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Strongly correlated hopping and many-body bound states
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We study a system in which the quantum dynamics of electrons depend on the particle density in their
neighborhood. For any on-site repulsive interaction, we show that the exact two-body and three-body ground
states are bound states. We also discuss the finite density case in a mean-field framework and we show that the
system can undergo an unusual transition from an effective attractive interaction to a repulsive one, when
varying the electron density.
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I. INTRODUCTION

Correlated hopping models have been the subject of m
studies within various contexts. First proposed by Foglio a
Falicov to decribe mixed valence solids,1 they have also been
widely used to study the organic conductors2–5 in order to
take into account bond-charge effect.6 Finally, these models
where the probability of an electron to move depends on
particle density, have been proposed to mimick effective
tractive interaction between electrons high-Tc
superconductivity7,8 and have provided rich phas
diagrams.9–26

In a completely different framework, we have recen
described a localization phenomenon induced by the m
netic field that occurs for special geometries and for spe
values of the magnetic flux.27 This surprising effect has bee
experimentally observed in superconducting w
networks,28 and in two-dimensional electron gas.29 We have
also studied the influence of electron-electron interactions
such systems and we have shown that a Hubbard-like t
~on-site repulsion! was able to delocalize two particles in
tially confined in a given so-called Aharonov-Boh
cage.30,31 These results have led us to formulate the sim
toy model presented here in which we introduce this delo
ization process directly in the Hamiltonian by imposing th
an electron can move only if another electron is in its clo
neighborhood. Of course, we do not claim to capture all
physics of the interacting Aharonov-Bohm cages with t
simple one-dimensional system, but we think that it can h
us in understanding the delocalization process induced
~repulsive! interactions.

This paper is organized in two main parts. In the first o
we exactly solve the two-body~Sec. II! and three-body~Sec.
III ! problems and we show that the ground state is alway
bound state for any strength of the on-site repulsion. The
fore, we give a simple picture in terms of a graph in t
Hilbert space that makes the physical interpretation clea
In the second part~Sec. IV!, we propose a mean-field lik
approach for the finite density case by considering the lo
0163-1829/2001/65~4!/045102~6!/$20.00 65 0451
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energy excitations above the Fermi sea. We show that in
vicinity of a curve in its two parameter space, the initi
Hamiltonian can be mapped onto an effective Hubb
model with an interacting term that depends on the part
density and that can be either repulsive or attractive.

We consider interacting spin 1/2 fermions in a on
dimensional chain of linear sizeL5Na with periodic bound-
ary conditions32 described by the following Hamiltonian:

H52t(
i ,s

~ci 11,s
† ci ,s1ci ,s

† ci 11,s!~ni ,2s1ni 11,2s!

1U(
i

ni ,↑ni ,↓ , ~1!

whereci ,s
† (ci ,s) denotes the creation~annihilation! operator

of a fermion with spins, ni ,s5ci ,s
† ci ,s the density of spin

s5↑,↓ fermion on sitei, and^•••& stands for nearest neigh
bor pairs. The kinetic part of the Hamiltonian~1! allows a
particle of spins located on a sitei to jump on a neighboring
site j only if there is already a particle either on sitei or on
site j. For simplicity, we restrict our analysis to the repulsi
caseU.0. However, since the structure is bipartite, t
spectrum ofH is odd under the tranformationU→2U.33

II. THE TWO-BODY PROBLEM

The single-body problem is trivially solvable for thi
model since the particle can neither move, nor interact.
this case, the spectrum consists in one eigenvalue«50
which is N-fold degenerate. So, let us pay attention to t
two-body problem. Denotingu i & the orbital localized on the
site i, the two-body state space is generated by

u i , j &5u i &↑ ^ u j &↓ , ;~ i , j !P@0,N21#2. ~2!

