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Evolution of the stripe phase as a function of doping from a theoretical analysis
of angle-resolved photoemission data
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By comparing single-particle spectral functions te§ and Hubbard models with recent angle-resolved
photoemission results for La,Sr,CuQ, (LSCO) and Nd-LSCO, we can decide where holes go as a function
of doping, and more specifically, which type of strifimnd-, site-centergds present in these materials at a
given doping. For dopings greater than about 12% our calculation shows that the holes prefer to proliferate out
of the metallic stripes into the neighboring antiferromagnetic domains. The spectra were calculated by a
cluster-perturbation technique, for which we present an alternative formulation. Implications for the theory for
high-T. superconductivity are discussed.
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[. INTRODUCTION and their spectra can be quantitatively described by stripe
models, we argue that there must be stripes present in LSCO
At present, stripes are at the heart of the debate concer@s Wwell, at least in the underdoped to optimally doped
ing the mechanism of superconductivity in high-temperaturd€9!me.
superconductors. There is clear experimental evidence for 1€ ARPES spectra of LSCO and Nd-LSCO have been

- ; : ) ) studied in the framework of the stripe picture in several
itatlc sdtrlpse s n Nod dopfed LSC?\I?. LSCO, tfor exartrt]plg ' works (Refs. 19—-28 and many othgréccording to Ref. 19,
31.4N0o 4S10.1,LUQy)  from  elastic  neutron-scattering the stripe phase is produced from critical fluctuations in the

experiments. The existence of a dynamical stripe phase inpeighborhood of a quantum-critical point. As a result, one

the “real” high-T, compound LSCO or even in obtains coherent quasiparticle peaks at low binding energies
YBa,Cu;0,_ s (YBCO) has been conjectured from similar and incoherent shadow bands at higher energies. The low-
diffraction patterns in the inelastic neutron-scatteringlying spectral weight is concentrated near the nodal points.
results’>~* However, it has not been decided so far whetheReference 20 points out the fact that the single-particle spec-

the observed pattern is due to one-dimensional spin inhomcg,um becon;]esfbroager ilf: the nodal ?irectjon. Rti}‘_erencg 22|
geneitiesi.e., stripes? or to two-dimensional incommensu- JiSCusses the fact that the Fermi surface is one dimensiona

: : : i i [ , whereas in8i,CaCyOg (Ref. 29

rable spin waves In the case of YBCO near optimal doping, in sta_tlc s_tnpe systems, w as I 5ih} 8 .
it has I?)een suagested that the incommenzurable E)u?fol uas,lpgrtlcles_ are formed, which run in the diagonal dlre_c-
99 on. Finally, in Refs. 21 and 23, the ARPES spectrum, in

