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First-principles calculation of coincidence Doppler broadening of positron annihilation radiation
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We report a first-principles method for calculating the momentum density of positron-electron pairs in
materials, which can be accurately measured, in a wide momentum range, by means of coincidence Doppler
broadening~CDB! of positron annihilation radiation. The calculation is based on the two-component density-
functional theory within the local-density approximation. The electron and positron wave functions are calcu-
lated by means of the full-potential linearized-augmented-plane-wave method with use of semicore orbitals and
of the pure plane-wave method, respectively. This hybrid basis set accurately determines the wave functions of
core and valence electrons and is free from any shape or symmetry assumption for the positron wave function.
The method is applied to two typical systems. i.e., Al and graphite having isotropic and anisotropic positron
densities, respectively. The calculations agree well with experiments over the entire measurable momentum
region. Especially, the calculations well reproduce the anisotropic high-momentum CDB tails of graphite,
which originate from the quasi-two-dimensionally distributed positron. This reproduction suggests that the
present method is applicable for a variety of materials.

DOI: 10.1103/PhysRevB.65.045108 PACS number~s!: 78.70.Bj, 71.15.Dx, 71.60.1z
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I. INTRODUCTION

A positron injected into solid is annihilated with a su
rounding electron into twog photons. The total momentum
of the annihilated positron-electron pair is mainly owing
the electron since the positron is rapidly thermalized bef
annihilation.1 The usual one-detector Doppler-broadeni
~DB! technique measures the Doppler shift in the energy
one of these twog photons given rise by the longitudina
momentum component of the positron-electron pair alo
the photon emission direction. The technique thus profi
one-dimensional~1D! momentum-density distribution of th
positron-electron pair along a chosen axis. Unfortunately,
ing hampered by high background, the one-detector DB te
nique can reliably measure only the positron annihilatio
with the valence electrons and with the low-momentum c
electrons.

The coincidence DB technique registers the energies
both annihilationg photons by using a couple of detectors
coincidence. The coincidence measurement much impro
the peak-to-background ratio of the usual one-detector
by three orders~as high as 105:1! and thus enables the pro
filing of the 1D momentum-density distribution of th
positron-electron pair over wide momentum region.2–4 The
CDB technique has great application potential for the stud
of the electronic and atomic structures of defects in sol
since it is possible to identify the elements around the p
tron annihilation sites based on the characteristic shape
the CDB spectra at the high-momentum region. This te
nique has been extensively employed in the recent posi
annihilation studies4–12 and has met with impressive succe
in identifying the impurity atoms bound to the vacancies
semiconductors5,6 and in exploring and characterizing nan
size precipitates in dilute alloys.7,8

The experimental success have stimulated intensive t
retical studies for the CDB spectra in materials.13–17A com-
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putational scheme,13 in which the electrons and positron a
described by free atomic orbitals and model-fitted functio
respectively, is found to be successful in interpreting the
periments. Recently, a first-principles scheme based on
Korringa-Kohn-Rostoker~KKR! band-structure method wa
reported;17 the calculation for Al crystal has demonstrate
that, by treating the semicore electrons (2s22p6) of the Al
atoms as the band electrons~namely, in the same manner a
that for the valence electrons! to take account of the crystal
line environment effects, the calculated CDB agrees with
experiment quantitatively. Now it is clear that, to achie
good agreement between theory and experiment over w
momentum region it is necessary to describe well the p
tron wave function,all the electron wave functions, and th
positron-electron correlation effect over theentiresystem un-
der study, i.e., from the low-momentum interstitial regions
the high-momentum core regions. However, the schem
proposed so far assumed the positron wave functions b
spherically symmetric around the nuclei in calculating t
positron-core-electron annihilations,13,17 which significantly
limits their application to the systems with this assumpti
being violated. One of the important examples is the defe
in solids where the density of the trapped positron is rat
anisotropic around the nuclei neighboring the defects.

In this paper we present a first-principles scheme for
CDB calculation with widely applicable potential. In ou
approach, the electron wave functions are calculated
using the full-potential linearized-augmented-plane-wa
~FLAPW! method. The positron wave function, which has
node and no rapid oscillation around the nuclei, is expan
as the plane waves without any shape or symmetry assu
tion. The positron-electron correlation effect is calculat
based on state-of-the-art two-component density-functio
~TCDF! theory within the local-density approximatio
~LDA !,18–20which has been shown by the recent experim
tal and theoretical works17,21–23to be very reliable in repro-
©2002 The American Physical Society08-1
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ducing positron annihilation characteristics for a variety
systems, such as the bulk materials and the defects.
method is employed to calculate the CDB spectra for the
and graphite crystals. The latter is a typical layer-struct
material where the anisotropic positron-density distribut
is expected. The calculations are compared with the exp
ments and good agreement is observed over the entire
perimental momentum region. Especially, the calculatio
are found to well reproduce the anisotropic high-moment
tails of the CDB spectra for graphite, demonstrating clea
the ability of the present method for various systems.

