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Evolution of the stripe phase as a function of doping from a theoretical analysis
of angle-resolved photoemission data
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By comparing single-particle spectral functions oft-J and Hubbard models with recent angle-resolved
photoemission results for La22xSrxCuO4 ~LSCO! and Nd-LSCO, we can decide where holes go as a function
of doping, and more specifically, which type of stripe~bond-, site-centered! is present in these materials at a
given doping. For dopings greater than about 12% our calculation shows that the holes prefer to proliferate out
of the metallic stripes into the neighboring antiferromagnetic domains. The spectra were calculated by a
cluster-perturbation technique, for which we present an alternative formulation. Implications for the theory for
high-Tc superconductivity are discussed.
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I. INTRODUCTION

At present, stripes are at the heart of the debate conc
ing the mechanism of superconductivity in high-temperat
superconductors. There is clear experimental evidence
static stripes in Nd-doped LSCO~Nd-LSCO, for example,
La1.48Nd0.4Sr0.12CuO4) from elastic neutron-scatterin

experiments.1 The existence of a dynamical stripe phase
the ‘‘real’’ high-Tc compound LSCO or even in
YBa2Cu3O72d ~YBCO! has been conjectured from simila
diffraction patterns in the inelastic neutron-scatteri
results.2–4 However, it has not been decided so far wheth
the observed pattern is due to one-dimensional spin inho
geneities~i.e., stripes!2,3 or to two-dimensional incommensu
rable spin waves.5 In the case of YBCO near optimal doping
it has been suggested that the incommensurable four
neutron-scattering peak is due to the dispersion of the
mous 41 meV commensurable@found below Tc at momen-
tum k5(p,p)# neutron-scattering peak to lower excitatio
energies aroundk5(p,p).5 From the theoretical point o
view, several numerical analyses, ranging fro
Hartree-Fock,6,7 density-matrix renormalization grou
~DMRG!,8 to dynamical mean-field theory,9 indicate that
stripes can be produced by purely strong-correlation effe
On the other hand, structural transformations1,10,11as well as
long-range Coulomb interactions12,13 may also play an im-
portant role in the formation of stripes.

In this paper, we provide numerical arguments show
that an essential link in the chain of evidence for stripes
provided by angle-resolved photoemission spectrosc
~ARPES!: ARPES spectra show hardly any difference b
tween LSCO~dynamicalstripes candidate! and Nd-LSCO
~static stripe system!.14–16This fact was first pointed out by
a semiphenomenological argument by Salkolaet al.17 In a
previous paper, we have shown that salient spectral feat
of Nd-LSCO and LSCO can be explained by a model w
static stripes.18 Here, we will show that the spectra of LSC
and Nd-LSCO can be almost quantitatively described by
ferent types of stripe states~i.e., site-centered, bond
centered! for a wide variety of dopings. Since the experime
tal ARPES spectra for LSCO and Nd-LSCO are so sim
0163-1829/2002/65~4!/045109~9!/$20.00 65 0451
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and their spectra can be quantitatively described by st
models, we argue that there must be stripes present in LS
as well, at least in the underdoped to optimally dop
regime.

The ARPES spectra of LSCO and Nd-LSCO have be
studied in the framework of the stripe picture in seve
works ~Refs. 19–28 and many others!. According to Ref. 19,
the stripe phase is produced from critical fluctuations in
neighborhood of a quantum-critical point. As a result, o
obtains coherent quasiparticle peaks at low binding ener
and incoherent shadow bands at higher energies. The
lying spectral weight is concentrated near the nodal poi
Reference 20 points out the fact that the single-particle sp
trum becomes broader in the nodal direction. Reference
discusses the fact that the Fermi surface is one dimensi
in static stripe systems, whereas in Bi2Sr2CaCu2O8 ~Ref. 29!
quasiparticles are formed, which run in the diagonal dir
tion. Finally, in Refs. 21 and 23, the ARPES spectrum,
particular the different sharpness of the momentu
distribution curves and the energy-distribution curves, is
tributed to a dimensional crossover from one-dimensio
Luttinger-liquid behavior at higher temperatures to a qua
particle behavior at lower temperatures.30

The present paper aims at complementing the result
these works and, in particular, it addresses the question o
stripe form as a function of doping. If stripes are present
low-energy excitations in the high-Tc compounds, they mus
affect the microscopic description of the superconduct
state, independently of whether they are an obstacle aga
superconductivity or even its driving force. In this conte
an important question is whether stripes are bond-centere
site-centered since, theoretically, bond-centered stripes h
been shown to enhance superconducting pair
correlations.31,13 By analyzing the different scenarios wit
our technique and comparing the results with ARPES spe
for different dopings, we can decide which type of stri
~bond- or site-centered! better describes the spectrum as
function of doping.

