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Direct calculation of optical absorption amplitudes for trivalent rare-earth ions in LiYF ,
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The approximations within the Judd-Ofelt theory are eliminated by an explicit reformulation of the absorp-
tion amplitude forf < f dipole transitions in terms of determinantal product states and perturbed functions. By
considering the crystal-field and spin-orbit perturbations we obtain expressions for amplitudes of the type
(beildil 6%, (beildil dao), and( eyl dgl ). The latter two are third-order results, going beyond the standard
Judd-Ofelt theory. There are no experimentally fitted parameters used in the amplitude calculations. Crystal-
field parameter#\, needed for the intensity calculations are calculated using the self-consistent electrostatic
model. Polarized absorption spectra are calculated fot'NéHo®*, ER*, or Tn?* in LiYF,. Very good
agreement with experiment is, in general, observed. The contribution from the third-ordex tﬁrmtﬁwéo)
and(¢gd3| b5) are seen to be small in comparison withe|dg| 4°).
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I. INTRODUCTION 4fN~15d and 4N~ !n’g using an approximate closure treat-
ment, while here the analog would be that we modify each
In the present work we derive explicit theoretical expres-4f orbital according to
sions for transition amplitudes between states within fthe
shell in order to make numerical computations from first .
principles possible. One advantage of deriving a more accu- |4f>_>|4f>+2 20 Corpr[N'17)
rate model is that discrepancies between experiment and cal- noT
culations will almost certainly only be due to estimation including the continuum statéthe quantum numbers; and
problems of the crystal field parametes, or in special ~msare omitted for clarity. The sum oven'l’ is restricted to
caseg[light rare earthk possibly correlation. We start with unoccupied orbitals. Note that the above expression never
the oscillator-strength expressi¢h) in the classic article by appears explicitly in the perturbed-functions approach.
Judd? and instead of using perturbation theory with prob- (3) The J-O theory uses a single value for the energy of
lematic excited states, we immediately apply the perturbedeach perturbing configuration in order to allow closure to be
functions approach, see, e.qg., Ref. 2 for an original reference&lone. The energy denominator is also the same for all states
For f— f transitions, the most important modifications to thein the initial 4N configuration, thus simplifying the problem
free-ion wave functions are assumed to arise from crystanaking the energy denominators independent of the real ini-
field, spin orbit, and correlation interactions. Here, we condial and final states. This also implies that th&'~*n’l’
sider perturbed functions resulting from the crystal field andconfiguration lies far above th@l™ configuration. These ap-
spin-orbit interactions. These give rise to transition ampli-proximations are completely avoided in the present work,
tude elements of the typdupe |dil¢®), (¢eldil sy, and  since the wave functions in the perturbed functions approach
(¢l dil pep). This is interesting since it has been speculated® not expanded in terms of excnedl configuration wave
earlier in the literature that third-order effects such asfunctions and energies; see Judd's B9)."
(pildil¢ty and (¢k|di 4Ly might be important® (4) Intermediate coupling is assumed in the J-O theory
Smentek and co-workers showed that also correlation effect§Plying thatJ is a good quantum number. This is unfortu-
on transition intensities can be signific&tAlso for light ~ Nately not true for crystal-field statesl-0 mixing). The
atoms, correlation usually plays an important role in atomic®réSent work does not suffer from this, since no particular
transitions’ The quantitative importance of these effects onCOUPIING is enforced, i.e., fully mixed eigenvectors are used
ff transitions will be presented in a separate communical Présent intensity theory. ,
tion shortly. (5) The original J-O theory assumes that the crystal-field
The perturbed-functions approach is an elegant way tdgVels of the ground state are equally populated. Boltzmann-
solve the perturbation problem since expansion of the wavdiStributed populations are used here as well as in other vari-
function in terms of excited states and excited energies i§Nts Of the J-O theory, see, e.g., Ref. 10.

completely avoided. This method is applied here and avoids . i . .
or goes beyond the following approximations within the Applying the perturbed-functions approach together with

1.9 fully mixed Stark eigenfunctiongfrom the energy matrix,
Judd-Ofelt theoryJ-0). see Ref. 11 we avoid the intrinsic approximations of the
(1) J-O only includes second-order terms, perturbed byludd-Ofelt theory.
the crystal field, while here we treat both crystal-field and In the present work we choose to study the host material
spin-orbit interactions up to third order. RE:LiYF, (YLF) with RE=Nd®**, Ho**, EF*, or TnT™,
(2) The perturbing configurations are limited to only since YLF is well covered in a great number of
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publicationsl.2‘23 The crystal field parameters are approxi- TABLE I. By, parameters in cmt for triply ionized rare earths
mated using the electrostatic self-consistent fieldin LiYF, (Wybourne normalization

approactt>?* For ionic solids this model seems to be suffi-
cient, see, e.g., Refs. 12, 13, and 25. The resulting theoretical Nd* Ho® Er Tm¢
spectra are actually quite pro_mising, _maybe parfticular_ly 3%20 441 410 314 333
for Ho:YLF, where the correlation contributions to intensities

are expected to be small. Correlation influences are known t* 1322 623112 692:2 6336
be much more important for loosely bound electrdesy., BM _26.3 _979 _324 _141
for ions in the beginning of the lanthanide series such gs Nd ~%° ' ' '

Except for the basic research interest, another good reas Bea 10275’ 6 6;; 8 igi 62;’

to investigate the predictability of theory is the possibility to '™ P64
develop more refined models to optimize certain opticabzqterence 49.
properties in rare-earth doped optical materials.

bReference 50.