We only consider here the orbital degrees of freedom si
for two particles, the spin degrees of freedom are comple
determined by the symmetry of the orbital wave functio
This problem can be mapped on that of a single part
©2001 The American Physical Society02-1
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moving in the graph displayed in Fig. 1 where each site (i , j )
of the Z2 lattice ~with appropriate boundary conditions! cor-
responds to the ketu i , j &. Using the invariance of the system
under a translation of the center of mass@direction ~1,1! in
Z2#, diagonalizingH can be simply achieved by introducin
the following Bloch waves:

uw0~K !&5
1

AN
(
n50

N21

eiKnbun,n&, ~3!

uw6~K !&5
1

AN
(
n50

N21

eiKnbun,n61&, ~4!

whereb5aA2 and whereK52p j /Nb( j P@0,N21#) is the
total momentum of the two particles. Indeed, one has

^w0~K !uHuw6~K8!&52t~11e2 iKb!dK,K8 , ~5!

^w0~K !uHuw0~K8!&5UdK,K8 , ~6!

where dK,K8 is the usual Kronecker symbol, so that th
eigenvalues ofH are given by«50 for the triplet states
~non sensitive toU) and for all the trivial configurations
corresponding to isolated particles, and by

«6~K !5
1

2
@U6AU2132t2cos2~Kb/2!#, ~7!

for the singlet states. Note that this result has already b
obtained by Hirsch in a different context.34,35 The most sur-
prising fact is the emergence of a dispersive band«2(K)
,0 associated to two-body bound states for anyU. In par-
ticular, the ground state is obtained for«2(K50). This can
be understood invoking the competition between the kin
term that lowers the energy and that is enhanced when
ticles are close together, and the interaction term that fav
the opposite situation. An interesting issue is to kn
whether this feature still holds for more than two particle
To tackle this task, we shall now analyze the three-bo
problem that is, fortunately, still tractable analytically.

III. THE THREE-BODY PROBLEM

As previously, we consider the three-body problem in
one-dimensional chain as a single-body problem in a gr
standing in theZ3 lattice. Using, once again, the invarianc
of the system under a translation of the center of mass@di-

FIG. 1. Representation of the two-body problem as a gr
standing in theZ2 lattice and its reduction after projection alon
~1,1!. tK5t(11e2 iKb).
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rection~1,1,1! in Z3#, it is convenient to build the following
Bloch waves

uw i , j ,k~K !&5
1

AN
(
n50

N21

eiKncu i 1n, j 1n,k1n&, ~8!

wherec5aA3 and whereK52p j /Nc( j P@0,N21#) is the
total momentum of the three fermions. Remark thatuw i , j ,k&
}uw i 8, j 8,k8& if ( i , j ,k)[( i 8, j 8,k8) mod ~1,1,1! so that one
must only consider nonequivalent Bloch function. Here,
have chosen to affect the phase 1 to the ketu i , j ,k& such that
( i 21 j 21k2) is minimum. After projection along~1,1,1! the
graph is the so-calledsextopusdisplayed in Fig. 2.

Note that in this latter graph, we have not put the s
corresponding touw0,0,0(K)& since it is forbidden for spin 1/2
fermions but that would be allowed for bosons. It is read
seen with this representation that there are two types of
gions: ~i! the ‘‘bulk’’ where the three particles are close to
gether and where there could possibly exist three-b
bound states and~ii ! the ‘‘legs’’ corresponding to a situation
where one particle is motionless and the two others pro
gate together. One also observes thatK plays the role of a
‘‘pseudomagnetic field’’ for the system so that the grou
states will be obtained forK50 ~zero field condition!. For an
arbitrary value ofKÞ0 modp/c, thesextopushas the dihe-
dral symmetryD3 and can be easily diagonalized for anyN.
Note that when the three electrons have the same pola
tion, the system is frozen since the particles cannot move
implies that the energy of the quadrupletS53/2 is simply 0.
The only interesting situation thus arises in the sectoS
51/2 whose spectrum is shown in Fig. 3 as a function oK
for a givenU.

