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First-principles calculation of coincidence Doppler broadening of positron annihilation radiation
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We report a first-principles method for calculating the momentum density of positron-electron pairs in
materials, which can be accurately measured, in a wide momentum range, by means of coincidence Doppler
broadening(CDB) of positron annihilation radiation. The calculation is based on the two-component density-
functional theory within the local-density approximation. The electron and positron wave functions are calcu-
lated by means of the full-potential linearized-augmented-plane-wave method with use of semicore orbitals and
of the pure plane-wave method, respectively. This hybrid basis set accurately determines the wave functions of
core and valence electrons and is free from any shape or symmetry assumption for the positron wave function.
The method is applied to two typical systems. i.e., Al and graphite having isotropic and anisotropic positron
densities, respectively. The calculations agree well with experiments over the entire measurable momentum
region. Especially, the calculations well reproduce the anisotropic high-momentum CDB tails of graphite,
which originate from the quasi-two-dimensionally distributed positron. This reproduction suggests that the
present method is applicable for a variety of materials.
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[. INTRODUCTION putational schem& in which the electrons and positron are
described by free atomic orbitals and model-fitted functions,
A positron injected into solid is annihilated with a sur- respectively, is found to be successful in interpreting the ex-
rounding electron into twoy photons. The total momentum periments. Recently, a first-principles scheme based on the
of the annihilated positron-electron pair is mainly owing to Korringa-Kohn-RostokefKKR) band-structure method was
the electron since the positron is rapidly thermalized beforeeported!’ the calculation for Al crystal has demonstrated
annihilation! The usual one-detector Doppler-broadeningthat, by treating the semicore electronss{2p®) of the Al
(DB) technique measures the Doppler shift in the energy oatoms as the band electromamely, in the same manner as
one of these twoy photons given rise by the longitudinal that for the valence electront take account of the crystal-
momentum component of the positron-electron pair alondine environment effects, the calculated CDB agrees with the
the photon emission direction. The technique thus profilegxperiment quantitatively. Now it is clear that, to achieve
one-dimensional1D) momentum-density distribution of the good agreement between theory and experiment over wide
positron-electron pair along a chosen axis. Unfortunately, bemomentum region it is necessary to describe well the posi-
ing hampered by high background, the one-detector DB techiron wave functionall the electron wave functions, and the
nigue can reliably measure only the positron annihilationgositron-electron correlation effect over thetire system un-
with the valence electrons and with the low-momentum coraler study, i.e., from the low-momentum interstitial regions to
electrons. the high-momentum core regions. However, the schemes
The coincidence DB technique registers the energies gbroposed so far assumed the positron wave functions being
both annihilatiory photons by using a couple of detectors in spherically symmetric around the nuclei in calculating the
coincidence. The coincidence measurement much improvgsositron-core-electron annihilatioh$!” which significantly
the peak-to-background ratio of the usual one-detector DBimits their application to the systems with this assumption
by three ordergas high as 101) and thus enables the pro- being violated. One of the important examples is the defects
filing of the 1D momentum-density distribution of the in solids where the density of the trapped positron is rather
positron-electron pair over wide momentum regfofiThe  anisotropic around the nuclei neighboring the defects.
CDB technique has great application potential for the studies In this paper we present a first-principles scheme for the
of the electronic and atomic structures of defects in solidsCDB calculation with widely applicable potential. In our
since it is possible to identify the elements around the posiapproach, the electron wave functions are calculated by
tron annihilation sites based on the characteristic shapes ofing the full-potential linearized-augmented-plane-wave
the CDB spectra at the high-momentum region. This tech{FLAPW) method. The positron wave function, which has no
nigue has been extensively employed in the recent positronode and no rapid oscillation around the nuclei, is expanded
annihilation studies*?and has met with impressive successas the plane waves without any shape or symmetry assump-
in identifying the impurity atoms bound to the vacancies intion. The positron-electron correlation effect is calculated
semiconductors® and in exploring and characterizing nano- based on state-of-the-art two-component density-functional
size precipitates in dilute alloy< (TCDF) theory within the local-density approximation
The experimental success have stimulated intensive thegtDA ),*®~?°which has been shown by the recent experimen-
retical studies for the CDB spectra in materigis:’A com-  tal and theoretical worké?1~%to be very reliable in repro-
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ducing positron annihilation characteristics for a variety ofwhere f(¢; ) =260(Eg— €;) is the occupation number and
systems, such as the bulk materials and the defects. Th,(p) is the momentum wave function of the positron-
method is employed to calculate the CDB spectra for the Aklectron pair
and graphite crystals. The latter is a typical layer-structure
material where the anisotropic positron-density distribution _ i en
is expected. The calculations are compared with the experi- A(P)= N JNQe PokD g r. @
ments and good agreement is observed over the entire ex-
perimental momentum region. Especially, the calculationdn the above expression/S™{r) is the enhanced positron
are found to well reproduce the anisotropic high-momentunwave function defined ag<"(r)= ., (r)Vg(r) with g(r)
tails of the CDB spectra for graphite, demonstrating clearlybeing the enhancement factor aNd) is the volume of the
the ability of the present method for various systems. system containingN unit cells. As well as the positron-
electron correlation potentigke ,, the enhancement factor
g, which originates from the screening by electrons around
the positron, is deduced from the results calculated for the
In this section, we present the method to calculate theystem of single positron in homogeneous electron gas.
momentum-density distribution of the positron-electron pair Here, we briefly explain the functional forms pf., and
in perfect crystals. In the Appendix, we explain how to ex-g. The correlation energy for the system consisting of a
tend the method for the defect studies. single positron in the homogeneous gas was calculated by
Arponen and Pajann€AP) who performed many-particle
random-phase-approximatidiRPA) calculations’ The nu-
merical results obtained by AP are first parameterized by
We first outline how the momentum-density distribution Boromski and Niernineri',8 and later reparametrized by
of the pOSitron-eleCtron pair is calculated within the LDA Puska, Seitsonen, and N|em|néﬁ$[\blg As for the en-
based on the TCDF theory. We consider the system where fgancement factor, PSN parameterized the numerical results
single positron is perfectly delocalized in the infinite crystal,obtained by Lantto, who performed a hypernetted chain
so that the electronic states are not perturbed by the positragaiculation?® This PSN scheme has been shown by the re-
whose concentration is zero. Then, we begin with the congent experiment and theory to be very reliable in reproducing
ventional electron band-structure calculation. The Blochpositron annihilation characteristics for a variety of systems.