‘Reference 51.
Il. THEORETICAL BACKGROUND dreference 41.

The spectra off —f transitions of a rare-earth ion are
determined by its wave functions and the corresponding e

ergies. These are defined by the Sclimger equatiord ¥,

work are from Ref. 30. The eve,, parameters are listed in
able I. The reason for using fitte;, parameters for the
energy matrix is to obtain the best possible eigenvectors as

=E W with the usual Hamiltoniaid =Hq+H’, where starting wave functions. However, note that &b f dipole
1 transitions are still forbidden at this level. After a diagonal-
=>4 rf s+ B,.Cyo( 0 . b ization, the correct zeroth-order states are usually described
;j rij Z f( |) (] EI tEp tp tp( i ¢|) by
1. A “ o :
+58: 2 (i+2s), = 2 cguwdnfLSIMWUY,
LSIMWU

given in atomic units. TheC,, operators are renormalized whereWU is shorthand for \;w,ws3)(u,u,) and these are
spherical harmonics; that i€;,= V(47/(2t+1)Y,,, and a additional quantum numbers to distinguish states with the
crystal field parameteB,, (Wybourne notatiohis related to  sameSLJM, see Ref. 31. Another equivalent representation
A, (see Sec. 1Y through Btpz(l—(rt)(rt>n|Atp for event s of course the Slater-determinant basis, which then instead
only.2 Numerical values of the shielding factof and(r'),,, gives eigenfunctions of the following forrgprogram avail-

can be found in Ref. 12. The last term f’ takes into able in Ref. 11:
account the Zeeman splittings and changes in the eigenvec-
tors "dl.,le to an e?xt(AarnaIO ma(?n?t.lc field. Th_e unperturbed X?:Z c'a{¢2¢2 N _¢%}a_
Schralinger equatiotd W =E, V| is solved using the rela- a
tivistic Hartree-Fock method of C_owéﬁ.ln energy calcula- g yse of determinantal product states is clearly a disadvan-
tions the perturbed Hamiltonian is usually replaced by tage for the group theoretical aspects of the states, but is
indeed appealing with regard to the simplicity in calculating
o L= E Fk(af af)f + 2 Er)li-si+al?+BG(G,) matrix elements and amplitudes for any number of elec'grons.
k=2,4,6 [ We also want to use a simple, but general, representation so
that the derivations of the various transition amplitudes
+y6(RY+ 2 T+ > BipCip( i, 1) within the perturbed-functions approach become as straight-
i=2,3,4,6,7,8 iotp forward as possible.
The oscillator strengtl, for an electric-dipole transition

+ %é. > (+2s). (1)  of polarizationq between¥;— W is given by
.. ) o Ei /KT
Here F¥ are the Slater integrals an‘q:Ck(lA)Ck(AZ) are Pq=X[8w2mv/h]|<‘Pi|Dé|\lff)|2—. (2
angular parts of the electrostatic interactiai.?, BG(G,), > e EkT

and yG(R;) are the configuration-interactidi€l) operators '

of Rajnak and Wybourn#, and thet; are the three-particle Here D;=3;d;(j)==r;C14(6;,¢;) and x is the Lorentz

Cl operators of Judéf This effective Hamiltonian only em- local-field correction. The last factor makes sure that occu-
ploys even crystal-field parameters and operates completefyations of the ground states are Boltzmann distributed. Here
within the f space. The correlation crystal-field contribution the Stark levels will be populated for room temperature. In
to the energy splitting is neglected since its contribution tothe case of degenerate Stark le@ldd number of electrons

the energy is small and the fitted one-electBp's include  orin the case of accidental degeneracy, the squared transition
many of its effect€® The free-ion parameters used in presentamplitude of Eq.(2) is replaced by
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deg() deg(f) From the first-order degenerate perturbation equation it is
0] kz IE |<‘Pik|Dé|*I'ﬂ)|2, seen that the one-electron functigh} can be divided into a
=1 [=1

crystal-field and a spin-orbit functiond, = ¢j. o+ b so-
where the indicek and| represent the substates of the de-The transition amplitud¢¢m|dé|¢n> can then be written as
generate levels. Since the eigenfunctions of the energy ma-

trix belong tof space and? is an odd operator, the transi-  {$mldgl #n)=~(bm+ b it dm sl dal b+ brcrt di so)-
tion amplitudesx{|Dg|x?) are identically equal to zero. ()

