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Smoluchowski ripening and random percolation in epitaxial Si1ÀxGex ÕSi„001… islands

R. Arief Budiman and Harry E. Ruda
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~Received 25 August 2000; revised manuscript received 2 November 2001; published 3 January 2002!

Island size distributions of ripened Si12xGex /Si(001) (x50.320.7) islands exhibit a slow decay at small
island sizes and an asymmetric bell-shaped distribution peaked at a large size. We explain the ripening process
in Si12xGex /Si(001) islands by proposing a model based on random percolation and Smoluchowski ripening.
Drawing an analogy with percolation theory, we use a shifted average height to represent the time variable,
which is also applicable in the Smoluchowski ripening model; this shifted average height is used to analyze
size distributions and correlation functions. Critical exponents derived from the site percolation model atd
53 agree with our measurements. Island diffusionD}s2a leading to coalescence events, shows a weak
dependence on sizes: a50.2860.20, attributable to the inverse process of sequential incorporation of atoms at
step edges due to the high stress concentration at island terrace perimeters. While random percolation domi-
nates for small sizes regime, Smoluchowski ripening controls the distribution peak at large island sizes. Good
agreement is obtained between the model and the measured island size distributions.

DOI: 10.1103/PhysRevB.65.045315 PACS number~s!: 68.35.Bs, 64.60.Ak, 61.46.1w
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I. INTRODUCTION

The submonolayer island size distribution1–3 was found to
agree with both submonolayer homoepitaxial Fe thin film2

and submonolayer heteroepitaxial InAs/GaAs thin films4,5

although the latter works only for one orthogonal surfa
direction, since anisotropic growth effects cause a bre
down of the isotropic scaling assumption that underlies
submonolayer size distribution.5 Nevertheless, the agreeme
demonstrates that during submonolayer deposition, the
statistics of two-dimensional~2D! islands~or sometimes re-
ferred to as platelets! reveals a generic behavior, irrespecti
of the magnitude of misfit strain due to lattice constant m
match between substrate and film.

With increased submonolayer coverage, the individual
islands become eventually connected and form an incip
infinite-size platelet at some critical coverage called the fi
layer percolation thresholdup,1 monolayer~ML !.1 Figures
1~a! and 1~b! illustrate these submonolayer events. For co
erages belowup , the submonolayer size distribution for ra
dom percolation is expected to decay exponentially with
land size.6 The exponential dependence appears as we
the submonolayer size distribution for Ref. 2. For covera
u'up , however, the size statistics of the 2D islands ty
cally follows a power-law behavior3 and may be describe
using random percolation model.6

It is not clear physically why the presence of elas
strains in the heteroepitaxial deposition does not significa
modify the generic behavior of the submonolayer size dis
bution. One possible explanation is that the absence
wetting layer in the submonolayer deposition may inhibit
elastic island-island interaction, since the substrate typic
has a higher modulus of rigidity than the film.7 The elastic
strains in the individual 2D islands are thus largely confin
within each island.

The situation changes dramatically for multilayer epita
ial thin film growth ~i.e., u.1 ML!, where the first-layer
percolation has occurred.8 In Stranski-Krastanow~SK!
growth, 3D islands form after a wetting layer of a few ML
0163-1829/2002/65~4!/045315~11!/$20.00 65 0453
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is established. During formation of the wetting layer, the 2
first-layer percolation occurs for each deposition of 1 M
With increased coverage, the elastic interaction is expec
to become stronger due to the presence of the wetting la
and the concomitant increase in elastic energy.

3D islands will form in the SK mode when the covera
reaches a critical thickness~coverage! hc for the 2D-3D is-
land transition as shown schematically in Fig. 1~c!. The criti-
cal thicknesshc is determined by a force balance betwe
surface tension and misfit stress. While surface tension te
to keep the surface flat, thus pseudomorphically strain
bulk shear deformations that propagate to the film surf
will introduce shape transformations. Foru.hc , the free
energy drop from the elastic deformations will outweigh t
energy cost of increased surface area.hc has been shown to
depend on the misfit strain«, originating from the lattice
constant difference between substrateas and film af , ashc
}«2n, where«5(as2af)/as,0 for a compressive strain
Different dependencies ofhc on « have been reported.n
54 was reported by Perovic´ and co-workers,9 while the«21

dependence was reported by Tromp and co-workers.10 Ear-
lier work on theory of thin film elastic instability showed tha
hc}«28.11 There is still no wide agreement on the value
n. It is not surprising therefore that the connection betwe
hc and effects on island size distribution has been larg
unexplored.

Here we show thathc marks the change of island dimen
sionality: from 2D islands to 3D islands. For time-depende
studies of 3D island size distribution,hc approximates the
location oftime origin for the 3D island evolution. The time
invariance of the 3D size distribution should therefore
defined usinghc , such that the average 3D island sizeS(t),
for example, behaves asS(t);S(^h&2hc), where^h& is the
mean surface height.