Very recently, Zhou et al.15 succeeded in measurin
ARPES data on Nd-LSCO and LSCO systems with differ
doping levels. In the doping region beyond 12% the ARP
results reveal a dual nature of the electronic structure:
straight segments forming the ‘‘Fermi surface’’ in energ
©2002 The American Physical Society09-1
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ZACHER, EDER, ARRIGONI, AND HANKE PHYSICAL REVIEW B65 045109
integrated photoemission and the (p,0) low-energy excita-
tions, which have been attributed to site-centered stripes
the 12% doping case,18 are still present but overlaid with
more two-dimensional~2D! features reminiscent of a simpl
tight-binding band structure for homogeneous 2D syste
Zhouet al. address the experimental question of whether
two features originate from the mixing of two differen
phases or whether they are intrinsic properties of the s
stripe phase. In the first case~phase separation! there should
be a nonstripe phase with a very high carrier concentra
~as estimated from the area inside the Fermi surface! coex-
isting with a phase of site-centered stripes. The auth
remark that there is hardly evidence for such a phase
Nd-LSCO and LSCO at the doping levels und
consideration.16,32,33Another scenario consistent with the e
perimental observation would be that the system forms m
and more bond-centered stripes upon increasing the do
beyond 12%. The possibility for the latter scenario was
ready indicated by our earlier calculations,18 where the spec-
trum of bond-centered stripes resembles the diamond-sh
two-dimensional feature observed by Zhouet al. In the
present paper we will show that the evolution of the expe
mental ARPES with increasing doping can be described
assuming that more and more bond-centered stripes
formed at the expense of site-centered ones~as conjectured
previously by Zhouet al.!.

Our approach adopts the cluster-perturbation the
~CPT! developed by Senechalet al.,34 which consists of
splitting the infinite lattice into clusters which are treated
exact diagonalization. The intercluster hopping terms
then treated perturbatively, so that one eventually appr
mates the infinite lattice. This method takes into account
actly the local correlations, which probably are the most i
portant ones in these systems, and at the same time mak
k points of the Brillouin zone available. In addition, this is a
ideal method to deal with a ‘‘larger unit cell’’ such as the o
present in the stripe phase. One should, however, men
that at this level, the method is not appropriate to expl
stripe stability for a given model. As a matter of fact, this
not the aim of the present work. Rather, via this CPT
proach we enforce a stripe pattern by connecting clus
with different hole dopings@see Fig.~1!#. The concentration
difference is produced by introducing an on-site energy s
D between the more doped and the less doped clusters.D is
adjusted for each case~together with the chemical potentia!
in order to give the desired hole concentrations. A discuss
of this energy shift is given below. This procedure allows
to study the spectral function and compare it with ARP
experiments. A similar approach has been taken in Ref.
where the hole spectral function for site-centered stripe
terns was calculated within the string picture.

Our paper is organized as follows: In Sec. II, we expla
in detail how the CPT is applied to the stripe phase. In S
III our numerical results are presented and compared w
ARPES spectra. The content of this article is summarize
Sec. IV. Finally, the Appendix presents an alternative deri
tion of the CPT equation, by means of a mapping onto
hard-core fermion model. In this Appendix, we show that
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CPT approximation amounts to neglecting two-particle ex
tations within this model.

II. TECHNIQUE

The computational technique for our calculation of t
single-particle spectral weightA(k,v) and for the Green’s
function is a special application of the CPT for inhomog
neous systems. This method is based on a strong-coup
perturbation expansion of the~Hubbard-model’s! one-body
hopping operators linking the individual unit cells.34 At low-
est order in this expansion, the Green’s function of the in
nite lattice can be expressed~in matrix form! as

G`~P,z!5
Gcluster~z!

