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Smoluchowski ripening and random percolation in epitaxial S{_,Ge,/Si(001) islands
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Island size distributions of ripened;SiGe /Si(001) x=0.3—0.7) islands exhibit a slow decay at small
island sizes and an asymmetric bell-shaped distribution peaked at a large size. We explain the ripening process
in Si;_,Ge /Si(001) islands by proposing a model based on random percolation and Smoluchowski ripening.
Drawing an analogy with percolation theory, we use a shifted average height to represent the time variable,
which is also applicable in the Smoluchowski ripening model; this shifted average height is used to analyze
size distributions and correlation functions. Critical exponents derived from the site percolation mddel at
=3 agree with our measurements. Island diffusidms™* leading to coalescence events, shows a weak
dependence on size «=0.28+0.20, attributable to the inverse process of sequential incorporation of atoms at
step edges due to the high stress concentration at island terrace perimeters. While random percolation domi-
nates for small sizes regime, Smoluchowski ripening controls the distribution peak at large island sizes. Good
agreement is obtained between the model and the measured island size distributions.
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[. INTRODUCTION is established. During formation of the wetting layer, the 2D
first-layer percolation occurs for each deposition of 1 ML.

The submonolayer island size distributtohwas found to ~ With increased coverage, the elastic interaction is expected
agree with both submonolayer homoepitaxial Fe thin fims to become stronger due to the presence of the wetting layer
and submonolayer heteroepitaxial InAs/GaAs thin fifis, and the concomitant increase in elastic energy.
although the latter works only for one orthogonal surface 3D islands will form in the SK mode when the coverage
direction, since anisotropic growth effects cause a breakreaches a critical thicknegsoveragg h. for the 2D-3D is-
down of the isotropic scaling assumption that underlies thdand transition as shown schematically in Figc)1 The criti-
submonolayer size distributioriNevertheless, the agreement cal thicknessh, is determined by a force balance between
demonstrates that during submonolayer deposition, the sizurface tension and misfit stress. While surface tension tends
statistics of two-dimensiondPD) islands(or sometimes re- to keep the surface flat, thus pseudomorphically strained,
ferred to as plateletseveals a generic behavior, irrespective bulk shear deformations that propagate to the film surface
of the magnitude of misfit strain due to lattice constant mis-will introduce shape transformations. Féh., the free
match between substrate and film. energy drop from the elastic deformations will outweigh the

With increased submonolayer coverage, the individual 2Denergy cost of increased surface afeahas been shown to
islands become eventually connected and form an incipierlepend on the misfit strain, originating from the lattice
infinite-size platelet at some critical coverage called the firstconstant difference between substrateand filma;, ash,
layer percolation threshold, <1 monolayerML).! Figures  x&™", wheree=(as—a;)/as<0 for a compressive strain.
1(a) and 1b) illustrate these submonolayer events. For cov-Different dependencies df, on & have been reportech
erages below,, the submonolayer size distribution for ran- =4 was reported by Peroviand co-workers, while thee 1
dom percolation is expected to decay exponentially with is-dependence was reported by Tromp and co-workeEar-
land size® The exponential dependence appears as well ifier work on theory of thin film elastic instability showed that
the submonolayer size distribution for Ref. 2. For coverage$i.=& 2.* There is still no wide agreement on the value of
6~ 6,, however, the size statistics of the 2D islands typi-n. It is not surprising therefore that the connection between
cally follows a power-law behavidrand may be described h, and effects on island size distribution has been largely
using random percolation model. unexplored.

It is not clear physically why the presence of elastic Here we show thalh. marks the change of island dimen-
strains in the heteroepitaxial deposition does not significanthgionality: from 2D islands to 3D islands. For time-dependent
modify the generic behavior of the submonolayer size distristudies of 3D island size distributioh, approximates the
bution. One possible explanation is that the absence of kcation oftime originfor the 3D island evolution. The time
wetting layer in the submonolayer deposition may inhibit aninvariance of the 3D size distribution should therefore be
elastic island-island interaction, since the substrate typicallylefined usindh., such that the average 3D island s&@),
has a higher modulus of rigidity than the filnlThe elastic  for example, behaves &t)~S((hy—h.), where(h) is the
strains in the individual 2D islands are thus largely confinedmean surface height.
within each island. When 3D islands ripen, the ripening process may be re-

The situation changes dramatically for multilayer epitax-garded partially as a 3D percolation. The size distribution of
ial thin film growth (i.e., #>1 ML), where the first-layer random percolation for ripened islands is mathematically
percolation has occurréd.In Stranski-Krastanow(SK)  shown to be a subexponentially decaying function of island
growth, 3D islands form after a wetting layer of a few MLs size® These observations raise an important hypothesis of
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FIG. 1. (a) 2D platelets forming in a submonolayer film coverages(0,<1) before first-layer percolation occurs. White shading
indicates a bare substratéa) The first-layer percolation occurs a6, when an incipient infinite-size platelet emerges. Here the gray
shading shows the first-layer growtft) After the first layer is deposited@>1), three-dimensional3D) islands form at some critical
coverageh.>1. Black shading shows the multilayer growtd) Eventually, these 3D islands will ripen by some coalescence mechanism,
qualitatively resembling the first-layer percolation, but witls 3 instead ofd=2. Due to the stress concentration around each 3D island
perimeter, it is expected that the coalescence of 3D islands is governed by a random percolation process and some othefsnechanism