II. METHOD

In this section, we present the method to calculate
momentum-density distribution of the positron-electron p
in perfect crystals. In the Appendix, we explain how to e
tend the method for the defect studies.

A. Outline

We first outline how the momentum-density distributio
of the positron-electron pair is calculated within the LD
based on the TCDF theory. We consider the system whe
single positron is perfectly delocalized in the infinite cryst
so that the electronic states are not perturbed by the pos
whose concentration is zero. Then, we begin with the c
ventional electron band-structure calculation. The Blo
electron wave functionc ik(r ), where i and k are the band
index and crystal momentum, respectively, is given by
Kohn-Sham equation based on the LDA~in atomic units! as

$2 1
2 ¹21VH~r !2Vnuc~r !1me-e@n~r !#%c ik~r !5e ikc ik~r !,

~1!

where n is the charge density constructed from the wa
functions,2Vnuc is the nuclear attractive potential, andVH is
the Hartree potential,*(n(r 8)/ur2r 8u)dr 8. The exchange-
correlation potentialme-e is deduced from numerical resul
for the homogeneous electron gas having the densityn.24 The
above equation is solved by means of the self-consis
method.

In the next step, we calculate the positron wave funct
c1(r ), which is given by

$2 1
2 ¹22VH~r !1Vnuc~r !1me-p@n~r !#%c1~r !5e1c1~r !,

~2!

where me-p is the positron-electron correlation potentia
which is deduced from the numerical results for the syst
of a single positron in the homogeneous electron gas ha
the densityn. Since the annihilated positron is in the grou
state, the positron wave function is at theG point.

After the electron and positron wave functions are de
mined, the momentum density of the positron-electron pa
the momentump is given by25,26

r~p!5(
i ,k

f ~e ik!uAik~p!u2 ~3!
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where f (e ik)52u(EF2e ik) is the occupation number an
Aik(p) is the momentum wave function of the positro
electron pair

Aik~p!5
1

N E
NV

e2 iprc ik~r !c1
enh~r !dr . ~4!

In the above expression,c1
enh(r ) is the enhanced positro

wave function defined asc1
enh(r )5c1(r )Ag(r ) with g(r )

being the enhancement factor andNV is the volume of the
system containingN unit cells. As well as the positron
electron correlation potentialme-p , the enhancement facto
g, which originates from the screening by electrons arou
the positron, is deduced from the results calculated for
system of single positron in homogeneous electron gas.

Here, we briefly explain the functional forms ofme-p and
g. The correlation energy for the system consisting o
single positron in the homogeneous gas was calculated
Arponen and Pajanne~AP! who performed many-particle
random-phase-approximation~RPA! calculations.27 The nu-
merical results obtained by AP are first parameterized
Boroński and Nieminen,18 and later reparametrized b
Puska, Seitsonen, and Nieminen~PSN!.19 As for the en-
hancement factor, PSN parameterized the numerical res
obtained by Lantto, who performed a hypernetted ch
calculation.28 This PSN scheme has been shown by the
cent experiment and theory to be very reliable in reproduc
positron annihilation characteristics for a variety of system
Therefore, we adopt this scheme in the present study.

B. Electron wave functions

In order to accurately describe the core electrons as w
as the valence electrons, we adopt the FLAPW method
solve the electron Kohn-Sham equation~1!. In this method,
the valence-electron wave functionc ik(r ) in Eq. ~1! is ex-
panded by the LAPW basis set$wK(r )%,

c ik~r !5(
Kn

Cik~Kn!wKn
~r !, ~5!

whereuKnu5uk1Gnu has the maximum value,Kcut, andGn
is the reciprocal lattice vector. The LAPW basis functio
wK(r ) is defined as29,30

wK~r !5V21/2eiKr ~6!

for r in the interstitial region, and

wK~r !5eiK ~RI1Ra!(
lm

i l@Alm
a ~K !ua l~El ,r 0!

1Blm
a ~K !u̇a l~El ,r 0!#Ylm~ r̂ 0! ~7!

for r inside the muffin-tin~MT! spheres. In the above equa
tion, r05r2RI2Ra , whereRI is the unit-cell position and
Ra is the position of theath atom measured from the pos
tion atRI . ua l(El ,r 0) andu̇a l (El ,r 0), respectively, are the
radial wave function with the energy parameterEl , and its
energy derivative in the MT sphere. All other symbols ha
their usual meaning.29–31 The radial wave function and its
8-2
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energy derivative are matched to the value and the deriva
of the plane wave (eiKr ) on the MT sphere boundary by th
coefficientsAlm

a (K ) andBlm
a (K ).

As well as the wave functions, the potential, and t
charge density are expanded into the plane-wave repres
tion in the interstitial regions as32–34

S V~r !

n~r ! D5(
G

S V~G!

n~G! DeiGr, ~8!

and into the spherical harmonic representation in the
spheres as

S V~r !

n~r ! D5(
lm

S Vlm~r 0!

nlm~r 0! DYlm~ r̂ 0!. ~9!