neutron-scattering peak is due to the dispersion of the faparticular the different sharpness of the momentum-
mous 41 meV commensurablound below T at momen-  dijstribution curves and the energy-distribution curves, is at-
tum k= (7, 7)] neutron-scattering peak to lower excitation tributed to a dimensional crossover from one-dimensional
energies around= (7, ).° From the theoretical point of Luttinger-liquid behavior at higher temperatures to a quasi-
view, several numerical analyses, ranging fromparticle behavior at lower temperaturs.
Hartree-Fock;” density-matrix ~renormalization ~ group The present paper aims at complementing the results of
(DMRG).? to dynamical mean-field theofyjndicate that these works and, in particular, it addresses the question of the
stripes can be produced by purely strong-correlation effectstripe form as a function of doping. If stripes are present as
On the other hand, structural transformatiotfs'as well as  low-energy excitations in the highz compounds, they must
long-range Coulomb interactiols™® may also play an im- affect the microscopic description of the superconducting
portant role in the formation of stripes. state, independently of whether they are an obstacle against
In this paper, we provide numerical arguments showingsuperconductivity or even its driving force. In this context,
that an essential link in the chain of evidence for stripes isan important question is whether stripes are bond-centered or
provided by angle-resolved photoemission spectroscopgite-centered since, theoretically, bond-centered stripes have
(ARPES: ARPES spectra show hardly any difference be-been shown to enhance superconducting pairing
tween LSCO(dynamicalstripes candidajeand Nd-LSCO correlations’>*® By analyzing the different scenarios with
(static stripe systemn**~1®This fact was first pointed out by our technique and comparing the results with ARPES spectra
a semiphenomenological argument by Salketal!’ In a  for different dopings, we can decide which type of stripe
previous paper, we have shown that salient spectral featurébond- or site-centeredbetter describes the spectrum as a
of Nd-LSCO and LSCO can be explained by a model withfunction of doping.
static stripes® Here, we will show that the spectra of LSCO  Very recently, Zhouetal’® succeeded in measuring
and Nd-LSCO can be almost quantitatively described by difARPES data on Nd-LSCO and LSCO systems with different
ferent types of stripe stategi.e., site-centered, bond- doping levels. In the doping region beyond 12% the ARPES
centeregifor a wide variety of dopings. Since the experimen-results reveal a dual nature of the electronic structure: The
tal ARPES spectra for LSCO and Nd-LSCO are so similarstraight segments forming the “Fermi surface” in energy-
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integrated photoemission and the,0) low-energy excita- 0% 50% 0%  50% 12% 25% 12% 25%
tions, which have been attributed to site-centered stripes for Q
the 12% doping cas®, are still present but overlaid with
more two-dimensional2D) features reminiscent of a simple
tight-binding band structure for homogeneous 2D systems.
Zhouet al. address the experimental question of whether the
two features originate from the mixing of two different
phases or whether they are intrinsic properties of the same
stripe phase. In the first cagghase separatipnthere should
be a nonstripe phase with a very high carrier concentration
(as estimated from the area inside the Fermi suifaoex-
isting with a phase of site-centered stripes. The authors
remark that there is hardly evidence for such a phase in
Nd-LSCO and LSCO at the doping levels under
consideratiort®3233Another scenario consistent with the ex- , 1 |
perimental observation would be that the system forms more
and more bond-centered stripes upon increasing the doping e :
beyond 12%. The possibility for the latter scenario was al- I
ready indicated by our earlier calculatioffayhere the spec- RN
trum of bond-centered stripes resembles the diamond-shaped FiG. 1. unit cells for different stripe configurationéa) 4+ 1
two-dimensional feature observed by Zhetial. In the  site-centered with 10% dopingh) 2+ 2 bond-centered with 19%
present paper we will show that the evolution of the experi-doping (2x8 with two holes and X8 with four holes; (c) 2+2
mental ARPES with increasing doping can be described byond-centered with 19% doping ¥28 with no holes and 8
assuming that more and more bond-centered stripes awgth six holeg; (d) 3+1 site-centered with 21% doping.
formed at the expense of site-centered ofssconjectured
previously by Zhotet al). CPT approximation amounts to neglecting two-particle exci-
Our approach adopts the cluster-perturbation theoryations within this model.
(CPT) developed by Senechadt al,>* which consists of
splitting the infinite lattice into clusters which are treated by Il. TECHNIQUE
exact diagonalization. The intercluster hopping terms are . . .
then treatged perturbatively, so that one evggtuglly approxi- . The computatlonal technlque for our calculation of’the
mates the infinite lattice. This method takes into account ex_smglt_a—pa_rtlcle spe_ctral W?'g".“("’w) and for the.Greens
function is a special application of the CPT for inhomoge-

actly the local correlations, which probably are the most im- ¢ Thi thod is based t i
portant ones in these systems, and at the same time makes fous systems. 1his method 1S based on a strong-coupling

k points of the Brillouin zone available. In addition, this is an perturbation expansion of tf(ﬁuppard-model's??sr;\e-body
ideal method to deal with a “larger unit cell” such as the one hopping operators linking the individual unit ceffSAt low-