whether a similarly good agreement may emerge betweeglso found in SjGe, ,/Si(001) islands grown at 755 €.
measured size distributions of ripened 3D islands and a 3D To perform this analysis we first define several statistical
island size distribution with a random percolation compo-measures, as described in Sec. Il A, including the average
nent. The random percolation occurs when deposition fluxsland sizeSand number density of islands per lattice site.
“floods” the intervening wetting layer region between two Here the island size is the island volume defined as the
3D islands and thus connects them together. Intuitively, on@roduct of island base area and its average height. This defi-
can think of this random percolation as a noninteractingition allows for a more general shape of island geometry,
“deposition-induced ripening.” For a sufficiently small which is important for calculating the volume of coalescing
growth rate, the deposition-induced ripening should affecisiands. Our main results are presented in Sec. lll. Sections
only smaller sized islands due to their small heights. In ad{|| A and 11l B discuss results from Smoluchowski ripening
dition, there may also be an interacting component of 3Dand random percolation components, respectively. In Sec.
island ripening, which of course originates from some othen|| C, we propose a general probability density function by
mechanism. These interacting and noninteracting ripeninghcorporating these two mechanisms and we find good agree-
processes mark the late growth stages of 3D islands as showfent with measured island size distributions. Section IV
in Fig. 1(d). summarizes these results and discusses implications for pre-
In this paper, the island size distributions of ripened is-dicting and controlling island size distributions.
lands are analyzed using random percolation and coalescence
mechanisms. The former mechanism describes the noninter- Il. MODEL
acting coalescence events due to the incident deposition flux,
and the latter describes the correlated coalescence events as
islands diffuse and coalesce with each other. The random To study the evolution of island size distributions, the
percolation and coalescence mechanisms are discussed in dgland size definition should reflect the global height shift
tail in Secs. 1IB and Il C, respectively. We shall refer the due to advancing growth front, as parametrized by the aver-
correlated coalescence mechanism as Smoluchowski ripeage comoving coordinatéh)—(h)+Ft, where(h) is the
ing as well, as its distribution function is obtained from mean surface height arfélis average constant growth rate.
Smoluchowski equatiot? The comoving scheme naturally removes the infinite-size is-
The Ostwald ripening mechanism, in which ripening islands(i.e., the wetting layerfrom the island size distribu-
due to the evaporation of atoms from smaller islands andions. The island sizeis defined as the island volume given
their condensation onto larger islands, cannot describe they the product of island base ardaand average island
size distributions exhibited by Si,Ge,/Si(001) islands we height hg=A"1f(h—(h))dA. The local surface height
studied. This is further supported by the cellulareath fig- =h(x,t) was measured using an atomic force microscope
ure) network morphology found in our samples. The evapo-(AFM). Island base area is measured at the mean surface
ration and condensation processes in Ostwald ripening ddieight (h) (i.e., the mean value from the height histogram
mand intervening flat regions between islands to allow forfrom each AFM imagge Although ¢(h) can be roughly esti-
adatoms to diffusé€® Under Ostwald ripening, islands should mated fromFt, (h)# Ft since the deposited material distrib-
therefore be well separated, producing well-defined islandites itself on the surface by forming islands of various sizes,
topographies. Another reason why Ostwald ripening cannoand thusthy depends on both the amount of deposited mate-
be the ripening mechanism in our samples is the relativelyial and the surface height distribution. The equality)
narrow (about 3—4 orders of magnitudsize distribution =Ft is true only for a flat surface. For simplicity, however,
predicted by Ostwald ripenint;our samples produced 6-7 we assuméh)~Ft throughout.
orders of magnitude spread in their island size distributions. The island size histogram is constructed by counting the
The nonoccurence of capillary-driven Ostwald ripening wasnumberN of islands within a size interva,<s=<(s,+¢),

A. Statistical measures
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where &,+ €) is defined as the size bin in tin¢h interval of ~ site or bond probabilityp, respectively, is determinedyn-

the histogram. Each interval has a widthand containg\ domly,Gindependent of the states of the neighboring sites or
number of islands. If the histogram covers a relatively naronds: In epitaxial thin film growth, the site or bond prob-
row range, then the widtle can be defined as a constant. ability is equal to the probability of a surface site to be oc-
However, if the range is very wide, it is possible to scale thefUpied by an incident particle. This probability is in turn
width to follow a geometric or logarithmic sequence. This is proportional to the growth raté. Percolation is said to occur
typical of our data. at p~p, when a path connecting one end of the system to

When normalized with respect to the total number of is-the other end emerges gsis increased tg,. Since the
lands, Q=3N(s), each discrete point in the histogram incident particles coalesce and form an island, the connected

gives the occupation probabilitp(s) for an arbitrary site Path is analogous to an infinite-size island. For the submono-

by an island of sizeg,+ €), layer case, the 2D percolation occurs when the 2D islands
are connected at the first-layer percolation threstigldthus
P(s.0)= N(s, 6) 1) we havep,=6,,.
s > N(s,6) ' Typical values fomp, for 2D percolation is 0.5-0.59. For
s bond percolation in a 2D square lattic@here edges con-

whereP; also depends on the amount of deposited materiahecting two nearest-neighbor sites are assigned a probability
6, which in turn depends on timegiven by #=Ft. Note, P to be opeh the percolation threshold occurs p=3,°

that P is already a spatially averaged probability densitywhile for site percolatiorfwhere each lattice site is assigned
function, and thus independent of the coordinateShe av-  a probabilityp to be occupiefithe corresponding value is
erage island siz& is therefore obtained from p,~0.59!° Epitaxial thin film growth at an elevated tem-
perature induces a surface diffusion field, which giygs
~0.55—0.72 ML forR/F =10-1G, where the hop rat® of
adatom is assumed to be proportional to the adatom diffusion
length!® Thus, even for very large diffusion lengths, the

percolation threshold in submonolayer epitaxial thin film

S(6)=, sPx, 2

following the standard definition for the average island

H 1,15 . .
size:\We note that the total numbélr of islands is a func-  o4th does not significantly change from that of a 2D ran-
tion of 6. We see from Eq(1) that Q=3.N(s,0) may be o site percolation problem.

