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Effective conductivity of two-dimensional electrons in heterostructures with nonuniform doping

F. T. Vasko
Instituto de Fsica de Sa Carlos, Universidade de ®aPaulo, Sa Carlos, SP 13560-970, Brazil
and Institute of Semiconductor Physics, NAS, 45 Pr. Nauky, Kiev 03650, Ukraine

G.-Q. Hai
Instituto de Fsica de Sa Carlos, Universidade de ®aPaulo, Sa Carlos, SP 13560-970, Brazil
(Received 3 August 2001; published 3 January 2002

The frequency and temperature dependences of the effective conductivity are calculated in selectively doped
heterostructures with long-range variations of energy levels caused by nonuniform donor distribution. The
random electric field induced by lateral redistribution of the two-dimensional concentration modifies the
frequency dispersion of response in comparison with the standard Drude mechanism. The spectral and tem-
perature dependences of the conductivity are investigated and the interplay between the Drude mechanism and
the random contribution is analyzed.
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I. INTRODUCTION The Drude dispersion of 2D conductivity has been exam-
ined at far-infrared spectral region as far back as the silicon
It is generally accepted that, the linear response of freénversion layers were started to be investigatégbme re-
carriers in the classical frequency regi@f fiw is smaller  sults concerning AlGaAs-based heterostructures have also
than the mean energies and the interband) giyows the been publishedsee Ref. 10 that mainly deals with the 2D
Drude dispersion. This fact has no analogies with a gaplasmon dispersionA clear demonstration of the Drude dis-
plasma response for the nonuniform case, where the contrpersion of conductivity at high-frequency region was pre-
bution of random electric fieldén the space-time domain sented for the high-mobility selectively doped structiifes.
plays an essential role due to the Landau danpimgl spec- The measurements were performed by use of high-quality
tral dependences of response are more complicated even fsiructures with the wide spac&rwhen the variations of po-
the classical frequencies. A long-range potential is screene@ntial are essential only fdg=Z. The peculiarities of the
effectively in the three-dimension&BD) or 2D solid-state low-frequency dispersion of conductivity under the large-
plasma so that the nonuniform electric field is of little impor- scale potential due to a “long-time tail” of the velocity cor-
tance and only the concentration redistribution is essentiatelations were considered beyond the kinetic approximations
Since the mean free path is usually shorter than the chara¢see Ref. 12 and references thejeiio the best of our
teristic scale of the nonuniform doping, the response can bknowledge, the effect of a random electric field on the fre-
described in the framework of the effective-media approaclyuency dispersion of conductivity is not considered previ-
(see Refs. 2 and)3But this condition is violated in selec- ously even for the kinetic regime of responsgs|g. The
tively doped heterostructures where the donors are separateédliculations below are based on the electrostatic description
from 2D electrons by the distan@&(see Fig. 1; for sake of of the long-ranged variations of potentials in selectively-
simplicity we consider the>-doping casg Several variants doped heterostructures and on the linearized kinetic equation
of the lateral inhomogeneities of donors have been discussethat is solved for the quasielastic scattering of electrons by
A large-scale potential appears even with theorrelated acoustic phonons. The random electric field is due to the
donors because the Fourier components with wave vectordectron redistribution induced by the current in the nonuni-
less tharZ ~* do not act on 2D electrorjsee Ref. 4 and Egs. form heterostructure and is determined from the frequency-
(4) and(5) below]. The modifications on mobility due to the dependent component of electric neutrality condition that is
spatial correlations of donors were calculated in Refs. 5 andolved self-consistently. We analyze the frequency and tem-
6 while the mechanisms of formation of the in-plane inho-perature dependences of the effective conductivity in selec-
mogeneous distribution of donofdue to nonuniform occu- tively doped heterostructures and find that the rbtibg is
pation of donor states or due to impurity diffusjdrave been  strongly affected by these dependences.
discussed in Refs. 7 and 8. In the present paper, we examine The paper is organized as follows. In Sec. Il, we describe
the frequency-dependent conductivity of the in-plane nonthe potential induced by nonuniform donor sheet and evalu-
uniform selectively doped heterostructure taking into ac-ate the general expression for effective conductivity tensor
count a lateral electron redistribution under the long-rangévased on the linearized kinetic equation. We also perform the
potential. The interplay between the Drude dispersionself-consistent calculation of the random electric field based
caused by the standard relaxation processes, and the contoia the electric neutrality condition. In Sec. I, we discuss the
bution from the random electric fields, due to the planarmodifications of frequency dependences and temperature de-
large-scale inhomogeneities, is analyzed when the scale glendences of the effective conductivity in the nonuniform
random variations of potentidl. is shorter than the relax- heterostructures with the dominant mechanism of relaxation
ation lengthl¢, i.e., in thenonlocal regimeof response. due to scattering by acoustic phonons. The assumptions used
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where € is the dielectric constant supposed to be uniform,
and 8MN, is the nonuniform part of the donor distribution
over & layer.