One clearly observes two distinct components. First, fo
fixed K, there are two dispersive bands that correponds
scattering states~one two-body bound state1 one motion-
less particle! propagating ballistically in the ‘‘legs.’’ Their
precise form is given by Eq.~7!. Second, one observes muc
more interesting states out of those bands. As we shall
thereafter, these states are actually three-body bound s
and the most remarkable fact is that the ground state is
ways given by such a state for anyU. To analyze more pre-
cisely this surprising phenomenon, we focus on the casK
50 for which the ground state is obtained. In this case,
symmetry of thesextopusis D6 and it is possible to look for
bound states in each representation schematized in Fig
Each site represented in Fig. 4 symbolizes a state vector
fixed angular momentum. Note that the representations
dexed by l 50,3 corresponds to a fully space symmet
wavefunction that can, in no case, be an eigenstate for t
spin 1/2 fermions.

We thus look for a bound eigenstateuC&5(ncnun& where
un& is the ket corresponding to thenth site of the half-chains
labeled byl P@1,2# ~or equivalentlyl P@4,5#). For all n>3,
we setcn5Cle2l(n23)b for n odd andcn5Dle2l(n23)b for
n even, and we seek for complexl such that Re(lb)>0 and
Im(lb)[0 mod p, this latter condition ensuring to have
real eigenenergy. Such a state is an eigenstate if the se
equations are satisfied:

h
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FIG. 2. Representation of the three-bod
problem graph after projection perpendicularly
the direction~1,1,1! in the Z3 lattice. The sites
denotedi jk correspond to the ketuw i , j ,k(K)& and
z522te2 iKc.
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@«6
B ~l!2Ul #c1522t lc2 ,

«6
B ~l!c2522t l~c11c3!, ~9!

@«6
B ~l!2U#c3522t lc22A2tc4 ,

whereUl5U24t cos(2pl/6) andt l5t cos(pl/6) and

«6
B ~l!5

1

2
@U6AU2132t2cosh2~lb/2!#. ~10!

We emphasize that the periodic boundary condition adds
strictions onl but since the amplitude decreases expon
tially, they are not relevant providedN is larger than the
localization length 1/l. A simple inspection of the secula
system~9! allows one to show that it always has, at least, o

FIG. 3. Spectrum of the three-body problem as a function ofKc
for U51 andN5100 (t51).
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solution l0 ~for any U.0) associated to«2
B (l0) which is,

thereby, the ground state of the system. We have plotte
Fig. 5 the dependence of the two-body and three-bo
ground states energy as a function ofU for spin 1/2 fermions.

WhenU goes to infinity, both energies converges towa
zero but, as noticed previously, the three-body ground s
has always a lower energy than the two-body one. In ad
tion, the localization length 1/l0 tends to infinity which
sounds quite natural for strong repulsion.

IV. THE FINITE DENSITY CASE

A natural question then arises: are there still many-bo
bound states at higher densities? Indeed, if we now cons
four electrons, we can figure out more complex scatter
processes where two two-body bound states collide w
each other, or where a bound pair oscillates between
isolated particles. In these cases, one may expect the e
gence of four-body bound states. Unfortunately, this probl
is too complicated to be completely analyzed by element
methods. We have searched for the possibility of bind
together two two-body ground states by means of a va
tional method. In this approach, the four-particle state sp
has been decomposed in two sectors. The first one co
sponds to two isolated two-particle states whose center
mass are separated by at least 2.5 lattice spacings. In
region, we assumed an exponential decay of the wave fu

FIG. 4. Nontrivial graph of each irreducible representation
D6 indexed byl P@0,5#. Ul and t l are defined in the text.
2-3
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JULIEN VIDAL AND BENOIT DOUÇOT PHYSICAL REVIEW B 65 045102
tion with the relative separation of the two center of ma
positions. The second region corresponds to real space
figurations where each of the four particles is close to a
other. In the simplest version, this defines, after taking glo
translation invariance into account, a finite set of 18 confi
rations. It is important to note that two two-body boun
states collision may generate real space configurations w
a bound pair escapes to infinity leaving two unpaired el
trons which may remain at an arbitrary large final distan
from each other. This is illustrated on the sequence show
Fig. 6.

