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Effective conductivity of two-dimensional electrons in heterostructures with nonuniform doping
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The frequency and temperature dependences of the effective conductivity are calculated in selectively doped
heterostructures with long-range variations of energy levels caused by nonuniform donor distribution. The
random electric field induced by lateral redistribution of the two-dimensional concentration modifies the
frequency dispersion of response in comparison with the standard Drude mechanism. The spectral and tem-
perature dependences of the conductivity are investigated and the interplay between the Drude mechanism and
the random contribution is analyzed.
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I. INTRODUCTION

It is generally accepted that, the linear response of f
carriers in the classical frequency region~if \v is smaller
than the mean energies and the interband gap! shows the
Drude dispersion. This fact has no analogies with a
plasma response for the nonuniform case, where the co
bution of random electric fields~in the space-time domain!
plays an essential role due to the Landau damping1 and spec-
tral dependences of response are more complicated eve
the classical frequencies. A long-range potential is scree
effectively in the three-dimensional~3D! or 2D solid-state
plasma so that the nonuniform electric field is of little impo
tance and only the concentration redistribution is essen
Since the mean free path is usually shorter than the cha
teristic scale of the nonuniform doping, the response can
described in the framework of the effective-media appro
~see Refs. 2 and 3!. But this condition is violated in selec
tively doped heterostructures where the donors are sepa
from 2D electrons by the distanceZ ~see Fig. 1; for sake o
simplicity we consider thed-doping case!. Several variants
of the lateral inhomogeneities of donors have been discus
A large-scale potential appears even with thed-correlated
donors because the Fourier components with wave vec
less thanZ21 do not act on 2D electrons@see Ref. 4 and Eqs
~4! and~5! below#. The modifications on mobility due to th
spatial correlations of donors were calculated in Refs. 5
6 while the mechanisms of formation of the in-plane inh
mogeneous distribution of donors~due to nonuniform occu-
pation of donor states or due to impurity diffusion! have been
discussed in Refs. 7 and 8. In the present paper, we exa
the frequency-dependent conductivity of the in-plane n
uniform selectively doped heterostructure taking into
count a lateral electron redistribution under the long-ran
potential. The interplay between the Drude dispersi
caused by the standard relaxation processes, and the c
bution from the random electric fields, due to the plan
large-scale inhomogeneities, is analyzed when the scal
random variations of potentiall c is shorter than the relax
ation lengthl F , i.e., in thenonlocal regimeof response.
0163-1829/2002/65~4!/045314~8!/$20.00 65 0453
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The Drude dispersion of 2D conductivity has been exa
ined at far-infrared spectral region as far back as the sili
inversion layers were started to be investigated.9 Some re-
sults concerning AlGaAs-based heterostructures have
been published~see Ref. 10 that mainly deals with the 2
plasmon dispersion!. A clear demonstration of the Drude dis
persion of conductivity at high-frequency region was p
sented for the high-mobility selectively doped structures11

The measurements were performed by use of high-qua
structures with the wide spacerZ when the variations of po-
tential are essential only forl c.Z. The peculiarities of the
low-frequency dispersion of conductivity under the larg
scale potential due to a ‘‘long-time tail’’ of the velocity cor
relations were considered beyond the kinetic approximati
~see Ref. 12 and references therein!. To the best of our
knowledge, the effect of a random electric field on the f
quency dispersion of conductivity is not considered pre
ously even for the kinetic regime of response,l c& l F . The
calculations below are based on the electrostatic descrip
of the long-ranged variations of potentials in selective
doped heterostructures and on the linearized kinetic equa
that is solved for the quasielastic scattering of electrons
acoustic phonons. The random electric field is due to
electron redistribution induced by the current in the nonu
form heterostructure and is determined from the frequen
dependent component of electric neutrality condition tha
solved self-consistently. We analyze the frequency and t
perature dependences of the effective conductivity in se
tively doped heterostructures and find that the ratiol c / l F is
strongly affected by these dependences.