viewed as a partition function in the language of statistical |, 5 random percolation process during submonolayer

mechanips. e . . growth, the island size distribution @&,<6<1 ML is pro-

h Experlrrr:entally, I |sﬂd|ff|cult to déatermlnﬁ from.Ft smcz vided by percolation theory. Specifically, it is assumed that
the growth rate may fluctuate and growth termination doegne propapility density functiof,, in a percolation problem
not occur instantaneously. In our case, for example, th‘?akes the following fornf:

nominal film thicknesseg's are 5 and 20 nm, but the height

histograms produce mean values ranging from 7.3 to 22.7 s 7f_[sI&p)T] if p=<p,,
nm. Thus, we define Ps(s sUEL[SIEP)T] if p=py, (6)
o=(h), 3 where o and 7 are positive constants, argdp) is a charac-
as(h) is readily measurable from the AFM images. With this teristic length scale. The scaling functiohs andf . are for
definition, the variable® and(h) are interchangeable. below and above the percolation threshold, respectively. A
The number density, or island concentration, per latticfundamental assumption in scaling theory is that there is a
site for an island of size is given by power law dependence &{p) on p:°
s )= 2. @ &(p)~[p—pyl " as p—py. @)
S wherev is a positive(critical) exponent.
and thekth moment of the size distribution is defined by The applicability of the submonolayer island size distri-
bution functiorf to the multilayer growth opreripened3D
2 skTipg InAs/GaAs islandsdemonstrates the universality of the dis-
M(6)= *——— for k=1, (5) tribution function despite the change of island dimensionality
E s'Py from d=2 in submonolayer islands td=3 in multilayer
S

. ) 5 islands. The wetting layer beneath 3D InAs islands, there-
in analogy with percolation theofWe computeM, to as-  fore, does not change the nature of the distribution function.
sess the dominance of random percolation over Smoluthis implies that the distribution functioR(s) that satisfies
chowski ripening. This can be done sintlg should follow  the sum rulel [ P (s)ds=1 andsPy(s)ds=1 must be de-
a certain behavior, as laid out in Sec. II B, if the distributionsfined by excluding the infinite-size island produced by either

were dominated by random percolation. monolayer percolating 2D platelets in submonolayer growth,
) o . . ) or by multilayer percolating 2D platelets in multilayer
B. Percolation distribution function and critical thickness growth (i.e., the wetting layer Hence, the island sizere-

Random percolation in a lattice system describes coalegnains finite, i.e.,.s<<e, such that the sum rules read as
cence(percolation events of lattice sites or bonds when their [ 5 “Ps(s)ds=1 andf “sP(s)ds=1 sinceP(s) is limited
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only for finite-size islands. The exclusion of wetting layer in plained in Sec. Ill. Hence, the ripening island size distribu-
the island size distribution further indicates that time duringtion corresponds to an above-percolation-threshold case, i.e.,
growth may be scaled by a shifted height variable with an(h)>h,.

appropriate height corresponding to the thickness of the wet-

ting layer. We determined this thickness to be the critical C. Smoluchowski ripening distribution function
thicknessh,.

Now we use our proposition that similar behavior may
hold as well for ripened 3D islands, whefe-h.. Since the
3D islands form only aftep=h., the following correspon-
dence is postulatedp,<h,=(h.+6,). By defining h, dn(t) 1
=h.+60,, we have assumed that for ripening to occur, the =23 K(s',5— 5 )Ng (H)ng_g (1)
coverage needs to be increased dpyonce the 3D islands dt 277
form at 6=h.. Thus, the percolation island size distribution

function at6>h. is given by —ng(t) X, K(s,8")ng (1), (11)
SI

Po(s ()~ s A8/ £((m)"], ® where the kerneK(s,s’) defines the rate of collision be-
where tween islands of sizesands’. The first term represents a
density increase for islands of sizelue to pairwise coales-
&((hy)=|(h)—hy| ™" as (h)—h,. (99  cence events between islands of sizésand s—s’. The
) ) ) _ second term represents a density decrease owing to coales-
f is replaced byf in Eq. (8) since we consider only the cence events between islands of sizand islands of arbi-
ripening island size distribution, which corresponds to theygry sizes. It was shown that if the collision process is time-
p>p, case in the site percolation. This is because the Wetindependent and homogeneolgAs,\s') =\2“K(s,s’),

ting layer (i.e., a 3D infinite-size islandalready forms be- anq islands are spatially uncorrelatéds,s’) is then repre-
neath finite 3D islands. We further assume that there is @gnted by a Brownian kerrféf?