electron wave functiony;(r), wherei andk are the band Therefore, we adopt this scheme in the present study.
index and crystal momentum, respectively, is given by the

Kohn-Sham equation based on the LIDA atomic unit$ as

IIl. METHOD

A. Outline

B. Electron wave functions

_1lyp2 _ N o In order to accurately describe the core electrons as well
(=2 VI VI = Vi 1) F ste.d (1) T ik(1) = €intfin ), as the valence electrons, we adopt the FLAPW method to
solve the electron Kohn-Sham equatidn. In this method,
wheren is the charge density constructed from the wavethe valence-electron wave functiah,(r) in Eqg. (1) is ex-
functions,— V. is the nuclear attractive potential, aw¢g is ~ panded by the LAPW basis sgpy(r)},
the Hartree potentialf (n(r’)/[r—r’|)dr’. The exchange-
correlation potential.. is deduced from numerical results _ = _
for the homogeneous electron gas having the densityrhe Yiklr) % C'k(Kn)(PK”(r)’ ®
;beot\r/]idequatlon is solved by means of the seIf—con5|stenv'§/here|Kn|:lkJanI has the maximum valu&.,, andG,
: . ._is the reciprocal lattice vector. The LAPW basis function
In the next step, we calculate the positron wave function 1 is defined 530
Y, (r), which is given by ek(r) |

ok (r)=0 " V2K (6)
{_%VZ_VH(")+Vnuc(r)+Me-p[n(r)]}l/f+(r):5+‘r//+(r): . . - .
2) for r in the interstitial region, and

where ue., is the positron-electron correlation potential,
which is deduced from the numerical results for the system
of a single positron in the homogeneous electron gas having . ) R
the densityn. Since the annihilated positron is in the ground +Bim(K)Uw(E;,10)]Yim(To) (7)
state, the positron wave function is at theoint. A e i
After the electron and positron wave functions are deterf.Or r inside the muffin-tin(MT) spheres. In the above equa

. . . .~ tion, ro=r—R,—R,, whereR, is the unit-cell position and
mined, the momentum density of the positron-electron pair ; . :
the momentunp is given by>2° « Is the position of thexth atom measured from the posi-

tion atR, . u,(E,,ro) andu, (E,,ro), respectively, are the
radial wave function with the energy paramekgr, and its

= fe)lA 2 3 energy derivative in the MT sphere. All other symbols have
p(P) nzlz (i) | Ai(P)] ® their usual meaning’ 3! The radial wave function and its

<pK<r>=eiK<R'*Ra>% AL (K)Uy(E),To)
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energy derivative are matched to the value and the derivativis solved by using the iteration minimization technitfliai-
of the plane waved ") on the MT sphere boundary by the tiated by Car and Parrineftd and the positron energy and
coefficientsAf,(K) and B, (K). wave function of the ground state are then obtained.
As well as the wave functions, the potential, and the In order to construct the above-mentioned effective poten-
charge density are expanded into the plane-wave represential Vve(G), we first deduce the electron densit{G) in the
tion in the interstitial regions 8§34 G space from the results of the FLAPW calculation. The
charge densities of valence and semicore electrons in the

V(G) regions of interstitial part and in the MT spheres, respec-

V(r) — iGr
(n(r) _% n(G))¢ ® tively, are given by
and into the spherical harmonic representation in the MT
spheres as n"T(G)=n(G) 6(G"*~|G|)
V(r)> _ Vlm(rO)) - _ Z ei(G'—G)Ran(Gr)a(GmaX_|G|)
(n(r) "5 [ ni(r) | Yim(To) ® byl -

