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Direct calculation of optical absorption amplitudes for trivalent rare-earth ions in LiYF 4
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The approximations within the Judd-Ofelt theory are eliminated by an explicit reformulation of the absorp-
tion amplitude forf↔ f dipole transitions in terms of determinantal product states and perturbed functions. By
considering the crystal-field and spin-orbit perturbations we obtain expressions for amplitudes of the type
^fc f

1 udq
1uf0&, ^fc f

1 udq
1ufso

1 &, and^fc f
1 udq

1ufc f
1 &. The latter two are third-order results, going beyond the standard

Judd-Ofelt theory. There are no experimentally fitted parameters used in the amplitude calculations. Crystal-
field parametersAtp needed for the intensity calculations are calculated using the self-consistent electrostatic
model. Polarized absorption spectra are calculated for Nd31, Ho31, Er31, or Tm31 in LiYF4. Very good
agreement with experiment is, in general, observed. The contribution from the third-order terms^fc f

1 udq
1ufso

1 &
and ^fc f

1 udq
1ufc f

1 & are seen to be small in comparison with^fc f
1 udq

1uf0&.

DOI: 10.1103/PhysRevB.65.045111 PACS number~s!: 78.20.Bh, 32.70.Cs, 78.40.2q
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I. INTRODUCTION

In the present work we derive explicit theoretical expre
sions for transition amplitudes between states within thf
shell in order to make numerical computations from fi
principles possible. One advantage of deriving a more ac
rate model is that discrepancies between experiment and
culations will almost certainly only be due to estimatio
problems of the crystal field parametersAtp or in special
cases@light rare earths# possibly correlation. We start with
the oscillator-strength expression~1! in the classic article by
Judd;1 and instead of using perturbation theory with pro
lematic excited states, we immediately apply the perturb
functions approach, see, e.g., Ref. 2 for an original refere
For f↔ f transitions, the most important modifications to t
free-ion wave functions are assumed to arise from cry
field, spin orbit, and correlation interactions. Here, we co
sider perturbed functions resulting from the crystal field a
spin-orbit interactions. These give rise to transition amp
tude elements of the type:^fc f

1 udq
1uf0&, ^fc f

1 udq
1ufso

1 &, and
^fc f

1 udq
1ufc f

1 &. This is interesting since it has been specula
earlier in the literature that third-order effects such
^fc f

1 udq
1ufso

1 & and ^fc f
1 udq

1ufc f
1 & might be important.3–5

Smentek and co-workers showed that also correlation eff
on transition intensities can be significant.6,7 Also for light
atoms, correlation usually plays an important role in atom
transitions.8 The quantitative importance of these effects
f↔ f transitions will be presented in a separate commun
tion shortly.

The perturbed-functions approach is an elegant way
solve the perturbation problem since expansion of the w
function in terms of excited states and excited energie
completely avoided. This method is applied here and avo
or goes beyond the following approximations within t
Judd-Ofelt theory~J-O!.1,9

~1! J-O only includes second-order terms, perturbed
the crystal field, while here we treat both crystal-field a
spin-orbit interactions up to third order.

~2! The perturbing configurations are limited to on
0163-1829/2002/65~4!/045111~10!/$20.00 65 0451
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4 f N215d and 4f N21n8g using an approximate closure trea
ment, while here the analog would be that we modify ea
4 f orbital according to

u4 f &→u4 f &1(
n8

`

(
l 850

10

cn8 l 8un8l 8&

including the continuum states~the quantum numbersml and
ms are omitted for clarity!. The sum overn8l 8 is restricted to
unoccupied orbitals. Note that the above expression ne
appears explicitly in the perturbed-functions approach.

~3! The J-O theory uses a single value for the energy
each perturbing configuration in order to allow closure to
done. The energy denominator is also the same for all st
in the initial 4f N configuration, thus simplifying the problem
making the energy denominators independent of the real
tial and final states. This also implies that thenlN21n8l 8
configuration lies far above thenlN configuration. These ap
proximations are completely avoided in the present wo
since the wave functions in the perturbed functions appro
are not expanded in terms of excited configuration wa
functions and energies; see Judd’s Eq.~4!.1

~4! Intermediate coupling is assumed in the J-O the
implying thatJ is a good quantum number. This is unfort
nately not true for crystal-field states (J-J mixing!. The
present work does not suffer from this, since no particu
coupling is enforced, i.e., fully mixed eigenvectors are us
in present intensity theory.

~5! The original J-O theory assumes that the crystal-fi
levels of the ground state are equally populated. Boltzma
distributed populations are used here as well as in other v
ants of the J-O theory, see, e.g., Ref. 10.