one-to-one correspondence between each critical exponent at

Gp_< 6_<1 ML and that_ah>hp for_ the same _di_mensionality. K(s,s')~(sYd+s"Y)d=2[D(s)+D(s')], (12
This is reasonable since the dimensionalityis the most _ . . .

important parameter in percolation for determining the criti-whered is the system dimensionality aridixs™ character-
cal exponent$® We can also express the probability densityizes the dependence of island diffusion ©n

To analytically describe island ripening via coalescence,
we consider coalescence events via pairwise collisions be-
tween two islands given by the Smoluchowski equéafion

function P4 as follows: The exponenta describes the dominant microscopic
mechanism underlying island diffusion. One important scal-
P«(s.(hy)~s~7f(s"*7|(h)—hy|), (100  ing relation in Smoluchowski ripening is between the growth

. ) exponentB’ for the characteristic length scale~&~t#',
by rearranging the argument é{x) to conform with the 5,4, given by

conventions of percolation theot¥.

The strict mapping between 3D random percolation and 1
3D small coherent islands introduced above requires that the B'= m (13
mass distribution along the growth direction be statistically
similar as found, e.g., in bulk 3D cluster growth. However, For d= 3, we obtain for the kernef(s,s’):
semiconductor islands typically develop into faceted struc-
tures, such as pyramids and domes foy JGe /Si(001) K(As,AS')~\Y3"2K(s,s"), (14)
islands, thus breaking this statistical similarity. For this rea-
son, it is expected that 3D random percolation would quali-s0 that the number density in the long time limit takes the
tatively capture only the scaling properties of relatively smallfollowing form:*?
sizes of unfaceted islands. Thus, in general, one would have
to also consider the island shape and height distribufioms, ns(s,t)=As*"Sexp—bs), (15

addition to the size distributions. where Axb? 59T (a+ 2),b=byt~¥(=*23) for some con-

We note here that all coverag@seported by Ebiko and . . o i
co-workeré obey §<h,+ 6, with 6.~0.55 to 0.72 ML sFantbo, gndl“ is the gamma function. The probability den
P P sity function Py is therefore equal to

(Ref. 1) andh,=1.5— 2 ML's for InAs/GaAs islands;'8en-
suring that no ripening occurred. Coalescence of InAs/GaAs —en — Acat23 _
islands was definitely observed at3—4 ML's.'® We as- Ps=sn=As""""exp(~bs), (16
sumeéd,=0.6 ML in our analysis, corresponding to random which has a maximum at
site percolation in a 2D square lattice.

Finally, we emphasize that by usifig) as the base height _ a+2/3 P
of 3D islands in our island size definition, we assume that $=—p %, (17)
there is already an infinite-size cluster of heighy—h,.
This assumption is consistent with the AFM data as exwhereB”=(a+3) 1.
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FIG. 2. 1.5umXx1.5 um AFM images of Si_,Geg/Si(001)
samples with varying Ge fractions and nominal thicknedsgs
Sample groupV: (a) W2: x=0.3hy=20 nm. Sample groui: (b)
X1:x=0.4hy=5nm; (c) X2: x=0.4hy=20 nm. Sample grou}:
(d) Y1: x=0.5h,=5nm; (e) Y2: x=0.5hy=20 nm. Sample
groupZ: (f) Z1: x=0.7hg=5nm; (g) Z2: x=0.7hy=20 nm. .8

IIl. RESULTS AND DISCUSSION Ins

_Sil—xG%( single multilayer_ samples were grown 0On  g|G, 3. Probability density functionBg for (a) 5 nm and(b) 20
Si(001) substrates by ultrahigh vacuum chemical vapornm nominal thickness samples.

deposition(UHV-CVD) at 525°C with growth rate of 0.8

Als as described in detail elsewhéfeEx situatomic force . — . : .
microscopy(AFM) was used to obtain surface morphologiesnetwork without a significant island density loss. This behav-

of samples as a function of Ge fraction and thickness. A°r differs from that expected for Ostwald ripening, i.e.,
lateral resolution of a few nanometers was achieved by usinfyhere atoms from smaller islands detach and diffuse on the
a SiN, cantilever tip. It was prevously demonstrated thatSurface, condensing on larger islarfighe overall effect of
negligible island shape distortion results from such measuredstwald ripening is the growth of larger islands at the ex-
ments, compared withn situ measurements. pense of smaller islands. Light scattering spectroscopy of
Clipped images from height-mode AmXx5 um AFM Sig.gG& »/Si(001) islands grown at 755°C also found the
images are shown in Fig. 2. At the lowest misfit strain ( nonoccurence of capillary-driven Ostwald ripenifigOur
=0.3) and with nominal thickneds,=5 nm; no island for- lower growth temperature further restricts the possibility of
mation is observed, while diy=20 nm islands form and adatom diffusion needed for Ostwald ripening mechanism. In
align themselves along elastically spf00] and[010] direc-  addition, higher Ge fractions in our samples introduce higher
tions[see Fig. 28)]. Flat square and rectangular islands thatcompressive lattice mismatch strains, thus producing a
coexist in Fig. 2b) can also be seen in Fig(d), although  highly stressed region region around the island perimeter,
they transform into hut-shaped islands with an average slopghere a topographical discontinuity with a flat wetting layer
of 11.3° in Figs. 2c) and Ze), consistent with{501-type s |ocated.
facets?® Interestingly, we find from the surface slope histo- The probability density functionB, for the samples stud-
gram of sampl&V2 that hut-shape islands seem to be presenjaq are shown in Fig. 3. The shapes R{ in Fig. 4 agree
in Fig. 2a). In contrast, the hlghoest value of slope in Fig. o alitatively with the so-called static coalescence madi,
2(b), for example, is only about 6°. Whereas the island mory, nich 4 power-law decay dominating for small-sized islands
phologies can be related to one another in t_he_ cases of is superimposed on a monodispersed bell-shaped distribution
=0.3-05, it is nqt the case at the Iargest misfit strain ( 'peaked at large-sized island. Numerical simulations based on
=0.7). We show in Sec. llA that the image sequence ofy giavic fysion of two droplets into a single droplet without
samplesX1—Y1—X2—Y2 agrees with the sequence of \,;me |oss demonstrate the applicability of scaling 1&lvs.
their corresponding values ¢th)—h,|. We observe more 15 yetermine the presence of scale invariancePin the
isotropic (circulap flat islands of two different average sizes pahavior of the probability density function needs to be de-
shown in Fig. Zf), which transform into large domes with yomineqd near the critical statee., (hy~h,). The scale in-