As for the core electrons, there are high lying and re
tively extended core electrons in the atoms~for instance, the
2s and 2p states in the Al atoms!. These core electrons pla
important role in the CDB experiments; they actually dom
nate the shapes of the CDB profiles at the middle momen
region. As shown by the recent first-principles study,17 the
free atomic orbitals are insufficient to describe such c
states, thus more accurateab initio crystal wave functions are
needed to calculate their momentum-density distributions
the present approach, the extended core states are consi
as the semicore states35,36 and are calculated in the sam
manner as the valence states to take account of the off
overlaps of the wave functions. For those low-lying co
states, the atomic wave functions are employed, which
calculated self-consistently using the scalar-relativistic v
sion of the Schro¨dinger equation having the spherically a
eraged crystal potential.

C. Positron wave function

In this subsection, we solve the single-particle equation
the positron Eq.~2!, by use of the plane-wave basis set, i.

c1~r !5V21/2 (
uGu,G1

max
C1~G!e iGr. ~10!

The accuracy of this basis set is determined by the cut
wave vector,G1

max and as mentioned in the following sectio
it is larger than the cut-off wave vectorG2

max, for the electron
calculations in the interstitial region. By use of this basis s
the positron single-particle equation~2! is converted into the
following secular equation

(
G8

@ 1
2 uG8u2dG82G1V1

eff~G2G8!#C1~G8!5e1C1~G!,

~11!

where the positron effective potentialV1
eff(G) in theG space

is the summation of the Coulomb potential of the nuc
@Vnuc(G)#, of the Hartree potential of the electron charg
@2VH(G)#, and of the positron-electron correlation potent
for the positron. This potential is expanded in the reg
uGu,2G1

max and how to construct the potential is explain
later. The secular equation of the positron wave function~11!
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is solved by using the iteration minimization technique37 ini-
tiated by Car and Parrinello38 and the positron energy an
wave function of the ground state are then obtained.

In order to construct the above-mentioned effective pot
tial V1

eff(G), we first deduce the electron densityn(G) in the
G space from the results of the FLAPW calculation. T
charge densities of valence and semicore electrons in
regions of interstitial part and in the MT spheres, resp
tively, are given by

nINT~G!5n~G!u~G2
max2uGu!

2 (
a,G8

ei ~G82G!Ran~G8!u~G2
max2uGu!

3
3VMTa

V

j 1~ uG82GuRMTa
!

uG82GuRMTa

, ~12!

and by

nMT~G!5
4p

V (
a lm

e2 iGRai 2 lYlm~Ĝ!

3E
0

RMTa
r 0

2nlm~r 0! j l~Gr0!dr0 , ~13!

whereVMTa
andRMTa

are the volume and the radius of th
MT spherea, respectively. The core-electron density is al
obtained by use of an expression similar to Eq.~13! @since
the charge distribution is spherical, only thel 50 term in Eq.
~13! should be considered#.

After the total electron densityn(G) is obtained as ex-
plained above, we evaluate the Hartree term as2VH(G)
524pn(G)/G2. In order to evaluate the electron-positro
correlation potential, we first construct the electron cha
densityn(r ) at a real-space mesh by using Eqs.~8! and ~9!,
then the positron-electron correlation potential is calcula
in this real-space mesh, and finally this potential is tra
formed into theG space. The Coulomb potential of the n
clei is calculated asVnuc(G)5(a4pZae2 iGRa/G2 whereZa
is the number of the nuclear charges at theath site. In this
equation, the componentG50 is omitted, since it is can-
celed exactly by the electron Hartree potential withG50.

D. Momentum density

In this subsection, we explain how to evaluate the m
mentum density of positron-electron pair that was given
Eqs.~3! and~4!. For the valence and semicore electrons,
overlap integral in Eq.~4! contains two kinds of contribu-
tions, i.e., that from the interstitial region@Aik

INT(p)# and that
from the MT spheres@Aik

MT(p)#. The interstitial contribution
Aik

INT can be obtained by first integrating the plane-wa
overlap of the electron and positron over the entire sys
and then subtracting the integral at the MT spher
namely,39
8-3
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Aik
INT~p!5dp82k3F Pik~G8!2(

a,G
ei ~G2G8!RaPik~G!

3
3VMTa

V

j 1~ uG2G8uRMTa
!

uG2G8uRMT
G , ~14!

where p5p81G8 with p8 being inside the first Brillouin
zone~FBZ!. Pik(G) is the Fourier component of the overla
wave function of positron and electron in the interstitial r
gion given by Pik(G)5(Kn

Cik(Kn)C1
enh(G2Gn), where

Gn5Kn2k and C1
enh(G) is the Fourier component o

c1
enh(r ).
For the contribution from the MT spheres, we obtain t

following form

Aik
MT~p!5dp82kV

21/2(
a lm

(
Kn ,G

Cik~Kn!C1
enh~G!

3ei ~Gn1G2G8!Ra@Alm
a ~Kn! f lm

a ~p2G!