present in the stripe phase. One should, however, mentiofot ordgr in this expansion,_the Gr_een’s function of the infi-
that at this level, the method is not appropriate to exploré1Ite lattice can be expresséd matrix form) as
stripe stability for a given model. As a matter of fact, this is cluster
not the aim of the present work. Rather, via this CPT ap- G*(P.2) = G (2)
proach we enforce a stripe pattern by connecting clusters ’ 1— e(P)GEluster(z)
with different hole doping$see Fig.(1)]. The concentration
difference is produced by introducing an on-site energy shiftvhere the matrice§”, G®'U*®" and e(P) will be defined
A between the more doped and the less doped clusteiss. around Eq(2). The authors of Ref. 34 have pointed out that
adjusted for each caggether with the chemical potential the above formula becomes exact in the limit of vanishing
in order to give the desired hole concentrations. A discussiointeraction (J/t=0) and, obviously, in the atomic limitt(
of this energy shift is given below. This procedure allows us=0), and can thus be considered as an interpolation scheme
to study the spectral function and compare it with ARPESbetweent— andt—0. Notice, however, that this formula
experiments. A similar approach has been taken in Ref. 35Joes notbecome exact in thel— o limit. In the interesting
where the hole spectral function for site-centered stripe patregime where the interaction and the hopping are of the same
terns was calculated within the string picture. order of magnitude Senechet al. have shown numerically
Our paper is organized as follows: In Sec. Il, we explainthat Eq.(1) gives an accurate interpolation between the two
in detail how the CPT is applied to the stripe phase. In Sedimiting cases. Additionally, we have shown in our previous
lIl our numerical results are presented and compared witlpapet® that the cluster-perturbation technique is ideally
ARPES spectra. The content of this article is summarized irsuited to study inhomogeneous systems such as the stripe
Sec. IV. Finally, the Appendix presents an alternative derivastate in the highF, compounds. In order to deal with stripes,
tion of the CPT equation, by means of a mapping onto ahe infinite lattice is divided into unit cells of equal si#eg.
hard-core fermion model. In this Appendix, we show that the2(a)]. The unit cell is further divided into independent blocks
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ing independently the chemical potential of the individual
blocks so that the desired hole densfgee Fig. 1 is ob-
tained. This corresponds to introducing an on-site energy
shift between the two blockd ~1.5. Physically, this shift
corresponds to the energy of the stripe formation, possibly
produced by a combined effect of strong correlation and of
lattice distortion occurring in the low-temperature tetragonal
phaset Obviously, the large value of we are taking exag-
gerates the above effects. Nonetheless, while we do not ex-
pect our calculation to give quantitativedescription of the
phenomenon, it provides gqualitative explanation of the
ARPES experiments in terms of tilsbapeof the stripes in-
dependently of theiamplitude Of course, without such an
energy shift it would be impossible to obtain such large den-
sity oscillations, such as the ones shown in Fig. 1. As a
matter of fact, in a homogeneous system the amplitude of
FIG. 2. Visualization of the cluster-perturbation approach forcharge oscillations remains of the order 0.1 or less, as shown,
stripes: The infinite lattice is divided into unit cells. The unit cells €.g., by DMRG calculation$*3Alternatively, Eq.(1) can be
differ for different stripe configurations. As shown here, the unit cellobtained by expressing the fermionic creation/annihilation
for a 3+1 configuration consists of two>36 ladders on top of operatorci”) in terms of fermionic creation and annihilation
each other next to a 12-site chain. The three-leg ladders on the |e(fiperatorsdg) representing the photoemission and inverse
half of the unit cell were diagonalized with a staggered magnetighotoemission target statés) of the diagonalized cluster.

field which was oriented in the opposite direction of the one on theThis derivation of Eq(1) is presented in the Appendix.
right half. The hopping terms connecting the exactly solved clusters |, Eq. (1), P is a superlattice wave vector a@f® is the
(3% 6 and 1x 12) as well as the hoppings connecting the unit Ce"SGreen's function of the %-size” 2D system, however, stil

are included via the cluster-perturbation technique. in a hybrid representation: real space within a cluster and
Fourier space between the clusters. This is related to the fact

to incorporate the stripe topology: In the example of Fig. 2,that G*(P,z) is now anM XM matrix in the space of site

we are interested in a site-center@8 +1") configuration indices[in the inhomogeneous stripe configuration of Fig.

with quarter-filled metallic chains alternating with half-filled 2(b) M=2X(3X6)+1x12=96]. Likewise, €(P) and

three-leg ladders. The three-leg laddénsre 3x6 blockg GCluste areM X M matrices in real space wit(P) standing

and quarter-filled chainhere 1x 12 with six holes, see Fig. for the perturbation. For the situation in Figh2, the only

2(b)] are solved by exact diagonalization, yielding the single-nonzero elements of the Hermitian matexP) are repre-

particle spectral function of the block. The individual sented by the dashed bonds in the figure:

Green'’s functions of the blocks forming a unit-cell cluster

are combined to form the Green’s function of the unit cell

Goluster at “order zero,” i.e., in which the intracluster hop- —t: dashed bonds inside cell,

ping terms are set to zero. In a second step, the intracluster €(P), m= —te*Pxy:  bonds connecting cells, (2)

hopping connecting the individual blocks both within the ’

same unit cell and in different unit celldashed lines in Fig.