Applying the perturbed-functions approach together w
fully mixed Stark eigenfunctions~from the energy matrix,
see Ref. 11! we avoid the intrinsic approximations of th
Judd-Ofelt theory.

In the present work we choose to study the host mate
RE:LiYF4 ~YLF! with RE5Nd31, Ho31, Er31, or Tm31,
since YLF is well covered in a great number
©2002 The American Physical Society11-1
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publications.12–23 The crystal field parameters are appro
mated using the electrostatic self-consistent fi
approach.23,24 For ionic solids this model seems to be suf
cient, see, e.g., Refs. 12, 13, and 25. The resulting theore
spectra are actually quite promising, maybe particularly
for Ho:YLF, where the correlation contributions to intensiti
are expected to be small. Correlation influences are know
be much more important for loosely bound electrons~e.g.,
for ions in the beginning of the lanthanide series such as N!.

Except for the basic research interest, another good re
to investigate the predictability of theory is the possibility
develop more refined models to optimize certain opti
properties in rare-earth doped optical materials.

II. THEORETICAL BACKGROUND

The spectra off↔ f transitions of a rare-earth ion ar
determined by its wave functions and the corresponding
ergies. These are defined by the Schro¨dinger equationĤCk

5EkCk with the usual HamiltonianĤ5Ĥ01Ĥ8, where

Ĥ85(
i , j

1

r i j
1(

i
j~r i ! l̂ i• ŝi1(

i
(
tp

BtpCtp~u i ,f i !

1
1

2
BW •(

i
~ l̂ i12ŝi !,

given in atomic units. TheCtp operators are renormalize
spherical harmonics; that is,Ctp5A(4p/(2t11)Ytp , and a
crystal field parameterBtp ~Wybourne notation! is related to
Atp ~see Sec. IV! throughBtp5(12s t)^r

t&nlAtp for even t
only.2 Numerical values of the shielding factors t and^r t&nl

can be found in Ref. 12. The last term inĤ8 takes into
account the Zeeman splittings and changes in the eigen
tors due to an external magnetic field. The unperturb
Schrödinger equationĤ0Ck

05Ek
0Ck

0 is solved using the rela
tivistic Hartree-Fock method of Cowan.26 In energy calcula-
tions the perturbed Hamiltonian is usually replaced by

Ĥe f f8 5 (
k52,4,6

Fk~4 f ,4f ! f̂ k1(
i

j~r i ! l̂ i• ŝi1aL̂21bĜ~G2!

1gĜ~R7!1 (
i 52,3,4,6,7,8

Ti t̂ i1(
i

(
tp

BtpCtp~u i ,f i !

1
1

2
BW •(

i
~ l̂ i12ŝi !. ~1!

Here Fk are the Slater integrals andf̂ k5Ĉk(1)•Ĉk(2) are
angular parts of the electrostatic interaction.aL̂2, bĜ(G2),
andgĜ(R7) are the configuration-interaction~CI! operators
of Rajnak and Wybourne,27 and thet̂ i are the three-particle
CI operators of Judd.28 This effective Hamiltonian only em
ploys even crystal-field parameters and operates comple
within the f space. The correlation crystal-field contributio
to the energy splitting is neglected since its contribution
the energy is small and the fitted one-electronBtp’s include
many of its effects.29 The free-ion parameters used in prese
04511
d
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work are from Ref. 30. The evenBtp parameters are listed in
Table I. The reason for using fittedBtp parameters for the
energy matrix is to obtain the best possible eigenvectors
starting wave functions. However, note that allf↔ f dipole
transitions are still forbidden at this level. After a diagona
ization, the correct zeroth-order states are usually descr
by

x i
05 (

LSJMWU
cLSJMWU

i un f LSJMWU&,

whereWU is shorthand for (w1w2w3)(u1u2) and these are
additional quantum numbers to distinguish states with
sameSLJM, see Ref. 31. Another equivalent representat
is of course the Slater-determinant basis, which then inst
gives eigenfunctions of the following form~program avail-
able in Ref. 11!:

x i
05(

a
ca

i $f1
0f2

0 . . . fN
0 %a .

The use of determinantal product states is clearly a disad
tage for the group theoretical aspects of the states, bu
indeed appealing with regard to the simplicity in calculati
matrix elements and amplitudes for any number of electro
We also want to use a simple, but general, representatio
that the derivations of the various transition amplitud
within the perturbed-functions approach become as strai
forward as possible.

The oscillator strengthPq for an electric-dipole transition
of polarizationq betweenC i→C f is given by1

Pq5x@8p2mn/h#u^C i uDq
1uC f&u2

e2Ei /kT

(
j

e2Ej /kT

. ~2!