12e~P!Gcluster~z!
, ~1!

where the matricesG`, Gcluster, ande(P) will be defined
around Eq.~2!. The authors of Ref. 34 have pointed out th
the above formula becomes exact in the limit of vanish
interaction (U/t50) and, obviously, in the atomic limit (t
50), and can thus be considered as an interpolation sch
betweent→` and t→0. Notice, however, that this formula
does notbecome exact in theU→` limit. In the interesting
regime where the interaction and the hopping are of the s
order of magnitude Senechalet al. have shown numerically
that Eq.~1! gives an accurate interpolation between the t
limiting cases. Additionally, we have shown in our previo
paper18 that the cluster-perturbation technique is idea
suited to study inhomogeneous systems such as the s
state in the high-Tc compounds. In order to deal with stripe
the infinite lattice is divided into unit cells of equal size@Fig.
2~a!#. The unit cell is further divided into independent bloc

FIG. 1. Unit cells for different stripe configurations:~a! 411
site-centered with 10% doping;~b! 212 bond-centered with 19%
doping (238 with two holes and 238 with four holes!; ~c! 212
bond-centered with 19% doping (238 with no holes and 238
with six holes!; ~d! 311 site-centered with 21% doping.
9-2
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EVOLUTION OF THE STRIPE PHASE AS A FUNCTION . . . PHYSICAL REVIEW B65 045109
to incorporate the stripe topology: In the example of Fig.
we are interested in a site-centered~‘‘3 11’’ ! configuration
with quarter-filled metallic chains alternating with half-fille
three-leg ladders. The three-leg ladders~here 336 blocks!
and quarter-filled chains@here 1312 with six holes, see Fig
2~b!# are solved by exact diagonalization, yielding the sing
particle spectral function of the block. The individu
Green’s functions of the blocks forming a unit-cell clust
are combined to form the Green’s function of the unit c
Gcluster at ‘‘order zero,’’ i.e., in which the intracluster hop
ping terms are set to zero. In a second step, the intraclu
hopping connecting the individual blocks both within th
same unit cell and in different unit cells@dashed lines in Fig.
2~b!# are incorporated via the cluster-perturbation techniq
This yields the desired Green’s function of the infinite lattic
Where it was technically feasible, we doubled the unit c
~as in Fig. 2! and diagonalized two three-leg ladders with
staggered magnetic field pointing in opposite directions,
sulting in ap-phase-shifted@between the antiferromagnet
~AF! domains# Néel order in the final configuration. Thi
site-centered ‘‘311’’ configuration with ap-phase-shifted
Néel order of stripes was first suggested by Tranquadaet al.1

Bond-centered stripes, on the other hand, are modeled
two-leg ladders with alternating filling. In the following, w
will refer to this bond-centered configuration as ‘‘212.’’

Holes can propagate out of the metallic stripes into the
insulating domains via the inter- and intra-unit-cell hoppin
~dashed lines in Fig. 2!. As explained above, our metho
consists in ‘‘forcing’’ the stripe structure ‘‘by hand’’ in orde
to study the effects of this structure on the photoemiss
spectrum. The different hole concentration in the ‘‘metalli
and in the ‘‘antiferromagnetic’’ regions is achieved by adju

FIG. 2. Visualization of the cluster-perturbation approach
stripes: The infinite lattice is divided into unit cells. The unit ce
differ for different stripe configurations. As shown here, the unit c
for a 311 configuration consists of two 336 ladders on top of
each other next to a 12-site chain. The three-leg ladders on the
half of the unit cell were diagonalized with a staggered magn
field which was oriented in the opposite direction of the one on
right half. The hopping terms connecting the exactly solved clus
(336 and 1312) as well as the hoppings connecting the unit ce
are included via the cluster-perturbation technique.
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ing independently the chemical potential of the individu
blocks so that the desired hole density~see Fig. 1! is ob-
tained. This corresponds to introducing an on-site ene
shift between the two blocksD'1.5t. Physically, this shift
corresponds to the energy of the stripe formation, poss
produced by a combined effect of strong correlation and
lattice distortion occurring in the low-temperature tetrago
phase.1 Obviously, the large value ofD we are taking exag-
gerates the above effects. Nonetheless, while we do not
pect our calculation to give aquantitativedescription of the
phenomenon, it provides aqualitative explanation of the
ARPES experiments in terms of theshapeof the stripes in-
dependently of theiramplitude. Of course, without such an
energy shift it would be impossible to obtain such large d
sity oscillations, such as the ones shown in Fig. 1. As
matter of fact, in a homogeneous system the amplitude
charge oscillations remains of the order 0.1 or less, as sho
e.g., by DMRG calculations.8,13Alternatively, Eq.~1! can be
obtained by expressing the fermionic creation/annihilat
operatorci

