)t(|150) + gihn| ts1))
Zl ts

2 g i((main)- (kalz))‘(|tsl>+e'hm|tso>)

omai) =73

w,D,H>= LE (—1)S*Y(|ts0) + 11 |ts1))
||-Z| ts

LEN, 1 —VII 2
n 2 s
w50l ) = @Z (—1)3(|ts0) +T1|ts1))
S
ka m m
KGm 2 V] \/1+4 cosEcoquT+4co§T7T [knp+)= |L 2 g~ (K2t =i(m/n(t+29)(|tg0) + gl 7e! 2M/N)|t51))
|k,—m;i): ||_ 2 e i(ka2t |(m-rr/n)(t+25)(e|(2mn-/n)|tso>_._e|y|tsl>)
|_k,m,i>: |L | ei(ka/Z)te—i(mw/n)(t+25)(ei(2m7r/n)|tsl>ieiy|tso>)
Zl ts
|—k,—m; =)= T |E gilkatg |(m77/n)(t+25)(|tsl>_._e|ye|(2m7r/n)|tso>)
A N € Generalized Bloch functions
|om+11)= iz e (M™/MY(|ts0) +IT|ts1))
JIf 1 VII(1+ 2€!(mm/n)y Ll 4

m 2 ) )
oEm 2 *|V[\/5+4 cosTﬂ- |om+;+)= mZ e_'(m”/n)(25+[)(|t50>ie'h%|t51>)
Al ts

2 e|(mw/n)(25+t)(|tsl>+ e'hm|tSO>)

0,7 m, )= |LA s
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TABLE I. (Continued.

A N € Generalized Bloch functions
gl 1 j(main) ka 2 —i((mm/n)+ (ka/2))t
«Em VII| 1426 cos— kmiT)y= ths e (|ts0) +I1[ts1))
2 —i((m/n)— (ka/2)t
|—k,m,IT)= mtz e (|tsO) +I1[ts1))
S

W,D,H>= i2(—1)S“(|tso>+n|tsl))
2 |LA| ts

Ehy 1 —VII

n 2 s
w50l ) = mtz (—1)S(IT|tsO) +]ts1))
S
ka mm ka 2 —i(ka/2)t u—i(mm/n)(t+2s) ihk
Om 2 #V[\/1+4 COS— COS—- +4co§? k=)= mZ e e !\m” (|ts0) = e'"nts1))
Al ts
Ik, —m; )= ﬁz e-i(kadtgi (ma-r/n)(t+23)(|tsl>ieihllfn|tso>)
Al ts
|—k,m; =)= ﬁz ei(kalz)te—i(mw/n>(t+2s)(|tso>ieih‘r‘n“sl»
Al ts
|-k, —m;+)= ﬁZ ei(kalz)tei(mﬂ/n)m25)(|tsl>ieihﬁ‘hso»
Al ts
while for the chiral tubes the antisymmetric parf{j,} is 8 s 3
determined by two independent parameters involved in six oij(H)=o7;j;(0)+ > phjkHKT > > BrijiknHkH1
A k=1 k=1i1=1

nonvanishing tensor elememsy, ,= ¥ ,,= — ¥ koy= — ¥ bz
are related to the interband transitiongA, < E;,

kKEm—kEm+1 (Ke[0,7]), oAgz0Eqe-1 [this follows
from Eq.(8) when the operatorg,, py, I, andl, are sub-

stituted forQJ, while VQ\xyI: ~ Y 2yx are rela;ted to the inter- nite the fourth rank tensoBy;j iy introduces a small cor-
band transitions)Ag <> oA and oAqz—0Aqz (NOW P, @nd  rection to the main effect. Because of the symmatfyy is

|, are useyl The single independent parameter g, is  of the same form for all SWCTE, Z, A): two independent
involved in the four nonvanishing tensor elements,,  parameterg, andp, define its six nonvanishing tensor com-
= Yroy= ~ Yya= ~ Yyox T€lated to the interband transitions ponents pyy,=—pPyxr=P1,  Pxzy=— Prxy=Payx= — Poxy
induced by the symmetric operat@(iﬁfr yp,+H.c.). =p2. AlSO Byij ki is of the same form for the chiral and the

The conductivity tensor;; of a system in a sufficiently achiral SWCT, with six independent parameters involved

weak magnetic field is well approximated quadratically: ~ within altogether 21 nonzero componenf .= Byyyy

where the symmetr§*’ allows a symmetric tensar;;;(0)
=diag(@yx,0xx,07)- The third rank tensopyjj, is respon-
sible for the linear contribution of the fielHall effec?,

TABLE Il. Symmetry of the tensors of SWCT’s. The decompositions onto irreducible representations of the most frequenigieasors
in the last columpof the chiral(column 2 and the zig-zag and the armché&olumn 3 SWCT's. Tensors are obtained by multiplying polar
and axial vectors, and the type of the products [- - -] and{- -} for the direct, symmetrized, and antisymmetrizéedin the first column.