As for the core electrons, there are high lying and rela- 3QMTa Jl(lG,_G|RMTa)
tively extended core electrons in the ato(far instance, the “0 |G'—G|Ryr '
2s and 2o states in the Al atom)sThese core electrons play ¢
important role in the CDB experiments; they actually domi-
nate the shapes of the CDB profiles at the middle momenturfi"d PY
region. As shown by the recent first-principles stitiyhe
free atomic orbitals are insufficient to describe such core A ) .
states, thus more accuratk initio crystal wave functions are nMT(G)= o > e CRily (G)
needed to calculate their momentum-density distributions. In adm
the present approach, the extended core states are considered Ryt

. . a 2 :
as the semicore staf8s® and are calculated in the same XJ roMim(ro)ji(Gro)dro, 13
manner as the valence states to take account of the off-site 0
overlaps of the wave functions. For those low-lying core
states, the atomic wave functions are employed, which ar&hereQyr_andRyr are the volume and the radius of the
calculated self-consistently using the scalar-relativistic verMT spherea, respectively. The core-electron density is also
sion of the Schrdinger equation having the spherically av- obtained by use of an expression similar to EIp) [since

(12

eraged crystal potential. the charge distribution is spherical, only the0 term in Eq.
(13) should be considergd
C. Positron wave function After the total electron densitp(G) is obtained as ex-

In this subsection, we solve the single-particle equation OEIamed above, we evaluate the Hartree term—de,(G)

—_ 2 _ 4
the positron Eq(2), by use of the plane-wave basis set, i.e., 47”.](G)/G ’ I_n order to evaluate the electron-positron
correlation potential, we first construct the electron charge

) _ densityn(r) at a real-space mesh by using E(®.and (9),
Yr(nN=0"12 3 C.(G)€°". (100 then the positron-electron correlation potential is calculated
l6[<cT™ in this real-space mesh, and finally this potential is trans-

The accuracy of this basis set is determined by the cut-of?ormed into theG space. The Coulomb potential of the nu-

i — —iGR, /(2
wave vectorGT® and as mentioned in the following section, clei is calculated a¥y, {G) =2 47Z,e /G” whereZ,

it is larger than the cut-off wave vect@™®, for the electron IS the'numl;er of the nucle_ar gharggs adtthb site. I.n this
calculations in the interstitial region. By use of this basis Setequatlon, the componei@=0 is omitted, since it is can-
. . ; A : teled exactly by the electron Hartree potential wak 0.
the positron single-particle equati¢®) is converted into the
following secular equation
D. Momentum density

> [31G'|?86: -6+ VS(G—G')IC.(G')=€,C.(G), In this subsection, we explain how to evaluate the mo-

G’ (11) mentum density of positron-electron pair that was given in
Egs.(3) and(4). For the valence and semicore electrons, the

where the positron effective potentmﬁ“(G) in the G space  overlap integral in Eq(4) contains two kinds of contribu-

is the summation of the Coulomb potential of the nucleitions, i.e., that from the interstitial regigr\}' (p)] and that

[VoudG)], of the Hartree potential of the electron charge from the MT sphere@Ai"ﬂT(p)]. The interstitial contribution

[ —VK(G)], and of the positron-electron correlation potential AN’ can be obtained by first integrating the plane-wave

I
for the positron. This potential is expanded in the regionoverlap of the electron and positron over the entire system
|G|<2GT™ and how to construct the potential is explainedand then subtracting the integral at the MT spheres,

later. The secular equation of the positron wave functidd ~ namely*®
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Al ()= 8pr kX

ik(G,)_EG e/(c~ Ry (G)

30ur_ j1(|G—G'|Ryr,) .
0 [6-G'Rw | 14 !
MT 5]
where p=p’+ G’ with p’ being inside the first Brillouin 10

zone(FBZ2). P;(G) is the Fourier component of the overlap
wave function of positron and electron in the interstitial re-
gion given by Pik(G)=2KnCik(Kn)Ci”r(G—Gn), where
G,=K,—k and C®™(G) is the Fourier component of
™).
For the contribution from the MT spheres, we obtain the
following form

_1 5
(000) T k (2n/a) (100) X

=
[1001 (10.3"”00)
FIG. 1. Perspective plot of calculated momentum-density distri-
- bution of positron-valence-electron pair at the Ha1] plane for
Ak (P)= 0y - QYD CK)Cce™MG) Al (as for the momentum unit, 1.0 asi7.297x 10~3myc). The in-
alm K G sert on the right shows the band structure along[ @] axis.

i(Gn+G—G')R,[ pa a
xe [Aim(Kn)fim(P—G) experimentally and theoretically demonstrating the impor-
+BE (Kyht (p—G)], (15) tance of the positron wave function around the core regions.

where 7, and h{;,, are the Fourier transforms of the aug- A. Aluminum
mented spherical function and of its energy derivative in the

MT spherea given by We start from the fcc aluminum since this system has

been systematically studied by the positron annihilation tech-
f (k) T A(Ep o) nique in the past decadé$!"*In the calculation, the ex-
( (k)) 477Y,m(k)f roli(k 0)(u (E, rO))dro. perimental lattice parameter ai=4.05A (7.65 a.u) is
adopted. The contact-type MT sphere with the rad®yg