Here Dq
15( jdq

1( j )5( j r jC1q(u j ,f j ) and x is the Lorentz
local-field correction. The last factor makes sure that oc
pations of the ground states are Boltzmann distributed. H
the Stark levels will be populated for room temperature.
the case of degenerate Stark levels~odd number of electrons!
or in the case of accidental degeneracy, the squared trans
amplitude of Eq.~2! is replaced by

TABLE I. Btp parameters in cm21 for triply ionized rare earths
in LiYF4 ~Wybourne normalization!.

Nda Hob Erc Tmd

B20 441 410 314 333
B40 2906 2615 2625 2648
B44 1115 819 982 876
B60 226.3 227.9 232.4 2141
Re B64 1073 677 584 623
Im B64 20.6 32.8 171 3

aReference 49.
bReference 50.
cReference 51.
dReference 41.
1-2
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1

deg~ i ! (
k51

deg(i )

(
l 51

deg(f )

u^C ikuDq
1uC f l&u2,

where the indicesk and l represent the substates of the d
generate levels. Since the eigenfunctions of the energy
trix belong tof space andDq

1 is an odd operator, the trans
tion amplitudeŝ x i

0uDq
1ux f

0& are identically equal to zero.
The appropriate start for calculating the dipole-transit

amplitudes using Slater determinants is given by

^C i uDq
1uC f&5(

ab
ca

i* cb
f ^$f1•••fN%auDq

1u$f1•••fN%b&,

~3!

where each spin orbitalfk5fk
01fk

11••• .
As long as each spin orbitalfk satisfies the orthonormal

ity condition

^fmufn&5dmn , ~4!

the standard rules for matrix elements of Slater determin
are valid. Equation~3! then reduces to a sum of one-electr
dipole transition amplitudes of the type^fmudq

1ufn&.

III. THE PERTURBED-FUNCTIONS APPROACH

Our purpose here is to mix in perturbed wave functions
order to obtain nonvanishing transition amplitudes. As
well known, for one-particle perturbing operators, the Sch¨-
dinger equation (Ĥ01Ĥ8)Ck5EkCk can be separated int
one-particle equations

~ ĥ01ĥ8!fk5«kfk , ~5!

whereĥ052 1
2 ¹21 v̂HF . In general, the exact solutionsfk

of Eq. ~5! cannot be determined. Instead, these are expan
here byfk'fk

01fk
1 and then inserted into the determinan

The approximate wave functions are then given by:

C'(
a

ca$~f1
01f1

1!•••~fN
0 1fN

1 !%a . ~6!

The zeroth-order spin orbitalsfk
0 , energies«k

0 , and effective
potentials are computed using the program by Cowa26

where both relativistic and nonrelativistic Hartree-Fock c
culations are possible. The aim is now to find the perturb
functionsfk

1 , not forgetting to satisfy the orthogonality con
dition, i.e., Eq.~4!. We then wish to compute the dipole
transition amplitude of Eq.~3!, but instead using the approx
mate wave functions of Eq.~6!.

The one-particle perturbations considered here are
crystal-field and spin-orbit operators,

ĥ85ĥc f1ĥso5(
tp

Atpr tCtp1jnl~r ! l̂ • ŝ.

The spin-orbit function is approximated by

jnl~r !5
a2

2

1

r

dvHF~nl !

dr
.

04511
-
a-

ts

n
s

ed
.

-
d

e

From the first-order degenerate perturbation equation i
seen that the one-electron functionfk

1 can be divided into a
crystal-field and a spin-orbit function;fk

15fk,c f
1 1fk,so

1 .
The transition amplitudêfmudq

1ufn& can then be written as

^fmudq
1ufn&'^fm

0 1fm,c f
1 1fm,so

1 udq
1ufn

01fn,c f
1 1fn,so

1 &.
~7!

The term^fm
0 udq

1ufn
0& vanishes because of parity and so

^fm,so
1 udq

1ufn
0&, ^fm

1 udq
1ufn,so

0 &, and ^fm,so
1 udq

1ufn,so
1 &. The

latter three because the spin-orbit operator is a scalar op
tor, and therefore the angular momenta of the unpertur
and the perturbed wave functions are the same.

We are thus left with the pure crystal-field elements

dc f-05^fm,c f
1 udq

1ufn
0&1^fm

0 udq
1ufn,c f

1 &, ~8!

dc f-c f5^fm,c f
1 udq

1ufn,c f
1 & ~9!

and the mixed crystal-field spin-orbit contribution

dc f-so5^fm,c f
1 udq

1ufn,so
1 &1^fm,so

1 udq
1ufn,c f

1 &. ~10!