Type C tubes Z and A tubes Tensor

DP 0Ag +oE1 oAg +oE7 ri,pi.Ei

2. — —
Da3={D¥P"} 0Ao ToF1 0Bo +0oE; L Hi Ry
DP? 20Ag +0Ag +20E1 +oE, 20Ag +0Bg +20E; +oE; Piijyk s Rij
[D¥P?] 20A¢ +E1+oE, 20Ag +oE1 oz €ij1 i1 Ry
DP®D? 20Ag +0Ag +20E1+oE> oAy +20Bg +20E7 +(E5 'y;A{jk}

2 — — — —
DPo[D¥P*] oAg +30Ag +40E1+ 20E,+E;3 30Ag 0By +40E] +20E; +oE; i Vit
pDr® 30A¢ +40Ag +60E;+ 30E,+oE3 40Ag +30Bg +60E; +30E; +oE;5 Yijk

[Da/pz] ®[ Da,,,z] BoAS +20Ag +60E1+ 50E,+ 20E5+ oE4 6oAg +20Bg +60E] +50E5 +20E5 +oEx Brijki
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<[]
(¥}
el

0,10
+1,9,11
+2,8,12

i)

-

+3,7,13
FIG. 2. Symmetry assigned electronic bands

of SWCT's. (a) For the chiral tubg8, 2) (line

group TiD,=L28,:22, a=\7a,=6.5A) the

4812 4,6 1
: . -4,14 Alz8
-oh 5+ 1

—
H
|
oy

+

s 10_._;&511 13 A bands are double degenerate in the interior of ID
—Gl—iﬂ ! while at the edges+ or — emphasize the
(a) ! U-parity of singletsm is given at the both edges
s — n _3 of the band(b) and(c): The bands of the zig-zag
-6,-12 E=§ (10, 0 and the armchair10, 10 tubes (line
N group  TiDin=L20/mcm  az=v3a,
e 2+ =4.26A, and a,=a, are either fourfold
-10,-3 + : ' AT 4o v
1t 7,14~ -0 5— 1 + (G, @) or double degeneratgEg,, O, o,
1 0/10
‘3-%4 i parity A or B given next tom); zreversal parity
P48 s ' (+ or —) and nondegenerate stat@®x) appear
¥ +3,7,13 0 at the edges of ID.
2 2
2,812 -t
+
1,9,11 +
0,10 ki
3 -3 ;

0 0204 0608 1

[
(=
(4}
—

=PB1, Bzzz7 B2, Bxxyy: Byyxx: B3 Bxyxy: Bxyyx: :Byxxy :Bzzyy:ﬁe- So, the conductivity_ten_sof of SWCT's in the
:ﬂyxyx:%(lgl_BS)v Bxxz7= Byyzz: Ba, Bxzx7= Bxzzx presen_ce of the .Wea.k m‘?gnetlc fighl up to the square
:Byzyz: Byzzy: Bzxxz= Bzxz= Bzyyz: Bzyzy: Bs, Bzzxx terms in the applied field, is of the form

|

,31H>2<+33H32,+54H§ piH+(B1—=Bz)HHy  poHy+2B5H,H,
o(H)y=c+| —piH+(Bi—Ba)HH,  BaHi+BiHI+BHE  —poHy+2B5H H,
—paHy+2B5H,H, poHx+2BsHH,  Be(HE+H2)+ B,H?

In general, the Ramafpolarizability) tensorR;; relates  U-parity for the chiral tubes and equal horizontal mirror par-
induced polarization to the external electric fféldP, ity but the opposite vertical mirror parity in the achiral cases.
=3,R;E;. Therefore, Table Il combined with EqA2) Of course, i_n_ the concrete calculz_itio_ns, th_ese rules_ can be
gives the selection rules of the Raman scattering: the relevaffidrther specified according to the incident light polarization
transitions are between the states witn numbersk;—k,  and direction.
=0 and Am=m;—m;=0,=1,+2; for the achiral tubes

z-rever-sal parity of these states is differentAifn=1 and _ IV. CONCLUDING REMARKS
same ifAm even. For the frequently important symmetric . _
part Rg;j; and its anisotropic componeRt;; (the last one The assignation of the energy bands of SWCT'’s by the

complete set of the symmetry based quantum numbers is

2
i P— AT .
transforms according D" ]=oA, ), the momenta selec discussed. Parametrized by the quasimomeriutine bands