The paper is organized as follows. In Sec. II, we descr
the potential induced by nonuniform donor sheet and eva
ate the general expression for effective conductivity ten
based on the linearized kinetic equation. We also perform
self-consistent calculation of the random electric field ba
on the electric neutrality condition. In Sec. III, we discuss t
modifications of frequency dependences and temperature
pendences of the effective conductivity in the nonunifo
heterostructures with the dominant mechanism of relaxa
due to scattering by acoustic phonons. The assumptions
©2002 The American Physical Society14-1
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and concluding remarks are presented in the last section
the Appendix we briefly describe the parameters of qu
elastic collision integral.

II. BASIC EQUATIONS

In order to describe the effective response, we evalu
the energy level variations due to the in-plane nonuniformd
doping. We next consider the general expression for the
duced current and evaluate the averaged contribution of
random electric field to this current performing the se
consistent solution of the integral equation obtained from
Poisson equation.

A. Long-range disorder

The self-consistent description of the 2D electrons in
lectively doped structures with long-range variations of d
nor distribution over 2D plane~see Fig. 1! is based the
Schrödinger and the Poisson equations. Since the Sc¨-
dinger equation contains the self-consistent potentialVxz ,
which is parametrically dependent on the 2D coordinatex for
the large-scale variations of levels, we write the concen
tion of electrons asnxz5r2D(«F2wx)cxz

2 . Here r2D is the
2D density of states,«F the Fermi energy,cxz the wave
function of the ground state, andwx5*dz Vxzcxz

2 is the long-
range random addendum to the energy of the 2D electr
This system of equations can be simplified in the case
weak variations of the ground level by using the first-ord
perturbation theory. Neglecting the correction to the wa
function, we obtainwx5*dzdVxzcz

2, wheredVxz is a non-
uniform part of the self-consistent potential. Performing t
in-plane Fourier transformation, we write the linearized Po
son equation as follows:

S d2

dz22q2D dVqz5
4pe2

e
~r2Dwqcz

21dNqz!, ~1!

FIG. 1. Band diagrams alongz axis for selectively doped het
erojunction~a! and quantum well~b! with the nonuniform ground
level «o(x) due to the nonuniform donor distributionND(x).
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where e is the dielectric constant supposed to be unifor
and dNqz is the nonuniform part of the donor distributio
over d layer.

The solution of Eq.~1! is written through the Green’s
function, 2exp(2quz2z8u)/(2q), as

wq52E dzcz
2E dz8 e2quz2z8uS 2

aBq
qqcz8

2
1

4pe2

eq
dNqz8D ,

~2!

whereaB is the Bohr radius. Assuming thatq21* l c is larger
than the width of the 2D electron layer, we write the coef
cients in Eq.~2! in the form

E dzcz
2E dz8 e2quz2z8ucz8

2 .1,

E dzcz
2E dz8 e2quz2z8udNqz8.dnqe

2qZ, ~3!

so that under the conditionl c@aB the solution of Eq.~2! is
given by

wq.2
dnq

r2D
e2qZ. ~4!

Here Z is the distance between the 2D electrons and thd
layer of donors anddnq5*dzdNqz stands for the nonuni-
form part of donor concentration.

For further numerical estimations we assume the Gau
ian correlations of variations of the donor concentration o
thed layer. These variations are described by the correla
function W(q)5*dDx exp(2iq•Dx)Š^wxwx8&‹, which is
written as

W~q!5p l c
2S dn

r2D
D 2

exp@2~qlc/2!222qZ#, ~5!

wheredn is the typical variation of the 2D donor concentr
tion, l c determines the lateral scale of inhomogeneities, a
^^¯&& stands for the averaging over 2D plane. Note th
W(q) is the Gaussian correlator ifZ! l c and W(q)
}exp@22qZ# if Z@ l c . Below we use the general correlato
in Eq. ~5!. The specific cases discussed in Refs. 5–8 can
considered using differentdn and l c .

B. Average current

The linearized kinetic equation for the 2D electrons w
the dispersion law«px5«p1wx («p5p2/2m, m is the effec-
tive mass! under a weak electric fieldEx exp(2ivt) is repre-
sented as

~2 iv1v•“x1dfx•“p!d f px2I c~d f upx!