The solution of Eq.(1) is written through the Green’s
function, —exp(—q|z—2'|)/(2q), as

AN\

_ 2 I a—qlz—2'| 2 2 4me? N,
We=— | dzy; | dZ'e @qqdfﬁ?é qz' | s
2

whereag is the Bohr radius. Assuming thgt =1 is larger
than the width of the 2D electron layer, we write the coeffi-
cients in Eq.(2) in the form

f dw;f dz e 9z-71y? =1,
FIG. 1. Band diagrams alongaxis for selectively doped het-
erojunction(a) and guantum wel(b) with the nonuniform ground
level e ,(x) due to the nonuniform donor distributidtip(x). f dzwgf dz e_q|z_zl‘5/\/qzr: 5nqe_qz, (3)

and concluding remarks are presented in the last section. P that under the conditioR>ag the solution of Eq(2) is
the Appendix we briefly describe the parameters of quasi9ven by
elastic collision integral.

on
Wy=——¢e 9 (4
P2p
IIl. BASIC EQUATIONS Here Z is the distance between the 2D electrons and&he

In order to describe the effective response, we evaluatiyer of donors andng=Jdz o\, stands for the nonuni-
the energy level variations due to the in-plane nonuniférm form part of donor concentration.
doping. We next consider the general expression for the in- For further numerical estimations we assume the Gauss-
duced current and evaluate the averaged contribution of thi@n correlations of variations of the donor concentration over
random electric field to this current performing the self-the & layer. These variations are described by the correlation
consistent solution of the integral equation obtained from thdunction W(q)=fdAxexp(-ig- AX){{wxwy:)), which is
Poisson equation. written as

on\?
A. Long-range disorder W(q)= W'ﬁ(a) exd —(ql/2)2-2qZ], )

The self-consistent description of the 2D electrons in S€luheresn is the tvpical variation of the 2D donor concentra-
lectively doped structures with long-range variations of do- yp

nor distribution over 2D plandsee Fig. 1 is based the tion, |, determines the Iateral_ scale of inhomogeneities, and
Schralinger and the Poisson equations. Since the "Schrcf/(\}(’ ’>)> sitsant(;l]i fcg;S:Si:\éersgr'rga?greriézIpl?ﬂ% \slvczte) that
dinger equation contains the self-consistent potentigl, " d _ouzZlif 7>1.. Bel h N | ql t
which is parametrically dependent on the 2D coordindim . exf—29Z] i c. bElow we use the generaf correlator
the large-scale variations of levels, we write the concentra’ Eq. ®). The.spec.mc cases discussed in Refs. 5-8 can be
tion of electrons asi,=pyp(er—Wy) 2, Here pp is the  considered using differenin andl..
2D density of statesgr the Fermi energyy,, the wave
function of the ground state, and,= [dz V,,y2, is the long- B. Average current
range random addendum to the energy of the 2D electrons. The linearized kinetic equation for the 2D electrons with
This system of equations can be simplified in the case ofhe dispersion lave ,,= &+ W, (gp:p2/2m, mis the effec-
weak variations of the ground level by using the first-ordertive mas$ under a weak electric fielH, exp(—iwt) is repre-
perturbation theory. Neglecting the correction to the wavesented as
function, we obtain/vxzfdzévxzwi, where §V,, is a non-
uniform part of the self-consistent potential. Performing the (miw+V-V,+ 8- V) 8f p—1(8F[px)
in-plane Fourier transformation, we write the linearized Pois- — (EE. ) (e 6
son equation as follows: (8B, V) 3lzr—2py)- ©)
Here of, is the quasiclassical distribution functiow,
) 5 =p/m is the in-plane velocitysf,= — V,w, a random force
( d 2 :Aﬂ( W2+ SN 1) due to nonscreened variations of level, asd the Fermi
q a” ¢ P2 o/ 4 energy for the low-temperature case. The contribution from