tiqn rules are same, while t?oth tlaeeversaKar_\d the vertical carry the quantum number of the angular momentanand
mirror for achiral tubegparity is conserved ihm=0. The parities + and A/B, related to specific symmetries of
isotropic componenR[Si” transforms according to the iden- S\wcT’s. The ranges of has been redefined compared to
tity representationyA, , and involves only the transitions the one used in the nanotube literafute get the standard
between the states with the coincident quantum numbers. Aguantum mechanical interpretation of th@rojection of the

for the antisymmetric paR;,, Am=0,=1; if Am=0 the orbital angular momentum. The momenta quantum numbers
relevant transitions are between the states with oppositare imposed by the rototranslational subgradp=TIC,,,
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and characterize all the quasi-1D crystals. Indeed, in theiconductivity except in the armchair tubes, since the momenta
symmetryL (1) is always present as the maximal abelian partguantum numbers of the crossing bands are the same; only
thus causing no degeneracy. Additionhland o, parties of ~ for the armchair tubes, whemg=n these bands also carry
SWCT's introduce band degeneracy. Relating the quanturthe opposite vertical mirror parity. So, as verified
numbers to the irreducible representations of the symmetrgxperimentallj* and in the more subtle theoretical mod@ls,
groups this assignation immediately gives the band degerihe secondary gap must be opened except for the armchair
eracies and information on nonaccidental band sticking.  tubes, for which the accidental crossing pdiptis shifted to

The bands have specific symmetry with respect tokthe the left. In these cases the metallic pféttis ended by the
=0 andk=/a; therefore, the domain sufficient to charac- SyStematic van Hove singularities. o
terize the entire band is the non-negative half of the Brillouin 1 N€ major benefit from the complete assignation of bands
zone[0,7]. At the edge pointk=0, =/a, either the band and corresponding generalized Bloch functions comes from

stick to the another one or the corresponding eigenstate ge el)selectlon ;ules.t:]'he rtn(zmenltat_conslervstlon selectlokn rules
z-reversal parityx. The U-axis symmetry reverses both the . emerge from the rototranslational subgrakigC,, mak-

linear and angular momenta causing at least double degew-gl these rules also applicable to all other nanotu(besiti-

eracy of the bands withifD, ). For theZ and A tubes, the wall, BN, e_t_c) and_stereoregular polymers. Th(_e novel con-
. . L served parities refine the momenta conservation rules. The
vertical mirror plane implies degeneracy af and —m

coincidence of ther-reversal odd and even states with the
bands. Thus the bands are fourfold degenerate, exoept

—0o hich 4d 4 double d systematic van Hove singularities proves substantial influ-
;te’ N ONEs, which arer, 0dd or even and double degener- onca of the parities to the physical processes in nanotubes

d related trd:>® Therefore, th dditional rul
At k=0 mand—m bands are sticked together. The screwan relalsc spec erefore, Mmese addiional ruies

S - o . (r_}wust not be overlooked in calculations.
axis imposes additional band sticking, most easily revealed 1o 'y strate further the relevance of the derived parity
by thf relations between tii@rquantum numbers used here, selection rules, let us briefly discuss armchair tubes and the
and ki ones alternatively considered in the literattire. parallel component of the dielectric tensgy(k,w), which
Namely, the bands-m are sticked together &t=0, as well  js the corner stone in the analysis of various optical
as the bands andm+p at w/a. Altogether, the set of/n  propertiest® The contribution of the direct interband transi-
km bands are continued in a sindtéh band. Further, it can tions caused by the electric field along thexis are to be
be shown that only the bands ending up witkparity even  included in calculations. As the perturbation field has add
or odd states are not sticked to the another ones, with the varversal and even vertical mirror parities, it transforms ac-
Hove singularities and the halved degeneracy at their endording to the representatigj®\; . Therefore, the absorption
points. These are general topological properties of anynay be realized only by thévertica) transitions e, (k)
(qua.S) partiCle energy bands of SWCT’s. All other bandsﬁer;(k), and this exhausts the selection rules imposed by
sticking or increased degeneracy, if any, are accidental, i.ethe rototranslational subgroup. Nevertheless, the eigen states
related to the Hamiltonian under study. Note that only withingf the pairs of the double degenerate bands witk 0, n
spin independent models thé axis imposed double degen- paye differento, parity, and the transitions between these
eracy coincides with that introduced by the time reversahangs are forbidden for anlg. Thus, only the transitions
symmetry, since both operations reverse linear and orbitgdetween the fourfold degenerat®,,, bands are allowed far

angular momenta. polarized light. Also in the Raman scattering processes the

~ According to this general scheme the complete assignase|ection rules besides the momenta strongly involve pari-
tion of the SWCT electronic tight-binding bands is per- tjeg.

forme_d. The generalized Bloch functions are found and char- Finally, the tensor properties of some physical quantities
acterized by the full set ofkmII) quantum numbers. All \yere established, to make the use of the selection rules quite
these functions contain two parts: the two halves of SWCTgyaightforward. We emphasize that the considered tensors
consisting ofC;so and Cys; atoms(black and white ones in  jnterrelate vectofpolar or axial quantities making that all of
the Fig. 1 contribute to the state by different phase factors.them are associated to quantum numioer0. This provides

This form is useful in calculations and comparison to thefy| conservation of momentée.g., vertical optical transi-
STM images'® again manifests the existence of tHesym- tions), although in generah is not conserved.

metry which interrelate the two halves.