(16) =2.70a.u. (which makes the nearest-neighboring MT
The above formulas allow to calculatd;(p)= (p) spheres touching each othé employed. The cutoff for the
MT(p), and thus the momentum density is evaluated byLAPW basis set is chosen #&,,=4.0a.u. which yields a

use of Eq.(3). basis size of about 120 LAPW’s per atom. The spherical

As for the core electrons, the FLAPW calculation g|vesh<"Irmonlc expansion inside the MT spheres is up{g=38.
the localized orbitals at the MT spheresp® (ro) C . the cutoff value of the wave vector used for depicting

=R (ro)Yim(Fo), with the principal quantum number By the electron charge density and potential in the interstitial

assuming that the overlaps between localized orbitals arf9i0ns, is set to B¢,=8.0a.u. In the self-consistent calcu-

zero, we obtain the momentum density of the positron- _corelation of the charge density, the Brillouin-zone integration is
electron pair as performed using the speciétpoints scheme developed by

Chadi and Coheftt A Monkhorst-Pacf type k mesh con-

, 2 taining 25x< 25X 25 k points is sampled in the present work
Peord P) = 5 2 CIMG)eRaxfim(p—G)| and the achieved self-consistency of the charge defisity
nim |-G cluding the core electrongs better than 0.01 m&l.u). As

A0 mentioned in the preceding section, the?2p® core elec-
where trons of Al atom are treated as the semicore electrons. The
crystal wave functions of these states are calculated in the
same manner as the valence electrons by using different lin-
earization energy window®. For the positron, a large
enough plane-wave basis set with the cu®ff**=12.3 a.u.
is employed. It is noteworthy that further enlarging the
plane-wave basis size does not increase much the computa-

In this section, the method described in the preceding sedional effort for the positron wave function but does do so for
tion is employed to calculate the momentum-density distrithe momentum-density distributior@& this work, the 3D
butions of the positron-electron pair in the crystals of alumi-momentum density p(p) is calculated up top~80
num and graphite. The calculations are compared with ou 10~°mqc). All the above parameters are carefully checked
experiments, which allows us to evaluate how well theso that it is believed that the convergence has been achieved,
present method reproduces the experiments over wide mder instance, the momentum densities along several highly
mentum region. Especially, the pronounced anisotropies @éymmetric lines calculated using7®*=14.8a.u. show no
the high-momentum region are observed for graphite botlifference from the results presented in this paper.

Xeim(K) = 4ai 'Y (k) f:r%jl(kro)R&(ro)dro- (18

IIl. RESULTS AND DISCUSSION
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FIG. 2. Contour plot of calculated momentum-density distribu- . S
tion of positron-core-electron pair at tf601] plane for Al. The FIG. 3. Contour plot of calculqted _posmon-densnty dlstrl_butlon
thick lines denote the maximum contour lines and the contour spadt the [001] plane for Al. The thick lines denote the maximum
ing is 3.0% of the maximum. contour lines and the contour spacing is 2.5% of the maximum.

Solid circles denote the Al atoms.

Figure 1 shows the calculated momentum-density distri—t densiti f th it lect i al th ihi
bution of the positron-valence-electron pair at the Haffl] um densities ot the positron-electron pair along the annini-

plane for Al. Because of the nearly free-electron nature ofAI,Iat'or.] Y photon emission d!recfuon PE), which can be

a very isotropic Fermi surface outliriee., the cross section optalned In cglculatlor] by projecting the 3D momentum den-
of the Fermi surface with thg901] plane is observed. How- Sty P(P) to this direction as

ever, the momentum-density distribution itself is anisotropic,

which is manifested by the shoulderlike prominences around N(p,) =cons f p(p)dp,dp, . (19

the X points at the BZ boundaries. The Al atom has three

valence electrons &3p?), requiring two occupied bands in In this work the CDB spectra along several directions are
the FBZ. As shown in the insert of Fig. 1, the lowsdband is  calculated and Fig. 4 presents the results along the crystallo-
fully filled up to the FBZ boundary, while the upppiband is  graphic directiorf001]. In addition, the partial contributions
half filled in the FBZ with the occupied momentum regions to the CDB spectrum from the positron annihilations with the
around the zone boundary. The shoulderlike prominencegalence electronésummation of two conduction bandand

just present the momentum densities of fAleand electrons  with the 2s, 2p (summation of three semicore bandand

at the zone boundaries added to the continuous momentuns core electrons are also presented in Fig. 4. From the par-
density background of theband electrons. A more interest-
ing point in Fig. 1 is the momentum-density distribution out
of the Fermi surface. Due to the selection rule of symntetry, 10™4
the Umklapp contributions of the-band electrons become
zero at some regions out of the FBZ. In such regions, only
the shoulderlike momentum densitig&mklapp compo-
nentg of the uppeip band is visible so that the Fermi surface
cutoff originated from the half filling of this band is still
clear enough to be discriminated at these regions with rela-

valence 3 40°

——.