(†) in terms of fermionic creation and annihilatio
operatorsda

(†) representing the photoemission and inve
photoemission target statesua& of the diagonalized cluster
This derivation of Eq.~1! is presented in the Appendix.

In Eq. ~1!, P is a superlattice wave vector andG` is the
Green’s function of the ‘‘̀ -size’’ 2D system, however, stil
in a hybrid representation: real space within a cluster a
Fourier space between the clusters. This is related to the
that G`(P,z) is now anM3M matrix in the space of site
indices @in the inhomogeneous stripe configuration of F
2~b! M523(336)11312596#. Likewise, e(P) and
Gcluster areM3M matrices in real space withe(P) standing
for the perturbation. For the situation in Fig. 2~b!, the only
nonzero elements of the Hermitian matrixe(P) are repre-
sented by the dashed bonds in the figure:

e~P! l ,m5H 2t:

2te6 iPx/y:

0:

dashed bonds inside cell,

bonds connecting cells,

elsewhere.

~2!

In order to facilitate diagonalization of the individua
clusters, we used periodic boundary conditions along
stripe direction. In principle, this introduces hopping term
which are not present in the infinite lattice. However, this
not a problem, since these terms can be consistently remo
perturbatively by subtracting corresponding terms from
matrix elements ofe(P). A complete Fourier representatio
of G` in terms of the original reciprocal lattice then yield
the cluster-perturbation theory~CPT! approximation.34

To allow for larger block sizes, we actually diagonalize
the t-J model on the blocks to obtain the~block! Green’s
functions as an approximation for the Hubbard-mode
~block! Green’s function. Thet-J Hamiltonian is defined as

H52t (
^ i , j &,s

~ ĉi ,s
† ĉ j ,s1H.c.!1J(

^ i , j &
S SiSj2

ninj

4
D . ~3!

r

l

eft
ic
e
rs
s

9-3



on

ng

iz

e.

l-
he
el
r-
na

f

ig
th

ca
d

e
ec
e
re

-
ee
ig
ge
rip

de
p
d

s-
l
ril-
he

8
g
ripe
dis-
t

ed

P

g
e

on-
sed

n
u-
ori-
tral

ZACHER, EDER, ARRIGONI, AND HANKE PHYSICAL REVIEW B65 045109
The sums run over all nearest-neighbor pairs^ i , j &. No
double occupancy is allowed. We have chosen the comm
accepted valuesJ/t50.4 andt'0.5 eV.

The quality of this approximation is tested by compari
single-particle spectral functions of 212 bond-centered
stripe configurations at 12% doping based on diagonal
tions of both Hubbard andt-J models. In Fig.~3!, we show
A(kW ,v) for the standard walk through the Brillouin zon
One observes that the result for the Hubbard model@U
58t, Fig. 3~a!# is very similar to thet-J model result@J
50.4t, Fig. 3~b!#: The dispersion is two-dimensional, meta
liclike, and comparable to a tight-binding dispersion. T
only difference between the figures is quantitative, nam
the different Fermi velocities and bandwidths. This diffe
ence is predominantly due to the omission of the conditio
hopping terms;J ~Ref. 36! in the t-J Hamiltonian. Another
reason may be due to the fact that the basic parameters o
models, the interaction strengthsJ andU, have not been fine
tuned to match each other. The integrated spectral we
obtained from the two models is depicted in Fig. 4. In bo
cases, the occupation in momentum spacen(kW ) is distributed
almost isotropically around theG point. The low-energy ex-
citations for both models indicate a two-dimensional lo
density approximation-like Fermi surface, however with a
ditional weight at the (6p,0),(0,6p) points. The additional
(p,0) features are sharper in the Hubbard-model case.