5~eEx•v!d~«F2«px!. ~6!

Here d f px is the quasiclassical distribution function,v
5p/m is the in-plane velocity,dfx52“xwx a random force
due to nonscreened variations of level, and«F the Fermi
energy for the low-temperature case. The contribution fr
4-2
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the random force in Eq.~6! is estimated asw̄/ l cpF while the
drift contribution is of the order ofvF / l c . Thus, the random
force can be discarded under the conditionw̄!«F . Separat-
ing the symmetric part of the distribution functionf«x
5*0

2pdw d f px/2p, we search for the high-frequency distr
bution of the formd f px5f«x1xpx . Herexpx is the nonsym-
metric part of the distribution. Consequently,^xpx&50,
where ^¯&5*0

2p(dw/2p)¯ means the averaging ove
angle. The symmetric part of Eq.~6! takes the form

~ iv1 Î qel!f«x5^v•“vxpx&, ~7!

where Î qel stands for the quasielastic collision operator~see
the Appendix!. Using Eqs.~6! and ~7!, we obtain the non-
symmetric part of kinetic equation in the form

~2 iv1v•“x1ne!xpx2^v•“xxpx&

5~eEx•v!d~«Fx2«!2v•“xf«x . ~8!

The elastic collision integralI c(xupx) is replaced here by
2nexpx with the relaxation frequencyne that is not depen-
dent on energy for the two-dimensional limit@see Eq.~A4!#.
We have also introduced the nonuniform Fermi energy
cording to«Fx5«F1wx .

Performing the spatial Fourier transformation, we wr
Eqs.~7! and~8! as a system of integro-differential equatio

~ iv1 Î qel!f«q5 i ^~q•v!xpq&,

@ i ~q•v2v!1ne#xpq2 i ^~q•v!xpq&5Cpq2 i ~q•v!f«q ,
~9!

where the Fourier component of electric fie
Eq appears in the nonhomogeneous termCpq
5(q8(eEq8•v)Dq2q8(«F2«) with the random factor
Dq(«F2«)[*(dx/L2)exp(2iqx)d(«Fx2«); L2 is the nor-
malization area. The contribution averaged over angle in
~9! is determined by the nonsymmetric equation and can
expressed through the formulas

^~q•v!xpq&5
11~v1 ine!^~q•v2v2 ine!

21&

^~q•v2v2 ine!
21&

3~f«q1 iC«q!,

C«q5(
q8

~eEq8•q!

q2 Dq2q8~«F2«!, ~10!

where Cpq was replaced byC«q(q•v) under the average
over angle. We transform Eq.~10! performing the integration
over angle13 in this expression so that the right side of sym
metric Eq.~9! andxpq take the forms

^~q•v!xpq&5~v2R«v!~f«q1 iC«q!,

xpq5 i
~v2R«v!C«q2 iCpq

q•v2v2 in«
2S 11

R«v1 ine

q•v2v2 ine
Df«q .

~11!

Here we introduced the functionR«v5A(v1 ine)
22(qv)2

2 ine , which has dimension of frequency.
04531
-
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The induced current density is given by the standard f
mula j q5(2e2/L2)(pvxpq , so that the averaged curren
Š^ j q&‹ is expressed throughŠ^f«q&‹, Š^C«q&‹, and Š^Cpq&‹
according to Eq.~11!. Since the averaged values are prop
tional todq0 , we obtainŠ^ j q&‹5dq0j with the single nonzero
contribution toj given by Š^Cpq50&‹. Using curlEx50, we
can separate the uniform and random parts of electric fi
and Eq is written asEdq02 iqFq , whereE is the uniform
applied field andFq determines the random part ofEq. After
the substitution ofŠ^Cpq50&‹ and the integration overp, we
transform the induced current as

j5
e2

mL2 (
q

Š^Eqn2q&‹
i

v2 ine

5 i
e2n2D

m~v2 ine!
S E2

i

L2 (
q

q
Š^Fqw2q&‹

«F
D , ~12!

where the right side is written through the Fourier comp
nent of concentrationnq5n2D1r2Dwq andn2D5r2D«F .