The appropriate start for calculating the dipole-transitionThe term(¢ﬂ]|dé|c/>?,> vanishes because of parity and so do

amplitudes using Slater determinants is given by <¢1m,so|dé|¢g>’ <¢rln|dé|¢g,sq>: anq <¢%1,so|dc::|.¢r]1-,so>' The
latter three because the spin-orbit operator is a scalar opera-
<\pi|Dé|\I/f>:E C;*CL<{¢,1. .. ¢N}a|D(1]|{¢,1. ) tor, and therefore the angular momenta of the unperturbed
ab and the perturbed wave functions are the same.
©) We are thus left with the pure crystal-field elements
where each spin orbitab,= ¢+ i+ - - . a1 iall L0 011l 1
As long as each spin orbital, satisfies the orthonormal- det-0={ Pm.crldgl &n) +{ Pl gl P cr). ®
ity condition
y dcf-cf:<¢lm,cf|dé| d’%,cf) 9
(@ml#n)= Smn, (4) and the mixed crystal-field spin-orbit contribution
the standard rules for matrix elements of Slater determinants 1 1,1 1 1,1
are valid. Equatiorf3) then reduces to a sum of one-electron dCf'S°_<¢mx0f|dq|¢n’50>+<¢m'50|dq|¢nycf>' (10

dipole transition amplitudes of the typiesmldm ).
A. Pure crystal-field contribution

ll. THE PERTURBED-FUNCTIONS APPROACH In order to derive explicit expressions for E§) we start

Our purpose here is to mix in perturbed wave functions ingolrpatitgr? single-particle first-order degenerate perturbation
order to obtain nonvanishing transition amplitudes. As is q

well known, for one-particle perturbing operators, the Sehro

. - ho—e I—(e/ —h.)EL, 11
dinger equationfl,+H’)¥,=E, ¥, can be separated into (o= en)¥i= (&1 ~her) 5, @
one-particle equations whereEio denotes a correct zeroth-order function,

ho+h’ =g , 5 —_ i
(ho+h") b= (5) == S d, o
My Mgk S

wherehy=—3V2+0,¢. In general, the exact solution, ‘
of Eq. (5) cannot be determined. Instead, these are expandekhe d'mlms’s are the coefficients of thih eigenvector of the

0, 41 , , -
here bygi~ i+ ¢y and then inserted into the determinants. marix h,, using the{ ¢¢} basis, and the first-order function
The approximate wave functions are then given by: y is expanded in the perturbed orbitals according to

W2 Cal (A0 61 (SRt di)la (6) B= S dy o bt
My Mg
The zeroth-order spin orbitals? , energiesy, and effective  \ynere
potentials are computed using the program by Coffan,
where both relativistic and nonrelativistic Hartree-Fock cal- L 1
culations are possible. The aim is now to find the perturbed ~ Picr=1 > Ug(nlmymg—1"my M) Yy rm/ Xom -
functionsd)ﬁ , hot forgetting to satisfy the orthogonality con- I'm{ mg
dition, i.e., Eq.(4). We then wish to compute the dipole-
transition amplitude of Eq.3), but instead using the approxi-
mate wave functions of Ed6).

The one-particle perturbations considered here are th@"
crystal-field and spin-orbit operators, be

The expansions ﬁio and 1,/41 are then inserted into EqL1),
and upon multiplying withY|m|Xms and integrating over an-
lar and spin coordinates, the left-hand side of Ed)
comes

, ' 1
P ~ a PN R i - ’n/
h’=th+hso=t§p: Al 'Cop+ En(N)1 5. %ﬂ(% gn) i, mg, = Uer(NIMi—1'my), - (12)
The spin-orbit function is approximated by where
«® 1 doye(nl) Lo 1d2 1+
_Z _HR hy=—= —+———+vue(nl).
Enl(r) 2 r dr : 0 2dr2 or2 HF( )
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The right-hand side now reads

sl’d'ml,m;&(l’,l)— > d O, kE At

MikMsk
’ 4 1
X(1'm([Cpllmy) Fpm- (13

It is also clear from the matrix equatidn=°=¢/=? that

Si’dlmrmr: 2 mlkm E Atp<| m| |Ctp||mlk><r>

s myemgy

so the expressiofil3) now becomes

mZm mlkmskE Al M/ [Copl My ((r) a1, |)—ft) Ph .
Ik'sk

(14
Equating Eqs(12) and(14) and writing

Ucf(n|m|k—>|'m|'):2t2p Ap{l"m{ | Ceplimye)
XWE(nl—1"),
we obtain the pure radial differential equations

d> 1'(I'+1)
+—

dr

=[0I ){r—r'TPy. (15

+2[vue(nl) —en] [Wi(nl—1")

Herevye(nl) is the converged effective potential from the
Hartree-Fock calculation. Note that, in general, the functions %
u.s are complex valued. Note also that the troublesome sum-
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[t 1\ 1 |
0O 0 010 0 O

dcf—0:25(msmamsn)z [l ,7|]Atp
1"t

(—1)P

xfwicf(nmmpmrdrx

I’ t I )( |’ 1 1 )
X
gtmy, p —mpy —q-—my gq mpy

+(_1)q( It |)
qa-my p My

( I’ 1 I ” an
X , 1
My=—0q q —Mpy

where p=m;,—m,,—q and [l,,l,,...] denotes (&
+1)(2l,+1) ... .The symmetry of thej3symbols reduces
the sum ovet to 1<t<I|+1' for oddt, andl’ tol'=1*=1.