dz*
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the random force in Eq6) is estimated aw/|.pg while the The induced current density is given by the standard for-
drift contribution is of the order o /l.. Thus, the random mula jq=(2e2/L2)2vapq, so that the averaged current
force can be discarded under the conditwr e . Separat-  ((jg)) is expressed througl ¢.q)), ((¥.q)), and{(¥yq))

ing the symmetric part of the distribution functio#,,  according to Eq(11). Since the averaged values are propor-
=[3"de 5fpx/27, we search for the high-frequency distri- tional to 5o, we obtain((jq))= dqoj With the single nonzero
bution of the formsf = .+ xpx - Herexpy is the nonsym-  contribution toj given by (¥ q-0)). Using curE,=0, we
metric part of the distribution. ConsequentWpr) 0, can separate the uniform and random parts of electric field
where (-+)= f "(de/2m)--- means the averaging over andEg is written asEdy—iq®,, whereE is the uniform

angle. The symmetric part of E¢6) takes the form applied field andb, determines the random part &f. After
the substitution of(¥,,—o)) and the integration oveg, we
(i w+qul) Bex=(V- ViXpx) (7)  transform the induced current as

wherequ, stands for the quasielastic collision operateee )
the Appendix. Using Egs.(6) and (7), we obtain the non- _ e 2 (Eqn
symmetric part of kinetic equation in the form L2

(—iw+V'Vx+Ve)pr_<V'Vxpr> _'ﬂ —I—E qw , (12

= (€E,V) (e py—2) —V- Vydhiy. ®8)  m(w—ive)

The elastic collision integral (x|px) is replaced here by

— veXpx With the relaxation frequency, that is not depen-

dent on energy for the two-dimensional limhgee Eq(A4)].

We have also introduced the nonuniform Fermi energy ac-

cording toep,=ep+W,. C. Random electric field
Performing the spatial Fourier transformation, we write

Egs.(7) and(8) as a system of integro-differential equations

where the right side is written through the Fourier compo-
nent of concentrationg=n,p+ popWg andNyp= popeE

The scalar potentiab, in Eq. (12) should be determined
from the high-frequency Poisson equation. The general solu-
Lot _ tion of such equation can be written in analogy with the

+ = .

(T + lqe) $oq=1{(9-V) Xpa), static casgsee Eq.(2)] through the Fourier component of

[1(Q-V— )+ Vel Xpq— 1 {(Q-V) Xpg) =¥ pg— (0 V) g charge density,=(ep2p/2)[de ¢,.q.'* For the long-scale
(9) inhomogeneities case, whég>ag, we use below the elec-

tric neutrality conditionp,=0 in order to determineb,.

Thus, the random part of field is determined by the symmet-

ric part of distribution. Using Eq$11) and(A6) in the upper

Eq. (9 we obtain equation fot, in the form

where the Fourier component of electric field
E, appears in the nonhomogeneous term¥
=Xy (eEq-V)Aq_g(eg—€) with the random factor
q(s,: e) J(dx/L?)exp(—igx) 8(epy—e); L? is the nor-
malization area. The contribution averaged over angle in Eq.

(9) is determined by the nonsymmetric equation and can be _,d d¢8q beq
expressed through the formulas vee gl ge T T | TIRew®eq= (Rew™ @)W,
1+ (0+ive){((q-v—w—ivey) 1) (13
<(Q'V)qu>: <( ~v—w—iv)_1) . o ; ;
q e with the characteristic energy transferis as introduced
X(hoqtiW,q), in the Appendix andT is the phonon temperature; here
we consider the case<T. After the SUbStItUtIOﬂ(f)gq
ek, - =exp(—e&/2T) ¢4, We write equation fowp,, as
V=D %Aqqm—s), (10 PLo/2T) deq | Pea
q!
where W, was replaced b . der th d?b.q Roo— Rew—
0q p W.q(d-Vv) under the average =2 eq Neo P A ¥ —etl2To
over angle. We transform E¢L0) performing the integration de? ive o4 Ve eq ear
over anglé® in this expression so that the right side of sym- (14)
metric Eq.(9) and x4 take the forms
o . where we have neglected the contributions of the order of
(@ V)xpg) = (0= Ry) (beq W oq) (e12T)2. This equation is considered below with the zero
(@—R, )W, —iW R,,+ive boungiary cor_1d_iti.ons at—0 and.oc because thg electrons
Xpq= i : . only in the vicinity of the Fermi energy contribute to the
q-v-o—lv, q-v-o—lve 1 response. Since&v<eg, the fundamental solutions of Eq.
@D (14) are written in the quasiclassical approximation¢as’
Here we introduced the functioR,,=(w+ive)’—(qu)? =exd*fdeVR,,/ivde]. The general nonhomogeneous so-
—ive, Which has dimension of frequency. lution takes form
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de’ ¢\ o'}