\\valence

0 10 20 30 40 50 89
Momentum (10° mc)

CDB Counts (arb. unit)

tively high momenta. 10°

Figure 2 shows the calculated momentum-density distri- R  F————.__
bution of the positron-core-electron pair for Al at the same 10°
[001] plane, where both the contributions from the semicore o7

and core electrons are included. It is observed that the 0 10 20 30 40 50 60
momentum-density distribution of the positron-core-electron
pair is very isotropic. An important factor giving rise to this

feature is the positron-density distribution. As shown in Fig. 15 4. calculated coincidence Doppler broadening spectrum
3, the density distribution of the delocalized positron isaiong the[001] direction for Al. Partial contributions of positron
rather isotropic in the core regions of the Al crystal, which apninilations with valence and core electrofwhich are further
leads to the fact that the positron equally samples the corgecomposed into the contributions of, 12s, and 2 electrong are
electrons at different directions. also presented. The insert shows the comparison between experi-

With the 3D momentum densities being calculated, it isment(solid circles with error bajsand theory(convoluted with the
ready to simulate the experimental CDB spectra. As menexperimental resolution(lines), and both the spectra are normal-
tioned in Sec. I, the CDB measures the longitudinal momenized to the same area.

-3
Momentum (10~ m c)

045108-5



TANG, HASEGAWA, NAGAI, SAITO, AND KAWAZOE PHYSICAL REVIEW B 65 045108

tial contribution of the valence electrons in Fig. 4, we seeEarly theoretical studié3® for the interacting positron-
clearly several steps due to the Fermi surface cutoff aroundlectron gases lead to a momentum-dependent enhancement
6.7, 13.0, and 20010 3myc. However, only the first two factor, which increases significantly as the momentum ap-
Fermi surface breaks can be discriminated from the totaproaches the Fermi surface but is strongly attenuated at the
CDB spectrum, since when the momentum is increasin@a” out of the Fermi surface. This enhancement factor results

larger than the Fermi momentum, the CDB spectrum mainlyn & density prominence around Fermi surface and corrects
represents the shape of thep 2electrons (up to 30 efficiently the calculated momentum-density distributions for
% 10~3myc). Moreover, with further increasing the momen- Mmetals based on the free-electron-gas model. However,
tum, the contribution of the 2electrons becomes the domi- Straightforwardly applying this enhancement factor to the
nant component. Because the momentum-density distriburesent calculational results will enlarge the band-structure
tion of the semicore and core electrons is very isotr¢pig. ~ €ffect induced prominences around &eoints (Fig. 1) and

2), the calculated CDB spectra along several directions aréharpen the discontinuity at the Fermi momentum, and thus
found to be almost identical at the high-momentum regionMay worsen the agreement between theory and experiment.
This (together with Fig. B evidences that using the spheri- The momentum-dependent enhancement factor was general-
cally symmetric positron wave function in the core regions isized to an energy-dependent fctfi®and was further devel-

a good approximation for the Al crystal. oped recently into a weighted-density-approximaiié/DA)

Next, we compare the theoretical results with the experiScheme? As shown by Rubaszek, Szotec, and Tenmerffian,
ments. In our experiments, a single crystal Al sample waghe WDA scheme can well reproduce the experimental re-
employed for the CDB measurements. The general descri@“'tS for Al
tion of the details of the experimental setup can be found in Finally, we compare the calculated positron lifetime with
our previous workg.The inset of Fig. 4 compares the calcu- the experiment. The positron lifetin{e) is the inverse of the
lation [convoluted with the experimental resolution of 1.1 total annihilation raté) of the positron-electron pair, which
keV (about 4.310 3myc)] with the experimental CDB IS given by
spectrum along the001] direction. The agreement between
experiment and theory is found to be satisfactory over the A= — 2
entire momentum range. As reported by Mijnarehdse 8>
also observe that when the atomic orbitals are employed f

mrac

f p(p)dp. (20)

lculating the 8220° elect instead of th . Cﬁerero denotes the classic electron radius. The present cal-
cajculating the & 2p= €lectrons Instead of the SemI-Core- ¢, g gives the positron lifetime of 165 ps for the Al crys-
state wave functions, the agreement at high-momentum r€21 which is in good agreement with the experiméb3—

g|ontbec0mesd.wo:§e. This i?dic?tes th?tt;hehqua.l environ166 ps (Refs. 17, 51 and is also comparable with the values
ment can modify the wave functions of the high-lying COr® calculated by using other methods, such as the KKBR6

electrons in the atoms, which may be detectable by using th85)717 the linear muffin-tin orbital within the atomic-spheres

positron CDB technique. s ) 52
It is noticed that there are some slight discrepancies bez_ipproxmatlon(LMTO ASA) (165 p9,™ etc.