C. Random electric field

The scalar potentialFq in Eq. ~12! should be determined
from the high-frequency Poisson equation. The general s
tion of such equation can be written in analogy with t
static case@see Eq.~2!# through the Fourier component o
charge densityrq5(er2D/2)*0

`d« f«q .14 For the long-scale
inhomogeneities case, whenl c@aB , we use below the elec
tric neutrality conditionrq50 in order to determineFq .
Thus, the random part of field is determined by the symm
ric part of distribution. Using Eqs.~11! and~A6! in the upper
Eq. ~9! we obtain equation forf«q in the form

ne«̄
2

d

d« Fdf«q

d«
1

f«q

T G1 iR«vf«q5~R«v2v!C«q ,

~13!

with the characteristic energy transfer«̄ is as introduced
in the Appendix andT is the phonon temperature; he
we consider the case«̄!T. After the substitutionf«q

5exp(2«/2T)f̄«q , we write equation forf̄«q as

«̄2
d2f̄«q

d«2 2
R«v

ine
f̄«q5e«/2T

R«v2v

ne
C«q[e«/2TU«q ,

~14!

where we have neglected the contributions of the order
( «̄/2T)2. This equation is considered below with the ze
boundary conditions at«→0 and ` because the electron
only in the vicinity of the Fermi energy contribute to th
response. Sincew̄!«F , the fundamental solutions of Eq
~14! are written in the quasiclassical approximation asw«

(6)

5exp@6*d«AR«v / ine/ «̄ #. The general nonhomogeneous s
lution takes form
4-3
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f«q52E
0

« d«8

2«̄

w«
~2 !w«8

~1 !

AR«8v / ine

e~«82«!/2TU«8q

2E
«̄

` d«8

2«̄

w«
~1 !w«8

~2 !

AR«8v / ine

e~«82«!/2TU«8q . ~15!

Substituting this solution withC«q from Eq. ~10! to the
condition rq50, we obtain an integral equation forFq as
follows:

(
q8

Kqq8Fq81 i
~E•q!

q2 Kqq85050, ~16!

where the random kernel is given by

Kqq85E
0

`

d«F E
0

« d«8

2«̄

w«
~2 !w«8

~1 !

AR«8v / ine

e~«82«!/2T

3
R«8v2v

ne
Dq2q8~«F2«!,

1E
0

« d«8

2«̄

w«
~1 !w«8

~2 !

AR«8v / ine

e~«82«!/2T

3
R«8v2v

ne
Dq2q8~«F2«!G . ~17!

SeparatingŠ^Kqq8&‹5dqq8Kq and the random part of kerne
kqq85dqq8Kq2Kqq8 , we write equation forFqq8[Fqwq8 in
the form

KqFqq85Fqq81(
qi

kqqi
Fqiq8 , ~18!

with the nonhomogeneous term given byFqq8
5Kqq8`0wq8(E•q)/q2.

The current density given by Eq.~12! contains the factor
Š^Fqq8&‹ at q852q and the averaging procedure fo
Š^Fqq8&‹ is similar to the consideration of the single-partic
Green’s function. As a result, Eq.~18! is transformed into

KqŠ^Fqq8&‹5dq82qŠ^Fq,2q&‹1(
q1

Mqq2
Š^Fq1q8&‹,

Mqq1
5(

q2

Š^kqq0
kq0q1

&‹

Kq21 iaBq/3
1¯5dqq1

Mq , ~19!

where the seriesMqq1
has the same structure as the se

energy function in the Dyson equation~see also Refs. 2 an
3! and the nonuniform part of Eq.~19! is }dq82q under the
average. Finally, Eq.~12! contains the factorŠ^Fq12q&‹
5Š^Fq12q&‹/(Kq1 iaBq/22Mq). Thus the induced curren
is obtained in the explicit form.
04531
-

III. EFFECTIVE CONDUCTIVITY

In this section, we consider the modifications of the effe
tive conductivity caused by the second addendum in Eq.~12!
and we examine the temperature dependence of the s
conductivity as well as the frequency dispersion in nonid
heterostructure under consideration.