2(b)] are incorporated via the cluster-perturbation technique.

This yields the desired Green'’s function of the infinite lattice.

Where it was technically feasible, we doubled the unit Ce”clusters, we used periodic boundary conditions along the

(as in Fig. 2 and diagonalized two three-leg ladders with a _, . . : oo L .
staggered magnetic field pointing in opposite directions, re§,tr|pe direction. In principle, this introduces hopping terms,

sulting in am-phase-shiftedbetween the antiferromagnetic which are not present in the infinite lattice. However, this is
(AF) domaing Neel order in the final configuration. This not a problem, since these terms can be consistently removed

site-centered “3 1” configuration with a 7-phase-shifted perturbatively by subtracting corresponding terms from the

. _ 4 1 matrix elements ok(P). A complete Fourier representation
Neel order of stripes was first suggested by Tranquetdzl. of G” in terms of the original reciprocal lattice then yields

Bond-centered stripes, on the other hand, are modeled b[ . L3y
. . - : e cluster-perturbation theofCPT) approximatior®
two-leg ladders with alternating filling. In the following, we To aIIowF;or larger block s(i%es-l)wgpactually diagonalized

s o baaes oot s s e i e e ) madelon th block (o obai (nelock Green's
propag P functions as an approximation for the Hubbard-model's

insulating domains via the inter- and intra-unit-cell hoppings
(dashed lines in Fig. )2 As explained above, our method
consists in “forcing” the stripe structure “by hand” in order

0: elsewhere.

In order to facilitate diagonalization of the individual

(block) Green’s function. Thé-J Hamiltonian is defined as

to study the effects of this structure on the photoemission nn.
spectrum. The different hole concentration in the “metallic” H=—t > (¢l cj,+H.Cc)+J> | SS— #) )
and in the “antiferromagnetic” regions is achieved by adjust- (e 7 (@) g
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FIG. 3. Single-particle spectral function for a+2 bond-
centered stripe configuration at 12% doping; comparison of CPT
calculations based on exact diagonalizations of two twa-édad-
ders withJ=0.4t (a) and on exact diagonalizations of two two-leg
Hubbard ladders witHJ=8t (b). The gray scale represents the
weight of spectral function at the specifig, ) point with dark
areas Ocorresponding to high spectral weight.

The sums run over all nearest-neighbor pajrsi). No
double occupancy is allowed. We have chosen the commonly
accepted valued/t=0.4 andt~0.5 eV. FIG. 4. Integrated spectral weight of bond-centered stripe con-
The quality of this approximation is tested by comparingfigurations at 12% doping; comparison of CPT calculations based
single-particle spectral functions of+2 bond-centered ©n exact diagonalizations 6fJ ladders{(a),(b); J=0.4t] and Hub-

stripe configurations at 12% doping based on diagonaliza2a™d 'adder$(c),(d); U=8t]. (a),(c) Total integrated weight in pho-

tions of both Hubbard ant-J models. In Fig.(3), we show toemissiorf n(k)7; (b),(d) low-energy excitationéintegrated weight

. . in Er—0.2<w<Eg). The data are plotted for the whole Brillouin
A(k,w) for the standard walk through the Brillouin zone. ;one with thel” point in the center. The result of the stripe calcu-

One observes that the result for the Hubbard mddel |ations have been symmetrized to account for the differently ori-

=8t, Fig. @] is very similar to thet-J model resulf{J  ented stripe domains in real materials. Regions of high spectral

=0.4t, Fig. 3b)]: The dispersion is two-dimensional, metal- weight correspond to white areas.