@ncreasing 'ayef thickne;slin Fig.(ga; we ﬁnd. ho hut-shaped variance is characterized by a single characteristic length
islands at the highest misfit strain. Transmission electron miz

. . Scale, i.e., the mean island size. Therefore, first the mean
croscopy studies of these samples show that faulted disloc

on | tound below island peri ‘ ¥ #land sizeS is measured as defined in E@®). Following
tion loops are found below island perimeters for san common practice, we assume ti@behaves as the correla-

tion length & in order to scale the distribution function
f(s/S)~f(s/£).?" The correlation lengtl§ is computed from

Island morphologies shown in Fig. 2 strongly suggestthe height-height and the slope-slope correlations, respec-
coalescence is occuring, amalgamating islands into a celluldively, defined as

A. Smoluchowski ripening: Results
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50 TABLE II. Important parameters used in statistical analysis: av-
@) erage heighthy; standard deviation of height histogram critical
thicknessh. ; nominal thicknes#. Constants for the analysis are:
the first-layer percolation threshold,=0.6 ML, lattice constants

& o5 ’ for Ge and Siag.=0.565 nm andhg;=0.543 nm, respectively. All
/‘ parameters below are presented in monolayers.
, Sample (h) o h, hg
0 g {(h(r) = h(r+r))%) W2 88.8 24.0 138.3 145.6
1 100 10000 X1 52.2 14.5 29.0 36.2
Inr [nm] X2 110.9 31.2 29.0 145.0
0.03 . Y1 55.6 17.3 14.4 36.1
®) ((Vh(r)Vh(r+r))) Y2 153.1 49.8 14.4 144.4
\\ Z1 63.0 25.1 5.7 35.8
0.015 \‘r Z2 162.6 69.5 5.7 143.3
& |
0] negative value ofh)—h,, which is not consistent with this
sequence. In addition, we also find that sample grdwan-
not be grouped together with sample grodandY. Sample
-0.015

Z1 develops a bimodal size distribution as evident from Fig.
3, indicating the presence of a metastable state as character-
ized by the smaller distribution peak. The transient nature of
FIG. 4. Typical plots of(8) Gp(r) and (b) G4(r). Shown are this state is apparent from its disappearance in sa@ple
from samplex2. The correlation lengtiin G(r) is taken to be the Where a unimodal size distribution is recovered. This may
distancer where saturation begins, whilgis taken to be the first help explain discrepancies with the initial grouping above,

zero of G4(r). where sampleZ2 is excluded due to a possibly different
kinetic pathway due to the formation of dislocations in
Gp(r,t)=([h(r,t)=h(r+r’,t)]?), (189 sampleZ2. We speculate that the origin for the metastable
state is related to a strain-induced shape transition, mediated
Gy(r,t)=(Vh(r,t)Vh(r+r',t)), (19 by dislocation formation. This dislocation-mediated shape

transition is analogous to the pyramid-to-dome shape transi-
tion in Ge/S{001) islands® except that we did not observe a
trimodal distribution.

In order to determine the coarsening®és a function of
me, we use the relatiogh)~Ft and shift(h) by h, as
defined in Sec. Il. Thus, we assume tisatt?, whereg is
growth exponent. Table Il lists the important parameters for
Sthe statistical analysis. Pure Si and Ge have a diamond lat-
tice, so that 1 MI=a/4 for the[001] direction, whera is the
corresponding lattice constant. For; SiGe,, we assume
Uegard's law fora(x), giving

and performed at equal times in order to obtain two different
independent values of. This is because there are several
available measures f@>?%?°and at least two measurements
are required to eliminate measurement bias. Typical plots fO{i
Gy (r) and G4(r) are shown in Fig. 4. We summarize our
results forSand¢ in Table I.