tween experiment and theory around 10 anck 18 3myc
(Fig. 4). The calculation gives the momentum densities
slightly lower (highep than the experiments at the former Inthe above subsection, we investigated a nearly isotropic
(latten). The discrepancy around %80 ®myc can be attrib- momentum-density distribution of the positron-electron pair
uted to the overestimated enhancement for theelectrons  in Al. In this subsection, we turn to an anisotropic system,
in the present LDA schemé.The discrepancy around 10 the crystal of graphite. As a prototypical layer structure ma-
x103myc may be relevant to a hot spot in the recentterial, the electronic structure of graphite exhibits pro-
momentum-density studiéd** It has been noticed in the nounced anisotropies because of the presence of two distinct
recent high-resolution Compton scattering and positron twoand completely different types of interatomic bonding. Pre-
dimensional angular correlation of annihilation radiationvious studie¥>°have revealed that the positron ACAR dis-
(2D-ACAR) experiments that the first-principles calculationstributions (which mainly measure the momentum distribu-
tend to give lower valence-electron momentum densities dions of the positron-valence-electron pairs at the low-
the tail region, above the Fermi momentum in metalsthat momentum regionin graphite are very anisotropic so that a
observed around 2010 3mc in the inset of Fig. # One of  marked bimodality with two peaks along tpe. direction is
possible reasons for such a discrepancy is the clear Fermbserved. In this work, the present all-electron and full-
surface associated with the single-particle Kohn-Sham equagotential method is employed to calculate the positron anni-
tion in the LDA picture, which gives rise to too sharp drop of hilation characteristics in graphite with careful attention paid
the valence-electron momentum density above the Fermib the momentum-density distributions at the high-
momentum(Figs. 1 and % It has been shown th&t,by = momentum region. The calculations are compared with our
considering the smearing of the Fermi surface due to th@revious pseudopotential calculations and recent CDB ex-
many-electron effect, the calculation for Al can be improvedperiments.
significantly. However, further investigating this issue be- In the calculations, the experimental lattice paraméters
yond the LDA is out of the scope of the present paper. of a=b=2.46 A (4.65 a.u). andc/a=2.72 and the contact-
Another possible source of the discrepancy is the LDA totype MT spheres with the radiuRy;=1.34a.u. are em-
the many-particle effect of the positron-electron correlationployed. The cutoff parameters are choserkag=>5.5a.u.,

B. Graphite
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[0001] (10 my)

15 L e -
15 10 -5 0 5 10 15-15 -10 -5 0 5 10 15

[0170] (10°m)

FIG. 5. Contour plots of calculated momentum-density distribu-
tion of positron-valence-electron paiteft pane) and “pure”
valence-electron momentum-density distributiaght panel at the
[2110] plane for graphite. The thick lines denote the maximum
contour lines and the contour spacingsisof the maximum.

[0001] (a.u.)

lma=8, G™=11.0a.u., andGT®=12.2a.u. A Monk-
horst-Pac® type k mesh containing 1000 k points in the
FBZ is sampled in this work and the 3D momentum density
p(p) is calculated up tg~80x 10 3myc. Moreover, there

is no semicore state in the carbon atom and #&dlectrons _
are calculated as the core electrons by using Etg. and [0110] (a.u.)

18).

( I):igure 5 shows the calculated momentum-density distri- FIG. 6. Contour plot of calculated positron-density distribution
bution of the positron-valence-electron pair at m_lo] at the[2110] plane for graphite. The thick lines denote the maxi-
plane. Form this figure, it is observed that the momentumMum contour lines and the contour spacing is 3.3% of the maxi-
density distribution of graphite is very anisotropic and themMum. Solid circles denote the carbon atoms.

general shape of the distribution is dominated by the density

variation along thd0001] direction. There is a bimodality by the pronounced bimodaliyand in the rapid drop of the
observed along this direction with two pronounced peakgnomentum density over 8:510" *mqc along the[0001] di-
centered atpyoog~ * 4% 10 3myc on the [0001] axis. rection. While the positron s_ampllng for tlep? hybrid or-
Moreover, along this direction the momentum density de-bitals in the layers is relatively homogenous so that the
creases rapidly when the momentum is increasing more thagorominences of the momentum density along [i0410]
8.5x 10 3myc. On the contrary, the momentum density axis (originated from the positron annihilation with tisg?’

along the[0110] direction decreases much slowly so thatélectrons are close to the “pure” EMDD’s at these regions

there are significant densities distributed around[@et0]  (FIg- 9
axis extending up t@pgs10)~ = 11.5% 10" 3myc, which re-
sults in two marked density prominences along this direction
(Fig. 5.

The positron-density distribution plays an important role
in producing the above-mentioned anisotropies. To demon-
strate this, we plot the “pure” electron momentum-density
distribution(EMDD) in Fig. 5, which is calculated by setting
all the Fourier components of the enhanced positron wave
function equal to zero except f@"(G=0)=Q2 From
the EMDD in Fig. 5, we find that, though the EMDD is
anisotropic, its anisotropic features are much weaker com-
pared with those of the momentum-density distribution of
the positron-electron pairgFor instance, only very small :
bimodal peaks are observed on th@001] axis in the 40 -20 0 20 40
EMDD.) As shown in Fig. 6, the positron density is quasi- [0170] (10‘3 MeC)
two-dimensionally distributed in graphite with its maxima
between the layers. The positron significantly samples the FIG. 7. Contour plot of calculated momentum-density distribu-
low-momentum parts of thp, orbitals of the carbon atoms  tion of positron annihilation with & core electrons at thg2110]
in between the layers, and thus results in a much enhgmcedplane for graphite. The thick line denotes the maximum contour line
character of the momentum-density distributionanifested and the contour spacing is 2.3% of the maximum.