The matrix element of Eq(9) is evaluated in a similar
way as
er.or=40(Mem, Mep) (= 1) 17,171

I !

!
m [

n
0 0 O

('Fn ty |> It | I 10
X
0 o0 olo O Oo\-m{, g m,

t t
Xfwfcf(nl—>lm)wfcf(nl—>l’)rdr(

m i )
M, P1 My

mation over excited states that occurs in the standard Judd- Y |
Ofelt theory is completely avoided. Radial differential equa- % n t> A 18
t (=P Mops ( )

tions of this kind are easily solved exactly using, e.g.,
finite-difference method. To be consistent with E4) the

the

—My P2 My

radial functionsw; are orthogonalized using the following The sum overr stands for a summation over, t,, p1, o,

Gram-Schmidt expression:
occ
W (nl=1)=wi(nl—1")= > Py
n!

xfwtcf(nl—ﬁ’)Pn,l/dr. (16)

For the first matrix element of E¢8) we obtain

(Dherl il @0y =28(Mgm,ms) > Af)

I'm/tp
xfwicf(nl—ﬂ’)rPn,dr

XM [CyglImyn) (1" m{ [Cp[Imy ).

I}, andl}. From the 3 symbols it is apparent thaf =1,
=1, |l —ty|<sl <sl+1tq, [I-ty]<I|<I+t, and thatt;+1,
and I/ +I, are odd integers. There is, however, no upper
limit to the values ot; andt,; so the sum must be truncated,
see Sec. V. As expected, the lower limitisandt,=1, since
Eq. (18) together with the solution of Eq15) givesw®(nl

— )P, and Eq.(16) then givesw, =0.

B. Mixed spin-orbit contribution

This contribution to the dipole-transition amplitude is
treated in the same way as in the crystal-field case, beginning
with the perturbed spin-orbit function

1 _1 E | ! omnl Y
d’k,so_F Uso( Nlmymg— my ms) I’ml’Xmé
I"m/m.
| Mg

The spherical harmonical matrix elements are then expressed
in terms of § symbols and the procedure is repeated for thefor which Eq. (11) with the spin-orbit perturbing operator

second term in Eq(8) giving

then results in
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a2 1'(1'+1)
_ﬁ r—2+2[UHF(nI)_8nI] Wgo(Nl—1)
=[{(Eni—En(r)IPn (19

with uge=2(Ism/'m.|1-s|lsmymgdws,. After the insertion
of ¢, and ¢, into the matrix elements of Eq10) we

m,sol ~q n,c 0 0 0

I"tp

"1 | I’ t |
X
0 00 _mlln P Mpq
I’ 1 1
X ! !
-Mmn g my

X<|Smlrmmsn|,|\ ’ é| ISmlmmsm>

(209

[o o d
s

p Mp

X J WJ_sowj_cfrdr
and

(Dhcildildp =42 (=D)P[1", 1A,

I"tp
"1 1
X

0 0 ol-m,

T

o mI,m q mI,n
X<|Sml,nmsm|’|\ : g| ISmlnmsn>

I !

X j W oW ogrdr, (20b)

respectively. Note thatvg, is made orthogonal in the same

way as in Eq.(16). The summations ovdr andt have the
same range as in EQL7).

IV. CRYSTAL-FIELD CALCULATIONS

In order to be able to calculate intensities we need acceé%a

to odd crystal-field parametefand both even and odd for
the d;t.c computatiof. The odd parameters are, however,

not generally accessible from experimental fittings. We ard

interested here in the tetragoriapace groupt4,/a) LiYF,

crystal®> The applied coordinate system is defined as fol-

lows: x andz axes are along the crystalandc axes, respec-
tively, with the origin in a rare-earth site. The simplest way
to get a reasonable estimate of the crystal-field parameters

PHYSICAL REVIEW B5 045111

TABLE IlI. Crystal dipole, quadrupole, and octopole polarizabil-
ities.

lon a(dip)(AS) a(quad)(AS) a(oct)(A7)
Li* 0.0344 0.0047 0.0026
Y3+ 0.87 1.061 0.58
F 0.731 0.631 0.4
p(R) N
Atpz(_l)erlJ o Ci—p(8,9)dR

with p(ﬁ) being the external charge density add (6, ¢)
is a spherical tensor of rarikand projection—p. The density

p(ﬁ) is assumed not to overlap severely between the ligands
and the rare-earth iom;, can then be expanded using stan-
dard monopole, dipole, quadrupole and octopole moments.
The crystal-field parameters may thus be written as