When 3D islands ripen, the ripening process may be
garded partially as a 3D percolation. The size distribution
random percolation for ripened islands is mathematica
shown to be a subexponentially decaying function of isla
size.6 These observations raise an important hypothesis
©2002 The American Physical Society15-1
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FIG. 1. ~a! 2D platelets forming in a submonolayer film coverage (u&up,1) before first-layer percolation occurs. White shadi
indicates a bare substrate.~b! The first-layer percolation occurs atu*up when an incipient infinite-size platelet emerges. Here the g
shading shows the first-layer growth.~c! After the first layer is deposited~u.1!, three-dimensional~3D! islands form at some critica
coveragehc.1. Black shading shows the multilayer growth.~d! Eventually, these 3D islands will ripen by some coalescence mechan
qualitatively resembling the first-layer percolation, but withd53 instead ofd52. Due to the stress concentration around each 3D isl
perimeter, it is expected that the coalescence of 3D islands is governed by a random percolation process and some other mech~s!.
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whether a similarly good agreement may emerge betw
measured size distributions of ripened 3D islands and a
island size distribution with a random percolation comp
nent. The random percolation occurs when deposition
‘‘floods’’ the intervening wetting layer region between tw
3D islands and thus connects them together. Intuitively,
can think of this random percolation as a noninteract
‘‘deposition-induced ripening.’’ For a sufficiently sma
growth rate, the deposition-induced ripening should aff
only smaller sized islands due to their small heights. In
dition, there may also be an interacting component of
island ripening, which of course originates from some ot
mechanism. These interacting and noninteracting ripen
processes mark the late growth stages of 3D islands as sh
in Fig. 1~d!.

In this paper, the island size distributions of ripened
lands are analyzed using random percolation and coalesc
mechanisms. The former mechanism describes the noni
acting coalescence events due to the incident deposition
and the latter describes the correlated coalescence even
islands diffuse and coalesce with each other. The rand
percolation and coalescence mechanisms are discussed
tail in Secs. II B and II C, respectively. We shall refer th
correlated coalescence mechanism as Smoluchowski ri
ing as well, as its distribution function is obtained fro
Smoluchowski equation.12

The Ostwald ripening mechanism, in which ripening
due to the evaporation of atoms from smaller islands
their condensation onto larger islands, cannot describe
size distributions exhibited by Si12xGex /Si(001) islands we
studied. This is further supported by the cellular~breath fig-
ure! network morphology found in our samples. The evap
ration and condensation processes in Ostwald ripening
mand intervening flat regions between islands to allow
adatoms to diffuse.13 Under Ostwald ripening, islands shou
therefore be well separated, producing well-defined isla
topographies. Another reason why Ostwald ripening can
be the ripening mechanism in our samples is the relativ
narrow ~about 3–4 orders of magnitude! size distribution
predicted by Ostwald ripening;13 our samples produced 6–
orders of magnitude spread in their island size distributio
The nonoccurence of capillary-driven Ostwald ripening w
04531
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also found in Si0.8Ge0.2/Si(001) islands grown at 755 °C.14

To perform this analysis we first define several statisti
measures, as described in Sec. II A, including the aver
island sizeSand number densityns of islands per lattice site
Here the island sizes is the island volume defined as th
product of island base area and its average height. This d
nition allows for a more general shape of island geome
which is important for calculating the volume of coalesci
islands. Our main results are presented in Sec. III. Sect
III A and III B discuss results from Smoluchowski ripenin
and random percolation components, respectively. In S
III C, we propose a general probability density function
incorporating these two mechanisms and we find good ag
ment with measured island size distributions. Section
summarizes these results and discusses implications for
dicting and controlling island size distributions.

II. MODEL

A. Statistical measures

To study the evolution of island size distributions, th
island size definition should reflect the global height sh
due to advancing growth front, as parametrized by the a
age comoving coordinatêh&°^h&1Ft, where ^h& is the
mean surface height andF is average constant growth rat
The comoving scheme naturally removes the infinite-size
lands ~i.e., the wetting layer! from the island size distribu-
tions. The island sizes is defined as the island volume give
by the product of island base areaA and average island
height h05A21*(h2^h&)dA. The local surface heighth
5h(x,t) was measured using an atomic force microsco
~AFM!. Island base area is measured at the mean sur
height ^h& ~i.e., the mean value from the height histogra
from each AFM image!. Although ^h& can be roughly esti-
mated fromFt, ^h&ÞFt since the deposited material distrib
utes itself on the surface by forming islands of various siz
and thuŝ h& depends on both the amount of deposited ma
rial and the surface height distribution. The equality^h&
5Ft is true only for a flat surface. For simplicity, howeve
we assumêh&'Ft throughout.

The island size histogram is constructed by counting
numberN of islands within a size intervalsn<s<(sn1e),
5-2
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SMOLUCHOWSKI RIPENING AND RANDOM . . . PHYSICAL REVIEW B65 045315
where (sn1e) is defined as the size bin in thenth interval of
the histogram. Each interval has a widthe, and containsN
number of islands. If the histogram covers a relatively n
row range, then the widthe can be defined as a constan
However, if the range is very wide, it is possible to scale
width to follow a geometric or logarithmic sequence. This
typical of our data.

When normalized with respect to the total number of
lands, V5(sN(s), each discrete point in the histogra
gives the occupation probabilityPs(s) for an arbitrary site
by an island of size (sn1e),

Ps~s,u!5
N~s,u!

(
s

N~s,u!
, ~1!

wherePs also depends on the amount of deposited mate
u, which in turn depends on timet given by u5Ft. Note,
that Ps is already a spatially averaged probability dens
function, and thus independent of the coordinatesx. The av-
erage island sizeS is therefore obtained from

S~u!5(
s

sPs , ~2!

following the standard definition for the average isla
size.1,15 We note that the total numberV of islands is a func-
tion of u. We see from Eq.~1! that V5(sN(s,u) may be
viewed as a partition function in the language of statisti
mechanics.