Turning on the perturbation allows the holes to travel b
tween the blocks and unit cells. In Fig. 5, we show the el
tron concentration~averaged in the direction along th
stripes! in the direction perpendicular to the stripes befo
~thick lines! and after~bars! applying CPT for the stripe con
figurations that are discussed in this paper. As can be s
the holes do not travel far from the domains that were or
nally defined, and the electron occupation hardly chan
from the unperturbed setup. Therefore, the desired st
configuration is conserved in our approach.

III. NUMERICAL RESULTS

We proceed to the discussion of the spectra for the un
doped region: At 10% doping, the stripes have a charge
riodicity of five lattice constants according to the Tranqua
picture. This configuration has been modeled by a 5312 unit

FIG. 3. Single-particle spectral function for a 212 bond-
centered stripe configuration at 12% doping; comparison of C
calculations based on exact diagonalizations of two two-legt-J lad-
ders withJ50.4t ~a! and on exact diagonalizations of two two-le
Hubbard ladders withU58t ~b!. The gray scale represents th
weight of spectral function at the specific (k,v) point with dark
areas 0corresponding to high spectral weight.
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cell consisting of two half-filled 436 systems~stacked on
top of each other! and a quarter-filled 12-site chain as di
played in Fig. 1~a!. Figure 6~a! shows that the spectra
weight is confined in one-dimensional segments of the B
louin zone indicating a one-dimensional Fermi surface. T
low-energy excitations in Fig. 7~a! are mainly located at the
(6p,0) and (0,6p) points in momentum space. In Figs.
and 9~a! the single-particle spectral function for this dopin
is plotted directly and one observes the characteristic st
features that have been discussed in detail in Ref. 18: a
persionless band near (p,0) crossing the Fermi surface a
(p,p/4) resulting from the one-dimensional chain orient
in the y direction, the double-peak structure at (p,0) from

T

FIG. 4. Integrated spectral weight of bond-centered stripe c
figurations at 12% doping; comparison of CPT calculations ba
on exact diagonalizations oft-J ladders@~a!,~b!; J50.4t# and Hub-
bard ladders@~c!,~d!; U58t#. ~a!,~c! Total integrated weight in pho-
toemission@n(k)#; ~b!,~d! low-energy excitations~integrated weight
in EF20.2t,v,EF). The data are plotted for the whole Brilloui
zone with theG point in the center. The result of the stripe calc
lations have been symmetrized to account for the differently
ented stripe domains in real materials. Regions of high spec
weight correspond to white areas.

FIG. 5. Electron occupation in real space before~thick lines!
and after~thin lines! application of CPT:~a!, ~b!, ~c!, and ~d! ac-
cording to Fig. 1.
9-4
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EVOLUTION OF THE STRIPE PHASE AS A FUNCTION . . . PHYSICAL REVIEW B65 045109
the hybridization of the metallic band with the top of th
antiferromagnetic band and an excitation at (p/2,p/2) at
higher binding energies than at (p,0). The combined result
for this doping agree very well with the recent ARPES
sults by Zhouet al.15 giving further support for the static
stripe picture by Tranquada: at least below 12% dopi
charge carriers are only present in quarter-filled chains
are alternating with half-filled antiferromagnetic domai
and an increasing doping is realized by lowering the dista
between the chains and therefore reducing the effective
of the antiferromagnetic domains.

The incommensuration of the quasielastic neutron sca
ing does not increase any more beyond a doping leve
12%. The simple picture of one-dimensional chains mov
closer together at the expense of antiferromagnetic undo
domains thus cannot be valid in this regime. For a doping
1/8, we have previously shown18 that the ARPES data can b
explained by assuming that the static stripe system~Nd-

FIG. 6. Total integrated spectral weight in photoemissionn(kW ):
~a!, ~b!, ~c!, and~d! according to Fig. 1.

FIG. 7. Integrated spectral weight around the Fermi surface:~a!,
~b!, ~c!, and~d! according to Fig. 1.
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LSCO! is in a state of site-centered stripes, where three-
antiferromagnetic ladders alternate with quarter-filled cha
Here we will address the question of how to describe
system for dopings higher than 1/8 or 12%. The ARP
results by Zhouet al. suggest that LSCO and Nd-LSCO
samples at 15% doping are in a state that is still mainly i

FIG. 8. Density plot of the single-particle spectral function f
negative energies:~a!, ~b!, ~c!, and~d! according to Fig. 1.

