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Strongly correlated hopping and many-body bound states
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We study a system in which the quantum dynamics of electrons depend on the particle density in their
neighborhood. For any on-site repulsive interaction, we show that the exact two-body and three-body ground
states are bound states. We also discuss the finite density case in a mean-field framework and we show that the
system can undergo an unusual transition from an effective attractive interaction to a repulsive one, when
varying the electron density.
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[. INTRODUCTION energy excitations above the Fermi sea. We show that in the
vicinity of a curve in its two parameter space, the initial

Correlated hopping models have been the subject of manklamiltonian can be mapped onto an effective Hubbard
studies within various contexts. First proposed by Foglio andnodel with an interacting term that depends on the particle
Falicov to decribe mixed valence solitithey have also been density and that can be either repulsive or attractive.
widely used to study the organic conducforsin order to We consider interacting spin 1/2 fermions in a one-
take into account bond-charge effédtinally, these models dimensional chain of linear sidze= Na with periodic bound-
where the probability of an electron to move depends on th@ry condition$® described by the following Hamiltonian:
particle density, have been proposed to mimick effective at-

tractive  interaction  between  electrons  high- H=—t> (¢, ¢ o+c Cii1)(Mi —gtNivy_y)
superconductivity® and have provided rich phase o rhe b e e e DL
diagrams’~26
In a completely different framework, we have recently +UD n; iy (1)
|

described a localization phenomenon induced by the mag-
Valles of the magnetc L This Surprising effect has been WErec! , (c..,) denotes the creationninilation operator
experimentally observed in  superconducting  wire®f @ fermion with spino, n; ,=c; ,C; , the density of spin
networks?® and in two-dimensional electron g&We have = !. fermion onsitd, and(. - -) stands for nearest neigh-
also studied the influence of electron-electron interactions offOF Pairs. The kinetic part of the Hamiltonidf) allows a
such systems and we have shown that a Hubbard-like terfp@rticle of spino- located on a sitéto jump on a neighboring
(on-site repulsionwas able to delocalize two particles ini- Sit€] only if there is already a particle either on siter on-
tially confined in a given so-called Aharonov-Bohm sitej. For simplicity, we restrlct our analysis _to th_e repulswe
cage®®3 These results have led us to formulate the simpléf@seU=>0. However, since the structure is b|part?!ge, the
toy model presented here in which we introduce this delocalSPectrum ofH is odd under the tranformatidd — —U.

ization process directly in the Hamiltonian by imposing that

an electron can move only if another electron is in its close Il. THE TWO-BODY PROBLEM

neighborhood. Of course, we do not claim to capture all the 6 1ody problem s trivially solvable for this
physics of the interacting Aharonov-Bohm cages with thISmodel since the particle can neither move, nor interact. In

simple one-dimensional system, but we think that it can helths case, the spectrum consists in one eigenvalue

us in gndgrstandi_ng the delocalization process induced bé(mich is N-fold degenerate. So, let us pay attention to the
(repulsive interactions. N

This paper is organized in two main parts. In the first one,two'bOdy problem. Denotingj) the orbital localized on the

we exactly solve the two-bodyBec. 1) and three-bodySec. sitei, the two-body state space is generated by

Ik:I) problems and we show that the grou_nd state is always a liiy=liy®lj),, ¥ J)e[ON—1T2 2)
ound state for any strength of the on-site repulsion. There-

fore, we give a simple picture in terms of a graph in theWe only consider here the orbital degrees of freedom since

Hilbert space that makes the physical interpretation clearefor two particles, the spin degrees of freedom are completely

In the second partSec. I\V), we propose a mean-field like determined by the symmetry of the orbital wave function.

