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Scaling behavior of impurities in mesoscopic Luttinger liquids
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Using a functional renormalization group, we compute the flow of the renormalized impurity potential for a
single impurity in a Luttinger liquid over the entire energy range from the microscopic scale of a lattice-
fermion model down to the low-energy limit. The nonperturbative method provides a complete real-space
picture of the effective impurity potential. We confirm the universality of the open chain fixed point, but it turns
out that very large systemd0*—10 siteg are required to reach the fixed point for realistic choices of the
impurity and interaction parameters.
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The low-energy physics of one-dimensional interactingpected scaling was confirmed for both weak impurities and
electron systems with Luttinger liquidLL) behavior is dra- weak hopping. However, due to the limited system size it
matically affected by the presence of a single impufify. was impossible to go beyond the perturbativeeitherVy or
The problem is usually mapped onto an effective-field theoryt,,) regime. Later it was claimed that the full flow from a
using bosonization, where terms which are expected to beveak impurity to the open boundary fixed poiFP) was
irrelevant in the low-energy limit are neglecté@. Then for-  successfully demonstratéti*?although this strong statement
ward and backward impurity scatterings decouple, and thés not really supported by the numerical data presented. The
more important backscattering processes are modeled bysmallest temperature discussed in Ref. 12 corresponds to a
single amplitude Vg. From a perturbative bosonic system of around 300 lattice sites; the largest system consid-
renormalization-group(RG) calculatiod and a boundary ered in Ref. 11 wadN=52, while in Ref. 13 it was shown
conformal field theory analysis,the following picture thatN~1(? lattice sites are clearly not enough to exclude an
emerged: In a chain of spinless fermibngth repulsive in-  asymptotic behavior not governed by the BFP, even if one
teractions(LL parameterK ,<1) the backscattering ampli- starts out with a fairly strong impurity.
tude Vj is a relevant perturbation which grows A< 1 Recently functional RG methods, originally developed in
when the flow parametex is sent to zero, and the perturba- a field-theoretical context, have been introduced as a power-
tive analysis breaks down. This behavior can be traced badkil tool in the theory of interacting Fermi systefswith
to the power-law singularity of the k? density response applications so far concentrating on translationally invariant
function in a LLY? On the other hand, a weak hoppihg  two-dimensional systemS:'®In this paper we apply such a
between the open ends of two semi-infinite chains is irrelfunctional RG scheme to a spinless fermion model with site
evant and scales to zero A%, 1.4 Assuminghat the open ©f hopping impurities. We compute the complateupled
chain represents the only stable fixed point, it was arguefloW Of the renormalized on-site energies and the renormal-
that at low-energy scales and even for a weak impurity2€d hopping amplitudes from the microscopic energy scale
physical observables behave as if the system was split in tw@0Wn 10 the infrared fixed point. The flow equations are
chains with open boundary conditions at the end pdints.nOnperturbative in the impurity strengtind perturbative in
Here we focus mainly on the local spectral weigkttw) for the electron—electron. interaction. We treat tb# functional
lattice siteg close to the impurity and energiesclose to the ~form of the renormalized impurity potential as generated by
chemical potentialu. For p;(w) a power-law suppression f[he flow, _mstead of replacmg it apprOX|mat_er by the scatter-

a ; 1 ing amplitudes at the Fermi level. Computing the local spec-
pi(®)~|w|*e, with a boundary exponentag=K, ~—1 ) he i ) i cindl firm th
which only depends on the interaction strength and bamﬁr"".I welght near the impurity, we convincingly confirm the
filling, but not on the impurity parameters, was predicfed. universality of the BFP' However_, it tuns out that very large
Within the bosonic field theory the above conjecture Wassystems(lo“—lcﬁ siteg are required to reach the BFP for

verified by refermionizatiofl, quantum Monte Carlo Intermediate impurity and interaction parameters. Our RG
calculation®?® and the thermooiynamic Bethe ans¥tz scheme is checked against numerical exact DMRG data for

To confirm the field theoretical scenario and the validitySyStemS with up t(N_:768 sites. . .
of the underlying assumptions for a microscopic fermionic _The one—d|m_en3|0nal Iattllce modgl of spinless fermions
system with LL behavior, numerical methofksxact diago- W't.h neargst-nelghbor_ ho_pplng amplituge 1 and nearest-
nalization (ED), density-matrix renormalization group neighbor interactiotJ is given by
(DMRG)] were applied to the lattice model of spinless fer-
mions with nearest-neighbor interactidh:~** Comparing
ED data for up td\N=23 sites with the field theoretical pre- H.= _E (c-Tc- +cf c-)+UE NN,y 1)
diction for the finite-size corrections of energies, the ex- 0 AR A T T