However, the typical decay length for the escape o
single pair is likely to be significantly shorter than the o
for two bound pairs. Thus, we have not kept these asympt
states with a single pair in our variational approach. T
search for four-particle bound states has always failed so
Of course, this lack of evidence does not constitute a proo
the absence of such bound states in the spectrum, bu
believe that four-particle binding is unlikely in this mode
The main reason for that is the Pauli principle which s
verely restricts the possibility of particle hopping in a clo
packing configuration. Therefore, we suggest that the fi
but small density system will form a Luttinger liquid o
bound pairs. The absence of four-particle binding may m
that residual interactions between these bound pairs are
pulsive, allowing a well-defined thermodynamic limit. Th
picture of a fluid of bound pairs is in fact reminiscent of t
attractive Hubbard model.33 Indeed, a detailed analysis of th
Bethe ansatz spectrum36 shows that this model is precise
described in its low-energy limit in terms of a Luttinger liq
uid of spinless two-particle bound states. By analogy,
thus also expect a gap in the spin excitation spectrum of
model. Actually, the ground state and the thermodynam
properties of both models should be quite similar. Howev
dynamical quantities might produce some meaningful diff
ences. For instance, it would be very interesting to inve
gate in more details the behavior of the single elect
Green’s function. In our simple-minded picture, adding
electron to a state with an even number of particles ind
leaves an unpaired spin. By contrast to the usual spin ch
separated liquid and to the attractive Hubbard model in p

FIG. 5. Variation of the ground state energy of the two-bo
(h) and three-body (d) problems as a function of the interactio
U (t51).
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ticular, our model opens the possibility of sustaining thre
body bound states between this extra electron and a
taken from the Luttinger liquid ground state. This interesti
question clearly deserves further studies. Instead of adres
this issue here, we shall turn to a very simple description
the finite density system. For large particle densities,
two-particle bound states have to overlap in real space, a
is no longer clear that they provide a good basis to und
stand the ground state properties. In the following, we sh
assume that the quantum state of the finite density syste
not too far from a Slater determinant of plane waves. Let
now write the Hamiltonian~1! in momentum space:

H5
1

N (
k,k8,p,p8,s

dp1p8,k1k8

3 f ~p,p8;k8,k!cp,s
† cp8,2s

† ck8,2sck,s , ~11!

wherecp,s5(1/AN)(neinpacn,s andp is the momentum of
the state. We keep the same notationc for operators either in
real or in momentum space since no confusion is poss
here. The interaction function is given by

f ~p,p8;k8,k!5
U

2
2t@cos~pa!1cos~p8a!1cos~k8a!

1cos~ka!#. ~12!

The expectation value ofH taken on any free particle stat
written using the plane wave single particle basis is given

^H&5
2

L (
k,k8

f ~k,k8;k8,k!nk,↑nk8,↓ . ~13!

To determine the most stable Slater determinant of pl

FIG. 6. A possible way to obtain an isolated pair and two froz
electrons from a four-body compact configuration.
2-4
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waves, we consider a single particle-hole excitation aw
from a reference state whose occupation numbers in mom
tum space are denoted bynk,s

(0) . For instance, we conside
nk,↑5nk,↑

(0)1dk,p2dk,q and nk,↓5nk,↓
(0) . The average energ

change induced by this particle-hole excitation is

^dH&p,q5
2

L (
k8

@ f ~p,k8;k8,p!2 f ~q,k8;k8,q!#nk,↓
(0)

~14!

524t
N↓
N

@cos~pa!2cos~qa!#, ~15!

whereNs is the total number of spins electrons. This shows
that the average energy is minimal provided the occup
state ~momenta! fills the usual Fermi intervals
@2kF,s ,kF,s# for s5↑,↓. From these considerations, an
from the expression~11!, it is very natural to separate th
diagonal and off-diagonal part ofH. We thus have

Hdiag5
U

N
N↑N↓22(

k,s
teff,scos~ka!ck,s

† ck,s , ~16!

with teff,s52tN2s /N. Up to a global shift,Hdiag exhibits the
same structure as a pure hopping Hamiltonian for free p
ticles, but its hopping term depends on the particle densit
it is induced by a two-particle interaction process. Along t
same line, one has

Hoff-diag5
1

N (
k,k8,p,p8,s

dk1k8,p1p8~12dk,p!