liclike, and comparable to a tight-binding dispersion. The

e e o e e sl consising of i hafled &6 sytemsstaced on
. . o : " op of each othgrand a quarter-filled 12-site chain as dis-

ence is predominantly due to the omission of the condition

. . o layed in Fig. 1a). Figure &a) shows that the spectral
hopping terms~J (Ref. 3§ in thet-J Hamiltonian. Another weight is confined in one-dimensional segments of the Bril-

reason may be due to the fact that the basic parameters of thg;, ;e indicating a one-dimensional Fermi surface. The

models, the interaction strengthsm_du, have not been flne. I?w-energy excitations in Fig.(@ are mainly located at the
tuned to match each other. The integrated spectral weig L .0) and (0 =) points in momentum space. In Figs. 8
obtained from the 'Fwo_models 'S deplcteq ”_1 F'_g' 4 In bothand qa) the single-particle spectral function for this doping
cases, the occupation in momentum spa(e is distributed  js plotted directly and one observes the characteristic stripe
almost isotropically around thE point. The low-energy ex- features that have been discussed in detail in Ref. 18: a dis-
citations for both models indicate a two-dimensional |Oca|persionless band nearr(0) crossing the Fermi surface at
density approximation-like Fermi surface, however with ad-( 7/4) resulting from the one-dimensional chain oriented

(7,0) features are sharper in the Hubbard-model case.

Turning on the perturbation allows the holes to travel be-

1.1

tween the blocks and unit cells. In Fig. 5, we show the elec- a b c d
tron concentration(averaged in the direction along the 1} — —
stripeg in the direction perpendicular to the stripes before 1| [ BE
(thick lines and after(barg applying CPT for the stripe con- 09 ¢ — ]
figurations that are discussed in this paper. As can be seen, 08 |
the holes do not travel far from the domains that were origi- 2

. . v
nally defined, and the electron occupation hardly changes 0.7 t
from the unperturbed setup. Therefore, the desired stripe 06
configuration is conserved in our approach. '

0.5
IIl. NUMERICAL RESULTS 0.4 —|

. . directi dicular to stri
We proceed to the discussion of the spectra for the under- trection perpendicuiarto stripes

doped region: At 10% doping, the stripes have a charge pe- FIG. 5. Electron occupation in real space befétfick lines
riodicity of five lattice constants according to the Tranquadaand after(thin lines application of CPT(a), (b), (c), and (d) ac-
picture. This configuration has been modeled by<al2 unit  cording to Fig. 1.
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FIG. 8. Density plot of the single-particle spectral function for

FIG. 6. Total integrated spectral weight in photoemissi¢k): negative energiesa), (b), (c), and(d) according to Fig. 1.

(@), (b), (c), and(d) according to Fig. 1. o ) )
LSCO) is in a state of site-centered stripes, where three-leg

the hybridization of the metallic band with the top of the antiferromagnetic ladders alternate with quarter-filled chains.
antiferromagnetic band and an excitation at/Z,7/2) at Here we will address the question of how to describe the
higher binding energies than at(0). The combined results system for dopings higher than 1/8 or 12%. The ARPES
for this doping agree very well with the recent ARPES re-results by Zhouet al. suggest that LSCO and Nd-LSCO
sults by Zhouet al’® giving further support for the static samples at 15% doping are in a state that is still mainly in a
stripe picture by Tranquada: at least below 12% doping,

charge carriers are only present in quarter-filled chains that (a) (C)

are alternating with half-filled antiferromagnetic domains ‘ ‘ ,
and an increasing doping is realized by lowering the distance tJQQ
between the chains and therefore reducing the effective size ; O,m)
of the antiferromagnetic domains.

