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Scaling behavior of impurities in mesoscopic Luttinger liquids
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Using a functional renormalization group, we compute the flow of the renormalized impurity potential for a
single impurity in a Luttinger liquid over the entire energy range from the microscopic scale of a lattice-
fermion model down to the low-energy limit. The nonperturbative method provides a complete real-space
picture of the effective impurity potential. We confirm the universality of the open chain fixed point, but it turns
out that very large systems~104– 105 sites! are required to reach the fixed point for realistic choices of the
impurity and interaction parameters.
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The low-energy physics of one-dimensional interact
electron systems with Luttinger liquid~LL ! behavior is dra-
matically affected by the presence of a single impurity.1–6

The problem is usually mapped onto an effective-field the
using bosonization, where terms which are expected to
irrelevant in the low-energy limit are neglected.1–5 Then for-
ward and backward impurity scatterings decouple, and
more important backscattering processes are modeled
single amplitude VB . From a perturbative bosoni
renormalization-group~RG! calculation4 and a boundary
conformal field theory analysis,5 the following picture
emerged: In a chain of spinless fermions7 with repulsive in-
teractions~LL parameterKr,1! the backscattering ampli
tude VB is a relevant perturbation which grows asLKr21

when the flow parameterL is sent to zero, and the perturb
tive analysis breaks down. This behavior can be traced b
to the power-law singularity of the 2kF density response
function in a LL.1,2 On the other hand, a weak hoppingtw
between the open ends of two semi-infinite chains is ir

evant and scales to zero asLKr
-1

21.4 Assumingthat the open
chain represents the only stable fixed point, it was arg
that at low-energy scales and even for a weak impu
physical observables behave as if the system was split in
chains with open boundary conditions at the end poin4

Here we focus mainly on the local spectral weightr j (v) for
lattice sitesj close to the impurity and energiesv close to the
chemical potentialm. For r j (v) a power-law suppressio
r j (v);uvuaB, with a boundary exponentaB5Kr

2121
which only depends on the interaction strength and b
filling, but not on the impurity parameters, was predicted4

Within the bosonic field theory the above conjecture w
verified by refermionization,4 quantum Monte Carlo
calculations,8,9 and the thermodynamic Bethe ansatz.10

To confirm the field theoretical scenario and the valid
of the underlying assumptions for a microscopic fermio
system with LL behavior, numerical methods@exact diago-
nalization ~ED!, density-matrix renormalization grou
~DMRG!# were applied to the lattice model of spinless fe
mions with nearest-neighbor interaction.5,11–13 Comparing
ED data for up toN523 sites with the field theoretical pre
diction for the finite-size corrections of energies, the e
0163-1829/2002/65~4!/045318~4!/$20.00 65 0453
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pected scaling was confirmed for both weak impurities a
weak hopping.5 However, due to the limited system size
was impossible to go beyond the perturbative~in eitherVB or
tw! regime. Later it was claimed that the full flow from
weak impurity to the open boundary fixed point~BFP! was
successfully demonstrated,11,12although this strong statemen
is not really supported by the numerical data presented.
smallest temperature discussed in Ref. 12 corresponds
system of around 300 lattice sites; the largest system con
ered in Ref. 11 wasN552, while in Ref. 13 it was shown
thatN'102 lattice sites are clearly not enough to exclude
asymptotic behavior not governed by the BFP, even if o
starts out with a fairly strong impurity.

Recently functional RG methods, originally developed
a field-theoretical context, have been introduced as a pow
ful tool in the theory of interacting Fermi systems,14 with
applications so far concentrating on translationally invari
two-dimensional systems.15,16 In this paper we apply such
functional RG scheme to a spinless fermion model with s
or hopping impurities. We compute the completecoupled
flow of the renormalized on-site energies and the renorm
ized hopping amplitudes from the microscopic energy sc
down to the infrared fixed point. The flow equations a
nonperturbative in the impurity strengthand perturbative in
the electron-electron interaction. We treat thefull functional
form of the renormalized impurity potential as generated
the flow, instead of replacing it approximately by the scatt
ing amplitudes at the Fermi level. Computing the local sp
tral weight near the impurity, we convincingly confirm th
universality of the BFP. However, it turns out that very lar
systems~104– 105 sites! are required to reach the BFP fo
intermediate impurity and interaction parameters. Our R
scheme is checked against numerical exact DMRG data
systems with up toN5768 sites.