approach for the finite density case by considering the lowThis problem can be mapped on that of a single particle
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* U rection(1,1,1) in Z3], it is convenient to build the following
o 0 Bloch waves
— -t -tK —tK

o T o N—1

1 )
i j 1 (K))= N nZO e "li+n,j+nk+n)y, (8

wherec=a./3 and whereK =27j/Nc(j e[ON—1]) is the

FIG. 1. Representation of the two-body problem as a graph,isi momentum of the three fermions. Remark that. )
standing in theZ? lattice and its reduction after projection along | @ir i1 Y if (i,j,k)=(i",j’,k’) mod (1,1, so thatllbne
|/,j/Y 4 1) - 1] ) 3y

= 7|Kb . . .
(1D te=t(1+e 7). must only consider nonequivalent Bloch function. Here, we

have chosen to affect the phase 1 to the|kétk) such that
(i%+j2+k?) is minimum. After projection alongl,1,1) the
graph is the so-calledextopuglisplayed in Fig. 2.

Note that in this latter graph, we have not put the site
corresponding tdeg o (K)) since it is forbidden for spin 1/2
fermions but that would be allowed for bosons. It is readily
seen with this representation that there are two types of re-
gions: (i) the “bulk” where the three particles are close to-

moving in the graph displayed in Fig. 1 where each ditg) (
of the Z? lattice (with appropriate boundary conditionsor-
responds to the két,j). Using the invariance of the system
under a translation of the center of mddgection(1,1) in
Z2], diagonalizingH can be simply achieved by introducing
the following Bloch waves:

N—-1
1 ) . .
K)) = Kbl ny. 3 gether and where there could possibly exist three-body
|#0(K)) \/N ngo e™™n.n) @ bound states andi) the “legs” corresponding to a situation

where one particle is motionless and the two others propa-
1 N1 gate together. One also observes thaplays the role of a
lo.(K))=—= >, eX"n,n+1), (4)  “pseudomagnetic field” for the system so that the ground
YN =0 states will be obtained fdf =0 (zero field condition For an
arbitrary value oflK #0 modm/c, the sextopusas the dihe-
dral symmetryD; and can be easily diagonalized for aNy
Note that when the three electrons have the same polariza-
tion, the system is frozen since the particles cannot move. It

whereb=a\/2 and whereK =27j/Nb(j e [ON—1]) is the
total momentum of the two particles. Indeed, one has

! = — —iKb ’ . . . .
{o(K)[Hl@=(K") ta+e ok ®) implies that the energy of the quadrup&&t 3/2 is simply 0.
Sy The only interesting situation thus arises in the se@&or
(eoK)[Hlpo(K"))=Udy k- ® 1/2 whose spectrum is shown in Fig. 3 as a functiofKof
where Sy« is the usual Kronecker symbol, so that the for a givenu. o .
(non sensitive toU) and for all the trivial configurations fixed K, there are two dispersive bands that correponds to
corresponding to isolated particles, and by scattering statetone two-body bound stat¢ one motion-

less particlg propagating ballistically in the “legs.” Their
1 precise form is given by Ed7). Second, one observes much
e+(K)=5[U= JU?+32t%cos’(Kb/2)], (7)  more interesting states out of those bands. As we shall see
thereafter, these states are actually three-body bound states

for the singlet states. Note that this result has already beeand the most remarkable fact is that the ground state is al-
obtained by Hirsch in a different conte¥t®° The most sur- Wways given by such a state for aby To analyze more pre-
prising fact is the emergence of a dispersive banqK)  cisely this surprising phenomenon, we focus on the ¢ase
<0 associated to tWO-bOdy bound states for &h)ﬂn par- =0 for which the ground state is obtained. In this case, the
ticular, the ground state is obtained for (K=0). This can Symmetry of thesextopuss D¢ and it is possible to look for

be understood invoking the competition between the kinetidound states in each representation schematized in Fig. 4.
term that lowers the energy and that is enhanced when paFach site represented in Fig. 4 symbolizes a state vector with
ticles are close together, and the interaction term that favoréxed angular momentum. Note that the representations in-
the opposite situation. An interesting issue is to knowdexed byl=0,3 corresponds to a fully space symmetric
whether this feature still holds for more than two particles.wavefunction that can, in no case, be an eigenstate for three
To tackle this task, we shall now analyze the three-bodyspin 1/2 fermions.