Ap=~(—D)P Y [qiR " uiR A+ 1)
J

+ lQ-Rf‘“"’(t+2)(t+1)
4 <M

1
+ 1—20jR;‘*4(t+3)(t+ 2)(t+1)|Ci_p(6; ),
where ,U/j:aj(dlp)Ej s QJ:aJ(quad)dE]/dRJ and O]
=o{°®d?E; /d°R; . E;, dE;/dR;, andd’E;/d’R; are sim-

ply the projections of the total electric field and gradients in
the ﬁj direction at sitg (ﬁj is the vector from the rare-earth
site to the ligand sitg). In order to get converged electric
fields E; they need to be calculated self-consistently, i.e.,
electrostatic equilibrium of charges and induced dipoles at
each ion site is ensured. Usually the self-consistent method
involves a matrix equation but here we instead find it conve-
nient to solve it iteratively. First the initial electric fields for
the ions are calculated using formal point charges. These
fields are then submitted into the charged dipole potential
expression:V,;=3,.;q;/r;+E;-r;/r} and the improved
electric fields are obtained through the identiﬁj
=—gradv;. All these improved fields are then submitted
ck into the potential expression. The iteration process con-
tinues until convergence is fulfilled. All summations are per-
formed for a spherical cluster with radius 100(Fare-earth

jon at the origin. The self-consistent treatment is carried out
only for ion sites within 12 A from the rare-earth ion. Out-
side this 12-A sphere, the electric fields are due to point
charges only. This approximation greatly speeds up the pro-
cess, and several convergence tests also indicate that nearly
the same result fo,, is obtained as if all ions were treated

to apply the self-consistent electrostatic model, see, e.g., Reself-consistently. Finally, the converged fiefj (in the R

23. We believe that this model is appropriate fonic
crystals.

In this approach we calculate both the odd and ekgfs
according to

direction and the derivativesiE; /dR; and d°E;/d°R; are
also computed. Table Il shows the estimated crystal ion po-
larizabilities, see Refs. 12, 33, and 34. For the octopole esti-
mations, see Ref. 35.
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TABLE lIl. Crystal-field parametersh, in atomic units for TABLE V. Radial integrals in a.u. for H9'.

YLF. Crystallographic data from Ref. 32.
t

tp Re A, Im A 1 3 5 7
10 2.00<10 2 Si(d) —2.99x10!  —1.08 ~5.73
11 —4.17x10°3 —2.63x10°3 Si(g) —9.42x10°%2 —-2.80x10°t1  —-157 —1.41x10
20 3.44x10°3 RY(d) —1.33x1073 —5.35<10° % —3.24x10 ?
32 —2.04x10°3 1.05x<10* R(g) —3.19x10°% —1.48x10°° —1.11x10 2 —1.23x10°*!
40 —-1.83x10°3
44 2.90<10°3
52 1.40<10°3 3.79x 105 formulas. Table Il shows our computedl,’s rotated to
60 4.85¢ 106 make ImA,=0 (using e '"M?A;, with ¢=33.76°). For
64 239104 3.08< 1075 LiYF, the so-called "|TTBS/REB4 ratio” is 0.132 (see p.
72 —3.20x10°° 1.90<10°8 2057 in Ref. 43, in good agreement with our 1fg,/ReAg,
76 ~6.51x10°5 8.67<10 ratio.

V. SIMULATION OF ABSORPTION SPECTRA
As is well known, the site symmetry of the substituted

rare-earth ion in the present test crystal LiY§ S,. As a Energy levels of thef" states and the coefficient§ of
result, the potentiaﬂlzEtpAtprtCtp is invariant with respect Eq. (3) are obtained by diagonalizing the full matt; in

to the symmetry operations of the groBp consisting of the  Eq. (1). All operators interact simultaneously thus allowing a
element<E, IC;l, C,, andIC,, implying thatA;,=0. How-  complete mixing of quantum numbers. The differential equa-
ever, the spectra studied in the present work are taken &ons (15 and (19) are solved by applying the finite-
room temperature and the ions will vibrate. The dynamicaldifference method. This results in a matrix equam,fqz b,
environment causes th®, symmetry to be slightly broken. which is solved using the DGTSV routine in the linear alge-
The ions break the symmetry instantaneously and &ys  bra program library.Arack.** Using the grid 6<r<20 a.u.

#0. This results in aicreasedcontribution to the intensity  with step length 10* a.u., the converged perturbed functions
(in, e.g., Judd-Ofelt theory, intensities depend on terms of thare computed and then orthogonalized. Numerical values of
type |Ap|% this can essentially also be observed in thethe radial integrals in Eq€17), (208, and(20b)

present intensity theoyylt is then realized that an intensity
average over the various environments results in an effective
nonzero value forA;,. We do not include the dynamical
effect for higher-order odd parameters because their dynami-
cal variations are much smaller. For an introduction to the . .

connection between molecular dynami®dD) and optical R(V):f Wy so(NI—=Dw ¢(nl—1")rdr

properties of rare-earth ions, see, e.g., Refs. 36-40. In par- _

ticular, for LiYF,, Ay, and|A,|? were calculated earlier are displayed in Tables IV, V, VI, and VIl for Nd, Ho*",
using MD and then averaged using several thousands & ', and Tni*, respectively. When evaluating the contri-
environments? Instead of zero, thé, ,'s were found to vary ~ butions fromd,.c;, the summation was truncatedtatand

in the order of =10 2 a.u. Calculatecab initio By,’s (or ~ t2=7. The radial integrals of E¢18) are too many to be
Ay’s) are usually rotated in order to make By,=0, see, tabulated here since already a truncationtatnd t,=7

e.g., Ref. 23 or 41. This is an approximate way to make itgives 63 contributing integrals involving 25 perturbed func-
possible to compare calculated parameters with fitted parantions.