1Blm
a ~Kn!hlm

a ~p2G!#, ~15!

where f lm
a and hlm

a are the Fourier transforms of the au
mented spherical function and of its energy derivative in
MT spherea given by

S f lm
a ~k!

hlm
a ~k! D 54pYlm~ k̂!E

0

RMTa
r 0

2 j l~kr0!S ua l~El ,r 0!

u̇a l~El ,r 0! Ddr0 .

~16!

The above formulas allow to calculateAik(p)5Aik
INT(p)

1Aik
MT(p), and thus the momentum density is evaluated

use of Eq.~3!.
As for the core electrons, the FLAPW calculation giv

the localized orbitals at the MT spheres,fnlm
a (r0)

5Rnl
a (r 0)Ylm( r̂ 0), with the principal quantum numbern. By

assuming that the overlaps between localized orbitals
zero, we obtain the momentum density of the positron-co
electron pair as

rcore~p!5
2

V (
a,nlm

U(
G

C1
enh~G!eiGRaxnlm

a ~p2G!U2

,

~17!

where

xnlm
a ~k!54p i 2 lYlm~ k̂!E

0

`

r 0
2 j l~kr0!Rnl

a ~r 0!dr0 . ~18!

III. RESULTS AND DISCUSSION

In this section, the method described in the preceding s
tion is employed to calculate the momentum-density dis
butions of the positron-electron pair in the crystals of alum
num and graphite. The calculations are compared with
experiments, which allows us to evaluate how well t
present method reproduces the experiments over wide
mentum region. Especially, the pronounced anisotropie
the high-momentum region are observed for graphite b
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experimentally and theoretically demonstrating the imp
tance of the positron wave function around the core regio

A. Aluminum

We start from the fcc aluminum since this system h
been systematically studied by the positron annihilation te
nique in the past decades.13,17,40 In the calculation, the ex-
perimental lattice parameter ofa54.05 Å ~7.65 a.u.! is
adopted. The contact-type MT sphere with the radiusRMT
52.70 a.u. ~which makes the nearest-neighboring M
spheres touching each other! is employed. The cutoff for the
LAPW basis set is chosen asKcut54.0 a.u. which yields a
basis size of about 120 LAPW’s per atom. The spheri
harmonic expansion inside the MT spheres is up tol max58.
Gmax, the cutoff value of the wave vector used for depicti
the electron charge density and potential in the intersti
regions, is set to 2Kcut58.0 a.u. In the self-consistent calcu
lation of the charge density, the Brillouin-zone integration
performed using the specialk-points scheme developed b
Chadi and Cohen.41 A Monkhorst-Pack42 type k mesh con-
taining 25325325 k points is sampled in the present wo
and the achieved self-consistency of the charge density~in-
cluding the core electrons! is better than 0.01 me/~a.u.!3. As
mentioned in the preceding section, the 2s22p6 core elec-
trons of Al atom are treated as the semicore electrons.
crystal wave functions of these states are calculated in
same manner as the valence electrons by using different
earization energy windows.36 For the positron, a large
enough plane-wave basis set with the cutoffG1

max512.3 a.u.
is employed. It is noteworthy that further enlarging th
plane-wave basis size does not increase much the comp
tional effort for the positron wave function but does do so
the momentum-density distributions~in this work, the 3D
momentum density r(p) is calculated up to p;80
31023m0c!. All the above parameters are carefully check
so that it is believed that the convergence has been achie
for instance, the momentum densities along several hig
symmetric lines calculated usingG1

max514.8 a.u. show no
difference from the results presented in this paper.

FIG. 1. Perspective plot of calculated momentum-density dis
bution of positron-valence-electron pair at the half@001# plane for
Al ~as for the momentum unit, 1.0 a.u.57.29731023m0c!. The in-
sert on the right shows the band structure along the@100# axis.
8-4
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Figure 1 shows the calculated momentum-density dis
bution of the positron-valence-electron pair at the half@001#
plane for Al. Because of the nearly free-electron nature of
a very isotropic Fermi surface outline~i.e., the cross section
of the Fermi surface with the@001# plane! is observed. How-
ever, the momentum-density distribution itself is anisotrop
which is manifested by the shoulderlike prominences aro
the X points at the BZ boundaries. The Al atom has thr
valence electrons (3s23p1), requiring two occupied bands i
the FBZ. As shown in the insert of Fig. 1, the lowers band is
fully filled up to the FBZ boundary, while the upperp band is
half filled in the FBZ with the occupied momentum regio
around the zone boundary. The shoulderlike prominen
just present the momentum densities of thep-band electrons
at the zone boundaries added to the continuous momen
density background of thes-band electrons. A more interes
ing point in Fig. 1 is the momentum-density distribution o
of the Fermi surface. Due to the selection rule of symmetr25

the Umklapp contributions of thes-band electrons becom
zero at some regions out of the FBZ. In such regions, o
the shoulderlike momentum densities~Umklapp compo-
nents! of the upperp band is visible so that the Fermi surfac
cutoff originated from the half filling of this band is sti
clear enough to be discriminated at these regions with r
tively high momenta.