0163-1829/2002/68)/0453184)/$20.00 65 045318-1 ©2002 The American Physical Society



MEDEN, METZNER, SCHOLLWGK, AND SCHONHAMMER PHYSICAL REVIEW B 65 045318

in standard second-quantized notation. Here we focus on theal-space representation Gfand 2, one obtains the flow
half-filled band case, repulsive interaction, and the LL phaseequationgat temperaturd =0)
i.e., 0<U<2. To the HamiltonianH,, we add either a

site impurity Hs=Vn; or a hopping impurity H,= (1 d AU A )

) (€014 H) = 5r, 2, 2, el @
In a weakly interacting spinless LL with an open end the

local spectral weighp;(w) near the boundary can, to a sur- d N u N

prisingly good approximation, be obtained from a non-self- dA &=l :Ew;A Gjj+1(io). ()]

consistent Hartree-FodHF) approximation-’ It is instruc-

tive also to consider the impurity problem within the HF : : o
approximation, before turnin pto t)f/1epRG treatment. The im-T-he self-energy 'S frequen_cy_ independent and tr|d|e}gonal,

PP iy ng . . " since the bare interaction is instantaneous and restricted to
purity leads to Friedel oscillations in the noninteracting den-, o, ast neighbors. The full propaga@? on the right-hand
sity profile (n;)o, which for large li=Jol _behaves as  gjge of the flow equations is obtained by inverting the matrix
R cos(&elj —jol)/li —jol. whereR is the reflection amplitude [G01-1_3A The bare site and/or hopping impurity enter as
Of the bare Impurlty Slmllar OSCi||ati0nS are f0und in the |n|t|a| Conditionsfor EA atA:oo For a Site |mpur|tW at
matrix element(CirCH_l)(). Thus both “the Hartree pOtentl?l jOv one Set§jA;j°;=Vv and, for a hopp|ng |mpur|ty between
U((nj_1)0t(Nnj;11)0) and the Fock “hopping correction” . andjo+ 1, one has A==, . =SA=% =1t while the
are oscillatory and of long range. One then has to solve &° o Jodot1 = “io* Lo Jo’

°c! Y - d ge. ~ SOV other matrix elements are initially zero. The above flow

(nontrivial) one-particle problem within such a potential and :

with modulated hopping. Taking into account the Hartreeequations ar@onperturbativein the impurity parameters, in

term only, the resulting spectral weight ftis|—0 shows a contrast to the perturbative bosonic RG equation. Written in

. : L . momentum space, the different scattering chanBgls are
power-law behavior with an exponent which is proportlonalCoupled The self-energy at=0 can be given a simple
to the .amplitudeUR of the oscillations” We h.a ve7gl:hecked physical meaning® " ~° represents an effective one-particle
numerically (for systems of up to lattice site$”9 that otential ands =0 o effective modulation of the hop-

. J g P el p
this behavior is not changed when the Fock term is include sing. To calculatepi(w), one determines the speciral
Thus, due to théong-rangenature of the effective potential ping. PR @) - P

' . . o weights of the remaining one-particle problem.
a_nd the hopping modulation, the HF gpprommat!on, already For a small impurity strengthv, after transforming to
yields apower lawfor the spectral Welght_, but with an ex- momentum space and takidg— o, Egs.(2) and(3) can be
ponent which not only depends &h but, viaR, also on the g5 eqanalytically, as long as* stays small. For the back-
bare .|mpur|ty .strength. ) scattering this gives EQ k. ~ATT7  with  »=U[1

It is tempting to extend the HF study using the self- / dth FF' .F locit To leadi

consistent HF approximatici.However, it turns out that an ecrﬂfw(ok)t]hsaﬂg;) i?wen eis %r;?IKve—olcngvhicﬁ ser?ole?sgtggt
iterative solution of the self-consistent HF equation leads ford ’ ponenty Is JustK,— 1, )
all U to a charge-density-wave ground st&t&° which is the nonper_turbatlve ferm|o.n|c RG equation captures the

o . . ) . L epower—law increase found in the perturbative bosonic RG
qualitatively incorrect since a single impurity cannot chang equation
bulk properties of the system. . L . Numerically integrating the RG equations for finite sys-