From the data for correlation length in Table I, the image
should be organized in the following ordeX1—Y1— X2
—Y2 based on the monotonous increase éofor these
samples. This sequence is also consistent with their respe

tive value of(h)—h,, as listed in Table Il. Sampl&/2, on

the other hand, gives a correlation lengthéef49 nm and a 4h(x)[nm]
h(x)[ML]= ——F——————.
TABLE |. Measured mean island siZ& median island sizs, Xaget (1=X)as;
and correlation lengtlf obtained fromGp(r) and G(r). whereage=0.565 nm andig;=0.543 nm. The critical thick-
nessh, for each sampldexcept for sampl&V2) is consis-
_ ¢ [nm] & [nm] tently below the average heigih), and even belowh)
Sample S(nm)  S(m)  {from Gp(r)} {from G(r)}  _p ‘as well, wherep is the standard deviation of height
W2 74195 65 536 49 43 histo_gram. Sincen, is the height at Which_ZD island_s start
X1 19161 16 384 34 29 forming (and subsequently transform into .3D islapds
X2 56872 32768 42 37 sanIes, exc_epNZ, are already ab_ove percolation threshold
Y1 9991 8192 36 29 h,=hc+ 6, with respect to the 2D |slands.. Hence, we do not
v2 101937 131072 52 52 use measurement results from sampl2. Figure 5 displays
the dependence @ on (h)—h,, giving a growth exponent
z1 14106 2048, 65536 42 39 of 8=1.30+0.20, while Fi g shows the dependenceéof
Z2 160 666 262 144 80 39 ST 9 P
values on timet: ¢xt?, giving 8'=0.37+0.05 and 0.41
a8SampleZ1 has a bimodal distribution. +0.02 from Gy(r,t) and Gg(r,t), respectively. For a
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1.8x10° 3.0x10
L4 °
S[nm3] § [nm3]
_{13:020 4
0.9x10° S-t 1.5x10% o 4=025
0 0 L ‘
0 12 24 0 12 24
(h) - hp [nm] {h) = hp [nm]
FIG. 5. The behavior of mean island si&as a function of FIG. 7. The behavior of the median island s&as a function of
|(h)—h,| gives B=1.30+0.2. |{h) —hy|, giving B’=1.4+0.25.
d-dimensional island, we assume that-£° giving B8’ |imits adatom diffusion necessary for Ostwald-ripening-type

~B*. The results show that=3. The value of8'~0.4is  mechanism. In addition, Ge fractions in our samples are 0.3—
unexpected for Ostwald ripening, wheé= 3 for both two (7, which create higher lattice mismatch strains, thus in-
and three-dimensional systeriis: However, stronger evi-  creasing strain-induced energy barriers around the island
dence for the presence of coalescence ripening, rather th%undary with the wetting layer.

Ostwald-type ripening, lies with the island morphologies Using Eq.(13), we find thata=0.28+0.20. Hence, the

shown in Fig. 2. . P _
; . . . island diffusion constarid has a weak dependence on island
Light scattering spectroscopy of (3Ge,»/Si(001) is- size s D~s 9285020 Ag a comparisona~1.5 when an

lands gives another evidence that Ostwald ripening, when ; . : . .
solely driven by surface energy minimization, does not oc-'SI"’md diffuses by having atoms hopping along its periphery,

cur, even during growth at 755 .1t was also found that and a~0.5 for |s!and diffusion .governed' by a.random ex-
the average island size grows superlinearly with time. Fbrd:hange(evaporguon-gondensanbmechanlsm with the sur-
and co-worker¥ treated this deviation fom the standard Os-Founding two-dlme_nspnal gas ph_a?é’dn the latter case, the
wald ripening behavior by adding an elastic interaction term@roWth exponent isg’~0.33, which agrees with that of
obtained from finite element calculations to the coarsening?Stwald-type ripening whose underlying mechanism is

model®® Our samples were grown at 525 °C, which strongly€vaporation of atoms from smaller islands and their conden-
sation onto larger islands.

100 The value fora=0.28+0.20 is close to that reported by
(a) Sholl and Skodjé® Their Monte Carlo simulations of Xe
L clusters diffusing on P111) gave«=0.35+0.12, which was
£~ 0372005 attributed to multiple barriers a Xe atom must overcome be-

250, ° fore escaping completely from the cluster. Atoms in a semi-
up L] conductor island are tightly bound due to their covalent
bonding; Si and Ge atoms comprising g SiGe, island are

() - h(r+r‘))2) much more immobile than atoms in a metal cluster. By con-
0 trast, diffusion of two-dimensional Ag clusters on (@91
0 15 30 can producer~1.753 It is postulated that the multiple bar-
(h) - hp [nm] riers imposed on Si and Ge atoms, originate from the inverse
60 b) process of sequential incorporation of atoms at step edges
due to high stress concentration around an island tefrace.
This inverse process limits the escape rate of Si and Ge at-
0.41 « 0.02 oms from a Sji_,Ge, island, making the island much less
E~t mobile and resulting in a weak dependence of the island
diffusion constant on island size.
Using Eq.(17), we obtain”=(a+3%) 1=1.1+0.22. We
(Vh(Vh(r+r))) can inde_pendently verify the depgndenc@oﬁt by plotting
0 15 30 the median values d?; as a function of(h) —h,| as shown
(h) - hp [nm] in Fig. 7, giving an exponeng’=1.4+0.25. These two val-
ues give reasonable agreement desfitesimplifying as-
FIG. 6. The behavior of the correlation lengghas a function ~ sumptions in obtainings (Ref. 12 and (ii) the probability
of [(h)—h,| as defined from(@) Gy(r,t) and (b) Gy«(r.t), giving  density functionsPs in Fig. 3, have a power-law decay for
B'=0.37+0.05 and 0.4%0.02, respectively. smalls.
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'5'°°!§ AY2 o Z1
(3R] | i° \Z2 8#:..,--‘-
» ! ; i 3 a - |
c Qs‘ c g
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FIG. 8. The number densities, per lattice site as a function of FIG. 9. Rescaling the number densitiesfails to demonstrate
island sizes as defined in Eq(4). the scale-invariance property 6(s**”|(h)—h,|), due to the si-
multaneous presence of random percolation and Smoluchowski rip-
B. Random percolation: Results ening. However, it can still be approximated witfix)ocx™“ by

considering itx— 0 behavior.