¢aq__J0 2 /—s'mllVe
fw dS QDf:)(P( ’ )

B 28 \ srw“ Ve

Substituting this solution withV',, from Eqg. (10) to the

condition p,=0, we obtain an integral equation fdr, as
follows:

"—g)I2T
(s g) ea’q

e T, (15)

(E-q)

2 ’qu/q)q/+| T’qu/=0:0, (16)
q'

where the random kernel is given by

’qur = J'O d8

X—Aq_qr(SF_S),

e(s'*s)/ZT

fs ds' ¢\ o'V

Of \ Rs’wllye

(+) (=)

+j d8 (2 (P ’
0 28 | R.o/ive

e(s'*s)/ZT

Rgrw_w
X———Aq_q(eg—8)|.

Ve

17
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lll. EFFECTIVE CONDUCTIVITY

In this section, we consider the modifications of the effec-
tive conductivity caused by the second addendum in(E2).
and we examine the temperature dependence of the static
conductivity as well as the frequency dispersion in nonideal
heterostructure under consideration.

A. Averaging procedure

We have performed the average over random potential in
({(@g,-q)) using the relations

« O(epx—

(W_qAq(er—)))=W(Q) 55 (er—¢’) (20)

with the broadening § function &,(E)=exd—(EwW)?%
2)/(2w) and with the correlation functiow(q) given by

Eqg. (5). These results are obtained after the Fourier expan-
sion of 6 function by using the well-known exact formula for
averaging of a random functional in the expongsge Eq.
(15 in Ref. 14. Next, we expres$ through the effective
conductivityazff (it is a scalar due to the in-plane isotropy of
the averaged systémaccording toj=c°"E. Replacing
{(Kaqr=oW_g)) In {((Fq_q)) throughW(q)A,, we obtain

&)))=dnleg—e’),

an explicit expression fovzﬁ in the form
1o Wa A
eff I
K F% 2er Kq— M, 2D

Separating(Kqq:))= qq'Cq and the random part of kernel, where o, =ie’n,p/m(w+ive) is the conductivity of uni-

Kgq' = 8qq' Kq— Kqq' » We write equation forb 4, =P wg, in
the form

/cq<1>qq/=ch],+;i Koo Poq » (18)
with  the nonhomogeneous term given byF,,

= /querWqI(E~ q)/q2

The current density given by EL2) contains the factor
{(®gq)) at g'=—q and the averaging procedure for
{(®gq)» is similar to the consideration of the single-particle

Green'’s function. As a result, E¢L8) is transformed into
Kol(Pgqr))=0 /—q<<fq,—q>>+q2 Mg, Pgyq)),
1

<< kqCIquoq1>>

< Koz t+iapq/3 (19

quf o= 5qq1Mq'

where the series(\/qul has the same structure as the self-

energy function in the Dyson equatidsee also Refs. 2 and
q under the

3) and the nonuniform part of EQ19) is « &y
average. Finally, Eq(12) contains the factor(((IJQ1 o)

form 2D electrons. The coefficientd, and K’y are given by

B (=) ()
(Aq)zj de Jsds Fo Fer ele’ —e)2T
Kol Jo 028 R,/ live
strw_w 5lw(S|:_8’)
Ve Suleg—¢"))’
ro () ()
+f d Pe  Per e(s'—s)/ZT
0 25 Ry, live

Rsrw_w 5\:_\/(8':_8’)
xv—e(aw(sp—s»)]' 22

Using the inequalitye<w once again, we perform the
integrations in Eq(22) with the rapidly decreasing exponen-

tial factors ¢ ol =exp[°.de' VR, ,/ivde) and
o) =exp(—[2'de’ VR, [iv/€). As a result,
K 'Fd 5 Repm0_ Rep™0
q_l 0 € W(SF 8) ng =1 Rng ’ ( )

with the right-hand side of equation written under the condi-

={(Fq,-q)) (Kqt+iaga/2—Mg). Thus the induced current tjon w<g. The similar consideration ofl, after the inte-

is obtained in the explicit form.

gration by parts provides the coefficient
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1 'fwd Sulep—e) d R,,—w

:| —_—

o TR, do R,
d Rm—w‘

|
2‘ REF“’E \/E‘
eF

(24

ando®" is obtained after the substitution of these coefficients

into Eq. (21).