The one-dimensional lattice model of spinless fermio
with nearest-neighbor hopping amplitudet51 and nearest-
neighbor interactionU is given by

H052(
j

~cj
†cj 111cj 11

† cj !1U(
j

njnj 11 ~1!
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in standard second-quantized notation. Here we focus on
half-filled band case, repulsive interaction, and the LL pha
i.e., 0,U,2. To the HamiltonianH0 , we add either a
site impurity Hs5Vnj 0

or a hopping impurity Hh5(1

2t j 0
) (cj 0

† cj 0111H.c.).

In a weakly interacting spinless LL with an open end t
local spectral weightr j (v) near the boundary can, to a su
prisingly good approximation, be obtained from a non-se
consistent Hartree-Fock~HF! approximation.17 It is instruc-
tive also to consider the impurity problem within the H
approximation, before turning to the RG treatment. The
purity leads to Friedel oscillations in the noninteracting de
sity profile ^nj&0 , which for large u j 2 j 0u behaves as
R cos(2kFuj2j0u)/uj2j0u, whereR is the reflection amplitude
of the bare impurity. Similar oscillations are found in th
matrix element̂ cj

†cj 11&0 . Thus both the Hartree potentia
U(^nj 21&01^nj 11&0) and the Fock ‘‘hopping correction’
are oscillatory and of long range. One then has to solv
~nontrivial! one-particle problem within such a potential a
with modulated hopping. Taking into account the Hartr
term only, the resulting spectral weight foruvu→0 shows a
power-law behavior with an exponent which is proportion
to the amplitudeUR of the oscillations.18 We have checked
numerically ~for systems of up to 106 lattice sites17,19! that
this behavior is not changed when the Fock term is includ
Thus, due to thelong-rangenature of the effective potentia
and the hopping modulation, the HF approximation, alrea
yields apower law for the spectral weight, but with an ex
ponent which not only depends onU, but, viaR, also on the
bare impurity strength.

It is tempting to extend the HF study using the se
consistent HF approximation.20 However, it turns out that an
iterative solution of the self-consistent HF equation leads
all U to a charge-density-wave ground state,19,20 which is
qualitatively incorrect since a single impurity cannot chan
bulk properties of the system.

We now treat the problem using a fermionic function
RG approach. Cutting off the free propagator on a scaleL,
and differentiating with respect to this flow parameter,
exact infinite hierarchy of coupled differential flow equatio
for the one-particle irreducible vertex functions can
derived.21–23 For the impurity problem it is technically ad
vantageous to use a frequency cutoff for the free propag
G0,L( iv)5Q(uvu2L)G0( iv), whereG0 is the free propa-
gator without cutoff andv the Matsubara frequency.L flows
from ` to 0. For spinless fermions the electron-electron
teraction is renormalized only by a finite amount of ord
U2.24 Hence we can replace the renormalized two-part
vertex to leading order inU by the antisymmetrized bar
interaction. In this way the exact hierarchy of flow equatio
is truncated, and one obtains a simple one-loop flow equa
for the self-energyS, where only the~full ! propagatorG and
the bare electron-electron interactionU enter. Using the
above approximation we can expect our results to be qu
titatively correct for smallU. Below, we will show that the
RG also provides qualitatively correct results forU of the
order of 2. Carrying out a Matsubara sum and choosin
04531
he
e,

-

-
-

a

e

l

d.

y

r

e

l

n

or

-
r
e

s
n

n-

a

real-space representation ofG and S, one obtains the flow
equations~at temperatureT50!

d

dL ( j , j
L 52

U

2p (
s561

(
v56L

Gj 1s, j 1s
L ~ iv!, ~2!

d

dL ( j , j 61
L 5

U

2p (
v56L

Gj , j 61
L ~ iv!. ~3!