Sincea+%>0, the dependence & ons[i.e., Eq.(16)] g
. . ape —_— 2 71

results in a maximum probability &&= (a+3)b™". Random  fnction approximation in Eq(22) to each of the rescaled

percolation process, however, results in only a subexponens,ryes givesw=3.0-0.38, and so the number density

tial decay once the average film thickngés exceeds the ,;5sumes the following expression for the snsdlmit:

percolation threshold,, .% The probability distribution func-

tions shown in Fig. 3 suggest the presence of both of these nges™ 7 A (hy —hy| @,

processes. We therefore propose that by combining them,

usfo.QOt Olﬁ<h> _ hp|3.0i 0.38’ (23)

whose exponent 0.900.15=c+1—(w/A) is comparable

we may be able to fit the measured probability density funcwith the power-law exponent of 0.84D.14, obtained directly

tions. The number density,= P, /s is therefore given by by fitting a power-law function to theg curves in Fig. 8.
This exercise shows that the value feris consistent with

ne=As""exp—bs)+Cs 7 H(s""?|(h)—h]). (21)  random percolation ai=3.
When the ripening process is due only to random perco-
lation, then thekth moments of distribution near the critical
state can be approximated by

Ps=As*"#exp—bs)+Cs 7f(s**|(hy—hy|), (20

The unknown parameters in EqR0) and (21) are A, by,
and C since botho=1.2 andA=vr=%~2.22 are known
values from thed=3 percolation problert!® We assess the
validity of Eq. (20) by considering the number density of

k+1
islands per lattice site, which is shown in Fig. 8. Power-law B 2 s Py(s)
decay clearly dominates in the small size limit, while the Mi= S skp(s) '
distribution peak, represented by a gentle hump located at s s

Ins~11, occurs in the large size limit. The hump signifies
that a>3 since the contrary, i.eq=3, would yield a mo- jwdsé(+lfa'f(sé~;fr)
notonously decaying profile fang ass—o~. We recall that 0
we obtaine=0.28+0.20 from mean island size and correla- =T ,
tion lengths data. f dss7f(sE™7)
The results indicate that tremultaneoupresence of ran- 0
dom percolation and Smoluchowski ripening destroys the "
scale invariance ofig, although it is demonstrated in Fig. 8 §f<k+1fa)+rf dz Z2*177f(z)
that they operate on different size scales. We also learn that 0
the scaling functionf(s*[(h)—h,|) can be approximated - % : (24
by a power-law function §T<k7”)“fo dz 2717 7f(2)

f(s"|(hy—hy[)=s*"*[(h)—h|® for small s, (22)  where the last expression is evaluated by substitusing
=s¢™ 7. Since the integrals are functionslobnly whenf(z)

1

such that(w/A)<o+1, in order to ensure that the number -
decays faster than -,

densityng still produces a power-law decay, as evident from
Fig. 8. o~ T L -A

To recover the scaling function for random percolation Mi=Cié™~(h) hp| ' @9
f(sl’A|(h)—hp|) we rescale the number densities of Fig. 8whereA=v7. Hence,A must be constant for ark=1 for a
using o=1.2 andA=p7=2.22, as shown in Fig. 9. Sample pure random percolation procés#/e do not see any power-
W2 is separated from the others since it corresponds ttaw behavior inM-5 as a function of (h)—h,); for ex-
below-percolation-threshold behavior. Fitting the scalingample,M; suggests a logarithmic behavior as shown in Fig.
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4x10°
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®
2x10° 7
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0 12 24
(h) = hp [nm]

FIG. 10. First moments of the distribution do not exhibit a
power-law behavior. The dashed curve is the fitted logarithmic
curve.

10, implying thatf (z) is no longer scale invariant. The slow
decay ofng already indicates this behavior. The breakdown
of scale invariance will cause the integrals to diverge in the
limit z— as more islands become larger due to Smolu-
chowski ripening. From our correlation lengths data, we also Ins ins
find little evidence that—o, causing the ternz“" =7 to
become unbounded as- .

FIG. 11. Fitting curves for the probability distribution functions
P, are obtained by adding the contributions from Smoluchowski
ripening (solid curve$ and random percolatiodashed curvegsas
C. Distribution densities indicated by open squares. Good agreement is obtained for six

T mmarize results from Smoluchowski ripenind an samples, except sampEl that has a bimodal distribution. Here,
o su arize results from Smoluchows pening a dWe exponento+(w/A)=0.03-0.05, which is within its obtained

random percolatl.on process, we list the values of releV"vaalue of 0.15-0.17, and the other parameters are listed in(26).
exponents below:

SampleW?2 is not included as it is below percolation threshold.
a«=0.28+0.20, ®=3.0=0.28, 0=1.2, A=pv7r=2.22,

(26) The constantA is shown to have the following
expressiort?
where the last two values are critical exponent values for
percolation atl= 3. We also recall that>3 due to the pres- Acch@t 58t~ (a+5/3)/(a+2/3) (29)

ence of the gentle hump im,; thus, we taker=0.4 to fit the

distribution functions with these exponents: L . .
for Smoluchowski ripening ad= 3 as obtained in Sec. Il A.