A. Pure crystal-field contribution

In order to derive explicit expressions for Eq.~8! we start
from the single-particle first-order degenerate perturbat
equation

~ ĥ02«nl!c i
15~« i82ĥc f!J i

0 , ~11!

whereJ i
0 denotes a correct zeroth-order function,

J i
05 (

mlkmsk

dmlkmsk

i fk
0 .

The dmlms

i ’s are the coefficients of thei th eigenvector of the

matrix hc f , using the$fk
0% basis, and the first-order functio

c i
1 is expanded in the perturbed orbitals according to

c i
15 (

mlkmsk

dmlkmsk

i fk,c f
1 ,

where

fk,c f
1 5

1

r (
l 8ml8ms8

uc f~nlmlkmsk→ l 8ml8ms8!Yl 8m
l8
xm

s8
.

The expansions ofJ i
0 andc i

1 are then inserted into Eq.~11!,
and upon multiplying withYlml

xms
and integrating over an

gular and spin coordinates, the left-hand side of Eq.~11!
becomes

(
mlkmsk

~ ĥ0
l 82«nl!dmlkmsk

i 1

r
uc f~nlmlk→ l 8ml8!, ~12!

where

ĥ0
l 852

1

2

d2

dr2
1

l 8~ l 811!

2r 2
1vHF~nl !.
1-3
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The right-hand side now reads

S « i8dm
l8m

s8
i d~ l 8,l !2 (

mlkmsk

dmlkmsk

i (
tp

Atpr t

3^ l 8ml8uCtpu lmlk& D 1

r
Pnl . ~13!

It is also clear from the matrix equationhc fJ i
05« i8J i

0 that

« i8dm
l8m

s8
i

5 (
mlkmsk

dmlkmsk

i (
tp

Atp^ l 8ml8uCtpu lmlk&^r
t&,

so the expression~13! now becomes

(
mlkmsk

dmlkmsk

i (
tp

Atp^ l 8ml8uCtpu lmlk&~^r
t&d~ l 8,l !2r t!

1

r
Pnl .

~14!

Equating Eqs.~12! and ~14! and writing

uc f~nlmlk→ l 8ml8!52(
tp

Atp^ l 8ml8uCtpu lmlk&

3wc f
t ~nl→ l 8!,

we obtain the pure radial differential equations

F2
d2

dr2
1

l 8~ l 811!

r 2
12@vHF~nl !2«nl#Gwc f

t ~nl→ l 8!

5@d~ l ,l 8!^r t&nl2r t#Pnl . ~15!

Here vHF(nl) is the converged effective potential from th
Hartree-Fock calculation. Note that, in general, the functio
uc f are complex valued. Note also that the troublesome s
mation over excited states that occurs in the standard J
Ofelt theory is completely avoided. Radial differential equ
tions of this kind are easily solved exactly using, e.g.,
finite-difference method. To be consistent with Eq.~4! the
radial functionswc f

t are orthogonalized using the followin
Gram-Schmidt expression:

w'c f
t ~nl→ l 8!5wc f

t ~nl→ l 8!2(
n8

occ

Pn8 l 8

3E wc f
t ~nl→ l 8!Pn8 l 8dr. ~16!

For the first matrix element of Eq.~8! we obtain

^fm,c f
1 udq

1ufn
0&52d~msm,msn! (

l 8ml8tp

Atp*

3E w'c f
t ~nl→ l 8!rPnldr

3^ l 8ml8uC1qu lmln&^ l 8ml8uCtpu lmlm&.

The spherical harmonical matrix elements are then expre
in terms of 3j symbols and the procedure is repeated for
second term in Eq.~8! giving
04511
s
-

d-
-
e

ed
e

dc f-052d~msm,msn!(
l 8t

@ l 8,l #AtpS l 8 t l

0 0 0D S l 8 1 l

0 0 0D
3E w'c f

t ~nl→ l 8!Pnlrdr 3F ~21!p

3S l 8 t l

q1mln p 2mlm
D S l 8 1 l

2q2mlm q mln
D

1~21!qS l 8 t l

q2mlm p mln
D

3S l 8 1 l

mlm2q q 2mlm
D G , ~17!

where p5mlm2mln2q and @ l 1 ,l 2 , . . . # denotes (2l 1
11)(2l 211) . . . . The symmetry of the 3j symbols reduces
the sum overt to 1<t< l 1 l 8 for odd t, and l 8 to l 85 l 61.

The matrix element of Eq.~9! is evaluated in a similar
way as

dc f-c f54d~msm,msn!~21!q2mlm(
t

@ l m8 ,l n8 ,l #

3E w
'c f
t1 ~nl→ l m8 !w

'c f
t2 ~nl→ l 8!rdr S l m8 1 l n8

0 0 0
D

3S l m8 t1 l

0 0 0
D S l n8 t2 l

0 0 0
D S l m8 1 l n8

2mlm8 q mln8
D

3S l m8 t1 l

2mlm8 p1 mlm
D

3S l n8 t2 l

2mln8 p2 mln
D At1(2p1)At2p2

. ~18!