A brief comment on the SWCT conductivity within the
present context may enlighten some of the discussed ques-
tions. Recall that the simplestight-binding nearest neigh-
bors and homogeneous distortipmaodel with the bands The Clebsch-Gordan coefficients are given for the irre-
given in the Table I, predicts that the tubes witm;—n,  ducible representations of the line groups and L 4, pre-
divisible by 3 should be conductors due to the cros€ing  sented in Ref. 7. These coefficients reflect the conservation
the two bandsmg at kr: whenR=3 thenkr=2#/3 and laws of z components of the linear and angular quasi mo-
mg=nr (mody), while kk=0 and mg==q/3 for R=1. menta, as well as of the parities with respect to thexis
This extra degeneracy at the Fermi level is a model deperand the mirror planes, or o,. The addition of quasimo-
dent accidental one, being not induced by symmetry. On thenenta is performed modulo their range, which is indicated
contrary, the symmetry based noncrossing rule prevents they =:

APPENDIX: CLEBSCH-GORDAN COEFFICIENTS
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k+k=k+k+2K/a, (Ala) (ki ,m; ,IT;), the Clebsch-Gordan coefficients are nonvanish-
ing only if ky==k+k; and m=m+m;+pK, where K
m-+m;=m+m;+ Mg, (Alb) =(k+k;—k;)a/27 is an integer, andl;=1III; when both

where K and M are the integers providing the results in IT and1T; are defined. Foiz and A tubesp=n and Il

(- mla,mla] and (q/2,q/2], respectively. In the followin =IIII, refers to conservation of each parities separately. In
e, ql2Qi<], Tesp Y- 9 all these cases the value of the CG coefficient is 1,

expressions the value of the paritlHsmay be+1 for even

ano! odd states or 0 for all th_e_othe_r states with _undefined (k¢ ,mg T kmilT; kmIT) =1, (A2)

parity. When this value is explicitly givetor absentin ex-

pression, all the other quantum numbers are restricted to theith the following exceptions.

compatible values. For given valuesk,fn,Il) and (1) Chiral tubes:

(k¢ ,melkm;kim;—)=—1, if k<0, or k=0, m<O0, or k=m/a, meE[_%Q;D}
i P g—-p
(k¢ ,m¢lkm—;kim;)=—1, if k;<O0, or k=0, m;<0, or ki=m/a, m;« -2 R
! P g—-p
+—, k<0, or k=0, m<O0 or k=7, mj¢|— =, '
v2 2

(k¢,mg, =

k,m;ki ,mi>: 1 (A3)
—, otherwise.
V2

(2) Achiral tubes(only the cases witlkk=0 are considered), is the negative step function, being 1 wher 0 and zero
otherwise; especiallyys is shorten tods, for s=h, v, U):

(0,mg, II"TIM|0,m, B, I1";0,m; ,TTM)=—1, if m;<0,
(0,mg , II"TIM|0,m,I1";0,m; ,B,TIM)=—1, if m<O,
(0,m¢ , IT°T1%0,m, IT%, — ; ki ,m; ,IT%1) = (k; ,m¢]0,m, —;k; ,m;) = — 1, if k<O,
(mla,m;,—TIMIYijom,B, 11" 7/a, — n/2,1TY)) = — 1;
(K¢ ,me|O,m, IT°, 117 ki ,myy = (kg ,mg | O,m, TI7; ki ,my ) = (— 1) O+ 00 Om
(arla,me|0O,mII"M; 7r/a,m; , TTVi) = (—1)n* 0u)Om* Om),

(—~1)%"

(0,mg, IT%, IIMIM|0,m, IT"; 0,m; TNy =
V2

, (A4)

- (= 1), 006y
<_1mf1HUf Oymll_[h;ki’o'l_[vi>: !
a V2
T (_ 1)(9Ui+9h)(0mi+9m)+0uf(’m
<kf,0,H”f om,I1" —m, ;H“‘> =
a V2

( _ 1) 0h0ki+ 0Uft9m

ke ,mq , ITf[O,m, 1"k, ,m) =
< f f | i |> V3

(_ 1)(0Uf+0h)0k‘

k: ,m¢ , IT1Y10,m, 1"k ,m )=
< f f | i |> 1/2
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