We now turn to the consideration of the self-consistent

contribution M. Within the second-order accuracy, the
average((k quq)) is expressed through

i

qd,

(9-d2)
5qq25\,_v(8|:—8)_ —qrAq_qz(s,:—s)

— . (a29") ,
X ﬁqzq/b\N(SF_S )_Zq—quZ,q/(SF_s )
2
ot , , , (G- ap)?
=Lz W= a3er—e) S er—e) =z,
2

(25

Next, using Eq(17) and performing a straightforward calcu-
lation, we transformM,, into the form

4 W(lg— . 4.4
Mo~ éq% (lg qqzalg(q da) K:, 26
Finally, 0" determined by Eq(21) takes form
Fao~ W(la—aiD)(a-ap* o
e o%a; fqi‘”} }
(27)

with the function F,=[(dR;,/de)/R,,](R.,+ w)/(R.,
— w) whereg-dependent factoR,, is appeared in Eq11).

B. Static conductivity
For the static casew=0, we replaceR,, by i

[Vv2+(qu)?—ve] in Eq. (27). Using the variablex=q|,
and performing the integrations over the angle, we transfor
Eq. (27) into

. 2

O'Eﬁ_ onny
0o 4n,p
xR Fd W
e X —
o V,(X)[V,(x)=1]-M,(x)+i0
onn?\? (= W(X,X1)X]
M (x)=2 xzf dx ,
o) (4n20 0 WV, (X)[V,(x1)—1]

(28)

Where o.=e’n,p/(myy) is the static
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FIG. 2. Temperature-dependent corrections to the static conduc-
tivity given by Eq.(28) vs 7 for on/2n,5=0.1, 0.2, 0.3, and 0.4 at
Z/1.<1 (a); the same foZ/l.=0, 0.25, 0.5, 1 aBn/2n,5=0.3 (b).
Temperature dependence of conductivity, given by*o, vs
7~ %=T is shown in(c). The inset in(c) showso Mo, vs 71 for
clearness.

conductivity for the
in-plane uniform structuresy,(x) = J1+(7x)%, and 7
=g/l are dimensionless parameters. We have also used the
angle-averaged correlation  functionsW, = exp(—x?/4
—2xZ/l) and  Ww(x,xq)=[3"de/(2m)exp(—|x—x,|?/4
—2|x—x4]Z/l¢). According to Eq.(A7), v, tecT™ for

the acoustic phonon scattering under the condilisre. So

Eqg. (28) describes the temperature dependence of the con-
ductivity.

In Figs. 2a) and 2b) we plot the static conductivity as a
function of » given by Eq.(28) with different parameters
on/2n,p and Z/l,. Such a relation determines the
temperature-dependent corrections to the effective conduc-
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tivity due to disorder. Figure () shows the dependence of siclassical description of long-range disorder is applicable if
o®" vs 5 1«T, thus the inverse proportional dependencel.>0.1um, so z appears to be up to a hundred. As the
does not essentially change even for big disorder. The case afobility increasesy increases proportionally.

the samples with the far-separatédayer, whenz/I.~1, is
illustrated in Fig. 2b). The shapes of the dependences are
not changed but the effect of disorder is suppressed due to
additional cutoff factor in the correlation function. Let us  The spectral dependences of the effective conductivity
estimate the typical values of used above. The mean free Mo, =F(Q,7) are determined by the product of the Drude
path in the structures with,p=2x 10" cm 2 and with the  factorop=i/(2+i) and the brackets from E¢R7) with the
mobility about 16 cn?/V s is around 1Qum. Since the Bohr  dimensionless frequendy = w/v, . The functionF (L, 7) is
radius and the width of 2D layer are about 100 A, the quagiven by