A. Averaging procedure

We have performed the average over random potentia
^^Fq12q&& using the relations

Š^d~«Fx2«!&‹5d w̄~«F2«8!,

Š^w2qDq~«F2«!&‹5W~q!d w̄8~«F2«8! ~20!

with the broadening d function d w̄(E)5exp@2(E/w̄)2/
2#/(A2pw̄) and with the correlation functionW(q) given by
Eq. ~5!. These results are obtained after the Fourier exp
sion ofd function by using the well-known exact formula fo
averaging of a random functional in the exponent@see Eq.
~15! in Ref. 14#. Next, we expressj through the effective
conductivitysv

eff ~it is a scalar due to the in-plane isotropy
the averaged system! according to j5sv

effE. Replacing
Š^Kqq850w2q&‹ in Š^Fq,2q&‹ through W(q)Aq , we obtain
an explicit expression forsv

eff in the form

hv
eff5svF12

1

L2 (
q

W~q!

2«F

Aq

Kq2Mq
G , ~21!

where sv5 ie2n2D /m(v1 ine) is the conductivity of uni-
form 2D electrons. The coefficientsAq andKq are given by

S Aq

Kq
D5E

0

`

d«F E
0

« d«8

2«̄

w«
~2 !w«8

~1 !

AR«8v / ine

e~«82«!/2T

3
R«8v2v

ne
S d w̄8 ~«F2«8!

d w̄~«F2«8!
D ,

1E
0

« d«8

2«̄

w«
~1 !w«8

~2 !

AR«8v / ine

e~«82«!/2T

3
R«8v2v

ne
S d w̄8 ~«F2«8!

d w̄~«F2«8!
D G . ~22!

Using the inequality«̄!w̄ once again, we perform the
integrations in Eq.~22! with the rapidly decreasing exponen

tial factors w«
(2)w«

(1)5exp(2*«8
« d«8AR«8v / ine/ «̄) and

w«
(1)w«

(2)5exp(2*«
«8d«8AR«8v / ine/ «̄). As a result,

Kq. i E
0

`

d« d w̄~«F2«!
R«v2v

R«v
. i

R«Fv2v

R«Fv
, ~23!

with the right-hand side of equation written under the con
tion w̄,«F . The similar consideration ofAq after the inte-
gration by parts provides the coefficient
4-4
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Aq. i E
0

`

d«
d w̄~«F2«!

AR«v

d

dv

R«v2v

AR«v

.U i

AR«Fv

d

d«

R«v2v

AR«v
U

«F

~24!

andsv
eff is obtained after the substitution of these coefficie

into Eq. ~21!.
We now turn to the consideration of the self-consist

contribution Mq . Within the second-order accuracy, th
averagê ^kqq2

kqqq&& is expressed through

KK Fdqq2
d w̄~«F2«!2

~q•q2!

q2 Dq2q2
~«F2«!G

3Fdq2q8dw̄~«F2«8!2
~q2•q8!

q2
2 Dq22q8~«F2«8!G L L

5
dqq8
L2 W~ uq2q2u!d w̄8 ~«F2«!d w̄8 ~«F2«8!

~q2•q2!4

q2q2
2 ,

~25!

Next, using Eq.~17! and performing a straightforward calcu
lation, we transformMq into the form

Mq.
4Aq

L2 (
q1

W~ uq2q1u!~q•q1!

q2q1
2

4Aq1

Kq1

, ~26!

Finally, sv
eff determined by Eq.~21! takes form

sv
eff5svH 12

1

L2 (
q

W~q!Fqv

4«F

3F12
Fqv

L2 (
q1

W~ uq2q1u!~q•q1!4

q2q1
2 Fq1vG21J

~27!

with the function Fqv5@(dR«v /d«)/R«v#(R«v1v)/(R«v

2v) whereq-dependent factorR«v is appeared in Eq.~11!.