eters in the reduced,-symmetry approacR approach Smentek has earlier reported numerical values of integrals
where ImB,,=0)? It is also beneficial here to attempt to denotedR}(1").% These are equal to ouR'(l") multiplied
maintain the same coordinate system for both the energy antiith 4 [R}(1")=4R'(I")]. Note that Smentek’s perturbed
polarized-intensity calculations since otherwise it would befunctions are obtained by replacingé),— &.(r) with
inconsistent to use the energy eigenvectors in the transitiofr ~3),,—r 2 in Eq. (19). This type of spin-orbit function is

S‘(I’)=jthcf(nl—>l’)Pn|rdr,

TABLE IV. Radial integrals in a.u. for Nt TABLE VI. Radial integrals in a.u. for Ef .
t t
1 3 5 7 1 3 5 7
S(d) —7.11x10°1t -3.35 —2.25x 10 Si(d) —2.75x10°! —9.66x10°'  —5.00
S(g) —2.02x10° ! —8.00x10°! -5.71 —6.37x 10 S(g) —8.65x102 —2.50x10°!  —-1.37 —1.21x10
Ri(d) —1.82x10 % —9.35x10° % —7.04x10 2 R'(d) —1.32x10 % —5.15x10 ® —3.05x10 ?

RY(g) —3.97x10 % —2.37x10°% —2.22x10 2 —3.04x10 ' RYg) —3.16x10 % —1.42<10° % —1.05x10 2 —1.14x10*!
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TABLE VII. Radial integrals in a.u. for Ti".

t

1 3 5

-8.71x101
—2.25x1071
—4.99x10°3
—1.38x10°3

S(d) —2.55x10°*
S(g) —7.98x10°2
RY(d) —1.31x10°3
R'(g) —3.13x10°*

—4.40
-1.21
—2.89x102
—9.98<10°% —1.07x107*¢

—1.05x 10

Absorption coefficient (per M)

o
wn

strictly valid for an electron in a pure Coulomb potential
only. We have recalculated these integiiaith ¢=r ~3) for
PRt EUY, GA*', and Tni™ using both classic and relativ-
istic wave functions. The resulting values are shown in Table
VIII, note that numerical values are also given fer7 (g
perturbations From this comparison it is clear that Smentek
used classical wave functions. It is also known that the rela-
tivistic Hartree-Fock solutions of Cowan are very good. For
example, they, in general, agree well with more advanced °
codes such as thecpr code by Parpia, Froese Fischer, and
Grant® All results below are based on relativistic wave
functions of Cowan.

The oscillator strength®, of Eq. (2) are calculated for
every pair of states within the desired region of transition
wavelength. The spectra are simulated by plotting

quzocf a(N)dX,

ind
3

n
n

2]

units

Arbitrary
w
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FIG. 1. o-polarized absorption spectra for NdYLF (resolu-

tion, 1 nm).

TABLE VIII. Our calculated &R'(1") compared withR(1") of Ref. 3 in a.u.

t Pt Eut Gd* Tms*
RY(d) 1 —5.2509 —2.4887 —2.1742 —1.2931
3 —25.3936 —10.3939 —8.7956 —4.5549
5 —175.6036 —62.8266 —51.6931 —23.8172
4RY(d) (classical 1 —5.5402 —3.8149 —3.5774 —2.8528
3 —27.2774 —15.8503 —14.3368 —9.7880
5 —192.3241 —95.3022 —83.4464 —49.8327
4ARY(d) (relativistio 1 —9.1140 —5.9925 —5.6099 —4.5570
3 —49.2784 —27.3978 —24.7766 —17.4298
5 —389.9145 —185.4227 —162.6420 —101.5429
Ri(g) 1 —1.1839 —0.7553 —0.6911 —0.4817
3 —6.5310 —3.4375 —3.0268 —1.8027
5 —56.4390 —24.9862 —21.2651 —11.0496
4RY(g) (classical 1 —1.3732 —1.0185 —0.9628 —0.7754
3 —7.5513 —4.6582 —4.2453 —2.9489
5 —64.9600 —33.9299 —29.9309 —18.2667
7 —810.8867 —362.7453 —310.4961 —168.2787
4RY(g) (relativistic 1 —1.9118 —1.3973 —1.3228 —1.0898
3 —12.1551 —7.3718 —6.7369 —4.8524
5 —120.8008 —61.9738 —54.9103 —35.2550
7 —1736.079 —762.6581 —656.8033 —379.9514
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FIG. 2. o-polarized absorption spectra for Hoand Tn#*:YLF
(resolutions, 1 nm and 4 nm, respectively FIG. 3. o-polarized absorption spectra for BaYLF (resolu-

tion, 0.5 nm.

where« is the absorption coefficient, see Ref. 46. To simu-
late the resolution of the experimental specttg,has been 360 nm, which should be slightly more prominent. For Ho,
summed in appropriate intervals for whighis the average the simulated spectrum is very successful as can be seen in
wavelength. Fig. 2. The overall band shapes are in excellent agreement