Experimentally, it is difficult to determineu from Ft since
the growth rate may fluctuate and growth termination d
not occur instantaneously. In our case, for example,
nominal film thicknessesu’s are 5 and 20 nm, but the heigh
histograms produce mean values ranging from 7.3 to 2
nm. Thus, we define

u[^h&, ~3!

as^h& is readily measurable from the AFM images. With th
definition, the variablesu and ^h& are interchangeable.

The number density, or island concentration, per latt
site for an island of sizes is given by

ns~s,u!5
Ps

s
, ~4!

and thekth moment of the size distribution is defined by

Mk~u!5
(

s
sk11Ps

(
s

skPs

for k>1, ~5!

in analogy with percolation theory.6 We computeMk to as-
sess the dominance of random percolation over Sm
chowski ripening. This can be done sinceMk should follow
a certain behavior, as laid out in Sec. II B, if the distributio
were dominated by random percolation.

B. Percolation distribution function and critical thickness

Random percolation in a lattice system describes coa
cence~percolation! events of lattice sites or bonds when the
04531
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site or bond probabilityp, respectively, is determinedyran-
domly, independent of the states of the neighboring sites
bonds.6 In epitaxial thin film growth, the site or bond prob
ability is equal to the probability of a surface site to be o
cupied by an incident particle. This probability is in tur
proportional to the growth rateF. Percolation is said to occu
at p'pp when a path connecting one end of the system
the other end emerges asp is increased topp . Since the
incident particles coalesce and form an island, the conne
path is analogous to an infinite-size island. For the submo
layer case, the 2D percolation occurs when the 2D isla
are connected at the first-layer percolation thresholdup , thus
we havepp[up .

Typical values forpp for 2D percolation is 0.5–0.59. Fo
bond percolation in a 2D square lattice~where edges con
necting two nearest-neighbor sites are assigned a probab
p to be open! the percolation threshold occurs atpp5 1

2 ,6

while for site percolation~where each lattice site is assigne
a probability p to be occupied! the corresponding value i
pp'0.59.16 Epitaxial thin film growth at an elevated tem
perature induces a surface diffusion field, which givespp
'0.55– 0.72 ML forR/F510– 106, where the hop rateR of
adatom is assumed to be proportional to the adatom diffus
length.1,8 Thus, even for very large diffusion lengths, th
percolation threshold in submonolayer epitaxial thin fi
growth does not significantly change from that of a 2D ra
dom site percolation problem.

In a random percolation process during submonola
growth, the island size distribution atup,u,1 ML is pro-
vided by percolation theory. Specifically, it is assumed t
the probability density functionPp in a percolation problem
takes the following form:6

Ps~s!;H s2s f 2@s/j~p!t# if p<pp ,

s2s f 1@s/j~p!t# if p>pp ,
~6!

wheres andt are positive constants, andj(p) is a charac-
teristic length scale. The scaling functionsf 2 and f 1 are for
below and above the percolation threshold, respectively
fundamental assumption in scaling theory is that there
power law dependence ofj(p) on p:6

j~p!'up2ppu2n as p→pp , ~7!

wheren is a positive~critical! exponent.
The applicability of the submonolayer island size dist

bution function2 to the multilayer growth ofpreripened3D
InAs/GaAs islands4 demonstrates the universality of the di
tribution function despite the change of island dimensiona
from d52 in submonolayer islands tod53 in multilayer
islands. The wetting layer beneath 3D InAs islands, the
fore, does not change the nature of the distribution functi
This implies that the distribution functionPs(s) that satisfies
the sum rules1 *Ps(s)ds51 and*sPs(s)ds51 must be de-
fined by excluding the infinite-size island produced by eith
monolayer percolating 2D platelets in submonolayer grow
or by multilayer percolating 2D platelets in multilaye
growth ~i.e., the wetting layer!. Hence, the island sizes re-
mains finite, i.e.,s,`, such that the sum rules read a
*0

,`Ps(s)ds51 and*0
,`sPs(s)ds51 sincePs(s) is limited
5-3
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R. ARIEF BUDIMAN AND HARRY E. RUDA PHYSICAL REVIEW B 65 045315
only for finite-size islands. The exclusion of wetting layer
the island size distribution further indicates that time dur
growth may be scaled by a shifted height variable with
appropriate height corresponding to the thickness of the w
ting layer. We determined this thickness to be the criti
thicknesshc .

Now we use our proposition that similar behavior m
hold as well for ripened 3D islands, whereu.hc . Since the
3D islands form only afteru5hc , the following correspon-
dence is postulated:pp⇔hp[(hc1up). By defining hp
[hc1up , we have assumed that for ripening to occur,
coverage needs to be increased byup once the 3D islands
form at u5hc . Thus, the percolation island size distributio
function atu.hc is given by

Ps~s,^h&!;s2s f @s/j~^h&!t#, ~8!

where

j~^h&!'u^h&2hpu2n as ^h&→hp . ~9!

f 1 is replaced byf in Eq. ~8! since we consider only the
ripening island size distribution, which corresponds to
p.pp case in the site percolation. This is because the w
ting layer ~i.e., a 3D infinite-size island! already forms be-
neath finite 3D islands. We further assume that there
one-to-one correspondence between each critical expone
up,u,1 ML and that ath.hp for the same dimensionality
This is reasonable since the dimensionalityd is the most
important parameter in percolation for determining the cr
cal exponents.16 We can also express the probability dens
function Ps as follows:

Ps~s,^h&!;s2s f ~s1/~nt!u^h&2hpu!, ~10!

by rearranging the argument off (x) to conform with the
conventions of percolation theory.16

The strict mapping between 3D random percolation a
3D small coherent islands introduced above requires tha
mass distribution along the growth direction be statistica
similar as found, e.g., in bulk 3D cluster growth. Howev
semiconductor islands typically develop into faceted str
tures, such as pyramids and domes for Si12xGex /Si(001)
islands, thus breaking this statistical similarity. For this re
son, it is expected that 3D random percolation would qu
tatively capture only the scaling properties of relatively sm
sizes of unfaceted islands. Thus, in general, one would h
to also consider the island shape and height distributions8 in
addition to the size distributions.

We note here that all coveragesu reported by Ebiko and
co-workers4 obey u,hc1up with up'0.55 to 0.72 ML
~Ref. 1! andhc51.522 ML’s for InAs/GaAs islands,17,18en-
suring that no ripening occurred. Coalescence of InAs/Ga
islands was definitely observed atu5324 ML’s.19 We as-
sumeup50.6 ML in our analysis, corresponding to rando
site percolation in a 2D square lattice.

Finally, we emphasize that by using^h& as the base heigh
of 3D islands in our island size definition, we assume t
there is already an infinite-size cluster of height^h&2hc .
This assumption is consistent with the AFM data as
04531
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plained in Sec. III. Hence, the ripening island size distrib
tion corresponds to an above-percolation-threshold case,
^h&.hp .

C. Smoluchowski ripening distribution function

To analytically describe island ripening via coalescen
we consider coalescence events via pairwise collisions
tween two islands given by the Smoluchowski equation20

dns~ t !

dt
5

1

2 (
s8

K~s8,s2s8!ns8~ t !ns2s8~ t !

2ns~ t !(
s8

K~s,s8!ns8~ t !, ~11!

where the kernelK(s,s8) defines the rate of collision be
tween islands of sizess and s8. The first term represents
density increase for islands of sizes due to pairwise coales
cence events between islands of sizess8 and s2s8. The
second term represents a density decrease owing to co
cence events between islands of sizes and islands of arbi-
trary sizes. It was shown that if the collision process is tim
independent and homogeneousK(ls,ls8)5l2vK(s,s8),
and islands are spatially uncorrelated;K(s,s8) is then repre-
sented by a Brownian kernel21,22

K~s,s8!;~s1/d1s81/d!d22@D~s!1D~s8!#, ~12!

whered is the system dimensionality andD}s2a character-
izes the dependence of island diffusion ons.

The exponenta describes the dominant microscop
mechanism underlying island diffusion. One important sc
ing relation in Smoluchowski ripening is between the grow
exponentb8 for the characteristic length scaleL'j;tb8,
anda, given by23

b85
1

2~a11!
. ~13!

For d53, we obtain for the kernelK(s,s8):

K~ls,ls8!;l1/32aK~s,s8!, ~14!

so that the number densityns in the long time limit takes the
following form:12

ns~s,t !5Asa21/3exp~2bs!, ~15!

where A}ba15/3/G(a1 5
3 ),b5b0t21/(a12/3) for some con-

stantb0 , andG is the gamma function. The probability den
sity functionPs is therefore equal to

Ps5sns5Asa12/3exp~2bs!, ~16!

which has a maximum at

s̄5
a12/3

b
}tb9, ~17!

whereb95(a1 2
3 )21.
5-4
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III. RESULTS AND DISCUSSION

Si12xGex single multilayer samples were grown o
Si~001! substrates by ultrahigh vacuum chemical vap
deposition~UHV-CVD! at 525 °C with growth rate of 0.8
Å/s as described in detail elsewhere.24 Ex situ atomic force
microscopy~AFM! was used to obtain surface morphologi
of samples as a function of Ge fraction and thickness
lateral resolution of a few nanometers was achieved by u
a Si3N4 cantilever tip. It was prevously demonstrated th
negligible island shape distortion results from such meas
ments, compared within situ measurements.25

Clipped images from height-mode 5mm35 mm AFM
images are shown in Fig. 2. At the lowest misfit strainx
50.3) and with nominal thicknessh055 nm; no island for-
mation is observed, while ath0520 nm islands form and
align themselves along elastically soft@100# and@010# direc-
tions @see Fig. 2~a!#. Flat square and rectangular islands th
coexist in Fig. 2~b! can also be seen in Fig. 2~d!, although
they transform into hut-shaped islands with an average s
of 11.3° in Figs. 2~c! and 2~e!, consistent with$501%-type
facets.25 Interestingly, we find from the surface slope hist
gram of sampleW2 that hut-shape islands seem to be pres
in Fig. 2~a!. In contrast, the highest value of slope in Fi
2~b!, for example, is only about 6°. Whereas the island m
phologies can be related to one another in the casesx
50.320.5, it is not the case at the largest misfit strainx
50.7). We show in Sec. III A that the image sequence
samplesX1→Y1→X2→Y2 agrees with the sequence
their corresponding values ofu^h&2hpu. We observe more
isotropic~circular! flat islands of two different average size
shown in Fig. 2~f!, which transform into large domes wit
increasing layer thickness in Fig. 2~g!; we find no hut-shaped
islands at the highest misfit strain. Transmission electron
croscopy studies of these samples show that faulted disl
tion loops are found below island perimeters for sampleZ2.9