Figure 2 shows the calculated momentum-density dis
bution of the positron-core-electron pair for Al at the sam
@001# plane, where both the contributions from the semic
and core electrons are included. It is observed that
momentum-density distribution of the positron-core-elect
pair is very isotropic. An important factor giving rise to th
feature is the positron-density distribution. As shown in F
3, the density distribution of the delocalized positron
rather isotropic in the core regions of the Al crystal, whi
leads to the fact that the positron equally samples the c
electrons at different directions.

With the 3D momentum densities being calculated, it
ready to simulate the experimental CDB spectra. As m
tioned in Sec. I, the CDB measures the longitudinal mom

FIG. 2. Contour plot of calculated momentum-density distrib
tion of positron-core-electron pair at the@001# plane for Al. The
thick lines denote the maximum contour lines and the contour s
ing is 3.0% of the maximum.
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tum densities of the positron-electron pair along the ann
lation g photon emission direction (pz), which can be
obtained in calculation by projecting the 3D momentum de
sity r(p) to this direction as

N~pz!5const3E r~p!dpxdpy . ~19!

In this work the CDB spectra along several directions
calculated and Fig. 4 presents the results along the cryst
graphic direction@001#. In addition, the partial contributions
to the CDB spectrum from the positron annihilations with t
valence electrons~summation of two conduction bands! and
with the 2s, 2p ~summation of three semicore bands!, and
1s core electrons are also presented in Fig. 4. From the

-

c-
FIG. 3. Contour plot of calculated positron-density distributi

at the @001# plane for Al. The thick lines denote the maximum
contour lines and the contour spacing is 2.5% of the maximu
Solid circles denote the Al atoms.

FIG. 4. Calculated coincidence Doppler broadening spectr
along the@001# direction for Al. Partial contributions of positron
annihilations with valence and core electrons~which are further
decomposed into the contributions of 1s, 2s, and 2p electrons! are
also presented. The insert shows the comparison between ex
ment~solid circles with error bars! and theory~convoluted with the
experimental resolution! ~lines!, and both the spectra are norma
ized to the same area.
8-5
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tial contribution of the valence electrons in Fig. 4, we s
clearly several steps due to the Fermi surface cutoff aro
6.7, 13.0, and 20.031023m0c. However, only the first two
Fermi surface breaks can be discriminated from the t
CDB spectrum, since when the momentum is increas
larger than the Fermi momentum, the CDB spectrum ma
represents the shape of the 2p electrons ~up to 30
31023m0c!. Moreover, with further increasing the mome
tum, the contribution of the 2s electrons becomes the dom
nant component. Because the momentum-density distr
tion of the semicore and core electrons is very isotropic~Fig.
2!, the calculated CDB spectra along several directions
found to be almost identical at the high-momentum regi
This ~together with Fig. 3! evidences that using the sphe
cally symmetric positron wave function in the core regions
a good approximation for the Al crystal.

Next, we compare the theoretical results with the exp
ments. In our experiments, a single crystal Al sample w
employed for the CDB measurements. The general desc
tion of the details of the experimental setup can be found
our previous works.7 The inset of Fig. 4 compares the calc
lation @convoluted with the experimental resolution of 1
keV ~about 4.331023m0c!# with the experimental CDB
spectrum along the@001# direction. The agreement betwee
experiment and theory is found to be satisfactory over
entire momentum range. As reported by Mijnarends,17 we
also observe that when the atomic orbitals are employed
calculating the 2s22p6 electrons instead of the semi-cor
state wave functions, the agreement at high-momentum
gion becomes worse. This indicates that the crystal envir
ment can modify the wave functions of the high-lying co
electrons in the atoms, which may be detectable by using
positron CDB technique.

It is noticed that there are some slight discrepancies
tween experiment and theory around 10 and 1831023m0c
~Fig. 4!. The calculation gives the momentum densit
slightly lower ~higher! than the experiments at the form
~latter!. The discrepancy around 1831023m0c can be attrib-
uted to the overestimated enhancement for the 2p electrons
in the present LDA scheme.17 The discrepancy around 1
31023m0c may be relevant to a hot spot in the rece
momentum-density studies.43,44 It has been noticed in the
recent high-resolution Compton scattering and positron t
dimensional angular correlation of annihilation radiati
~2D-ACAR! experiments that the first-principles calculatio
tend to give lower valence-electron momentum densitie
the tail region, above the Fermi momentum in metals~as that
observed around 1031023m0c in the inset of Fig. 4!. One of
possible reasons for such a discrepancy is the clear F
surface associated with the single-particle Kohn-Sham eq
tion in the LDA picture, which gives rise to too sharp drop
the valence-electron momentum density above the Fe
momentum~Figs. 1 and 4!. It has been shown that,44 by
considering the smearing of the Fermi surface due to
many-electron effect, the calculation for Al can be improv
significantly. However, further investigating this issue b
yond the LDA is out of the scope of the present paper.