problem that is, fortunately, still tractable analytically. We thus look for a bound eigenstdt#) =3 4,|n) where
In) is the ket corresponding to threth site of the half-chains

labeled byl €[1,2] (or equivalentiyl e[4,5]). For alln=3,
we setyy,,=C,e """ for n odd andyy,,=D,e "3 for

As previously, we consider the three-body problem in then even, and we seek for complaxsuch that Re(b)=0 and
one-dimensional chain as a single-body problem in a graphm(\b)=0 mod =, this latter condition ensuring to have a
standing in thez® lattice. Using, once again, the invariance real eigenenergy. Such a state is an eigenstate if the secular
of the system under a translation of the center of njdss equations are satisfied:

lll. THE THREE-BODY PROBLEM
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FIG. 2. Representation of the three-body
problem graph after projection perpendicularly to
the direction(1,1,)) in the Z2 lattice. The sites

denotedjk correspond to the kétoi'j,k(K)) and

z=—2te"Ke,

[e2 (N = U Ty = -2t ¢, solution \, (for any U>0) associated t@® (\o) which is,
- thereby, the ground state of the system. We have plotted in
BN o= —2t,(gy + ih3), (9) Fig. 5 the dependence of the two-body and three-body

- ground states energy as a functioribfor spin 1/2 fermions.

B(\)— ——9 — WhenU goes_to infinity, both energies converges toward

[ex()=Ulvs o= V2t zero but, as noticed previously, the three-body ground state
whereU,=U — 4t cos(27/6) andt,=t cos(l/6) and has always a lower energy than the two-body one. In addi-

tion, the localization length 14 tends to infinity which
sounds quite natural for strong repulsion.

s2(n)= %[u +JU%+32t%cosH(Ab/2)]. (10)
. - . IV. THE FINITE DENSITY CASE
We emphasize that the periodic boundary condition adds re-
strictions on\ but since the amplitude decreases exponen- A natural question then arises: are there still many-body
tially, they are not relevant provided is larger than the bound states at higher densities? Indeed, if we now consider
localization length . A simple inspection of the secular four electrons, we can figure out more complex scattering
system(9) allows one to show that it always has, at least, ongrocesses where two two-body bound states collide with
each other, or where a bound pair oscillates between two
' ' ' T U isolated particles. In these cases, one may expect the emer-
T TR T gence of four-body bound states. Unfortunately, this problem
3 . is too complicated to be completely analyzed by elementary
methods. We have searched for the possibility of binding
together two two-body ground states by means of a varia-
1+ ] tional method. In this approach, the four-particle state space
has been decomposed in two sectors. The first one corre-
sponds to two isolated two-particle states whose centers of
L i mass are separated by at least 2.5 lattice spacings. In this
region, we assumed an exponential decay of the wave func-

Energy

2k 4
AL S o | | A oy
0 s - - 2t -2t N2t V2t Vot Voe
Kc o 0
FIG. 3. Spectrum of the three-body problem as a functiod ©f FIG. 4. Nontrivial graph of each irreducible representation of
for U=1 andN=100 (t=1). D¢ indexed byl €[0,5]. U, andt, are defined in the text.
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FIG. 5. Variation of the ground state energy of the two-body F : y $ F $ * :

(O) and three-body @) problems as a function of the interaction /P | N

U (t=1). SR S S

tion with the relative separation of the two center of mass g, 6, A possible way to obtain an isolated pair and two frozen
positions. The second region corresponds to real space CoBrectrons from a four-body compact configuration.
figurations where each of the four particles is close to any

other. "? th? simplest yersion, this defir_1e_s, after taking gl(.)baiicular our model opens the possibility of sustaining three-
translation invariance into account, a finite set of 18 Conf'gubody iaound states between this extra electron and a pair

rations. It is important to note that two two-body boundtaken from the Luttinger liquid ground state. This interesting

states collision may generate real space configurations Wheﬁ%estion clearly deserves further studies. Instead of adressing

a bound pair escapes o infinity leaving two unpalre.d EIEC’[his issue here, we shall turn to a very simple description of