We now treat the problem using a fermionic functional o5 '\ve can go beyond the perturbative regime. In each step
RG approach. Cutting off the free propagator on a séale ot ye jntegration we have to invert anx N matrix. If we
and differentiating with respect to this flow parameter, aNyssume open boundary conditions Hiy, [G®]"*— 32 is
exact infinite hlergrchy of cou_pled differential flgw equatlor‘Stridiagonal in real space and the numerical effort is consid-
for .thezﬁgg‘?'pamde. lrred_umble vertex _funct|or_13 can beerably reduced® This allowed us to treat systems with up to
derived-""For the impurity problem it is technically ad- 515_35 768 |attice sites. For finittl the flow is effectively
vac)r};cqgeous to use a fr%q_uency cutoff go.f the free Propagatql; off on a scale of the order ofN/ For smaller systems we
G t (Iw')th: ®t(|w|t_ﬁA)%v(tlﬁ))i\AW?er§G |fs the free ?Iropa— also considered periodic boundary conditions. Figure 1
gator without cutoff and» the Matsubara frequenci flows - o' ical results faE =0 andS =0, for asite impurity
from « to 0. For spinless fermions the electron-electron IN-_nd lattice sites close tj@J’JSinceE iéVJS mmetric aroung
teraction is renormalized only by a finite amount of ordermainly the region;<| i's Shown Si)r/nilar to the HFOép

2 24 : e o . .
U= Hence we can replace the renormallzed two partICIeproach the effective potential and hopping are oscillating and
vertex to leading order iJ by the antisymmetrized bare lowlv d ing. The inset of Fia. 1 sh \Eé\ f
interaction. In this way the exact hierarchy of flow equationssf owly ecaymg. € inse 9 9. L Shows, j, gs a func-
is truncated, and one obtains a simple one-loop flow equatiofion of A for differentN. Obviously the renormalized poten-
for the self-energy, where only thefull) propagatoiG and t!al at the |mpur!ty site remains finite, and the expected _cut-
the bare electron-electron interactidsh enter. Using the 1ing” of the chain does certainly not occur because a single
above approximation we can expect our results to be quarn-site energy diverges, as one might guess if the bosonic
titatively correct for smallJ. Below, we will show that the RG approach Is taken too literally. A singular behavior is
RG also provides qualitatively correct results fdrof the  only found in%, ,, for momenta withk—k’~ = 2kg, which
order of 2. Carrying out a Matsubara sum and choosing & associated with thiong-range oscillationsn real space.
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FIG. 1. %;;," for a site impuritywith N=1026 andj,=513. _ _
The inset show§j’\0’jo as a function ofA for N=66 (circles, N FIG. 3. «/(N) as a function ofN for U=0.5 and different:
=130 (squarel N=258 (diamond$, N=514 (triangleg, andN V=1 (circles, V=2 (squares V=4 (diamonds, andV=co (tri-
=1026(stars. angles. The filled symbols are DMRG data, and the open ones

obtained from the RG equation. The dash-dotted line gives the exact
In Fig. 2 we present results for a hopping impurity with Poundary exponentg’.
hopping matrix elementJ-O:O.l, i.e., in theweak hopping . , .
o . . N ior at low energies. At the lowest energies on the other hand,
limit. It shows the flowing renormalized hOpp'@’ion1 it is cut off due to finite-size effects. To reliably extract the
—1 as a function ofA for N=1024. We have checked that exponent, it is thus advantageous to analyze the finite- size
the curve, to a good approximation, already presents\the scaling of the spectral weight/(N) at u, which is the am-
—oo result. In contrast to a simplistic interpretation of the plitude of thes peak ofp;,—1(w) at the chemical potentiaf.

bosonization result, the renormalized hoppﬁg)'joﬂ—l The largeN dependence ofV(N) is given by a power law
doesnot scale to zero. Similar to the case of a site impurity,with the same exponent as the onepjn-1(w) as a function

EJ-A,j_rO shows long-range oscillations. Again this and not theof (», and the scales on which power-law behavior sets in are
scaling of a singleVv; or t; is the reason for the peculiar comparable.
behavior of physical observables, as for examplev), dis- In Fig. 3 we show the negative of the logarithmic centered
cussed next. differencesa;(N) of W(N) as a function ofN for U=0.5