Another possible source of the discrepancy is the LDA
the many-particle effect of the positron-electron correlati
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Early theoretical studies45,46 for the interacting positron-
electron gases lead to a momentum-dependent enhance
factor, which increases significantly as the momentum
proaches the Fermi surface but is strongly attenuated at
tail out of the Fermi surface. This enhancement factor res
in a density prominence around Fermi surface and corr
efficiently the calculated momentum-density distributions
metals based on the free-electron-gas model. Howe
straightforwardly applying this enhancement factor to t
present calculational results will enlarge the band-struct
effect induced prominences around theX points~Fig. 1! and
sharpen the discontinuity at the Fermi momentum, and t
may worsen the agreement between theory and experim
The momentum-dependent enhancement factor was gen
ized to an energy-dependent form47,48and was further devel-
oped recently into a weighted-density-approximation~WDA!
scheme.49 As shown by Rubaszek, Szotec, and Tenmerma50

the WDA scheme can well reproduce the experimental
sults for Al.

Finally, we compare the calculated positron lifetime wi
the experiment. The positron lifetime~t! is the inverse of the
total annihilation rate~l! of the positron-electron pair, which
is given by

l5
pr 0

2c

8p3 E r~p!dp. ~20!

Here r 0 denotes the classic electron radius. The present
culation gives the positron lifetime of 165 ps for the Al cry
tal, which is in good agreement with the experiment~163–
166 ps! ~Refs. 17, 51! and is also comparable with the value
calculated by using other methods, such as the KKR~166
ps!,17 the linear muffin-tin orbital within the atomic-sphere
approximation~LMTO-ASA! ~165 ps!,52 etc.

B. Graphite

In the above subsection, we investigated a nearly isotro
momentum-density distribution of the positron-electron p
in Al. In this subsection, we turn to an anisotropic syste
the crystal of graphite. As a prototypical layer structure m
terial, the electronic structure of graphite exhibits pr
nounced anisotropies because of the presence of two dis
and completely different types of interatomic bonding. P
vious studies53–55have revealed that the positron ACAR di
tributions ~which mainly measure the momentum distrib
tions of the positron-valence-electron pairs at the lo
momentum region! in graphite are very anisotropic so that
marked bimodality with two peaks along thepic direction is
observed. In this work, the present all-electron and fu
potential method is employed to calculate the positron an
hilation characteristics in graphite with careful attention pa
to the momentum-density distributions at the hig
momentum region. The calculations are compared with
previous pseudopotential calculations and recent CDB
periments.

In the calculations, the experimental lattice paramete56

of a5b52.46 Å ~4.65 a.u.! andc/a52.72 and the contact
type MT spheres with the radiusRMT51.34 a.u. are em-
ployed. The cutoff parameters are chosen asKcut55.5 a.u.,
8-6
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l max58, G2
max511.0 a.u., andG1

max512.2 a.u. A Monk-
horst-Pack42 type k mesh containing 1000 k points in th
FBZ is sampled in this work and the 3D momentum dens
r(p) is calculated up top;8031023m0c. Moreover, there
is no semicore state in the carbon atom and its 1s2 electrons
are calculated as the core electrons by using Eqs.~17! and
~18!.

Figure 5 shows the calculated momentum-density dis
bution of the positron-valence-electron pair at the@21̄1̄0#
plane. Form this figure, it is observed that the momentu
density distribution of graphite is very anisotropic and t
general shape of the distribution is dominated by the den
variation along the@0001# direction. There is a bimodality
observed along this direction with two pronounced pe
centered atp@0001#;6431023m0c on the @0001# axis.
Moreover, along this direction the momentum density d
creases rapidly when the momentum is increasing more
8.531023m0c. On the contrary, the momentum dens
along the@011̄0# direction decreases much slowly so th
there are significant densities distributed around the@011̄0#
axis extending up top@011̄0#;611.531023m0c, which re-
sults in two marked density prominences along this direct
~Fig. 5!.

The positron-density distribution plays an important ro
in producing the above-mentioned anisotropies. To dem
strate this, we plot the ‘‘pure’’ electron momentum-dens
distribution~EMDD! in Fig. 5, which is calculated by settin
all the Fourier components of the enhanced positron w
function equal to zero except forC1

enh(G50)5V1/2. From
the EMDD in Fig. 5, we find that, though the EMDD i
anisotropic, its anisotropic features are much weaker c
pared with those of the momentum-density distribution
the positron-electron pairs.~For instance, only very smal
bimodal peaks are observed on the@0001# axis in the
EMDD.! As shown in Fig. 6, the positron density is qua
two-dimensionally distributed in graphite with its maxim
between the layers. The positron significantly samples
low-momentum parts of thepz orbitals of the carbon atom
in between the layers, and thus results in a much enhancp
character of the momentum-density distribution~manifested

FIG. 5. Contour plots of calculated momentum-density distrib
tion of positron-valence-electron pair~left panel! and ‘‘pure’’
valence-electron momentum-density distribution~right panel! at the

@21̄1̄0# plane for graphite. The thick lines denote the maximu
contour lines and the contour spacing is1

16 of the maximum.
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by the pronounced bimodality! and in the rapid drop of the
momentum density over 8.531023m0c along the@0001# di-
rection. While the positron sampling for thesp2 hybrid or-
bitals in the layers is relatively homogenous so that
prominences of the momentum density along the@011̄0#
axis ~originated from the positron annihilation with thesp2

electrons! are close to the ‘‘pure’’ EMDD’s at these region
~Fig. 5!.