The incommensuration of the quasielastic neutron scatter- 0.0)
ing does not increase any more beyond a doping level of ’
12%. The simple picture of one-dimensional chains moving 9% (m/2,m/2) Qg
closer together at the expense of antiferromagnetic undoped o | (R R T
domains thus cannot be valid in this regime. For a doping of
1/8, we have previously showfthat the ARPES data can be
explained by assuming that the static stripe syst&td- ’ (m0)

(0,0)

—— . ]

- (Tl'./2,TI:/2) -

L (Tc’n) prr———— 1

N\
),

s
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(TE,O) [
7"\
ﬂ
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FIG. 7. Integrated spectral weight around the Fermi surf@ge:
(b), (c), and(d) according to Fig. 1. FIG. 9. Same as Fig. 8 in a three-dimensional plot.
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3+ 1 stripe phase since the ARPES results show all the feaand d), on the other hand, is more of a diamond shape. In
tures that have been previously observed for x#€0.12  the “phase-separated” picture, we expect the spectral weight
samples: one-dimensional Fermi surface and low-energy exstemming from the above configuratiofts, (c), and(d) to
citations located at¥ ,0) and (0 #). In addition, how- be superimposed onto the spectral weight coming from the
ever, low-energy excitations appear around the edge of dominating 3+ 1 site-centered structure which is all concen-
diamond located at the center of the Brillouin zone. Thesdrated in the one-dimensional segments in momentum space.
excitations are connecting ther(0) features. Zhowetal.  This might be the reason why in the actual experiment Zhou
conjecture that bond-centered stripes are formed at the exnd coworkers can only resolve the latter.

pense of site-centered ones, since it was shown in our previ- For the low-energy excitations, the situation is different
ous calculation that bond-centered stripes do indeed exhibince a much smaller energy window is integrated and there-
such a diamond-shaped low-energy excitation pattern. Thifre the experiment is more sensitive to smaller amounts of
description is particularly interesting since bond-centeredPectral weight: Here, the results of the calculation are
stripes in contrast to site-centered ones have been shown $§0Wn in Figs. )-7(d). The low-energy excitations of the
enhance superconducting pairing correlatingherefore, 212 configuration(c) are concentrated around the: /2,

this picture may provide a link to the doping dependence of- 7/2) points. Overlaying these excitations with the-3

the superconducting transition temperature of LSCO. HowSite-centered features would not yield the experimentally ob-
erved diamond structure connecting the,Q) excitations

ever, to be able to relate bond-centered stripes to tha . . . :
diamond-shaped low-energy excitations that appear in LSC nd therefore this configuration can be discarded. In contrast,
the other 2-2 configuration(b), where the extra holes are

and Nd-LSCO at 15% doping, one has to study bond- . . : . .
centered stripes at higher dopings than15%, since, in a populating the antiferromagnetic domains, does indeed show

phase-separated state, they have to carry all the additionag (e X%?r;?;ﬂ:iy;gsergsiitd;aswgId ?r?gp?ﬁrltggrh:esnizauc%
holes that make up the overall doping »#15% of the ™ P ' y

experimental sample. Here, we study three possibilities orfhe low-energy excitations in this region of momentum space

. ' . : . : which are due to the domains that are still in thé B site-
“overdoped” stripe configurations as displayed in Fig. 1 . . .
[labeled(b), (c), and (d), consistent with the figure label of S€Mtered configuratiofpresent at 12% dopingThe doped

Ref. 15: 3+ 1 site-centered configuratiqd), where the holes extend

: : . . into the antiferromagnetic region, also has its low-energy
calgs) dzopgdbo':r;g cig;§ratirc;on;|r?g rlz;tljcgeg;ui;e;rto r:;]aeggﬁit;]g excitations distributed around a diamond centered atlthe

(n)=0.75 as in the case of 12% doping and the other Iaddel;aomt[Flg. 7(d)]. However, its features are not as sharp as in

(previously undoped in the 12% doping caiseat a filling of 9. 7(.b)' This configuration cannot be SO easily discarded
(n)=0.875 yielding an overall doping of 19%. In this sce- an(Ij::)”rr] I%S:nb?e?éﬁzgt Lr\;ethdeisa?;uatlhr:asﬁn?tla.- article spectral
nario the doped region extends into the antiferromagnetic . b P y” SInge-p: - SPpec
domain between the charged stripdgchnically, this con- vv_elght of the three overdqped gtnpe_conﬂguraﬂons n
figuration has been realized by coupling & 2 ladder(two Figs. &b)_&d). and S_;(b)—g((_1). anflgura_tlons(_b) an(_j (d
holes with a 2x 8 ladder(four holes. show a two-dimensional tight-binding-like dispersion, the

