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Thermodynamic and tunneling density of states of the integer quantum Hall critical state
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We examine the long wavelength limit of the self-consistent Hartree-Fock approximation irreducible static
density-density response function by evaluating the charge induced by an external charge. Our results are
consistent with the compressibility sum rule and inconsistent with earlier work that did not account for
consistency between the exchange local field and the disorder potential. We conclude that the thermodynamic
density of states is finite, in spite of the vanishing tunneling density of states at the critical energy of the integer
guantum Hall transition.
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A two-dimensional (2D) electron gas in the strong value of the localization length exponent, is identical to
magnetic-field limit has a zero-temperature insulator-metalthat of the noninteracting theofy*
insulator transition in the presence of random disorder. When A second discrepancy between noninteracting electron
the strength of the magnetic field sweeps past a critical valugheory and experimental findings is the value of the dynami-
the off-diagonal (Hall) conductance changes abruptly by cal scaling exponertt For noninteracting electronsequals
(€?/h) while the diagonal(dissipativé conductance rises the space dimension=2. This remains true for short-

from zero to a finite value of ordes®/2h and then returns to ranged interactions since they are irrelevant at the noninter-

; ; i R,12 ; _
zero. This transition is often referred to as the integer quan"flctlng fixed point:** However, experimental data are con

wm Hall transition. The filling fact £ the int sistent withz~1.2* Lee and Wan@conjectured that a change
um Rall transition. the Tilling tactor range ot the Interme- ;, 7 \yih g change inv,y. is due to the noncritical linear

diate metallic phase is believed to collapse to a conducting,nnression of the single-particle DOS induced by Coulomb
critical point in the low-temperature thermodynamic limit. jnteractioné® Recently, Huckestein and Backhatisat-
According to the noninteracting theory of the integer quantempted to substantiate this conjecture by evaluating the
tum Hall effect, this behavior occurs because single-electrodensity-density response function in the quantum Hall re-
states are extended at an isolated critical energy near tlgime, including interaction effects within a time-dependent
middle of each disorder broadened Landau level. TheHartree-Fock approximatioff DHFA). Their analysis of dy-
insulator-metal-insulator transition takes place when théamic scaling giveg=1 and appears to be consistent with
Fermi level of the 2D electron system and one of the discretéhe result of a naive scaling argument incorporating the lin-
critical energies cross. early valrllzlshmg DOS: thg frequgncy—dependent I.enth scale
Our current understanding of the integer quantum HaIILg:“’ = (1poh w) with density of statepo> w implies
transitiort is far from complete, however, since Coulomb z=1. However, it is not plear that the, that enterd., is the
) . ) unneling DOS. In fact, it has been argdethat the relevant
interaction between electrons are expected to provide a re

: . Lo . JOS here is the thermodynamics DOS or the compressibility
evant perturbation at the noninteracting fixed pdifn. ad- dn/dg, which should be smooth and finite for a disordered

dition there are several discrepancies bgtween the .results 8Jstem on general grounds. Huckestein and Backhaus, how-
the noninteracting theory and the experimental findings thagver, found that the thermodynamic DOS or the compress-
may be due to the role of interactions. For example, recenbility is zero at the transition. Since the compressibility is
experimental work has shown that the tunneling density oproportional to the inverse screening lengthyg,
states(DOS) vanishes linearly at the Fermi enefgg sharp  =2me?dn/du, their result would imply an infinite screening
contrast to the finite DOS of the noninteracting theory. Tolength. The screening properties of the conducting critical
account for this discrepancy Yang and MacDof\aldrried ~ State unld, 'gherefore, _be hlghly_ unconventional. This result
out a numerical study in which disorder was treated exactlyS Plausible since the single particle states at a quantum Hall
and Coulomb interaction was described by a self-consisterffansition have the special property that only states at the

- . critical energy are delocalized while all other states are lo-
Hartree-FockHF) approximation. They found a linear Cou- 0 However, in order to make their calculation numeri-
lomb gap at all filling factors of the lowest Landau level

. & X » cally manageable, Huckestein and Backfaugre forced to
even at the critical energy. Wang and Xidrnigvestigated the  peglect correlations between the Hartree-Fock theory self-

effects of dynamical screening in a systematic nonperturbasnergy and the random potentials. Closely related approxi-
tive resummation of the most singular diagrams. They foungnations have long been common in a number of circum-

that the DOS is linear at the critical energy, as in the Hartreestances, for example, in addressing the properties of
Fock theory, exhibiting quantum Coulomb gap behavior. Indisordered superconductors where it has recently been dem-
spite of the qualitative DOS change due to interactions, howenstrated that they are unreliatfe.

ever, Yang, MacDonald, and Huckesftifound that the In order to evaluate the Hartree-Fock irreducible density-
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density response function directly, it is necessary to solve a

complicated integral equation. Huckestein and Backhaus cir- > [OKGIVIIXi) + (X Vignl Xi) + (X IV el Xi) 1(Xi | @)
cumvented this difficulty by disorder averaging the quasipar- '

ticle response function and the self-energy separately. We =6a<Xj|a>- ®)
circumvent this difficulty without making approximations,

by evaluating only the total charge resposto the external 1,4 position of the ion id§=a(1/2,1/2). The matrix ele-
potential from a point charge, solving the Hartree-FockmentS of the ion potential is

equations for the self-energy that is consistenwith

each disorder realization. In linear respons&) 1 o el
e - -

I 2 . . ) A
=lim, o x(q)2me/eq where x(q) is the full static re <Xjr|Vion|Xj>:—Kz - ed'R
sponse function, related to the irreducible responsg (m) q
=¥"(q)/[1+ (27eeq) x™(q)], and e is the dielectric <S5 (X 4 aul2/2) — a212/4
constant. It follows that i+ m EXHIAX(X; +ayl%/2) =g 1/4],
4
Q '=1+Ilim (1)