C. Frequency dispersion

i onp\? (= W[V 0 (x)—i+Q]
FOD= 55 M any fo PG V0 ()~ 1TV 00— 1~ Q] M 0 (x) |’
- B %2)2 . [ W(X, X)XV o (Xg) =i + Q]
Maa(x)=2LVra(0 =1+ 8| 75 7] X fo Py DIV () — 1TV o)~ — 01" @9
[
whereV, o(X) = (Q+i)"=(7x)". tivity with temperature(up to 20% atsn/2n,p=0.3) is ob-

The real and imaginary part of the frequency-dependenfgined. The frequency dispersion of the real and imaginary
conductivity of Eq.(29) is plotted in Fig. 8 and 3b),  parts of conductivity is mainly modified &®~1 and Q
respectively, for the structure wit/I.— 0 at different. To  _ 7, respectively.
demonstrate the effects of nonuniform doping on the conduc- 4 we discuss the main assumptions used in the calcu-

tivity spectra more transparently, the insets in Figa) &nd lations above ; ; o .

: . presented. The quasiclassical kinetic equation
3(b) give the ratios RE&((}, n)/Reop and ImF(Q,7)/imop i yenerally accepted for the description both static and high-
correspondingly. In contrast to K€€, ), which is mainly frequency responses of 2D electronshibv<<eg. Further-

modified at()>1, the imaginary contribution is essentially more. we consider the electron-phonon scattering onlv. This
modified at()~1. The value( =10 corresponds to the cen- . ' P g only.

timeter wavelength range in the samples with the mobilityIs thg main channel Of. momentum relaxation in th.e.h|gh—
about 16 cn?/V's. Thus, under a variation of temperature mobility strgcture%f’ while the. electron—elgctrpn F:ollls_lons
one can realize the radio frequency or microwave measure=2" _determlne the symmetric part of distribution in the
ments of the response in the samples with mobilities'®@vily doped samplegconsequently, we useh,p=2

=10F cn?/V's. The case of the samples with the separated ¥ 10 cm™2 in the numerical estimationsThe effects under

laver for Z/1.=0 is illustrated in Fig. 4 forsn/2na—0.3 con_sideration should be enhanced for the low-temperature
y c 9 2D region (T<4K) but one needs to consider the Bloch-

and »=20. It is seen that the distance between the 2D elecG . .  rel ion. Th licati f
tron layer and the doping layer strongly affects theCruneisen regime o relaxation. These complications of scat-

frequency-dependent conductivity whe#yl . <0.5. How- tering process are required a special cqnsideration. The
screening plays an essential role in the high-frequency re-

sponse. We do not consider these peculiarities here because
this frequency region corresponds to the sub-millimeter ex-
citation case when a more complicated electrodynamical de-
scription is necessary. Note also, that the averaging over non-
uniformities with the scald, is applicable to the samples

In this paper, we have obtained and analyzed the effectivaith the size>1; otherwise a classical mesoscopical regime
conductivity of 5-doped heterostructure with the long-rangedcan be realized. The quantum corrections to the frequency
disorder caused by the nonuniform donor distribution. Wedispersion of conductivify appears to be weak in the
show that the nonuniform contributions to the electron dis-samples with high-mobility electrons. A validity of the stan-
persion lawe,, is essential in the selectively doped struc-dard self-consistent procedure for the Poisson equation is
tures. The presence of nonscreened large-scale variations discussed in Refs. 2 and 3 and the assumption of uniform
levels qualitatively change the character of response due tdielectric permittivity neglects the image-charge effects.
the nonuniform part of electric field proportional to applied To conclude, the obtained modified frequency and tem-
field E. This new contribution to the effective conductivity perature dependences of the effective conductivity will
changes both the temperature dependence and the frequerstimulate an experimental study of response taking into ac-
dispersion of conductivity. A substantial variation of conduc-count the lateral nonuniformities of the high-mobility 2D

of the conductivity.

IV. CONCLUSION
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FIG. 4. The real part of the effective conductivity R&2,7) vs
Q in the structures wittz/I =0, 0.05, 0.25, and 0.5 foén/2n,
=0.3 andy=20.
APPENDIX: QUASIELASTIC COLLISION INTEGRAL
040 ¢ Below we evaluate the quasielastic collision integral that
appears in Eq(13). It is convenient to write the general
N expression for collision integral through the sy, and
g:: differenceAW,,, of the transition probabilities for emission
= and absorption of phonons:
0.20 | —
| c(f|pXt) = 2 pr’(fp’xt_ fpxt)
pV
AW,
_E 2 [fp’xt(l_fpxt)_fpxt(l_fp’xt)]:
pl
0.00 : . (A
o 1 10 100
Q