(6) 2+2 bond-centered configuration, Figck Here, one difference being the large amount of spectral weight that is

) o - concentrated near the Fermi level at,Q) for the bond-
lr?::gﬁlrljj Ztst&et::gqg(;? d_oop;ifilzgfczgg tgga?;h;rellgi(:] (;e;r?ts\y; centered configuratiofb), which was also visible in the low-
all doping of 19%. In this scenario the excess holes furthef o1y excitation plofFig. 7(b)]. The other bond-centered

populate the charged stripe. Technically, this configuratior%ﬁrem?;éggfmg)al;v ng :”Fde?&?ﬁecg:ezrggir?g n;;;:?g)ad n
has been realized by coupling &3 ladder(no hole$ with (*hole pock’ets’) consistent with Fig. @) '
a 2Xx 8 ladder(six holes. I

(d) 3+1 site-centered configuration, Fig(dl: Here, the
chain is quarter-filled(n)=0.5) as in the case of 12% dop-
ing and the three-leg laddépreviously undoped in the 12%
doping casghas a filling of(n)=0.89 yielding an overall In this work, the cluster-perturbation technique and its
doping of 21%. In this scenario, the doped region extendgpplication to the stripe phase of high-materials and re-
into the antiferromagnetic domain between the chargegated compounds has been studied in detail. The CPT has
stripes[as in case(b)]. Technically, this configuration has peen applied to Hubbard ane) systems with different dop-
been realized by coupling two>36 ladders(two holes each  ings and stripe configurations. The comparison of our results
with a 1x12 chain(six holes. with recent ARPES data suggest that, in the case of LSCO

In Figs. Gb)—6(d) the electron occupation in momentum and Nd-LSCO, stripes are present over a wide doping range.
space is displayed. None of the three configurations showsor dopings below 12% the system consists of site-centered
the typical stripe signature(sne-dimensional distribution of Stripesl whereas for h|gher dopings more and more bond-
spectral weightbut the weight is more or less isotropically centered stripes are present at the expense of site-centered
distributed around thé'-point. The spectral weight in Fig. ones. In the case of bond-centered stripes at dopings higher
6(c) is almost circularly distributed and resemble(si?) of  than 12%, we have provided evidence that the excess holes
the free-electron gas. The weight distribution in Fige)6 prefer to proliferate out of the stripes into the AF domain.

IV. CONCLUSION
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the BMBF (05SB8WWAY. The calculations were carried Hamiltonian Eq.(A6) is now quadratic in thel, operators
out at the high-performance computing centers HLR<ANd can be readily solved exactly by Fourier transformation

(Stuttgart and LRZ (Miinchen. of the intercluster parifin the cluster variablea,b.
We now show that the resulting Green'’s function for the
APPENDIX c,, operators is given by Edq1). For convenience, we first

carry out a particle-hole transformation on the operaﬁﬁ;s
The CPT expression for Green’s function of the infinite

lattice, Eq.(1), can be obtained in an alternative way by pdeL,
mapping the fermionic operators onto “quasiparticle” opera-
tors which create the ionization and affinity states from the p1=dw (A8)

ground staté’*®We discuss here for simplicity the homoge-

neous case, whereby the lattice is divided into equal clustersuch that the new operatopd all create particles. Equation

although the extension to our case of different clusters i$A3) simplifies to

straightforward. Consider now the ground sté® of the

cluster Hamiltonian(say, with N particles and the excited cT=Z o* pT (A9)

stateg @) with N+ 1 andN—1 particles with corresponding no4 Thae Far

excitation energiegincluding chemical potentiale,. We . o )

can imagine théa) as being created from the ground stateWhere the matrixQ,, is given in terms of thel and S

via a fermionic creation operator matrices in Eq.(A4) as Q, =Ty, and Q,,=S$,,. The
particle-hole transformation affeck$. which becomes