As an inset to Fig. 2 the spectral weight near the impurity,and different values 0¥ obtained from RG <32 768) and
pjo_l(w), is presented for aite impurity The data show a DMRG (N=768) equations. IfW(N) decays foN—= as a
suppression of the weight fdw|—0, as expected. Each power law,a,(N) converges to the respective exponent. For
spike represents dpeak of the finite system. For the largest comparison we also calculateg(N) for the lattice site next

system sizes considergg _;(w) shows a power-law behav- to an open boundaryM=<). The DMRG and RG data are
parallel to each other, which in addition to the analytical

-0.10 -~ : ‘ : ‘ arguments, is a strong indication that our fermionic RG equa-
15 ‘ tions capture the essential physics. Mot~ both methods
U=1,V=0.5 . .
produce the expected power-law behavior with boundary ex-
/ | ponentsag""¢ and aR°®. a5MR® (N=512) agrees up to 1%

—-0.11 | . ex RG
with the exact exponenty~0.1609. ez~ (N=16384),

|
‘ 1 which effectively is equal toag® (N==), deviates by
‘ f roughly 6% fromag" since the RG equations are only correct

-0.12

iglg+!

to leading order inU. The RG curves for finite/ suggest
that, forN—c, af(N) converges to the univers&V inde-
® ' pendenk exponentai®. This is in agreement with the field
-0.13 1 1 theoretical prediction. It is remarkable that, even for fairly
U=1, 1j=0.1 strong impurities Y=4), extremely large values oN
‘ =10*~10 are needed to exclude nonuniver$sl depen-
10° 10’ 10° denp fixed points with some certainty. Solely relying on
A DMRG data for a few hundred lattice sites would, in this
case, give no definite resdftIn Fig. 4, RG and DMRG data
are presented for intermediate impurity strendgihs1 and
V=00 for different values oU. Due to higher-order correc-
tions in U, the difference between the RG and DMRG data
increases with increasingy. For larger U, «F%(N) ap-

2 -

107 10 10

FIG. 2. Ef‘oyjoﬂ—l as a function ofA for a hopping impurity
with tj,=0.1,U=1, N=1024, andj,=512. Inset:pl-o,l(w) as a
function of w for a site impuritywith the same parameters as in Fig.

1 (N=1026).
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m . . only: the transmission amplitude at the Fermi level. Our
0.8 1 functional RG flow, however, indicates that in the nonpertur-
bative regime different momentum channels are strongly
coupled. Hence we believe that it is important to take the
whole renormalized impurity potential profile into account.

The RG equations used in Ref. 6 can also be derived within
our formalism, if one makes similar crude approximatiéhs.

In addition, we did not find signs of an enhanced spectral
weight as predicted in Ref. 29.

In summary, by solving a functional flow equation in a
fermionic representation, we have shown that, in a one-
dimensional lattice electron system with Luttinger-liquid be-
havior, an impurity makes observables at low-energy scales
behave as if the chain is split into two parts with open
boundary conditions at the end points. Our fermionic RG
equation is nonperturbative in the impurity strength. Long-
range oscillations in the effective impurity potential provide
a simple real-space picture of the “splitting” mechanism.

FIG. 4. ;(N) as a function ofN for V=1 (dashed linegsand  The accuracy of the finite site RG scheme was confirmed by
ag(N) for V=0 (solid lineg for different U: U=0.5 (circles, U a direct comparison to DMRG data. For realistic parameters
=1 (squarey andU=1.8 (diamonds. Filled symbols are DMRG  very large systems are needed to reach the asymptotic open
data, open ones RG results. The dashed-dotted lines give the exagiain regime. Hence only special mesoscopic systems, such
U dependent boundary exponentg'. as very long carbon nanotubes, are suitable for experimen-
, tally observing the impurity-induced asymptotic open bound-
proachesx® faster, but even for the largest= 1.8 consid- aryyphysics. (gur methpod cyan easily be éerﬁ)eralize% to the case

7 H —~ . -
ered heré (which corresponds ti,~0.58 very largeN are o several impurities and, e.g., resonance phenomena can be
needed. This demonstrates that for intermed¥tand U, studied®

which are experimentally most relevant, very large systems

are needed to observe the universal BFP physics. For chains We would like to thank W. Apel, P. Durganandini, P. Ko-

which are not long enough, a strong system size dependengéetz, N. Shannon, C. Wetterich, and especially M. Salm-

of experimentally extracted exponents must be expected. hofer and H. Schoeller for valuable discussions. U.S. is
We finally note that in the fermionic RG scheme used ingrateful to the Deutsche Forschungsgemeinschaft for support

Ref. 6, flow equations were set up for a single parametefrom the Gerhard-Hess-Preis.
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