The sum overt stands for a summation overt1 , t2 , p1 , p2 ,
l m8 , and l n8 . From the 3j symbols it is apparent thatl m8 5 l n8
61, u l 2t1u< l m8 < l 1t1 , u l 2t2u< l n8< l 1t2 and thatt11t2

and l m8 1 l n8 are odd integers. There is, however, no upp
limit to the values oft1 andt2; so the sum must be truncate
see Sec. V. As expected, the lower limit ist1 andt251, since
Eq. ~18! together with the solution of Eq.~15! givesw0(nl
→ l )}Pnl and Eq.~16! then givesw'

0 [0.

B. Mixed spin-orbit contribution

This contribution to the dipole-transition amplitude
treated in the same way as in the crystal-field case, begin
with the perturbed spin-orbit function

fk,so
1 5

1

r (
l 8ml8ms8

uso~nlmlkmsk→ml8ms8!Yl 8m
l8
xm

s8

for which Eq. ~11! with the spin-orbit perturbing operato
then results in
1-4
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F2
d2

dr2
1

l 8~ l 811!

r 2
12@vHF~nl !2«nl#Gwso~nl→ l !

5@^j&nl2jnl~r !#Pnl ~19!

with uso52^ lsml8ms8u l̂ • ŝu lsmlkmsk&wso . After the insertion
of fso

1 and fc f
1 into the matrix elements of Eq.~10! we

obtain

^fm,so
1 udq

1ufn,c f
1 &54(

l 8tp
~21!q@ l 8,l #AtpS l 8 t l

0 0 0D
3S l 8 1 l

0 0 0D S l 8 t l

2mln8 p mln
D

3S l 8 1 l

2mlm8 q mln8
D

3^ lsmlm8 msnu l̂ • ŝu lsmlmmsm&

3E w'sow'c f
t rdr ~20a!

and

^fm,c f
1 udq

1ufn,so
1 &54(

l 8tp
~21!p@ l 8,l #At2pS l 8 t l

0 0 0D
3S l 8 1 l

0 0 0D S l 8 t l

2mlm8 p mlm
D

3S l 8 1 l

2mlm8 q mln8
D

3^ lsmln8 msmu l̂ • ŝu lsmlnmsn&

3E w'sow'c f
t rdr , ~20b!

respectively. Note thatwso is made orthogonal in the sam
way as in Eq.~16!. The summations overl 8 and t have the
same range as in Eq.~17!.

IV. CRYSTAL-FIELD CALCULATIONS

In order to be able to calculate intensities we need acc
to odd crystal-field parameters~and both even and odd fo
the dc f-c f computation!. The odd parameters are, howev
not generally accessible from experimental fittings. We
interested here in the tetragonal~space group:I41 /a) LiYF4
crystal.32 The applied coordinate system is defined as f
lows: x andz axes are along the crystala andc axes, respec-
tively, with the origin in a rare-earth site. The simplest w
to get a reasonable estimate of the crystal-field paramete
to apply the self-consistent electrostatic model, see, e.g.,
23. We believe that this model is appropriate forionic
crystals.

In this approach we calculate both the odd and evenAtp’s
according to
04511
ss

,
e

-

is
ef.

Atp5~21!p11E r~RW !

Rt11
Ct2p~u,w!dRW

with r(RW ) being the external charge density andCt2p(u,w)
is a spherical tensor of rankt and projection2p. The density
r(RW ) is assumed not to overlap severely between the liga
and the rare-earth ion.Atp can then be expanded using sta
dard monopole, dipole, quadrupole and octopole mome
The crystal-field parameters may thus be written as

Atp'~21!p11(
j

FqjRj
2t211m jRj

2t22~ t11!

1
1

4
QjRj

2t23~ t12!~ t11!