[0001] (10 myc)
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Figure 7 shows the calculated momentum-density distri-
bution of the positron annihilation with thesktore electrons
in graphite at the sam&110] plane and this density distri-
bution is also found to be anisotropic. As mentioned in the
preceding paragraphs, the tore electrons are calculated by
using Egs.(17) and (18). The “pure” EMDD of the core
states obtained by setting on*"{G=0)=0Q'? in Egs.
(17) and (18) is isotropic, namely,

CDB Counts (arb. unit)

2

Peore (P) =872, <2|+1>fréj.(pro>Rﬁ|<ro)dro S S
a,nl 0 0 10 20 30 40 50 60 10 20 30 40 50 60
21) Momentum (10° m c)

Thus, the observed anisotropies in the positron-core-electron . .
FIG. 8. Calculated coincidence Doppler broadening spectra and

annihilation entirely come from the positron sampling effect. . o
Y P biing their partial contributions of valence and cores) klectrons along

As shown in Fig. 6, the positron-density distributions aroundthe and directions for hiahlv oriented bvrolvtic araphite
the core regions are indeed anisotropic. The positron densj- Pic Pic gnty pyrolytic grap

. . - . . ﬂleft pane). The right panel shows the comparisons between experi-
ties along th¢0001] direction decrease rapidly to being van- ment(solid circles with error bajsand theory(convoluted with the

ishingly small at the .”“C'ear sites so that the h'gh'_mo_men_turgxperimental resolutigr(lines), and for comparison the experimen-
corr'.lporllents Pf 4 orbitals are suppressed a_Iong this dlrectlontal and calculational spectra are normalized to the same area.
(which is similar to the observed suppressing of the valence-

electron momentum density aboweygoy~ 8.5% 10 3mqc).

. . . . 2 H
As a result, the momentum-density distribution of the VP e+ P?sing, Progon) ded pd R ooor - (22
positron-core-electron pair becomes anisotropic with the

lower densities along th@001] direction. , Figure 8 presents the calculated CDB spectra for the
We haveécAosrgpared the present calculations with our preyopG |t is found that the 1D CDB spectra represent well
vious work where the pseudopotential plane-waveihe characteristic anisotropies observed in the 3D

scheme was adopted to calculate the valence-electron waygomentum-density distributions. For instance, there are a
functions and the frozen-core orbitals of the free atoms Wer%imodality peak around~3x103m,c and a rapid

employed to describe the core electréhk.is found that the
pseudopotential scheme gives nearly the same results at t
low-momentum region f<20x 10" 3myc), although at the
high-momentum region the pseudopotential scheme does n
give physically meaningful results because of the usage
the pseudo-wave-fl_mcno_ns n the core regions. Furthermore’ To verify the calculated anisotropic features, we carefully
the calculated positron lifetime for the graphite bulk using .« osured the CDB spectra along fhe andp, . directions
the pseudopotential meth@d09.1 p$ agrees very well with for the HOPG sampléZYA grade, Uni‘on Caréicde Cp.The

the present calculatloﬂle.O.p$. The good agreement be- .experiments are compared with the calculatifcenvoluted
tween both the schemes indicates that, as long as concernifgi. ihe experimental resolution of 1.2 kelabout 4.7

the positron ACAR distribution and lifetime, the pseudo- % 10~3mqc)] in Fig. 8 and good agreement is observed over

valence-wave-functions and frozen-atomic-core orbitals Calh o entire measurable momentum region. However, because

well reproduce the experimerits. of the smearing effect of the resolution, the anisotropic fea-

Next, we project the calculated 3D momentum—densnytures of the experimental CDB spectra are less emphasized.

distribution p(p) into the CDB spectra and compare them Th : :

. . ) ; : . us, we extract the CDB ratio &i(p, .)/N(p,c) (Fig. 9,
ergh ht.?ee(H%(gg";aer?]tsié(.ﬁmche.cﬁ tﬁ;%hgegré?%zd gyrr(])_lty;c which can highlight the anisotropic characteristics of the ex-
2r Stalls are oriented ?0 t;[é\(l)voll] direction while thee?an%tln perimental CDB spectrdAs shown in Fig. 9, it is found that

y ! irection whi even for the ratio spectrum the agreement between experi-

a>r<::s| areOI riindorml)): 0::;ntﬁ? atnﬁhiv\?eﬁﬁgd'cglgr[)glme _ment and theory is rather satisfactory. We clearly observe in
employe our €xperiments, only two S0 SPEChoth the experiments and calculations a ratio valley around

tra, N(p;c) andN(p,.), are typical. In the calculation, the 6 10-3m . )
: . , oC due to the bimodal peak ®¥(p,.), a ratio peak
former can be obtained straightforwardly by the 2D integras. . 1’9 1o 14x 10~*mqc due to the rapid drogprominence