FIG. 9. Same as Fig. 8 in a three-dimensional plot.
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ZACHER, EDER, ARRIGONI, AND HANKE PHYSICAL REVIEW B65 045109
311 stripe phase since the ARPES results show all the
tures that have been previously observed for thex50.12
samples: one-dimensional Fermi surface and low-energy
citations located at (6p,0) and (0,6p). In addition, how-
ever, low-energy excitations appear around the edge o
diamond located at the center of the Brillouin zone. The
excitations are connecting the (p,0) features. Zhouet al.
conjecture that bond-centered stripes are formed at the
pense of site-centered ones, since it was shown in our pr
ous calculation that bond-centered stripes do indeed ex
such a diamond-shaped low-energy excitation pattern. T
description is particularly interesting since bond-cente
stripes in contrast to site-centered ones have been show
enhance superconducting pairing correlations.31 Therefore,
this picture may provide a link to the doping dependence
the superconducting transition temperature of LSCO. Ho
ever, to be able to relate bond-centered stripes to
diamond-shaped low-energy excitations that appear in LS
and Nd-LSCO at 15% doping, one has to study bo
centered stripes at higher dopings thanx515%, since, in a
phase-separated state, they have to carry all the additi
holes that make up the overall doping ofx515% of the
experimental sample. Here, we study three possibilities
‘‘overdoped’’ stripe configurations as displayed in Fig.
@labeled~b!, ~c!, and ~d!, consistent with the figure label o
Ref. 15#:

~b! 212 bond-centered configuration~anti ferromagneti-
cally doped!, Fig. 1~b!: Here, one ladder is at the filling
^n&50.75 as in the case of 12% doping and the other lad
~previously undoped in the 12% doping case! is at a filling of
^n&50.875 yielding an overall doping of 19%. In this sc
nario the doped region extends into the antiferromagne
domain between the charged stripes. Technically, this con-
figuration has been realized by coupling a 238 ladder~two
holes! with a 238 ladder~four holes!.

~c! 212 bond-centered configuration, Fig. 1~c!: Here, one
ladder is at the fillinĝ n&50.625 and the other ladder stay
half-filled as in the 12% doping case, again yielding an ov
all doping of 19%. In this scenario the excess holes furt
populate the charged stripe. Technically, this configurat
has been realized by coupling a 238 ladder~no holes! with
a 238 ladder~six holes!.

~d! 311 site-centered configuration, Fig. 1~d!: Here, the
chain is quarter-filled (̂n&50.5) as in the case of 12% dop
ing and the three-leg ladder~previously undoped in the 12%
doping case! has a filling of ^n&50.89 yielding an overall
doping of 21%. In this scenario, the doped region exte
into the antiferromagnetic domain between the char
stripes @as in case~b!#. Technically, this configuration ha
been realized by coupling two 336 ladders~two holes each!
with a 1312 chain~six holes!.

In Figs. 6~b!–6~d! the electron occupation in momentu
space is displayed. None of the three configurations sh
the typical stripe signatures~one-dimensional distribution o
spectral weight! but the weight is more or less isotropical
distributed around theG-point. The spectral weight in Fig
6~c! is almost circularly distributed and resemblesn(kW ) of
the free-electron gas. The weight distribution in Figs. 6~b!
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and 6~d!, on the other hand, is more of a diamond shape
the ‘‘phase-separated’’ picture, we expect the spectral we
stemming from the above configurations~b!, ~c!, and ~d! to
be superimposed onto the spectral weight coming from
dominating 311 site-centered structure which is all conce
trated in the one-dimensional segments in momentum sp
This might be the reason why in the actual experiment Zh
and coworkers can only resolve the latter.