A. Smoluchowski ripening: Results

Island morphologies shown in Fig. 2 strongly sugg
coalescence is occuring, amalgamating islands into a cel

FIG. 2. 1.5 mm31.5 mm AFM images of Si12xGex /Si(001)
samples with varying Ge fractions and nominal thicknessesh0 .
Sample groupW: ~a! W2: x50.3,h0520 nm. Sample groupX: ~b!
X1: x50.4,h055 nm; ~c! X2: x50.4,h0520 nm. Sample groupY:
~d! Y1: x50.5,h055 nm; ~e! Y2: x50.5,h0520 nm. Sample
groupZ: ~f! Z1: x50.7,h055 nm; ~g! Z2: x50.7,h0520 nm.
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network without a significant island density loss. This beha
ior differs from that expected for Ostwald ripening, i.e
where atoms from smaller islands detach and diffuse on
surface, condensing on larger islands.26 The overall effect of
Ostwald ripening is the growth of larger islands at the e
pense of smaller islands. Light scattering spectroscopy
Si0.8Ge0.2/Si(001) islands grown at 755 °C also found th
nonoccurence of capillary-driven Ostwald ripening.14 Our
lower growth temperature further restricts the possibility
adatom diffusion needed for Ostwald ripening mechanism
addition, higher Ge fractions in our samples introduce hig
compressive lattice mismatch strains, thus producing
highly stressed region region around the island perime
where a topographical discontinuity with a flat wetting lay
is located.

The probability density functionsPs for the samples stud
ied are shown in Fig. 3. The shapes ofPs in Fig. 4 agree
qualitatively with the so-called static coalescence model,27 in
which a power-law decay dominating for small-sized islan
is superimposed on a monodispersed bell-shaped distribu
peaked at large-sized island. Numerical simulations base
a static fusion of two droplets into a single droplet withou
volume loss demonstrate the applicability of scaling laws27

To determine the presence of scale invariance inPs , the
behavior of the probability density function needs to be d
termined near the critical state~i.e., ^h&'hp!. The scale in-
variance is characterized by a single characteristic len
scale, i.e., the mean island size. Therefore, first the m
island sizeS is measured as defined in Eq.~2!. Following
common practice, we assume thatS behaves as the correla
tion length j, in order to scale the distribution functio
f (s/S); f (s/j).27 The correlation lengthj is computed from
the height-height and the slope-slope correlations, resp
tively, defined as

FIG. 3. Probability density functionsPs for ~a! 5 nm and~b! 20
nm nominal thickness samples.
5-5
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Gh~r ,t !5^@h~r ,t !2h~r1r 8,t !#2&, ~18!

Gs~r ,t !5^“h~r ,t !“h~r1r 8,t !&, ~19!

and performed at equal times in order to obtain two differe
independent values ofj. This is because there are seve
available measures forj,6,28,29and at least two measuremen
are required to eliminate measurement bias. Typical plots
Gh(r ) and Gs(r ) are shown in Fig. 4. We summarize o
results forS andj in Table I.

From the data for correlation length in Table I, the imag
should be organized in the following order:X1→Y1→X2
→Y2 based on the monotonous increase ofj for these
samples. This sequence is also consistent with their res
tive value of^h&2hp , as listed in Table II. SampleW2, on
the other hand, gives a correlation length ofj549 nm and a

FIG. 4. Typical plots of~a! Gh(r ) and ~b! Gs(r ). Shown are
from sampleX2. The correlation lengthj in Gh(r ) is taken to be the
distancer where saturation begins, whilej is taken to be the first
zero ofGs(r ).

TABLE I. Measured mean island sizeS, median island sizes̄,
and correlation lengthj obtained fromGh(r ) andGs(r ).

Sample S ~nm3! s̄ ~nm3!
j @nm#

$from Gh(r )%
j @nm#

$from Gs(r )%

W2 74 195 65 536 49 43
X1 19 161 16 384 34 22
X2 56 872 32 768 42 37
Y1 9991 8192 36 29
Y2 101 937 131 072 52 52
Z1 14 106 2048, 65 536a 42 39
Z2 160 666 262 144 80 39

aSampleZ1 has a bimodal distribution.
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negative value of̂h&2hp , which is not consistent with this
sequence. In addition, we also find that sample groupZ can-
not be grouped together with sample groupsX andY. Sample
Z1 develops a bimodal size distribution as evident from F
3, indicating the presence of a metastable state as chara
ized by the smaller distribution peak. The transient nature
this state is apparent from its disappearance in sampleZ2,
where a unimodal size distribution is recovered. This m
help explain discrepancies with the initial grouping abov
where sampleZ2 is excluded due to a possibly differen
kinetic pathway due to the formation of dislocations
sampleZ2. We speculate that the origin for the metasta
state is related to a strain-induced shape transition, medi
by dislocation formation. This dislocation-mediated sha
transition is analogous to the pyramid-to-dome shape tra
tion in Ge/Si~001! islands,30 except that we did not observe
trimodal distribution.