A comparison of theoretical and experimensapolarized with the experimental results. T}’?EI!BHSJG transitions in the
absorption spectra for Nd:YLF is shown in Fig. 1. For’flo  1100-1200 nm region are, however, slightly more pro-
and Tn?", the o-polarized spectra are displayed in Fig. 2.
Figure 3 shows the fine structure of Ho:YLF. The experimen- T T T ' ' T '
tal data are available from LSB’s Database La&éf&he last unpolarized Er calc
figure shows the theoretical result in the case of Er:YLF. An
experimental spectrum is available in Ref. 48. The overall
behavior of all spectra agrees well with experiment. The Nd
spectrum exhibits the largest discrepancy; although the mair
features are reproduced, we observe deviations in some (g
the bands, particularly for wavelengths at 350 and 450—55(5
nm. Among several possibilities, this could be an indication g
that correlation effects are more important for Nd. Correla-
tion should be more pronounced for loosely bound electrons
such as for ions at the beginning of the RE series, compares
to the end of the series. As an example we have calculate:
the correlation contributions for polarizabilities as in Ref. 34
(they have the same type of transition elemerfier Néf ¥,
a;=—0.203 & while for HO*", a;=—0.0649 &. As ex- , ,
pected, the influence of correlation is much larger foeNd 200 400 600 800 1[331‘]’ 1200 1400 1600 1800
than for HG ™.

The Tm spectrum in Fig. 2 is in quite good agreement FIG. 4. Unpolarized absorption spectrum foPEYLF (resolu-
with the experimental bands, except for the transition aroundion, 0.5 nn).
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TABLE IX. Relative o-polarized oscillator strengths from unity. The summation was made usiagpolarization for all

detor Asoct, anddeycs. transitions from the ground states to the other exditdtes.
The results are given in Table IX. Thus contrary to earlier
Peto Psoct Perct beliefs, the impact of these third-order effects is actually
Nd 1.0 0.9¢10°5 8.4% 103 quite small, at least for ground-state excitations in the
Ho 1.0 4.6¢10° 1.9x10°3 REYLF crystal.
Er 1.0 341074 1.7x1073
m 1.0 2.5¢1074 1.6x10°3 VI. CONCLUSION

An alternative and improved intensity theory has been
formulated. Good agreement between calculations and ex-
nounced than the experimental measurements. The fine strugeriment is demonstrated. Higher-order amplitudds, {;
ture in Fig. 3 also agrees well with experiment. It is ques-andd,..;) seem to be almost negligible in LiY;FAlthough
tionable if the transitions between the Stark states ever Caihis could be interpreted as that the Judd-Ofelt theory is rea-
be reproduced exactly, even with fitted intensity parameterssonably sound, it should be remembered that our approach
Besides the theoretical difficulties, the variation of experi-has also removed the intrinsic approximations in that model.
mental techniques and samples also leads to sensitivities iThe present intensity model based on perturbed functions is
the spectra at the fine-structure level. therefore preferable in order to obtain as accurate results as

Erbium is an extremely important ion in todays fiber tech-possible. Certain forbidden or weak transitions at the “Judd-
nology, we have therefore also calculated the spectrum iDfelt level” also motivate the use of higher-order ampli-
this case, see Fig. 4, and for a comparison to experiment segdes. It is also possible that they could be more pronounced
Ref. 48. It is very interesting to see that nearly all bands arén materials having very different crystal-field parameters
reproduced. Even at the fine-structure level the results argyan those in YLF. It is still unclear how important the con-

convincing, although not exact. Actually, the only real devia-tributions from correlation effects actually are. A quantitative
tion is the peak slightly above 200 nm, where our peak is tognvestigation is in progress.

weak.

It has been speculated that the contributions fidyy,
and possibly d.s.s could be important for transition
intensities>™ In order to compare the magnitudes of their ~Grants from Mid Sweden University, ACREO Fiber
influences we have calculated oscillator strengths using theaboratory (Hudiksval), Teknikbrostiftelsen(Umed, and
elementd.;q, dsocf, anddgsq; Separately. Note, however, KK-stiftelsen are greatly acknowledged. Fruitful discussions
that it is clear from Eqs(2) and (7) that such a superposi- with Lidia Smentek are appreciated. Support from B. Johans-
tional division is only approximate. The sum of all oscillator son and O. ErikssoitUppsala University is also appreci-
strengths are then normalized such thatdhg, part equals ated.

ACKNOWLEDGMENTS

1B. R. Judd, Phys. Rel27, 750(1962. I5M. A. Cuoto dos Santos, P. Porcher, J. C. Krupa, and J. Y.
2R. M. Sternheimer, M. Blume, and R. F. Peierls, Phys. R} Gesland, J. Phys.: Condens. Mai®”4643(1996.

376 (1968. 16G. K. Liu, W. T. Carnall, R. P. Jones, R. L. Cone, and J. Huang,
3L. Smentek, J. Phys. B2, 593(1999. J. Alloys Compd.207, 69 (1994).
4G. W. Burdick, M. C. Downer, and D. K. Sardar, J. Chem. Phys.”C. Galler-Walrand, K. Binnemans, and L. Fluyt, J. Phys.: Con-

91, 1511(1989. dens. Mattel5, 8359(1993.