For the low-energy excitations, the situation is differe
since a much smaller energy window is integrated and th
fore the experiment is more sensitive to smaller amounts
spectral weight: Here, the results of the calculation
shown in Figs. 7~b!–7~d!. The low-energy excitations of the
212 configuration~c! are concentrated around the (6p/2,
6p/2) points. Overlaying these excitations with the 311
site-centered features would not yield the experimentally
served diamond structure connecting the (p,0) excitations
and therefore this configuration can be discarded. In contr
the other 212 configuration~b!, where the extra holes ar
populating the antiferromagnetic domains, does indeed s
the experimentally observed diamond shape. In this se
the (p,0) features are present as well. They further enha
the low-energy excitations in this region of momentum spa
which are due to the domains that are still in the 311 site-
centered configuration~present at 12% doping!. The doped
311 site-centered configuration~d!, where the holes extend
into the antiferromagnetic region, also has its low-ene
excitations distributed around a diamond centered at thG
point @Fig. 7~d!#. However, its features are not as sharp as
Fig. 7~b!. This configuration cannot be so easily discard
and might be present in the actual material.

For completeness, we display the single-particle spec
weight of the three ‘‘overdoped’’ stripe configurations
Figs. 8~b!–8~d! and 9~b!–9~d!: Configurations~b! and ~d!
show a two-dimensional tight-binding-like dispersion, t
difference being the large amount of spectral weight tha
concentrated near the Fermi level at (p,0) for the bond-
centered configuration~b!, which was also visible in the low-
energy excitation plot@Fig. 7~b!#. The other bond-centere
configuration~c!, where all doped holes are concentrated
one ladder, only has a Fermi-level crossing at (p/2,p/2)
~‘‘hole pockets’’! consistent with Fig. 7~c!.

IV. CONCLUSION

In this work, the cluster-perturbation technique and
application to the stripe phase of high-Tc materials and re-
lated compounds has been studied in detail. The CPT
been applied to Hubbard andt-J systems with different dop-
ings and stripe configurations. The comparison of our res
with recent ARPES data suggest that, in the case of LS
and Nd-LSCO, stripes are present over a wide doping ran
For dopings below 12% the system consists of site-cente
stripes, whereas for higher dopings more and more bo
centered stripes are present at the expense of site-cen
ones. In the case of bond-centered stripes at dopings hi
than 12%, we have provided evidence that the excess h
prefer to proliferate out of the stripes into the AF domain
9-6
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APPENDIX

The CPT expression for Green’s function of the infin
lattice, Eq. ~1!, can be obtained in an alternative way b
mapping the fermionic operators onto ‘‘quasiparticle’’ ope
tors which create the ionization and affinity states from
ground state.37,38We discuss here for simplicity the homog
neous case, whereby the lattice is divided into equal clus
although the extension to our case of different clusters
straightforward. Consider now the ground stateuG& of the
cluster Hamiltonian~say, with N particles! and the excited
statesua& with N11 andN21 particles with corresponding
excitation energies~including chemical potential! «a . We
can imagine theua& as being created from the ground sta
via a fermionic creation operator

ua&5da
† uG&, ~A1!

which must satisfy the hard-core constraint

(
a

da
†da<1. ~A2!

If one neglects two-particle excitations, the original fermi
operatorscn

†(n is the combined site and spin index within th
cluster! can be expressed in terms of theda

† andda as

cn
†5(

m
Tn,m* dm

† 1(
n

Sn,n* dn ~A3!

with

Tn,m5^Gucnum&,

Sn,n5^nucnuG&. ~A4!

Here and in the following, we are using the labelm for
N11-particle ~inverse photoemission! states, andn for N
21-particle~photoemission! states. Other labels will not dis
tinguish between them. In terms of thecn , the intercluster
hopping part of the Hamiltonian has the general form

T̂5(
n,m

(
a,b

Tn,m~a,b!cn
†~a!cm~b!, ~A5!

wherea,b label the individual clusters. Neglecting the tw
particle excitations and the constraint, the Hamiltonian of
infinite lattice becomes

Ĥ5Ĥc1T̂, ~A6!

whereĤc is the intracluster Hamiltonian
04510
p-

-
e

rs,
is

e

Ĥc5(
a

(
a

«ada
†~a!da~a!, ~A7!

and we have introduced a cluster indexa for the da . The
Hamiltonian Eq.~A6! is now quadratic in theda operators
and can be readily solved exactly by Fourier transformat
of the intercluster partT̂ in the cluster variablesa,b.