In order to determine the coarsening ofSas a function of
time, we use the relation̂h&'Ft and shift ^h& by hp as
defined in Sec. II. Thus, we assume thatS}tb, whereb is
growth exponent. Table II lists the important parameters
the statistical analysis. Pure Si and Ge have a diamond
tice, so that 1 ML5a/4 for the@001# direction, wherea is the
corresponding lattice constant. For Si12xGex , we assume
Vegard’s law fora(x), giving

h~x!@ML #5
4h~x!@nm#

xaGe1~12x!aSi
,

whereaGe50.565 nm andaSi50.543 nm. The critical thick-
nesshc for each sample~except for sampleW2! is consis-
tently below the average height^h&, and even beloŵ h&
2% as well, where% is the standard deviation of heigh
histogram. Sincehc is the height at which 2D islands sta
forming ~and subsequently transform into 3D island!
samples, exceptW2, are already above percolation thresho
hp5hc1up with respect to the 2D islands. Hence, we do n
use measurement results from sampleW2. Figure 5 displays
the dependence ofS on ^h&2hp , giving a growth exponent
of b51.3060.20, while Fig. 6 shows the dependence oj

values on timet: j}tb8, giving b850.3760.05 and 0.41
60.02 from Gh(r ,t) and Gs(r ,t), respectively. For a

TABLE II. Important parameters used in statistical analysis: a
erage height̂h&; standard deviation of height histogram%; critical
thicknesshc ; nominal thicknessh0 . Constants for the analysis are
the first-layer percolation thresholdup50.6 ML, lattice constants
for Ge and Si:aGe50.565 nm andaSi50.543 nm, respectively. All
parameters below are presented in monolayers.

Sample ^h& % hc h0

W2 88.8 24.0 138.3 145.6
X1 52.2 14.5 29.0 36.2
X2 110.9 31.2 29.0 145.0
Y1 55.6 17.3 14.4 36.1
Y2 153.1 49.8 14.4 144.4
Z1 63.0 25.1 5.7 35.8
Z2 162.6 69.5 5.7 143.3
5-6
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d-dimensional island, we assume thatS;jd, giving b8
;b1/d. The results show thatd*3. The value ofb8'0.4 is
unexpected for Ostwald ripening, whereb85 1

3 for both two
and three-dimensional systems.31,32 However, stronger evi-
dence for the presence of coalescence ripening, rather
Ostwald-type ripening, lies with the island morphologi
shown in Fig. 2.

Light scattering spectroscopy of Si0.8Ge0.2/Si(001) is-
lands gives another evidence that Ostwald ripening, w
solely driven by surface energy minimization, does not
cur, even during growth at 755 °C.14 It was also found that
the average island size grows superlinearly with time. Fl
and co-workers14 treated this deviation fom the standard O
wald ripening behavior by adding an elastic interaction te
obtained from finite element calculations to the coarsen
model.30 Our samples were grown at 525 °C, which strong

FIG. 5. The behavior of mean island sizeS as a function of
u^h&2hpu givesb51.3060.2.

FIG. 6. The behavior of the correlation lengthj as a function
of u^h&2hpu as defined from~a! Gh(r ,t) and ~b! Gs(r ,t), giving
b850.3760.05 and 0.4160.02, respectively.
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limits adatom diffusion necessary for Ostwald-ripening-ty
mechanism. In addition, Ge fractions in our samples are 0
0.7, which create higher lattice mismatch strains, thus
creasing strain-induced energy barriers around the isl
boundary with the wetting layer.

Using Eq. ~13!, we find thata50.2860.20. Hence, the
island diffusion constantD has a weak dependence on isla
size s: D;s20.2860.20. As a comparison,a'1.5 when an
island diffuses by having atoms hopping along its periphe
and a'0.5 for island diffusion governed by a random e
change~evaporation-condensation! mechanism with the sur
rounding two-dimensional gas phase.20 In the latter case, the
growth exponent isb8'0.33, which agrees with that o
Ostwald-type ripening whose underlying mechanism
evaporation of atoms from smaller islands and their cond
sation onto larger islands.

The value fora50.2860.20 is close to that reported b
Sholl and Skodje.23 Their Monte Carlo simulations of Xe
clusters diffusing on Pt~111! gavea50.3560.12, which was
attributed to multiple barriers a Xe atom must overcome
fore escaping completely from the cluster. Atoms in a se
conductor island are tightly bound due to their covale
bonding; Si and Ge atoms comprising a Si12xGex island are
much more immobile than atoms in a metal cluster. By co
trast, diffusion of two-dimensional Ag clusters on Ag~001!
can producea'1.75.33 It is postulated that the multiple bar
riers imposed on Si and Ge atoms, originate from the inve
process of sequential incorporation of atoms at step ed
due to high stress concentration around an island terra9

This inverse process limits the escape rate of Si and Ge
oms from a Si12xGex island, making the island much les
mobile and resulting in a weak dependence of the isla
diffusion constant on island size.

Using Eq.~17!, we obtainb95(a1 2
3 )2151.160.22. We

can independently verify the dependence ofs̄ on t by plotting
the median values ofPs as a function ofu^h&2hpu as shown
in Fig. 7, giving an exponentb951.460.25. These two val-
ues give reasonable agreement despite~i! simplifying as-
sumptions in obtainingns ~Ref. 12! and ~ii ! the probability
density functionsPs in Fig. 3, have a power-law decay fo
small s.