3 f ~p,p8,k8,p!cp,s
† cp8,2s

† ck8,2sck,s . ~17!

Let us assume that the ground state is not too remote f
the usual noninteracting Fermi sea. In this case, the
wave vectors involved in Eq.~17! are close to Fermi points
so thatHoff-diag is well approximated by

Hoff-diag.
1

N (
k,k8,p,p8,s

dk1k8,p1p8~12dk,p!

3
Ueff

2
cp,s

† cp8,2s
† ck8,2sck,s , ~18!

with Ueff5U28t cos(kFa). This result is similar to the one
obtained by Airoldi and Parola in a more general mode20

Expression~18! is expected to be valid whenuUeffu is smaller
than the effective bandwidth which is of the ordert(N↑
1N↓)/N. When this condition is satisfied, we see that t
model becomes equivalent to a one-dimensional Hubb
model with an effective interaction parameterUeff . Note that
the terms we have neglected going from Eqs.~17!,~18! in-
volve the momentum dependence of the bare interaction
tex on the external legs so they are irrelevant in the us
renormalization group analysis of weakly interacting ferm
ons in one dimension.37 The most interesting consequence
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Eq. ~18! is obtained for a less than half-filled syste
(ukFau,p/2) so that cos(kFa).0. In this case, the mode
exhibits a qualitative change from an effective attraction
an effective repulsion as the bare on-site repulsionU crosses
the value 8t cos(kFa). From the previous argument, we e
pect a one-dimensional Fermi liquid forU58t cos(kFa) as
the off-diagonal interaction is then purely composed of irr
evant terms. As the density increases, the size of the at
tive regions is reduced since the critical value ofU de-
creases. Note that for dilute systems, this effective Hubb
model is supposed to be valid only for a narrow interval
values of U around 8t cos(kFa) since the effective single
electron bandwidth is small. In the dilute and attractive
gime, it is therefore more accurate to work within the pictu
of a Bose gas of bound pairs.

V. CONCLUSIONS

To conclude, we have shown that a simple on
dimensional model in which the particle hopping is com
pletely assisted by the presence of another particle in
neighborhood generates some interesting conducting stat
finite density. For the less than half-filled system, in the pr
ence of an on-site repulsionU, we have established the ex
istence of two regimes for the effective interaction depend
on the strength ofU. In the attractive regime, the elementa
building blocks of the system are likely to be the two-partic
bound states discussed in Sec. II. Indeed, these states a
for any value ofU and they are characterized by a very tig
binding in real space. In this regime, our model is stron
reminiscent of the one-dimensional attractive Hubba
model. An interesting difference remains the existence
three-particle bound states detailed in Sec. III that are ab
in the attractive Hubbard model.33 In the present work, the
existence of these bound states have only been establish
the zero density limit. It would be interesting to kno
whether they could survive in the presence of a finite part
density, since they could eventually show up in the sin
electron spectral function.

Finally, we would like to make a few comments regardi
the original motivation of this study, namely, the investig
tion of interaction effects in tight-binding models for whic
all single-particle eigenstates are localized in Aharon
Bohm cages. A quasi-one-dimensional example illustrat
this phenomenon has been analyzed in details in Ref. 31
the two-body problem. Though the results obtained h
have strong similarities with this latter model, they have a
important qualitative differences. A common point is the po
sibility to form extended states for the two-particle proble
which are tightly bound in real space independently of
local bare repulsion strength. However, the main differen
lies in the fact that for Aharonov-Bohm cage models, the
extended two-particle eigenstates are, at best, degen
with the localized ground states and they are in most ca
excited states.30 In the finite density case, it is by no mean
obvious that these strongly localized systems become c
2-5
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ducting by contrast to the one studied here. Nevertheless
believe that if such conducting states appear in the pres
of Aharonov-Bohm cages, two-particle bound states w
play a major role. In this context, such models with stron
correlated~or purely assisted! hopping may provide a simple
and efficient way to describe possible conducting states
duced by interactions in otherwise localized systems.
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