The self-energy is frequency independent and tridiago
since the bare interaction is instantaneous and restricte
nearest neighbors. The full propagatorGL on the right-hand
side of the flow equations is obtained by inverting the mat
@G0#212SL. The bare site and/or hopping impurity enter
initial conditions for SL at L5`. For a site impurityV at
j 0 , one setsS j 0 , j 0

L5`5V, and, for a hopping impurity betwee

j 0 and j 011, one hasS j 0 , j 011
L5` 5S j 011,j 0

L5` 512t j 0
, while the

other matrix elements are initially zero. The above flo
equations arenonperturbativein the impurity parameters, in
contrast to the perturbative bosonic RG equation. Written
momentum space, the different scattering channelsSk,k8 are
coupled. The self-energy atL50 can be given a simple
physical meaning:S j , j

L50 represents an effective one-partic
potential andS j , j 11

L50 is an effective modulation of the hop
ping. To calculater j (v), one determines the spectr
weights of the remaining one-particle problem.

For a small impurity strengthV, after transforming to
momentum space and takingN→`, Eqs.~2! and~3! can be
solvedanalytically, as long asSL stays small. For the back
scattering this gives SkF ,2kF

L ;L2h with h5U@1

2cos(2kF)#/(pvF) and the Fermi velocityvF . To leading or-
der in U, the exponenth is just Kr21,17 which shows that
the nonperturbative fermionic RG equation captures
power-law increase found in the perturbative bosonic R
equation.

Numerically integrating the RG equations for finite sy
tems, we can go beyond the perturbative regime. In each
of the integration we have to invert anN3N matrix. If we
assume open boundary conditions inH0 , @G0#212SL is
tridiagonal in real space and the numerical effort is cons
erably reduced.25 This allowed us to treat systems with up
215532 768 lattice sites. For finiteN the flow is effectively
cut off on a scale of the order of 1/N. For smaller systems we
also considered periodic boundary conditions. Figure
shows typical results forS j , j

L50 andS j , j 11
L50 for a site impurity

and lattice sites close toj 0 . SinceS is symmetric aroundj 0 ,
mainly the regionj , j 0 is shown. Similar to the HF ap
proach the effective potential and hopping are oscillating a
slowly decaying. The inset of Fig. 1 showsS j 0 , j 0

L as a func-

tion of L for differentN. Obviously the renormalized poten
tial at the impurity site remains finite, and the expected ‘‘c
ting’’ of the chain does certainly not occur because a sin
on-site energy diverges, as one might guess if the bos
RG approach is taken too literally. A singular behavior
only found inSk,k8

L for momenta withk2k8'62kF , which
is associated with thelong-range oscillationsin real space.
8-2
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In Fig. 2 we present results for a hopping impurity wi
hopping matrix elementt j 0

50.1, i.e., in theweak hopping

limit. It shows the flowing renormalized hoppingS j 0 , j 011
L

21 as a function ofL for N51024. We have checked tha
the curve, to a good approximation, already presents thN
→` result. In contrast to a simplistic interpretation of th
bosonization result, the renormalized hoppingS j 0 , j 011

L 21

doesnot scale to zero. Similar to the case of a site impur
S j , j 8

L50 shows long-range oscillations. Again this and not t
scaling of a singleVj or t j is the reason for the peculia
behavior of physical observables, as for exampler j (v), dis-
cussed next.

As an inset to Fig. 2 the spectral weight near the impur
r j 021(v), is presented for asite impurity. The data show a

suppression of the weight foruvu→0, as expected. Eac
spike represents ad peak of the finite system. For the large
system sizes consideredr j 021(v) shows a power-law behav

FIG. 1. S j , j 8
L50 for a site impuritywith N51026 andj 05513.