1
1

12
OjRj

2t24~ t13!~ t12!~ t11!GCt2p~u j ,w j !,

where m j5a j
(dip)Ej , Qj5a j

(quad)dEj /dRj and Oj

5a j
(oct)d2Ej /d2Rj . Ej , dEj /dRj , andd2Ej /d2Rj are sim-

ply the projections of the total electric field and gradients
theRW j direction at sitej (RW j is the vector from the rare-eart
site to the ligand sitej ). In order to get converged electri
fields Ej they need to be calculated self-consistently, i.
electrostatic equilibrium of charges and induced dipoles
each ion site is ensured. Usually the self-consistent met
involves a matrix equation but here we instead find it con
nient to solve it iteratively. First the initial electric fields fo
the ions are calculated using formal point charges. Th
fields are then submitted into the charged dipole poten
expression:Vj5( iÞ jqi /r i1a iEW i•rW i /r i

3 and the improved

electric fields are obtained through the identityEW j
52gradVj . All these improved fields are then submitte
back into the potential expression. The iteration process c
tinues until convergence is fulfilled. All summations are p
formed for a spherical cluster with radius 100 Å~rare-earth
ion at the origin!. The self-consistent treatment is carried o
only for ion sites within 12 Å from the rare-earth ion. Ou
side this 12-Å sphere, the electric fields are due to po
charges only. This approximation greatly speeds up the p
cess, and several convergence tests also indicate that n
the same result forAtp is obtained as if all ions were treate
self-consistently. Finally, the converged fieldEj ~in the RW j

direction! and the derivativesdEj /dRj and d2Ej /d2Rj are
also computed. Table II shows the estimated crystal ion
larizabilities, see Refs. 12, 33, and 34. For the octopole e
mations, see Ref. 35.

TABLE II. Crystal dipole, quadrupole, and octopole polarizab
ities.

Ion a (dip)(Å 3) a (quad)(Å 5) a (oct)(Å 7)

Li1 0.0344 0.0047 0.0026
Y31 0.87 1.061 0.58
F2 0.731 0.631 0.4
1-5
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As is well known, the site symmetry of the substitut
rare-earth ion in the present test crystal LiYF4 is S4. As a
result, the potentialV5( tpAtpr tCtp is invariant with respect
to the symmetry operations of the groupS4, consisting of the
elementsE, IC4

21, C2, andIC4, implying thatA1p[0. How-
ever, the spectra studied in the present work are take
room temperature and the ions will vibrate. The dynami
environment causes theS4 symmetry to be slightly broken
The ions break the symmetry instantaneously and thusA1p
Þ0. This results in anincreasedcontribution to the intensity
~in, e.g., Judd-Ofelt theory, intensities depend on terms of
type uAtpu2; this can essentially also be observed in t
present intensity theory!. It is then realized that an intensit
average over the various environments results in an effec
nonzero value forA1p. We do not include the dynamica
effect for higher-order odd parameters because their dyna
cal variations are much smaller. For an introduction to
connection between molecular dynamics~MD! and optical
properties of rare-earth ions, see, e.g., Refs. 36–40. In
ticular, for LiYF4 , A1p and uA1pu2 were calculated earlie
using MD and then averaged using several thousand
environments.12 Instead of zero, theA1p’s were found to vary
in the order of61022 a.u. Calculatedab initio Btp’s ~or
Atp’s! are usually rotated in order to make ImB4450, see,
e.g., Ref. 23 or 41. This is an approximate way to make
possible to compare calculated parameters with fitted par
eters in the reducedS4-symmetry approach~R approach
where ImB4450).42 It is also beneficial here to attempt t
maintain the same coordinate system for both the energy
polarized-intensity calculations since otherwise it would
inconsistent to use the energy eigenvectors in the trans

TABLE III. Crystal-field parametersAtp in atomic units for
YLF. Crystallographic data from Ref. 32.

tp Re Atp Im Atp

10 2.0031022

11 24.1731023 22.6331023

20 3.4431023

32 22.0431023 1.0531024

40 21.8331023

44 2.9031023

52 1.4031023 3.7931025

60 4.8531026

64 2.3931024 3.0831025

72 23.2031026 1.9031026

76 26.5131025 8.6731026

TABLE IV. Radial integrals in a.u. for Nd31.

t
1 3 5 7

St(d) 27.1131021 23.35 22.253101

St(g) 22.0231021 28.0031021 25.71 26.373101

Rt(d) 21.8231023 29.3531023 27.0431022

Rt(g) 23.9731024 22.3731023 22.2231022 23.0431021
04511
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formulas. Table III shows our computedAtp’s rotated to
make ImA4450 ~using e2 imwAtp with w533.76°). For
LiYF4 the so-called ‘‘ImB4

6/ReB4
6 ratio’’ is 0.132 ~see p.

2057 in Ref. 43!, in good agreement with our ImA64/ReA64
ratio.

V. SIMULATION OF ABSORPTION SPECTRA

Energy levels of then fN states and the coefficientsca
i of

Eq. ~3! are obtained by diagonalizing the full matrixĤe f f8 in
Eq. ~1!. All operators interact simultaneously thus allowing
complete mixing of quantum numbers. The differential equ
tions ~15! and ~19! are solved by applying the finite
difference method. This results in a matrix equationAxW5bW ,
which is solved using the DGTSV routine in the linear alg
bra program libraryLAPACK.44 Using the grid 0,r ,20 a.u.
with step length 1024 a.u., the converged perturbed functio
are computed and then orthogonalized. Numerical value
the radial integrals in Eqs.~17!, ~20a!, and~20b!