SM. F. Reid, J. Alloys Compd193 160 (1993. 180, L. Malta, S. J. L. Ribeiro, M. Faucher, and P. Porcher, J. Phys.
6K. Jankowski, L. Smentek-Mielczarek, and A. Sokolowski, Mol. Chem. Solidss2, 587 (1991).

Phys.59, 1165(1986. 19¢. Galler-Walrand, L. Fluyt, P. Porcher, A. A. S. da Gama, G. F.
L. Smentek and B. Andes Hess, J. Chem. PB@s.703(1988. de S, W. T. Carnall, and G. L. Goodman, J. Less-Common Met.
8H. P. Kelly, Adv. Chem. Physl4, 129 (1969. 148 339(1989.
9G. S. Ofelt, J. Chem. Phy87, 511 (1962. 20A. A. S. da Gama, G. F. de S, P. Porcher, and P. Caro, J. Chem.

105 Edvardsson, M. Klintenberg, and J. Thomas, Phys. Ré&4,B Phys.75, 2583(1981.

17 476(1996. . 21, Esterowitz, F. J. Bartoli, R. E. Allen, D. E. Wortman, C. A.
s, Edvardsson and D.berg, Comput. Phys. Commuh33 396 Morrison, and R. P. Leavitt, Phys. Rev.1®, 6442(1979.

(2002). 22H. p. Jenssen, A. Linz, R. P. Leavitt, C. A. Morrison, and D. E.
125, Edvardsson and M. Klintenberg, Mater. Sci. ForBi%, 407 Wortmann, Phys. Rev. B1, 92 (1975.

(1999. 2M. Faucher and D. Garcia, Phys. Rev2B, 5451(1982).

133, Edvardsson and M. Klintenberg, J. Alloys Compads, 230 24\, Klintenberg, S. Edvardsson, and J. O. Thomas, Phys. Rev. B

(1998. 55, 10 369(1997).

1C. Xueyuan and L. Zundu, J. Phys.: Condens. Ma8ief571  2°C. Duan, S. Xia, W. Zhang, M. Yin, and J. C. Krupa, J. Alloys
(1996. Compd.275 450(1998.

045111-9



DANIEL ABERG AND SVERKER EDVARDSSON PHYSICAL REVIEW B55 045111

26program available at  http://gluon.fi.uib.no/AMOS/COWAN/ 2°S. Edvardsson, M. Wolf, and J. O. Thomas, Phys. Rev5B

rcn.html 10918(1992.
27K. Rajnak and B. G. Wybourne, Phys. R&&2, 280 (1963. 403, A. Brawer and M. J. Weber, J. Chem. Phys, 3522 (1981).
28B. R. Judd, Phys. Re\l41, 4 (1966. 411, Esterowitz, F. J. Bartoli, R. E. Allen, D. E. Wortman, C. A.
29\, Faucher, D. Garcia, and O. K. Moune, J. Alloys Comp8l3 Morrison, and R. P. Leavitt, Phys. Rev.1®, 6442(1979.
210(1993. 42C. Rudowicz, Chem. Phy97, 43 (1985.
0W. T. Carnall, G. L. Goodman, K. Rajnak, and R. S. Rana, J.*3J. Mulak, Pol. J. Chen67, 2053(1993.
Chem. Phys90, 3443(1989. 44See http://www.netlib.org/lapack/
31G. Racah, Phys. Re¥6, 1352(1949. 4SE. A. Parpia, C. Froese Fischer, and I. P. Grant, Comput. Phys.
32E. Garcia and R. R. Ryan, Acta Crystallogr., Sect. C: Cryst. Commun.94, 249 (1996.
Struct. CommunC49, 2053(1993. 46\\. B. Fowler and D. L. Dexter, Phys. Rei28 2154(1962.
33p. C. Schmidt, A. Weiss, and T. P. Das, Phys. Red®B5525 *’See http://aesd.larc.nasa.gov/gl/laser/dbmain.htm
(1979. . 48M. B. Camargoa, L. Gomesa, and |. M. Ranier, Opt. Ma&eB31
343, Edvardsson and D.brg, J. Alloys Compd303 280 (2000. (1996.
35G. D. Mahan and K. R. Subbaswaniypcal Density Theory of 4°D. E. Wortman, N. Karayianis, and C. A. Morrison, Harry Dia-
Polarizability (Plenum Press, New York, 199(. 86. mond Laboratories Report No. TR-177RTIS#033902, 1976
36\, Klintenberg, S. Edvardsson, and J. O. Thomas, J. Lui@n. (unpublisheg
218(1997. 0N. Karayianis, D. E. Wortman, and H. P. Jenssen, Phys. Chem.
373. Edvardsson and M. Klintenberg, and J. O. Thomas, Phys. Rev. Solids37, 675(1976.
B 54, 17 476(1996. 51C. A. Morrison and R. P. Leavitt, ilandbook on the Physics and
38G. Cormier, J. A. Capobianco, C. A. Morrison, and A. Monteil, Chemistry of Rare-Earthsdited by K. A. Gschneidner and L.
Phys. Rev. B48, 16 290(1993. Eyring (North-Holland, Amsterdam, 1982p. 627.

045111-10