We now show that the resulting Green’s function for t
cn operators is given by Eq.~1!. For convenience, we firs
carry out a particle-hole transformation on the operatorsda

† ,

pm
† 5dm

† ,

pn
†5dn , ~A8!

such that the new operatorsp† all create particles. Equation
~A3! simplifies to

cn
†5(

a
Qn,a* pa

† , ~A9!

where the matrixQn,a is given in terms of theT and S
matrices in Eq.~A4! as Qn,m5Tn,m and Qn,n5Sn,n . The
particle-hole transformation affectsĤc which becomes

Ĥc5(
a

«aha(
a

pa
†~a!pa~a!1const, ~A10!

with

hm511,

hn521, ~A11!

and T̂ is transformed to

T̂5(
a,b

(
n,m

(
a,b

Tn,m~a,b!Qn,a* Qm,bpa
†~a!pb~b!.

~A12!

The total Hamiltonian Eq.~A6! can thus be written in the
form

Ĥ5(
a,b

(
a,b

pa
†~a!ha,b~a,b!pb~b! ~A13!

with

ha,b~a,b!5da,b«aha1~Q†T ~a,b!Q!a,b . ~A14!

The Green’s function forp is readily evaluated from Eq
~A13!,

^^pa~a!,pb
†~b!&&5~z2h!aa,bb

21 , ~A15!

where we have considered the terms within braces as m
ces in the indicesaa,bb, whereby the complex frequencyz
is proportional to the identity matrix. The Green’s functio
for the ‘‘true’’ particlesc is readily obtained by inserting th
transformation, Eq.~A9!,
9-7
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Gan,bm
` [^^cn~a!,cm

† ~b!&&5~Q~z2h!21Q†!aa,bb .
~A16!

We now want to show that Eq.~A16! is equivalent to Eq.
~1!. Consider first theexactGreen’s function of a single clus
ter,

Gan,bm
cluster[da,b^^cn~a!,cm

† ~a!&&c . ~A17!

By inserting Eq.~A4! in its Lehmann representation, on
obtains

Gan,am
cluster5@T~z2«!21T†1S~z1«!21S†#n,m

5@Q~z2«h!21Q†#n,m , ~A18!

where the matrices« and h are diagonal matrices in th
indicesa,b with values«a , andha , respectively.

Using the anticommutation rules, it is now straightfo
ward to show that the productQ Q† is equal to the identity
matrix I. Let us assume for a moment thatQ is a square
matrix, so thatQ is a unitary matrix, andQ†Q5I as well. In
this way, Eq.~A16! can be readily inverted yielding~we
consider the matrixQ as the identity matrix in thea,b indi-
ces, i.e.,Qna,bb5da,bQn,b)

G`215Q~z2h!Q†5Q~z2«h2Q†T Q!Q†

5Gcluster212T, ~A19!

which is equivalent to Eq.~1!, if one considers thate(P) @Eq.
~2!# is nothing but the Fourier transform ofT in the cluster
coordinatesa andb.
S

F.

n

s.

ev

n,

04510
Unfortunately,Q is in general not a square matrix, a
there are more single-particle excited states as partic
Therefore, one cannot easily invert Eq.~A16!. Nevertheless,
this problem can be readily overcome. We sketch the m
procedure below. The matrixQn,a , say, with dimensionsR
3S, consists ofR row orthonormal vectorsva

(n) . By append-
ing the remainingS-R orthonormal vectors toQ, one obtains

a square matrixQ̄ which is now unitary. For the ‘‘extended’

Green’s functionsḠ` and Ḡcluster, obtained by replacing

Q→Q̄ in Eqs.~A16! and~A18!, respectively, the relation Eq
~A19! obviously holds. It is now a matter of matrix algeb
to show thatG` andGcluster are given by the ‘‘upper left’’
R3R blocks ~in the n,m indices! of the respective ‘‘ex-
tended’’ matrices, i.e.,

Gan,bm
` 5Ḡan,bm

` for n,m<R, ~A20!

and the same forGcluster. The last line of Eq.~A19!, thus,
holds for the case of nonsquare matricesQ as well.

In summary, we have shown that the CPT is equivalen
a mapping onto a model of hard-core fermions describ
single-particle excitations from the ground state of the cl
ter. This fact suggests an improvement of the meth
whereby two-particle processes, such as spin, charge, or
excitations, are taken into account by introducing appropr
hard-core bosons.
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