St~ l 8!5E w'c f
t ~nl→ l 8!Pnlrdr ,

Rt~ l 8!5E w'so~nl→ l !w'c f
t ~nl→ l 8!rdr

are displayed in Tables IV, V, VI, and VII for Nd31, Ho31,
Er31, and Tm31, respectively. When evaluating the contr
butions fromdc f-c f , the summation was truncated att1 and
t257. The radial integrals of Eq.~18! are too many to be
tabulated here since already a truncation att1 and t257
gives 63 contributing integrals involving 25 perturbed fun
tions.

Smentek has earlier reported numerical values of integ
denotedR1

t ( l 8).3 These are equal to ourRt( l 8) multiplied
with 4 @R1

t ( l 8)54Rt( l 8)#. Note that Smentek’s perturbe
functions are obtained by replacinĝj&nl2jnl(r ) with
^r 23&nl2r 23 in Eq. ~19!. This type of spin-orbit function is

TABLE V. Radial integrals in a.u. for Ho31.

t
1 3 5 7

St(d) 22.9931021 21.08 25.73
St(g) 29.4231022 22.8031021 21.57 21.413101

Rt(d) 21.3331023 25.3531023 23.2431022

Rt(g) 23.1931024 21.4831023 21.1131022 21.2331021

TABLE VI. Radial integrals in a.u. for Er31.

t
1 3 5 7

St(d) 22.7531021 29.6631021 25.00
St(g) 28.6531022 22.5031021 21.37 21.213101

Rt(d) 21.3231023 25.1531023 23.0531022

Rt(g) 23.1631024 21.4231023 21.0531022 21.1431021
1-6
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strictly valid for an electron in a pure Coulomb potent
only. We have recalculated these integrals~with j5r 23) for
Pr31, Eu31, Gd31, and Tm31 using both classic and relativ
istic wave functions. The resulting values are shown in Ta
VIII, note that numerical values are also given fort57 (g
perturbations!. From this comparison it is clear that Sment
used classical wave functions. It is also known that the re
tivistic Hartree-Fock solutions of Cowan are very good. F
example, they, in general, agree well with more advan
codes such as theMCDF code by Parpia, Froese Fischer, a
Grant.45 All results below are based on relativistic wav
functions of Cowan.

The oscillator strengthsPq of Eq. ~2! are calculated for
every pair of states within the desired region of transit
wavelength. The spectra are simulated by plotting

Pql̄2}E a~l!dl,

TABLE VII. Radial integrals in a.u. for Tm31.

t
1 3 5 7

St(d) 22.5531021 28.7131021 24.40
St(g) 27.9831022 22.2531021 21.21 21.053101

Rt(d) 21.3131023 24.9931023 22.8931022

Rt(g) 23.1331024 21.3831023 29.9831023 21.0731021
04511
le

-
r
d

FIG. 1. s-polarized absorption spectra for Nd31:YLF ~resolu-
tion, 1 nm!.
TABLE VIII. Our calculated 4Rt( l 8) compared withR1
t ( l 8) of Ref. 3 in a.u.

t Pr31 Eu31 Gd31 Tm31

R1
t (d) 1 25.2509 22.4887 22.1742 21.2931

3 225.3936 210.3939 28.7956 24.5549
5 2175.6036 262.8266 251.6931 223.8172

4Rt(d) ~classical! 1 25.5402 23.8149 23.5774 22.8528
3 227.2774 215.8503 214.3368 29.7880
5 2192.3241 295.3022 283.4464 249.8327

4Rt(d) ~relativistic! 1 29.1140 25.9925 25.6099 24.5570
3 249.2784 227.3978 224.7766 217.4298
5 2389.9145 2185.4227 2162.6420 2101.5429

R1
t (g) 1 21.1839 20.7553 20.6911 20.4817

3 26.5310 23.4375 23.0268 21.8027
5 256.4390 224.9862 221.2651 211.0496

4Rt(g) ~classical! 1 21.3732 21.0185 20.9628 20.7754
3 27.5513 24.6582 24.2453 22.9489
5 264.9600 233.9299 229.9309 218.2667
7 2810.8867 2362.7453 2310.4961 2168.2787

4Rt(g) ~relativistic! 1 21.9118 21.3973 21.3228 21.0898
3 212.1551 27.3718 26.7369 24.8524
5 2120.8008 261.9738 254.9103 235.2550
7 21736.079 2762.6581 2656.8033 2379.9514
1-7
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wherea is the absorption coefficient, see Ref. 46. To sim
late the resolution of the experimental spectra,Pq has been
summed in appropriate intervals for whichl̄ is the average
wavelength.