To calcutate the later, angular averagitfore projection O N(Pe) [N(p. ) at this momentum region, and a continu-
for p(p) at the perpe'ndicular planggo simulate the ran- ous increase of _the ratio from 20 t04A0 *mgc due to the
domly orienteda andb axes is necessary, namely anisotropic posn.ron sqmpllng 'for thes1core electrons:
' ' These observations, in particular, the observed high-
momentum behaviors, manifestly demonstrate the impor-

1 t - i i
_ L vy ance of the positron wave functions around the core regions
N(pLc) const><277 J pVPLctpTcose, in the CDB studies.

Bnomentum-density drop abovexg@l0 3myc along thep,.
frection and a density prominence from6 to 12

X 10 3myc and slightly higher momentum densities at the
fgh—momentum region from-20 to 45<10 3myc along
ep, . direction.
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APPENDIX

Momentum (10° m_c)

We here briefly explain how to extend the present method

FIG. 9. Experimentalsolid circles with error bajsand calcula-  for the defect studies. To simulate the positron annihilation at

tional (open circlegratio curves of coincidence Doppler broadening the defect in solid, we employ a supercell containing the

spectrum along thp,  direction[N(p, ¢)] relative to that along the  gefect and a single positron. Within this approximation, the
p,c direction[N(p,c)]. Dashed lines denote the calculational partial calculation for the defect is essentially the same as the one
contributions of valence and coregjlelectrons tN(p, ) relative o qantaq in Sec. II, except for the point that the perturbation
o the totaiN(p;c). For comparison, before extracting ratio both the ¢y, trapped posit}on to the local electronic structure of the
calculatedN(p, ;) andN(p,.) or the partial contributions are con- defect has to be taken into account and consequently, the

luted with th i tal lution. . . -
voted wi © expenimental resoltion self-consistency between the positron and electron densities
IV. CONCLUSION is needed. To ach|ev9 this, two additional potential terms

given rise by the localized positron, namely, the Hartree po-

Based on the full-potential linearized-augmented-planetential of positron density and the positron-electron correla-
wave (plane-wavé expansion for the electroripositron  tion potential for the electrons, are needed to be added to the
wave functions and on the two-component density-functionaglectron effective potentidll). Moreover, in order to employ
theory within the local-density approximation, a first- the FLAPW method, these two additional potentials must be
principles scheme to calculate the positron annihilation charrepresented into the plane-wave representation in the inter-
acteristics in solids is reported. The highlight of the presenstitial region(8) and into the spherical harmonic representa-
method is the calculatiofwithout any shape or symmetry tion in the MT sphereg9).
assumption for the wave functions of the positron-electron ~ We calculate the Hartree potential in tii¢ space as
pairs at the core regions around the nuclei. As a result, th¥4(G)=—4mn_(G)/G? [n.(G) is the positron density at
method can compute the momentum-density distribution othe reciprocal lattic&s ] and this potential is represented into
the positron-electron pair over wide momentum region, fromthe spherical harmonics in the MT spheres as Bpwith
the low-momentum interstitial region to the high-momentum
core region, and is particularly suitable to study the coinci-
dence Doppler broadenin@CDB) of positron annihilation . (GR_: . A
radiation in solids in whicr?:the one—%imensional projection V|m(r0)=4m'% Vi(G)e' S eji(Gro) Yin(G). (23
of the momentum-density distribution of the positron-
electron pair can be measured up to the high-momentum
region. To verify the validity of the method, two typical sys- For the positron-electron correlation potential for the elec-
tems, Al and graphite having isotropic and anisotropictrons(as well as the enhancement fagt@imilar to the cor-
positron-density distributions around the nuclei, respectivelyrelation potential for the positron, we first calculate this po-
are investigated experimentally and theoretically in thistential in a real-space mesh based on the local electron and
work. The calculated CDB spectra are found to agree welpositron densities according to the TCDF theory within the
with the experiments over the entire measurable momenturbDA. This potential is transformed into th® space by the
region. Especially, for graphite the calculations well repro-Fourier transform and finally is represented into the spherical
duce the anisotropic momentum-density distributions at thénarmonics in the MT spheres by using an expression similar
high-momentum region originated from the anisotropic posto the above Eq(23). After these implementations, the elec-
itron sampling for the & core electrons of the carbon atoms. tron and positron wave functions are calculated iteratively
These successful results demonstrate clearly the importancetil the self-consistency between the positron and electron
of the positron wave function in the CDB studies and indi-densities is achieved. We have successfully applied this
cate that the present method can be applied to the CDB studaethod to calculate the CDB spectra for the vacancy-oxygen
ies for a variety of systems, especially those with the anisoaggregations in Si and the preliminary results were reported
tropic positron densities around the nuclei, such as that the 12th international conference on positron anni-

defects in solids. hilation 58
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