B. Static conductivity

For the static casev50, we replace R«v by i
@Ane

21(qv)22ne# in Eq. ~27!. Using the variablex5qlc
and performing the integrations over the angle, we transfo
Eq. ~27! into

seff

se
512S dnh

4n2D
D 2

3ReE
0

`

dx
Wxx

3

Vh~x!@Vh~x!21#2Mh~x!1 i0
,

Mh~x!52S dnh2

4n2D
D 2

x2E
0

`

dx1

w~x,x1!x1
3

Vh~x1!@Vh~x1!21#
,

~28!
04531
s

t

mwhere s«5e2n2D /(mne) is the static conductivity for the
in-plane uniform structures,Vh(x)5A11(hx)2, and h
5 l F / l c are dimensionless parameters. We have also used
angle-averaged correlation functions:Wx5exp(2x2 /4
22xZ/ l c) and w(x,x1)5*0

2pdw/(2p)exp(2ux2x1u2/4
22ux2x1uZ/ l c). According to Eq.~A7!, h}n«

21}T21 for
the acoustic phonon scattering under the conditionT@ «̄. So
Eq. ~28! describes the temperature dependence of the c
ductivity.

In Figs. 2~a! and 2~b! we plot the static conductivity as
function of h given by Eq.~28! with different parameters
dn/2n2D and Z/ l c . Such a relation determines th
temperature-dependent corrections to the effective cond

FIG. 2. Temperature-dependent corrections to the static con
tivity given by Eq.~28! vs h for dn/2n2D50.1, 0.2, 0.3, and 0.4 a
Z/ l c!1 ~a!; the same forZ/ l c50, 0.25, 0.5, 1 atdn/2n2D50.3 ~b!.
Temperature dependence of conductivity, given byhseff/se vs
h21}T is shown in~c!. The inset in~c! showsseff/se vs h21 for
clearness.
4-5
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tivity due to disorder. Figure 2~c! shows the dependence o
seff vs h21}T, thus the inverse proportional dependen
does not essentially change even for big disorder. The cas
the samples with the far-separatedd layer, whenZ/ l c;1, is
illustrated in Fig. 2~b!. The shapes of the dependences
not changed but the effect of disorder is suppressed du
additional cutoff factor in the correlation function. Let u
estimate the typical values ofh used above. The mean fre
path in the structures withn2D.231011cm22 and with the
mobility about 106 cm2/V s is around 10mm. Since the Bohr
radius and the width of 2D layer are about 100 Å, the q
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siclassical description of long-range disorder is applicabl
l c.0.1mm, so h appears to be up to a hundred. As t
mobility increases,h increases proportionally.

C. Frequency dispersion

The spectral dependences of the effective conducti
sv

eff/s«[F(V,h) are determined by the product of the Drud
factorsD5 i /(V1 i ) and the brackets from Eq.~27! with the
dimensionless frequencyV5v/n« . The functionF(V,h) is
given by
F~V,h!5
i