P~ A" 2exg( —bs)+Cs 7 (@3] (hy—h | For «=0.28+0.20, we haveAxt 293022 Fitting the con-
° P stantsA as a function oft=<(h)—h,, i.e., A=t? we obtain
mAslmexp(—bs)+Cs°'1°i°'15|<h>—h |3.010.38 a=—1.61+0.44 as displayed in Fig. 12. This provides fur-
p 1
(27
-5
where the adjustable parameters ArendC. The constanb 6x10

is given by Eq.(17). We note that the second term gives a
decaying profile if the exponent is less than zero.

Figure 11 demonstrates the goodness of fit for the pro-
posed distribution function in E¢27) to all but samplén2. 5
The fitted curve shown by open squares agrees well in five 3x10 ~1
cases, except for samplél, where significant bimodality
occurs. Each distribution peak is controlled by Smolu-
chowski ripening, although it is not clear from our model the
nature of metastable islands exhibited in sample The
pairwise collision assumption in the Smoluchowski ripening 0 12 24
process provides a very good fit to the distributions. Random (h) - hy, [nm]
percolation is dominant in the small island size range, below
s~250 nn¥, and to some degree in the large size limit. We Fig. 12. The dependence oh on tx|(h)—hy|: Acx|(h)
use the range of — (w/A) =0.03-0.05, which is within the  —n_ |2, producesa= —1.61+0.44, within the predicted value of
range foro—(w/A)=—0.10+0.15. 2.03+0.22.

-1.61+0.44
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ther evidence that the pairwise collision assumption is adrowing mechanism, the average size at this stage may be
equate. already too large for some technological applications, such
as in quantum dot lasers. For other applications that can uti-
IV. SUMMARY AND CONCLUSIONS lize large island sizes, the Smoluchowski ripening mecha-
. ) ) . nism can actually enhance size uniformity by developing a
The probability density functions of ripened continuous cellular network.
Si;—xGe /Si(001) islands are shown to have two compo- \we have demonstrated the applicability of an effective
nents. First, the random percolation process that describ%s,erage film heighth)—h, to represent the time variabte
uncorrg!ated island ripening operates in the small size Ii.mitin analyzing the size distributions. This analogy is taken
The critical exponents from our measurements agree &ith from the percolation theory, and can be directly transfered to
=3 percolation, which provides indirect evidence that thethe Smoluchowski ripening model. This provides an alterna-
ripening process cannot be adequately described by a meafiye way to analyze the dependence of island size distribu-
field description. This is because the upper critical dimensioRions on misfit straire through the critical thicknesss, that
for random percolation igl,= 6,° so that ford>6, the mean- rescales the time variable This may provide an exciting
field description, whereby strong interactions producing spagevelopment in further understanding the evolution and sta-
tially varying inhomogeneities are suppressed, is valid. Theyjjity issues for 3D island formation.
additional mechanism required to fu”y describe the data iS Random perco'ation process demands that the deposited
Smoluchowski ripening, in which island coalescence occurgarticles be immobile once they arrive on the surface, al-
via pairwise collisions. We find that the distribution peaksthough it has been shown that percolation threshold changes
can be attributed largely to the latter mechanism that domijittie when they diffuse-® Nevertheless, a large adatom dif-
nates in the |al’ge Size I|m|t It was found that the Scalingfusion current at e|evated growth temperatures may Change
exponentS fOI’ this |al"§el’ mechanism do not agree with th@he nature of 3D perco|ati0n; our Samples were grown at
corresponding mean-field values. ~ relatively low temperatures. The interplay among shapes,
The simultaneous presence of these two mechanismgights, and sizes of 3D islands due to growth parameters
breaks down the scaling laws, which are commonly obeyegequires further studies. One interesting development in this
in both submonolayer and preripening multilayer islands gjrection is, for example, given by a study of correlated
This may be traced to the fact that in submonolayer islandsgranular percolatiof By specifying the maximum 2D clus-
the island size distribution decays exponentially, agree- ter size, there is a concomitant maximum surface site density,
ment with the exponential decay in percolation at coveragedicating a balance between surface tension and bulk elastic
below the first-layer percolation threshdl@his may further  energy density of the cluster. Another direction is combining
indicate that island-island interactions are negligible duringgyr work with scaling properties of surface roughefiitigat
submonolayer growth. During island growth in the preripen-jeads to compact 3D islands.
ing multilayer stage, it may be possible for the islands to  one fundamental issue worth investigating is thus deter-
reach a metastable eql_JiIibrium, which is evident in the Casehining the range of applicability of the 3D random percola-
of the largest Ge fraction sample. The presence of such fion to the 3D island size distributions. Concretely, the inter-
metast_able state may forcg the islan_ds to r_each relati_vely Unblay between the island shape and height distributions in
form Sizes. HOWeVer, we f|nd that dIS|OcatI0n formatlon Candetermining the size distributions m|ght be investigated to
quickly dissipate this state, followed by ripening of thesegain a comprehensive understanding for clustering mecha-

size distribution decays subexponentially, hence degradingdy would stimulate more detailed investigations, incorpo-
the size uniformity. This occurs in samples with smaller Gerating these issues, in the future.

fractions. Another route to ensure relatively uniform sizes is
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