She finite density system. For large particle densities, the
Fia. 6 IlR/\lo-particle bound states have to overlap in real space, and it
9. ©. is no longer clear that they provide a good basis to under-

However, the typical decay length for the escape of %tand the ground state properties. In the following, we shall

single palir is Iikgly to be significantly shorter than the ON€ assume that the quantum state of the finite density system is
for two bound pairs. Thus, we have not kept these asymptotlﬁot too far from a Slater determinant of plane waves. Let us

states with a smgl_e pair in our variational approz_ich. Th|snOW write the Hamiltoniar{1) in momentum space:
search for four-particle bound states has always failed so far.

Of course, this lack of evidence does not constitute a proof of

from each other. This is illustrated on the sequence shown

the absence of such bound states in the spectrum, but we H= 1 S s

believe that four-particle binding is unlikely in this model. NS ptp’ktk!

The main reason for that is the Pauli principle which se- R

verely restricts the possibility of particle hopping in a close ><f(p,p’;k’,k)cgygc;,’_gck,,_gck,g, (11

packing configuration. Therefore, we suggest that the finite
but small density system will form a Luttinger liquid of Wherecp,,,z(1/\/N)Enei”pacn,(, andp is the momentum of

bound pairs. The absence of four-particle binding may meag,q giate. We keep the same notatidior operators either in
that residual interactions between these bound pairs are rsal or in momentum space since no confusion is possible
pulsive, allowing a well-defined thermodynamic limit. This ;oo The interaction function is given by

picture of a fluid of bound pairs is in fact reminiscent of the
attractive Hubbard modéf Indeed, a detailed analysis of the
Bethe ansatz spectrifnshows that this model is precisely
described in its low-energy limit in terms of a Luttinger lig-
uid of spinless two-particle bound states. By analogy, we
thus also expect a gap in the spin excitation spectrum of our +cogka)]. (12
model. Actually, the ground state and the thermodynamical

properties of both models should be quite similar. However,The expectation value dfl taken on any free particle state
dynamical quantities might produce some meaningful differwritten using the plane wave single particle basis is given by
ences. For instance, it would be very interesting to investi-

gate in more details the behavior of the single electron 2

Green'’s function. In our simple-minded picture, adding an (Hy=— 2 f(k,k' ;K" K)ny N | - (13
electron to a state with an even number of particles indeed L e

leaves an unpaired spin. By contrast to the usual spin charge

separated liquid and to the attractive Hubbard model in parfo determine the most stable Slater determinant of plane

f(p,p";k" k)= %—t[cos{pa)+cos(p’a)+cos{k’a)
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waves, we consider a single particle-hole excitation awayeq. (18) is obtained for a less than half-filled system
from a reference state whose occupation numbers in momeigtkca| < w/2) so that coda)>0. In this case, the model
tum space are denoted mﬂ For instance, we consider exhibits a qualitative change from an effective attraction to
N =N+ 8 p— dk g and | =n(®). The average energy an effective repulsion as the bare on-site repulélotrosses
change induced by this particle-hole excitation is the value & coskga). From the previous argument, we ex-
pect a one-dimensional Fermi liquid faf=8t coskea) as
2 the off-diagonal interaction is then purely composed of irrel-
<5H>p'qu E [f(p,k’;k’,p)—f(q,k’;k’,q)]n(k‘?f e_vant te_rms. As the denS|t_y increases, _the size of the attrac-
k tive regions is reduced since the critical value Wfde-
(14 creases. Note that for dilute systems, this effective Hubbard
N model is supposed to be valid only for a narrow interval of
=—4t—l[cos(pa)—cos(qa)], (15  values ofU around 8 cosfga) since the effective single
N electron bandwidth is small. In the dilute and attractive re-
whereN,, is the total number of spimr electrons. This shows gime, it is therefore more accurate to work within the picture
that the average energy is minimal provided the occupie@f a Bose gas of bound pairs.
state (momenta fills the usual Fermi intervals
[—Kkeo.Ke s] for o=T7,|. From these considerations, and
from the expressiorill), it is very natural to separate the V. CONCLUSIONS
diagonal and off-diagonal part ¢f. We thus have