) =d}|G), (A1)
which must satisfy the hard-core constraint FlczE 8(177012 pl(a)pa(a)Jrconst, (A10)
o a
> dld,=<1. (A2)  with
. _ - . 7n,=+1,
If one neglects two-particle excitations, the original fermion #
operators:ﬁ(n is the combined site and spin index within the n=—1 (A11)

clustey can be expressed in terms of tﬂb andd, as
and T is transformed to

=2 Tr,d,+2 S .4, (A3)
2 v -
7=2 2 2 Tom(a0)Q} .QmsPL(a)Pg(b).
with a,b nm a,B
(A12)
Tn,u=(GlCn| ), The total Hamiltonian Eq(A6) can thus be written in the
form
Sh.»=(¥[cq[G). (A4)
Here and in the following, we are using the lahelfor A=, pl(a)h, s(a,b)ps(b) (A13)
N+ 1-particle (inverse photoemissignstates, andv for N ab ap
— 1-particle(photoemissionstates. Other labels will not dis- with
tinguish between them. In terms of tleg, the intercluster
hopping part of the Hamiltonian has the general form hep(3,0) =84 st (QTT(a,0)Q)y 5. (Al4)
AT:E 2 7, (a,b)ci(a)c,(b) (A5) The Green’s function fop is readily evaluated from Eqg.
nm ab mLme . men (A13),
wherea,b label the individual clusters. Neglecting the two- a) ph(b)))=(z—h) "L A15
particle excitations and the constraint, the Hamiltonian of the ((Pa(@):Pp(0)) = (2= aa g (A19)
infinite lattice becomes where we have considered the terms within braces as matri-
R ces in the indicesra, Bb, whereby the complex frequenay
H=H.+7, (AB) is proportional to the identity matrix. The Green’s function
. for the “true” particlesc is readily obtained by inserting the
whereH. is the intracluster Hamiltonian transformation, Eq(A9),
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G:n,bmz«cn(a)!cl‘l(b)»:(Q(Z_h)_lQT)aa,Bb- Unfortunately, Q is in general not a square matrix, as
(A16) there are more single-particle excited states as particles.
) _ Therefore, one cannot easily invert EA16). Nevertheless,
We now want to show that E§A16) is equivalent to Ed.  this problem can be readily overcome. We sketch the main
(1). Consider first thexactGreen'’s function of a single clus- procedure below. The matri®, ., say, with dimension®
ter, X S, consists oR row orthonormal vectorag‘) . By append-
GCluster— 5a,b(<Cn(a),CL(a)>>c- (A17) ing the remainings-R orthonormal vectors tQ, one obtains

an,bm — =
. . L . a square matrix) which is now unitary. For the “extended”
By inserting Eq.(A4) in its Lehmann representation, one q X y

obtains Green’s functionsG* and G®'Ust¢", obtained by replacing
et Q—Qin Egs.(A16) and(A18), respectively, the relation Eq.
Gonoe'=[T(z—e) T'+S(z+e) 'S (A19) obviously holds. It is now a matter of matrix algebra
~[Q(z—&7) QM. (A18) to show thatG” and G¢''S*" are given by the “upper left”

RXR blocks (in the n,m indiceg of the respective “ex-
where the matriceg and » are diagonal matrices in the tended” matrices, i.e.,
indicesa, B with valuese ,, and z,, respectively.
Using the anticommutation rules, it is now straightfor-
Warq to show that the produ@ Q' is equal to' the identity GZ o pm= g;cn . forn,m=R, (A20)
matrix |. Let us assume for a moment th@tis a square ’ ’
matrix, so thaQ is a unitary matrix, an@@'Q=1 as well. In

this way, Eq.(A16) can be readily inverted yieldingwe  gnd the same fo6&C''ste" The last line of Eq(A19), thus,

consider the matrixQ as the identity matrix in the,b indi- holds for the case of nonsquare matri@as well.
ces, i.€.Qna,p0= 94,0Qn,p) In summary, we have shown that the CPT is equivalent to
G* 1=Q(z—h)Q"=Q(z— e 7—-Q'TQ)Q" a mapping onto a m'odel of hard-core fermions describing
single-particle excitations from the ground state of the clus-
=Geoluster-1_ (A19) ter. This fact suggests an improvement of the method

whereby two-particle processes, such as spin, charge, or pair
excitations, are taken into account by introducing appropriate
hard-core bosons.

which is equivalent to Eq1), if one considers tha¢(P) [Eq.
(2)] is nothing but the Fourier transform @fin the cluster
coordinatesa andb.
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