-

FIG. 6. Contour plot of calculated positron-density distributi

at the@21̄1̄0# plane for graphite. The thick lines denote the ma
mum contour lines and the contour spacing is 3.3% of the ma
mum. Solid circles denote the carbon atoms.

FIG. 7. Contour plot of calculated momentum-density distrib

tion of positron annihilation with 1s core electrons at the@21̄1̄0#
plane for graphite. The thick line denotes the maximum contour
and the contour spacing is 2.3% of the maximum.
8-7
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Figure 7 shows the calculated momentum-density dis
bution of the positron annihilation with the 1s core electrons
in graphite at the same@21̄1̄0# plane and this density distri
bution is also found to be anisotropic. As mentioned in
preceding paragraphs, the 1s core electrons are calculated b
using Eqs.~17! and ~18!. The ‘‘pure’’ EMDD of the core
states obtained by setting onlyC1

enh(G50)5V1/2 in Eqs.
~17! and ~18! is isotropic, namely,

rcore
EMD~p!58p(

a,nl
~2l 11!U E

0

`

r 0
2 j l~pr0!Rnl

a ~r 0!dr0U2

.

~21!

Thus, the observed anisotropies in the positron-core-elec
annihilation entirely come from the positron sampling effe
As shown in Fig. 6, the positron-density distributions arou
the core regions are indeed anisotropic. The positron de
ties along the@0001# direction decrease rapidly to being va
ishingly small at the nuclear sites so that the high-momen
components of 1s orbitals are suppressed along this directi
~which is similar to the observed suppressing of the valen
electron momentum density abovep@0001#;8.531023m0c!.
As a result, the momentum-density distribution of t
positron-core-electron pair becomes anisotropic with
lower densities along the@0001# direction.

We have compared the present calculations with our p
vious works54,55 where the pseudopotential plane-wa
scheme was adopted to calculate the valence-electron w
functions and the frozen-core orbitals of the free atoms w
employed to describe the core electrons.21 It is found that the
pseudopotential scheme gives nearly the same results a
low-momentum region (p,2031023m0c), although at the
high-momentum region the pseudopotential scheme does
give physically meaningful results because of the usage
the pseudo-wave-functions in the core regions. Furtherm
the calculated positron lifetime for the graphite bulk usi
the pseudopotential method~209.1 ps! agrees very well with
the present calculation~210.0 ps!. The good agreement be
tween both the schemes indicates that, as long as conce
the positron ACAR distribution and lifetime, the pseud
valence-wave-functions and frozen-atomic-core orbitals
well reproduce the experiments.57

Next, we project the calculated 3D momentum-dens
distribution r(p) into the CDB spectra and compare the
with the experiments. Since a highly oriented pyroly
graphite~HOPG! sample~in which thec axes of the graphite
crystals are oriented to the@0001# direction while thea andb
axes are randomly oriented at the perpendicular plane! is
employed in our experiments, only two kinds of CDB spe
tra, N(pic) and N(p'c), are typical. In the calculation, th
former can be obtained straightforwardly by the 2D integ
tions forr(p) at the perpendicular planes to the@0001# axis.
To calculate the latter, angular averaging~before projection!
for r(p) at the perpendicular planes~to simulate the ran-
domly orienteda andb axes! is necessary, namely,

N~p'c!5const3
1

2p E r~Ap'c
2 1p2 cosw,
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Ap'c
2 1p2 sinw,p@0001#)dwdpdp@0001# . ~22!

Figure 8 presents the calculated CDB spectra for
HOPG. It is found that the 1D CDB spectra represent w
the characteristic anisotropies observed in the
momentum-density distributions. For instance, there ar
bimodality peak around;331023m0c and a rapid
momentum-density drop above 831023m0c along thepic
direction and a density prominence from;6 to 12
31023m0c and slightly higher momentum densities at t
high-momentum region from;20 to 4531023m0c along
the p'c direction.