V1 i F11S dnh

4n2D
D 2E

0

`

dx
Wxx

3@VhV~x!2 i 1V#

VhV~x!@VhV~x!2 i #@VhV~x!2 i 2V#2MhV~x!G ,

MhV~x!52@VhV~x!2 i 1V#S dnh2

4n2D
D 2

x2E
0

`

dx1

w~x,x1!x1
3@VhV~x1!2 i 1V#

VhV~x1!@VhV~x1!2 i #@VhV~x1!2 i 2V#
, ~29!
ary

lcu-
tion

igh-

his
h-
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he

ture
h-
cat-
The
re-

ause
ex-
de-
on-

s
e

ncy
e
n-
n is
rm

m-
ill

ac-
D

whereVhV(x)5A(V1 i )22(hx)2.
The real and imaginary part of the frequency-depend

conductivity of Eq. ~29! is plotted in Fig. 3~a! and 3~b!,
respectively, for the structure withZ/ l c→0 at differenth. To
demonstrate the effects of nonuniform doping on the cond
tivity spectra more transparently, the insets in Fig. 3~a! and
3~b! give the ratios ReF(V,h)/ResD and ImF(V,h)/Im sD
correspondingly. In contrast to ReF(V,h), which is mainly
modified atV@1, the imaginary contribution is essential
modified atV;1. The valueV510 corresponds to the cen
timeter wavelength range in the samples with the mobi
about 106 cm2/V s. Thus, under a variation of temperatu
one can realize the radio frequency or microwave meas
ments of the response in the samples with mobilit
*106 cm2/V s. The case of the samples with the separated
layer for Z/ l c.0 is illustrated in Fig. 4 fordn/2n2D50.3
andh520. It is seen that the distance between the 2D e
tron layer and the doping layer strongly affects t
frequency-dependent conductivity whenZ/ l c,0.5. How-
ever, such an effect is not significant for the imaginary p
of the conductivity.

IV. CONCLUSION

In this paper, we have obtained and analyzed the effec
conductivity ofd-doped heterostructure with the long-rang
disorder caused by the nonuniform donor distribution.
show that the nonuniform contributions to the electron d
persion law«px is essential in the selectively doped stru
tures. The presence of nonscreened large-scale variatio
levels qualitatively change the character of response du
the nonuniform part of electric field proportional to applie
field E. This new contribution to the effective conductivit
changes both the temperature dependence and the frequ
dispersion of conductivity. A substantial variation of condu
nt

c-

y

e-
s

c-

rt

e

e
-

of
to

ncy
-

tivity with temperature~up to 20% atdn/2n2D50.3) is ob-
tained. The frequency dispersion of the real and imagin
parts of conductivity is mainly modified atV;1 and V
;h, respectively.

Now we discuss the main assumptions used in the ca
lations above presented. The quasiclassical kinetic equa
is generally accepted for the description both static and h
frequency responses of 2D electrons if\v!«F . Further-
more, we consider the electron-phonon scattering only. T
is the main channel of momentum relaxation in the hig
mobility structures15 while the electron-electron collision
can determine the symmetric part of distribution in t
heavily doped samples~consequently, we usedn2D.2
31011cm22 in the numerical estimations!. The effects under
consideration should be enhanced for the low-tempera
region (T,4 K) but one needs to consider the Bloc
Gruneisen regime of relaxation. These complications of s
tering process are required a special consideration.
screening plays an essential role in the high-frequency
sponse. We do not consider these peculiarities here bec
this frequency region corresponds to the sub-millimeter
citation case when a more complicated electrodynamical
scription is necessary. Note also, that the averaging over n
uniformities with the scalel c is applicable to the sample
with the size. l c ; otherwise a classical mesoscopical regim
can be realized. The quantum corrections to the freque
dispersion of conductivity16 appears to be weak in th
samples with high-mobility electrons. A validity of the sta
dard self-consistent procedure for the Poisson equatio
discussed in Refs. 2 and 3 and the assumption of unifo
dielectric permittivity neglects the image-charge effects.

To conclude, the obtained modified frequency and te
perature dependences of the effective conductivity w
stimulate an experimental study of response taking into
count the lateral nonuniformities of the high-mobility 2
4-6
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electrons in selectively doped structures. Along with t
above-discussed measurements of conductivity, other cha
teristics of nonideal structures under consideration, such
magnetotransport coefficients, 2D plasmon dispersion,
cyclotron resonance, are influenced by the nonuniform va
tions of the ground level; these phenomena require a spe
consideration.
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FIG. 3. The real~a! and imaginary~b! parts ofF(V,h) in the
structures withZ/ l c→0 vs V for different h5 l F / l c . All curves
were calculated fordn/2n2D50.3. The thick-dashed curve corre
spond to the ideal case,dn50. The insets in~a! and ~b! show
ReF(V,h)/ ResD and ImF(V,h)/ Im sD , respectively.
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APPENDIX: QUASIELASTIC COLLISION INTEGRAL

Below we evaluate the quasielastic collision integral th
appears in Eq.~13!. It is convenient to write the genera
expression for collision integral through the sumW̄pp8 and
differenceDWpp8 of the transition probabilities for emissio
and absorption of phonons:

I c~ f upxt !5(
p8

W̄pp8~ f p8xt2 f pxt!

2(
p8

DWpp8
2

@ f p8xt~12 f pxt!2 f pxt~12 f p8xt!#,

~A1!