A comparison of theoretical and experimentals-polarized
absorption spectra for Nd:YLF is shown in Fig. 1. For Ho31

and Tm31, the s-polarized spectra are displayed in Fig.
Figure 3 shows the fine structure of Ho:YLF. The experime
tal data are available from LSB’s Database Lasers.47 The last
figure shows the theoretical result in the case of Er:YLF.
experimental spectrum is available in Ref. 48. The ove
behavior of all spectra agrees well with experiment. The
spectrum exhibits the largest discrepancy; although the m
features are reproduced, we observe deviations in som
the bands, particularly for wavelengths at 350 and 450–
nm. Among several possibilities, this could be an indicat
that correlation effects are more important for Nd. Corre
tion should be more pronounced for loosely bound electr
such as for ions at the beginning of the RE series, compa
to the end of the series. As an example we have calcul
the correlation contributions for polarizabilities as in Ref.
~they have the same type of transition elements!. For Nd31,
a1520.203 Å3 while for Ho31, a1520.0649 Å3. As ex-
pected, the influence of correlation is much larger for Nd31

than for Ho31.
The Tm spectrum in Fig. 2 is in quite good agreeme

with the experimental bands, except for the transition aro

FIG. 2. s-polarized absorption spectra for Ho31 and Tm31:YLF
~resolutions, 1 nm and 4 nm, respectively!.
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360 nm, which should be slightly more prominent. For H
the simulated spectrum is very successful as can be see
Fig. 2. The overall band shapes are in excellent agreem
with the experimental results. The5I8→5J6 transitions in the
1100–1200 nm region are, however, slightly more p

FIG. 3. s-polarized absorption spectra for Ho31:YLF ~resolu-
tion, 0.5 nm!.

FIG. 4. Unpolarized absorption spectrum for Er31:YLF ~resolu-
tion, 0.5 nm!.
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nounced than the experimental measurements. The fine s
ture in Fig. 3 also agrees well with experiment. It is que
tionable if the transitions between the Stark states ever
be reproduced exactly, even with fitted intensity paramet
Besides the theoretical difficulties, the variation of expe
mental techniques and samples also leads to sensitivitie
the spectra at the fine-structure level.

Erbium is an extremely important ion in todays fiber tec
nology, we have therefore also calculated the spectrum
this case, see Fig. 4, and for a comparison to experimen
Ref. 48. It is very interesting to see that nearly all bands
reproduced. Even at the fine-structure level the results
convincing, although not exact. Actually, the only real dev
tion is the peak slightly above 200 nm, where our peak is
weak.

It has been speculated that the contributions fromdso-c f
and possibly dc f-c f could be important for transition
intensities.3–5 In order to compare the magnitudes of the
influences we have calculated oscillator strengths using
elementsdc f-0 , dso-c f , anddc f-c f separately. Note, howeve
that it is clear from Eqs.~2! and ~7! that such a superpos
tional division is only approximate. The sum of all oscillat
strengths are then normalized such that thedc f-0 part equals

TABLE IX. Relative s-polarized oscillator strengths from
dc f-0 , dso-c f , anddc f-c f .

Pc f-0 Pso-c f Pc f-c f

Nd 1.0 9.931025 8.431023

Ho 1.0 4.631024 1.931023

Er 1.0 3.431024 1.731023

Tm 1.0 2.531024 1.631023
ys

l.
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unity. The summation was made usings polarization for all
transitions from the ground states to the other excitedf states.
The results are given in Table IX. Thus contrary to earl
beliefs, the impact of these third-order effects is actua
quite small, at least for ground-state excitations in t
RE:YLF crystal.

VI. CONCLUSION

An alternative and improved intensity theory has be
formulated. Good agreement between calculations and
periment is demonstrated. Higher-order amplitudes (dso-c f
anddc f-c f) seem to be almost negligible in LiYF4. Although
this could be interpreted as that the Judd-Ofelt theory is r
sonably sound, it should be remembered that our appro
has also removed the intrinsic approximations in that mod
The present intensity model based on perturbed function
therefore preferable in order to obtain as accurate result
possible. Certain forbidden or weak transitions at the ‘‘Jud
Ofelt level’’ also motivate the use of higher-order amp
tudes. It is also possible that they could be more pronoun
in materials having very different crystal-field paramete
than those in YLF. It is still unclear how important the co
tributions from correlation effects actually are. A quantitati
investigation is in progress.
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