To verify the calculated anisotropic features, we carefu
measured the CDB spectra along thepic andp'c directions
for the HOPG sample~ZYA grade, Union Carbide Co.!. The
experiments are compared with the calculations@convoluted
with the experimental resolution of 1.2 keV~about 4.7
31023m0c!# in Fig. 8 and good agreement is observed ov
the entire measurable momentum region. However, beca
of the smearing effect of the resolution, the anisotropic f
tures of the experimental CDB spectra are less emphasi
Thus, we extract the CDB ratio ofN(p'c)/N(pic) ~Fig. 9!,
which can highlight the anisotropic characteristics of the
perimental CDB spectra.4 As shown in Fig. 9, it is found tha
even for the ratio spectrum the agreement between exp
ment and theory is rather satisfactory. We clearly observe
both the experiments and calculations a ratio valley aro
631023m0c due to the bimodal peak ofN(pic), a ratio peak
from 9 to 1431023m0c due to the rapid drop~prominence!
of N(pic) @N(p'c)# at this momentum region, and a contin
ous increase of the ratio from 20 to 4031023m0c due to the
anisotropic positron sampling for the 1s core electrons.
These observations, in particular, the observed hi
momentum behaviors, manifestly demonstrate the imp
tance of the positron wave functions around the core regi
in the CDB studies.

FIG. 8. Calculated coincidence Doppler broadening spectra
their partial contributions of valence and core (1s) electrons along
the pic and p'c directions for highly oriented pyrolytic graphite
~left panel!. The right panel shows the comparisons between exp
ment~solid circles with error bars! and theory~convoluted with the
experimental resolution! ~lines!, and for comparison the experimen
tal and calculational spectra are normalized to the same area.
8-8
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IV. CONCLUSION

Based on the full-potential linearized-augmented-pla
wave ~plane-wave! expansion for the electron~positron!
wave functions and on the two-component density-functio
theory within the local-density approximation, a firs
principles scheme to calculate the positron annihilation ch
acteristics in solids is reported. The highlight of the pres
method is the calculation~without any shape or symmetr
assumption! for the wave functions of the positron-electro
pairs at the core regions around the nuclei. As a result,
method can compute the momentum-density distribution
the positron-electron pair over wide momentum region, fr
the low-momentum interstitial region to the high-momentu
core region, and is particularly suitable to study the coin
dence Doppler broadening~CDB! of positron annihilation
radiation in solids in which the one-dimensional projecti
of the momentum-density distribution of the positro
electron pair can be measured up to the high-momen
region. To verify the validity of the method, two typical sy
tems, Al and graphite having isotropic and anisotro
positron-density distributions around the nuclei, respectiv
are investigated experimentally and theoretically in t
work. The calculated CDB spectra are found to agree w
with the experiments over the entire measurable momen
region. Especially, for graphite the calculations well rep
duce the anisotropic momentum-density distributions at
high-momentum region originated from the anisotropic p
itron sampling for the 1s core electrons of the carbon atom
These successful results demonstrate clearly the import
of the positron wave function in the CDB studies and in
cate that the present method can be applied to the CDB s
ies for a variety of systems, especially those with the an
tropic positron densities around the nuclei, such as
defects in solids.

FIG. 9. Experimental~solid circles with error bars! and calcula-
tional ~open circles! ratio curves of coincidence Doppler broadeni
spectrum along thep'c direction@N(p'c)# relative to that along the
pic direction@N(pic)#. Dashed lines denote the calculational part
contributions of valence and core (1s) electrons toN(p'c) relative
to the totalN(pic). For comparison, before extracting ratio both t
calculatedN(p'c) andN(pic) or the partial contributions are con
voluted with the experimental resolution.
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APPENDIX

We here briefly explain how to extend the present meth
for the defect studies. To simulate the positron annihilation
the defect in solid, we employ a supercell containing t
defect and a single positron. Within this approximation, t
calculation for the defect is essentially the same as the
presented in Sec. II, except for the point that the perturba
of the trapped positron to the local electronic structure of
defect has to be taken into account and consequently,
self-consistency between the positron and electron dens
is needed. To achieve this, two additional potential ter
given rise by the localized positron, namely, the Hartree
tential of positron density and the positron-electron corre
tion potential for the electrons, are needed to be added to
electron effective potential~1!. Moreover, in order to employ
the FLAPW method, these two additional potentials must
represented into the plane-wave representation in the in
stitial region~8! and into the spherical harmonic represen
tion in the MT spheres~9!.

We calculate the Hartree potential in theG space as
VH(G)524pn1(G)/G2 @n1(G) is the positron density a
the reciprocal latticeG# and this potential is represented in
the spherical harmonics in the MT spheres as Eq.~9! with

Vlm~r 0!54p i l(
G

VH~G!eiGRa j l~Gr0!Ylm* ~Ĝ!. ~23!

For the positron-electron correlation potential for the ele
trons~as well as the enhancement factor!, similar to the cor-
relation potential for the positron, we first calculate this p
tential in a real-space mesh based on the local electron
positron densities according to the TCDF theory within t
LDA. This potential is transformed into theG space by the
Fourier transform and finally is represented into the spher
harmonics in the MT spheres by using an expression sim
to the above Eq.~23!. After these implementations, the ele
tron and positron wave functions are calculated iterativ
until the self-consistency between the positron and elec
densities is achieved. We have successfully applied
method to calculate the CDB spectra for the vacancy-oxy
aggregations in Si and the preliminary results were repo
at the 12th international conference on positron an
hilation.58

l
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