The inset showsS j 0 , j 0

L as a function ofL for N566 ~circles!, N

5130 ~squares!, N5258 ~diamonds!, N5514 ~triangles!, and N
51026 ~stars!.

FIG. 2. S j 0 , j 011
L 21 as a function ofL for a hopping impurity

with t j 0
50.1, U51, N51024, andj 05512. Inset:r j 021(v) as a

function ofv for a site impuritywith the same parameters as in Fi
1 (N51026).
04531
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ior at low energies. At the lowest energies on the other ha
it is cut off due to finite-size effects. To reliably extract th
exponent, it is thus advantageous to analyze the finite-
scaling of the spectral weightW(N) at m, which is the am-
plitude of thed peak ofr j 021(v) at the chemical potential.26

The largeN dependence ofW(N) is given by a power law
with the same exponent as the one inr j 021(v) as a function
of v, and the scales on which power-law behavior sets in
comparable.

In Fig. 3 we show the negative of the logarithmic center
differencesa I(N) of W(N) as a function ofN for U50.5
and different values ofV obtained from RG (N<32 768) and
DMRG (N<768) equations. IfW(N) decays forN→` as a
power law,a I(N) converges to the respective exponent. F
comparison we also calculatedaB(N) for the lattice site next
to an open boundary (V5`). The DMRG and RG data are
parallel to each other, which in addition to the analytic
arguments, is a strong indication that our fermionic RG eq
tions capture the essential physics. ForV5` both methods
produce the expected power-law behavior with boundary
ponentsaB

DMRG andaB
RG. aB

DMRG (N5512) agrees up to 1%
with the exact exponentaB

ex'0.1609. aB
RG (N516 384),

which effectively is equal toaB
RG (N5`), deviates by

roughly 6% fromaB
ex since the RG equations are only corre

to leading order inU. The RG curves for finiteV suggest
that, forN→`, a I

RG(N) converges to the universal~V inde-
pendent! exponentaB

RG. This is in agreement with the field
theoretical prediction. It is remarkable that, even for fai
strong impurities (V54), extremely large values ofN
5104– 105 are needed to exclude nonuniversal~V depen-
dent! fixed points with some certainty. Solely relying o
DMRG data for a few hundred lattice sites would, in th
case, give no definite result.13 In Fig. 4, RG and DMRG data
are presented for intermediate impurity strengthsV51 and
V5` for different values ofU. Due to higher-order correc
tions in U, the difference between the RG and DMRG da
increases with increasingU. For larger U, a I

RG(N) ap-

FIG. 3. a I(N) as a function ofN for U50.5 and differentV:
V51 ~circles!, V52 ~squares!, V54 ~diamonds!, and V5` ~tri-
angles!. The filled symbols are DMRG data, and the open on
obtained from the RG equation. The dash-dotted line gives the e
boundary exponentaB

ex.
8-3
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proachesaB
RG faster, but even for the largestU51.8 consid-

ered here27 ~which corresponds toKr'0.58! very largeN are
needed. This demonstrates that for intermediateV and U,
which are experimentally most relevant, very large syste
are needed to observe the universal BFP physics. For ch
which are not long enough, a strong system size depend
of experimentally extracted exponents must be expected

We finally note that in the fermionic RG scheme used
Ref. 6, flow equations were set up for a single parame

FIG. 4. a I(N) as a function ofN for V51 ~dashed lines! and
aB(N) for V5` ~solid lines! for different U: U50.5 ~circles!, U
51 ~squares!, andU51.8 ~diamonds!. Filled symbols are DMRG
data, open ones RG results. The dashed-dotted lines give the
U dependent boundary exponentsaB

ex.
v.
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only: the transmission amplitude at the Fermi level. O
functional RG flow, however, indicates that in the nonpert
bative regime different momentum channels are stron
coupled. Hence we believe that it is important to take
whole renormalized impurity potential profile into accoun
The RG equations used in Ref. 6 can also be derived wi
our formalism, if one makes similar crude approximations28

In addition, we did not find signs of an enhanced spec
weight as predicted in Ref. 29.