FIG. 7. The behavior of the median island sizes̄ as a function of
u^h&2hpu, giving b951.460.25.
5-7
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B. Random percolation: Results

Sincea12
3.0, the dependence ofPs on s @i.e., Eq.~16!#

results in a maximum probability ats̄5(a1 2
3 )b21. Random

percolation process, however, results in only a subexpon
tial decay once the average film thickness^h& exceeds the
percolation thresholdhp .6 The probability distribution func-
tions shown in Fig. 3 suggest the presence of both of th
processes. We therefore propose that by combining them

Ps5Asa12/3exp~2bs!1Cs2s f ~s1/~nt!u^h&2hpu!, ~20!

we may be able to fit the measured probability density fu
tions. The number densityns5Ps /s is therefore given by

ns5Asa21/3exp~2bs!1Cs2s21f ~s1/~nt!u^h&2hpu!. ~21!

The unknown parameters in Eqs.~20! and ~21! are A, b0 ,
and C since boths51.2 andD5nt520

9 '2.22 are known
values from thed53 percolation problem.6,16 We assess the
validity of Eq. ~20! by considering the number densityns of
islands per lattice site, which is shown in Fig. 8. Power-l
decay clearly dominates in the small size limit, while t
distribution peak, represented by a gentle hump locate
ln s'11, occurs in the large size limit. The hump signifi
that a.1

3 since the contrary, i.e.,a&1
3, would yield a mo-

notonously decaying profile forns as s→`. We recall that
we obtaina50.2860.20 from mean island size and correl
tion lengths data.

The results indicate that thesimultaneouspresence of ran-
dom percolation and Smoluchowski ripening destroys
scale invariance ofns , although it is demonstrated in Fig.
that they operate on different size scales. We also learn
the scaling functionf (s1/Du^h&2hpu) can be approximated
by a power-law function

f ~s1/Du^h&2hpu!'sv/Du^h&2hpuv for small s, ~22!

such that~v/D!,s11, in order to ensure that the numb
densityns still produces a power-law decay, as evident fro
Fig. 8.

To recover the scaling function for random percolati
f (s1/Du^h&2hpu) we rescale the number densities of Fig.
using s51.2 andD5nt52.22, as shown in Fig. 9. Samp
W2 is separated from the others since it corresponds
below-percolation-threshold behavior. Fitting the scali

FIG. 8. The number densitiesns per lattice site as a function o
island sizes as defined in Eq.~4!.
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function approximation in Eq.~22! to each of the rescaled
curves, givesv53.060.38, and so the number densityns
assumes the following expression for the smalls limit:

ns}s2s211v/Du^h&2hpuv,

}s20.9060.15u^h&2hpu3.060.38, ~23!

whose exponent 0.9060.155s112~v/D! is comparable
with the power-law exponent of 0.9460.14, obtained directly
by fitting a power-law function to thens curves in Fig. 8.
This exercise shows that the value forv is consistent with
random percolation atd53.

When the ripening process is due only to random per
lation, then thekth moments of distribution near the critica
state can be approximated by

Mk5
(

s
sk11Ps~s!

(
s

skPs~s!
,

.
E

0

`

dssk112s f ~sj2t!

E
0

`

dssk2s f ~sj2t!

,

.

jt~k112s!1tE
0

`

dz zk112s f ~z!

jt~k2s!1tE
0

`

dz zk112s f ~z!

, ~24!

where the last expression is evaluated by substitutins
5sj2t. Since the integrals are functions ofk only whenf (z)
decays faster thanz21,

Mk.Ckj
t;u^h&2hpu2D, ~25!

whereD5nt. Hence,D must be constant for anyk>1 for a
pure random percolation process.6 We do not see any power
law behavior inMk<3 as a function of (̂h&2hp); for ex-
ample,M1 suggests a logarithmic behavior as shown in F

FIG. 9. Rescaling the number densitiesns fails to demonstrate
the scale-invariance property off (s1/(nt)u^h&2hpu), due to the si-
multaneous presence of random percolation and Smoluchowsk
ening. However, it can still be approximated withf (x)}x2v by
considering itsx→0 behavior.
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10, implying thatf (z) is no longer scale invariant. The slo
decay ofns already indicates this behavior. The breakdo
of scale invariance will cause the integrals to diverge in
limit z→` as more islands become larger due to Smo
chowski ripening. From our correlation lengths data, we a
find little evidence thatj→`, causing the termzk112s to
become unbounded ass→`.

C. Distribution densities

To summarize results from Smoluchowski ripening a
random percolation process, we list the values of relev
exponents below:

a50.2860.20, v53.060.28, s51.2, D5nt52.22,
~26!

where the last two values are critical exponent values
percolation atd53. We also recall thata.1

3 due to the pres-
ence of the gentle hump inns ; thus, we takea[0.4 to fit the
distribution functions with these exponents:

Ps'Asa12/3exp~2bs!1Cs2s1~v/D!u^h&2hpuv,

'As1.07exp~2bs!1Cs0.1060.15u^h&2hpu3.060.38,
~27!

where the adjustable parameters areA andC. The constantb
is given by Eq.~17!. We note that the second term gives
decaying profile if the exponent is less than zero.

Figure 11 demonstrates the goodness of fit for the p
posed distribution function in Eq.~27! to all but sampleW2.
The fitted curve shown by open squares agrees well in
cases, except for sampleZ1, where significant bimodality
occurs. Each distribution peak is controlled by Smo
chowski ripening, although it is not clear from our model t
nature of metastable islands exhibited in sampleZ1. The
pairwise collision assumption in the Smoluchowski ripeni
process provides a very good fit to the distributions. Rand
percolation is dominant in the small island size range, be
s'250 nm3, and to some degree in the large size limit. W
use the range ofs2(v/D)50.0320.05, which is within the
range fors2(v/D)520.1060.15.