2|

2 . 1
o | = S 1Cal 0l 0) o 5]
FIG. 3. The reala) and imaginary(b) parts of F(2, ») in the ar
structures withZ/I.—0 vs ) for differenF n=Ig/l.. All curves X[8(ep —ep+hog)+ 8(ey —ep—hwg)],
were calculated fordn/2n,5=0.3. The thick-dashed curve corre-
spond to the ideal cas@n=0. The insets in(@ and (b) show 2 _
ReF(Q2,7)/ Reop and ImF(€2,7)/ Im o, respectively. Awpp,ZFqE |CQ|2|<0|e|in|0>|2
1
electrons in selectively doped structures. Along with the
above-discussed measurements of conductivity, other charac-
teristics of nonideal structures under consideration, such aereC, is the bulk matrix element for deformation electron-
magnetotransport coefflc!ents, 2D plasmon d|sp§r5|on, a,nghonon interactioan\/mf is the 3D wave
%ﬁlgt;??hrees?gﬁggﬁ'esg Itnrluseencﬁgnbgn:ke‘?]:(zgugil:gr?svaer::?\} ctor, and\g, is the Planck distripution with temperatufe
consideratio% ’ P q P he phonon .frequencpr=sQ, is expressed through the
: sound velocity s and the overlap factdf, (0|e'9:%|0)
=fd2p§eiqiz, is determined through the ground-level wave
function, g, is the transverse component of phonon wave
This work was supported by FAPESP and CNPq,vector. Following the quasielastic approach, we expand the
(Brazil). transition probabilities in EqA1) as follows:

X[5(8p1_8p+fle)_5(8p/_8p_h(l)Q)].
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tegral used in Eq(13) is given by

Vi Lip-p| Z\p—p’l :

prlz?é(spr_ﬁ‘p)-f' L2 S(Spr—sp),
- _,d

Iqelqbsxtzve8 de

d¢sxt
de +Bax¢sxt:| (AG)

~A£\pfp’| , _
AW — 7z 0 (ep—&p). (A2)
and B.,=p(1-2f,)=Bsgnkr,—¢c) for the low-
For the two-dimensional caspg>%/d, the coefficients of ~temperature limit.

(A2) appear to be independent |pf— p’| and below we use For the “equipartition” phonon distributiom>% w,, we
use cothbwy, /T)~T/hawgy , SO that3=T"1. The elastic re-

e 2_7TL22 c |2|<0|eiqiz|0>|2COU"( hwqi) laxation frequency in EqA4) takes the form
7D“T 4
e hog Ve= G52, P20 k:f dzez, (A7)
L=—L"2 |cqi|2|<0|e'%2|0>|2(ﬁwqfcotr( )
a; T whereD is the deformation potentiah is the material den-

sity, andk=3/(2d) for the hard-wall model of QW. The

2 . - .
AL~ Tng |qu|2|<0|e|qu|0>|2hwa_ (A3) characteristic energy is given by
2

Separating the distribution function on the symmetric and Ke2=L"2> 1(0]€'%:70)|2(h w )Zz(ﬁs)zf dz(d%
nonsymmetric partsf,,; andAf,;, we obtain the nonsym- Unt 4 dz
metric contribution to collision integral through the momen-
tum relaxation timey,:

2

(A8)

l(Af|pxt)=—veAfp, ve=Lpop. (A4) and for the hard-wall model of QW we obtair
. . _ =(2m/V3)shld. Sinceq, is of the order ofd ™!, Egs.(A7)
The symmetric part of collision integral is transformed to theand (A8) are valid if T>5 (or Be<1). For the hard-wall

differential form model of QW with the width d, we obtain &
d [df =(2w/v3)sh/d and k=3/(2d). For the selectively
Io(flext)=rvee?— EXtJr,Bfgxt(l—fsxt)}, ve=Lpop doped heterojunction we use the trial functiog,
de| de =(z/J2a%)exp(-z/2a) with the characteristic lengtha

| N - (A9 (ag/2)3/Riber and the effective Rydber=(i/a;)2/m.
with the characteristic energiés and 8~* determined by The straightforward integrations of Eq#7) and(A8) result
vee2=Lp,p/2 andB=AL/(2L). The linearized collision in- in e=\29/6sh/a andk=3/(16a).
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