W̄pp85
2p

\ (
q'

uCQu2u^0ueiq'zu0&u2S NQ1
1

2D
3@d~«p82«p1\vQ!1d~«p82«p2\vQ!#,

DWpp85
2p

\ (
q'

uCQu2u^0ueiq'zu0&u2

3@d~«p82«p1\vQ!2d~«p82«p2\vQ!#.

HereCQ is the bulk matrix element for deformation electro
phonon interaction,Q5Aup2p8u2/\21q'

2 is the 3D wave
vector, andNQ is the Planck distribution with temperatureT.
The phonon frequency,vQ5sQ, is expressed through th
sound velocity s and the overlap factor,17 ^0ueiq'zu0&
5*dzrz

2eiq'z, is determined through the ground-level wa
function, q' is the transverse component of phonon wa
vector. Following the quasielastic approach, we expand
transition probabilities in Eq.~A1! as follows:

FIG. 4. The real part of the effective conductivity ReF(V,h) vs
V in the structures withZ/ l F50, 0.05, 0.25, and 0.5 fordn/2n2D

50.3 andh520.
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W̄pp8.
Lup2p8u

L2 d~«p82«p!1
L̄up2p8u

L2 d9~«p82«p!,

DWpp8.
DLup2p8u

L2 d8~«p82«p!. ~A2!

For the two-dimensional case,pF@\/d, the coefficients of
~A2! appear to be independent ofup2p8u and below we use

L.
2p

\
L2(

q'

uCq'
u2u^0ueiq'zu0&u2cothS \vq'

T
D ,

L̄.
2p

\
L2(

q'

uCq'
u2u^0ueiq'zu0&u2~\vq'

!2cothS \vq'

T
D ,

DL.
2p

\
L2(

q'

uCq'
u2u^0ueiq'zu0&u2\vq'

. ~A3!

Separating the distribution function on the symmetric a
nonsymmetric parts,f «xt andD f pxt , we obtain the nonsym
metric contribution to collision integral through the mome
tum relaxation timene :

I c~D f upxt !.2neD f pxt , ne5Lr2D . ~A4!

The symmetric part of collision integral is transformed to t
differential form

I c~ f u«xt !.ne«̄
2

d

d« Fd f«xt

d«
1b f «xt~12 f «xt!G , ne5Lr2D

~A5!

with the characteristic energies«̄ and b21 determined by
ne«̄

25L̄r2D/2 andb5DL/(2L̄). The linearized collision in-
,

tt.

rs
ki

J.

04531
d

tegral used in Eq.~13! is given by

Î qelf«xt.ne«̄
2

d

d« Fdf«xt

d«
1b«xf«xtG ~A6!

and b«x5b(122 f «x)5b sgn(«Fx2«) for the low-
temperature limit.

For the ‘‘equipartition’’ phonon distributionT@\vq' we
use coth(\vq' /T)'T/\vq' , so thatb5T21. The elastic re-
laxation frequency in Eq.~A4! takes the form

ne5
pD2T

\s2r
r2D , k5E dzwz

4, ~A7!

whereD is the deformation potential,r is the material den-
sity, and k53/(2d) for the hard-wall model of QW. The
characteristic energy is given by

k«̄25L22(
qnt

u^0ueiq'zu0&u2~\vq'
!25~\s!2E dzS dwz

2

dz D 2

~A8!

and for the hard-wall model of QW we obtain«̄
5(2p/))s\/d. Sinceq' is of the order ofd21, Eqs.~A7!
and ~A8! are valid if T@ «̄ ~or b«̄!1). For the hard-wall
model of QW with the width d, we obtain «̄
5(2p/))s\/d and k53/(2d). For the selectively
doped heterojunction we use the trial functioncz

5(z/A2a3)exp(2z/2a) with the characteristic lengtha
5(aB/2)A3 R/6«F and the effective RydbergR5(\/as)

2/m.
The straightforward integrations of Eqs.~A7! and~A8! result
in «̄5A29/6s\/a andk53/(16a).
ys.
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