To conclude, we have shown that a simple one-
U . dimensional model in which the particle hopping is com-
Hdiag:NNTNl_ZKE; tefr,sCOgKA)C, ,Ck o, (16)  pletely assisted by the presence of another particle in its
’ neighborhood generates some interesting conducting states at
with teg ,=2tN_ . /N. Up to a global shiftH gi,g €xhibits the  finite density. For the less than half-filled system, in the pres-
same structure as a pure hopping Hamiltonian for free parence of an on-site repulsidd, we have established the ex-
ticles, but its hopping term depends on the particle density agtence of two regimes for the effective interaction depending
it is induced by a two-particle interaction process. Along thepn the strength obl. In the attractive regime, the elementary
same line, one has building blocks of the system are likely to be the two-particle
bound states discussed in Sec. Il. Indeed, these states appear
for any value ofU and they are characterized by a very tight
Hottdiag= 1y Y Sckprp (1= 8p) binding in real space. In this regime, our model is strongly
kk'.p.p"o reminiscent of the one-dimensional attractive Hubbard
Xf(p,p’,k’,p)c;g UC;, Gk —oCho- (17) model. Aq interesting differencg re.mains the existence of
’ ' three-particle bound states detailed in Sec. Il that are absent
Let us assume that the ground state is not too remote frorm the attractive Hubbard mod&l.In the present work, the
the usual noninteracting Fermi sea. In this case, the fougxistence of these bound states have only been established in
wave vectors involved in Eq17) are close to Fermi points the zero density limit. It would be interesting to know
S0 thatH o.qiag IS Well approximated by whether they could survive in the presence of a finite particle
density, since they could eventually show up in the single
electron spectral function.

Hoft-diag™ 1y > b K p+p (1= Sk p) Finally, we would like to make a few comments regarding
kk'.p.p’,0 the original motivation of this study, namely, the investiga-
U tion of interaction effects in tight-binding models for which
—effer o ingle-parti i ized i -
X 5 Cp,aCp’,—oCk’,—oCk,o (18 all single-particle eigenstates are localized in Aharonov

Bohm cages. A quasi-one-dimensional example illustrating
with Ugs=U — 8t coskga). This result is similar to the one this phenomenon has been analyzed in details in Ref. 31 for
obtained by Airoldi and Parola in a more general mddel. the two-body problem. Though the results obtained here
Expression(18) is expected to be valid whell ¢ is smaller  have strong similarities with this latter model, they have also
than the effective bandwidth which is of the ordgiN; important qualitative differences. A common point is the pos-
+N,)/N. When this condition is satisfied, we see that thesibility to form extended states for the two-particle problem
model becomes equivalent to a one-dimensional Hubbard/hich are tightly bound in real space independently of the
model with an effective interaction parametéy;. Note that  local bare repulsion strength. However, the main difference
the terms we have neglected going from E@<),(18) in-  lies in the fact that for Aharonov-Bohm cage models, these
volve the momentum dependence of the bare interaction veextended two-particle eigenstates are, at best, degenerate
tex on the external legs so they are irrelevant in the usuakith the localized ground states and they are in most cases
renormalization group analysis of weakly interacting fermi-excited state’ In the finite density case, it is by no means
ons in one dimensioff. The most interesting consequence of obvious that these strongly localized systems become con-
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