In summary, by solving a functional flow equation in
fermionic representation, we have shown that, in a o
dimensional lattice electron system with Luttinger-liquid b
havior, an impurity makes observables at low-energy sca
behave as if the chain is split into two parts with op
boundary conditions at the end points. Our fermionic R
equation is nonperturbative in the impurity strength. Lon
range oscillations in the effective impurity potential provid
a simple real-space picture of the ‘‘splitting’’ mechanism
The accuracy of the finite site RG scheme was confirmed
a direct comparison to DMRG data. For realistic paramet
very large systems are needed to reach the asymptotic
chain regime. Hence only special mesoscopic systems,
as very long carbon nanotubes, are suitable for experim
tally observing the impurity-induced asymptotic open boun
ary physics. Our method can easily be generalized to the
of several impurities and, e.g., resonance phenomena ca
studied.19
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from the Gerhard-Hess-Preis.

act
nal
and

r,
1A. Luther and I. Peschel, Phys. Rev. B9, 2911~1974!.
2D. C. Mattis, J. Math. Phys.15, 609 ~1974!.
3W. Apel and T. M. Rice, Phys. Rev. B26, 7063 ~1982!; T. Gi-

amarchi and H. J. Schulz,ibid. 37, 325 ~1988!.
4C. L. Kane and M. P. A. Fisher, Phys. Rev. B46, 15 233~1992!;

A. Furusaki and N. Nagaosa,ibid. 47, 4631~1993!.
5S. Eggert and I. Affleck, Phys. Rev. B46, 10 866~1992!.
6D. Yue, L. I. Glazman, and K. A. Matveev, Phys. Rev. B49, 1966

~1994!.
7Here we will only discuss spinless fermions.
8K. Moon, H. Yi, S. M. Girvin, and M. P. A. Fisher, Phys. Re

Lett. 71, 4381~1993!.
9R. Egger and H. Grabert, Phys. Rev. Lett.75, 3505~1995!.

10P. Fendley, A. W. W. Ludwig, and H. Saleur, Phys. Rev. Lett.74,
3005 ~1995!.

11S. Qin, M. Fabrizio, and L. Yu, Phys. Rev. B54, R9643~1996!.
12S. Rommer and S. Eggert, Phys. Rev. B62, 4370~2000!.
13V. Meden, P. Schmitteckert, and N. Shannon, Phys. Rev. B57,

8878 ~1998!.
14M. Salmhofer,Renormalization~Springer, Berlin, 1998!.
15D. Zanchi and H. J. Schulz, Phys. Rev. B61, 13 609~2000!; C. J.

Halboth and W. Metzner,ibid. 61, 7364~2000!; C. Honerkamp,
M. Salmhofer, and N. Furukawa,ibid. 63, 035109~2001!.
16Earlier RG studies for the bulk properties of one-dimensio

systems are, e.g., reviewed in Ref. 24, and C. Bourbonnais
L. G. Caron, Int. J. Mod. Phys. B5, 1033~1991!.

17V. Meden, W. Metzner, U. Schollwo¨ck, O. Schneider, T. Staube
and K. Scho¨nhammer, Eur. Phys. J. B16, 631 ~2000!.

18M. Klaus, J. Math. Phys.32, 163 ~1991!.
19V. Meden, W. Metzner, U. Schollwo¨ck, and K. Scho¨nhammer

~unpublished!.
20A. Cohen, K. Richter, and R. Berkovits, Phys. Rev. B57, 6223

~1998!.
21C. Wetterich, Phys. Lett. B301, 90 ~1993!.
22T. R. Morris, Int. J. Mod. Phys. A9, 2411~1994!.
23M. Salmhofer and C. Honerkamp, Prog. Theor. Phys.105, 1

~2001!.
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