FIG. 10. First moments of the distribution do not exhibit
power-law behavior. The dashed curve is the fitted logarithm
curve.
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The constant A is shown to have the following
expression:12

A}ba15/3}t2~a15/3!/~a12/3!. ~28!

for Smoluchowski ripening atd53 as obtained in Sec. III A.
For a50.2860.20, we haveA}t22.0360.22. Fitting the con-
stantsA as a function oft}^h&2hp , i.e., A}ta, we obtain
a521.6160.44 as displayed in Fig. 12. This provides fu

c

FIG. 11. Fitting curves for the probability distribution function
Ps are obtained by adding the contributions from Smoluchow
ripening ~solid curves! and random percolation~dashed curves! as
indicated by open squares. Good agreement is obtained for
samples, except sampleZ1 that has a bimodal distribution. Here
the exponents1~v/D!50.0320.05, which is within its obtained
value of 0.1560.17, and the other parameters are listed in Eq.~26!.
SampleW2 is not included as it is below percolation threshold.

FIG. 12. The dependence ofA on t}u^h&2hpu: A}u^h&
2hpua, producesa521.6160.44, within the predicted value o
2.0360.22.
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ther evidence that the pairwise collision assumption is
equate.

IV. SUMMARY AND CONCLUSIONS

The probability density functions of ripene
Si12xGex /Si(001) islands are shown to have two comp
nents. First, the random percolation process that descr
uncorrelated island ripening operates in the small size lim
The critical exponents from our measurements agree witd
53 percolation, which provides indirect evidence that t
ripening process cannot be adequately described by a m
field description. This is because the upper critical dimens
for random percolation isdu56,6 so that ford.6, the mean-
field description, whereby strong interactions producing s
tially varying inhomogeneities are suppressed, is valid. T
additional mechanism required to fully describe the data
Smoluchowski ripening, in which island coalescence occ
via pairwise collisions. We find that the distribution pea
can be attributed largely to the latter mechanism that do
nates in the large size limit. It was found that the scal
exponents for this latter mechanism do not agree with
corresponding mean-field values.

The simultaneous presence of these two mechani
breaks down the scaling laws, which are commonly obe
in both submonolayer and preripening multilayer islan
This may be traced to the fact that in submonolayer islan
the island size distribution decays exponentially,2 in agree-
ment with the exponential decay in percolation at covera
below the first-layer percolation threshold.6 This may further
indicate that island-island interactions are negligible dur
submonolayer growth. During island growth in the preripe
ing multilayer stage, it may be possible for the islands
reach a metastable equilibrium, which is evident in the c
of the largest Ge fraction sample. The presence of suc
metastable state may force the islands to reach relatively
form sizes. However, we find that dislocation formation c
quickly dissipate this state, followed by ripening of the
dislocated islands. Without such a metastable state, the is
size distribution decays subexponentially, hence degrad
the size uniformity. This occurs in samples with smaller
fractions. Another route to ensure relatively uniform sizes
to terminate the growth of 3D islands before the percolat
thresholdhp is reached. As the islands grow, Smoluchow
ripening provides a second avenue for the islands to rea
relatively uniform size distribution.

It is demonstrated that in order to have relatively unifo
small island sizes, a metastable state is required. A slow
cay of size distributions in the small size limit~in multilayer
samples! indicates that it is difficult to achieve a high degr
of size uniformity without the existence of a metastable sta
Although Smoluchowski ripening may provide a size n
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rowing mechanism, the average size at this stage may
already too large for some technological applications, s
as in quantum dot lasers. For other applications that can
lize large island sizes, the Smoluchowski ripening mec
nism can actually enhance size uniformity by developing
continuous cellular network.

We have demonstrated the applicability of an effect
average film height̂h&2hp to represent the time variablet
in analyzing the size distributions. This analogy is tak
from the percolation theory, and can be directly transfered
the Smoluchowski ripening model. This provides an alter
tive way to analyze the dependence of island size distri
tions on misfit strain« through the critical thicknesshc that
rescales the time variablet. This may provide an exciting
development in further understanding the evolution and
bility issues for 3D island formation.

Random percolation process demands that the depo
particles be immobile once they arrive on the surface,
though it has been shown that percolation threshold chan
little when they diffuse.1,8 Nevertheless, a large adatom di
fusion current at elevated growth temperatures may cha
the nature of 3D percolation; our samples were grown
relatively low temperatures. The interplay among shap
heights, and sizes of 3D islands due to growth parame
requires further studies. One interesting development in
direction is, for example, given by a study of correlat
granular percolation.34 By specifying the maximum 2D clus
ter size, there is a concomitant maximum surface site den
indicating a balance between surface tension and bulk ela
energy density of the cluster. Another direction is combini
our work with scaling properties of surface roughening8 that
leads to compact 3D islands.35

One fundamental issue worth investigating is thus de
mining the range of applicability of the 3D random perco
tion to the 3D island size distributions. Concretely, the int
play between the island shape and height distributions
determining the size distributions might be investigated
gain a comprehensive understanding for clustering mec
nisms in ripened islands. In these regards, we hope that
study would stimulate more detailed investigations, incorp
rating these issues, in the future.
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