where d=(27r/a)(mx+sN¢,my+tN¢) with  m,
=1,... N, and s,t are integers. We have used a model
In the approximation studied by Huckestein and BackH4us, disorder potential consisting o, 5-function scatters with

it was determined numericallisee their Fig. 3 and discus- strength uniformly distributed betweea\ and\ and scat-
siong that x|{5(q) =s(eq/e?)+O(l/L), wheres=0.2 is a tering centers uniformly distributed inside the fundamental
numerical constant anldis the magnetic length. This would cell of the finite-size system. Hartree and Fock potentials can
imply that the second term on the right-hand side of @§. be expressed as a function of the electron density

has a finite value an@,z=0.56. On the other hand, it is
normally the case for metals that the screening wave vector

a—0 2me?x™(q)

2[i ire ; ; > in(Xi+Xj)
Jsc=27e |Imq_>0)( (9), is related to the thermodynamic (XJ-|VH,:|Xi>=Z A(g)ex —
density of states according .= 2me?dn/du,'® a result d
often referred to as the compressibility sum rule, which ><5'(J',i+my)UHF(a)- (5)

would imply thatQ=1. (It is clear from experiment that
dn/du must be finite at the integer quantum Hall transitjon.
Our numerical results support the applicability of the com-
pressibility sum rule and are clearly inconsistent with the | ) > _
value ofQ,g that violates this sum rule by about 50%. When ", ™~ n(mod\,) and O otherwiseUe(q) is proportional to
this rule is satisfied)=1, the external charge is perfectly © /el and mcludﬁes both Coulomb and exchange interactions.
screened, and the screening lengthis finite. Our results The quantityA(q) is proportional to the Fourier component
show that despite the linearly vanishing Coulomb gap in the?f the charge density and is calculated self-consistently from
tunneling DOS x'"(q=0) is finite and imply that transport the eigenvectors of the HF Hamiltonian by

is indeed governed by diffusion, as for noninteracting elec-

Here the sum ovetﬁ is over the discrete set of wave vectors
consistent with the boundary conditions a#dn,n") is 1 if

trons. 03 L F—— PY ¥ ¥ Y
We perform our calculations in the Landau gaL[gie = %f-.‘f-.- _____________

=(0,Bx,0)] and apply quasiperiodic boundary conditions to 0zs | gosp/

the HF single-particle orbitals inside a square with afea |

=a?. The basis states used to represent the HF Hamiltonian
are related to elliptic theta functions and can be labeled by a

‘
00 0 1'0
N
0.2

Ap(x,y) [11]

set of guiding centerisxj), j=1,... Ny inside the funda- /\/7//*‘\\
mental cell of the finite systenN(; is the total flux quantum 77}/;/// \\\\\\
passing through the areg. AThe wave functions of the basis 045 77\
states arQF|Xj)=Ef:_w¢Xj+ka(F), where LA
1/2 . — —_—
& (F)—( 1 ) exl | Xy (X—=x)? @ *1g 10 p 20 30
= — 2 . x
X a\/ml 12 22

i o ) o FIG. 1. Induced charge distribution for the critical state. Each
The_ HF eigenstate is given by a Ilnear_ (_:omblnatlon of thegyrve represents one @p(x,y;) for i=10,11 . ..,19,20, where
basis statega) = =i X;)(Xi|a). The coefficient§ Xj|a) sat- v —[a(i—1)/29]. These curves are shifted vertically for the sake of
isfy a set of matrix equations for the HF Hamiltonidt,=  clear presentation. The parameters atel/2, y=0.6, N, =4, and
=Vt Vi + Ve, Which is a sum of the HF potential in the N,=200. The unit of length i& Inset: Integrated induced charge as
LLL, the impurity potential, and the ionic potential of the a function of the distance to the position of the ion. The dashed line
inserted test charge, corresponds t@®5=0.56.
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FIG. 2. Same as in Fig. 1 but for a more disorder broadened

LLL with y=0.1, Np=10, andN ,=162.
> 1 3¢ Qe -
Aa)=q 2 E &' (j.i+my)

Xexp[x(xx} 3 (Xylaalx),  ©)

whereN is the number of electrons in the system. For each
disorder realization the matrix equation is solved for several

values of y=(e%/el)/T', where I'=(\°N,/1?A)'2 is the
characteristic disorder potential-energy scale ahds the

number of impurities. For this model the self-consistent Born

approximation (SCBA)
<(213m)Y T ~0.44".
For a system of N electrons in theth realization of the

DOS is nonzero for |€|

random disorder potential, we write the electron density as

PN =2 =1, NT(r)|? whereP=0,l, depending on
whether the ion is absent or present. pgl be the density
of the uniform background charge. Wheff(r) is disorder
averaged oveND number of realizations we finngN(F)
—(1/ND)Ekp (r) pon - The charged density induced by
the ion may be evaluated by computlpgNH(r)—poyN(r)
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FIG. 3. Same as in Fig. 1 but for an insulating state with
=1/7, y=0.1, Np=10, andN ,=175.
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FIG. 4. Contour plots of the charge density in the presence of a
strong the tendency towards crystallization fg+0.6. atv=1/7
with Np=1 andN 4= 175. Plot(a) is without the ion while plotb)
is with the ion. Comparing these two plots we can infer that the ion
captures an electron while the location of the other electrons are
unchanged. The unit of length s

=pin+1(") —pon . Since pon(r) =pon+a(r) —1/A the in-
duced densityA p(r)=p; N+ 1(F) — pon () + L/A.

Figure 1 displays the charge induced when an ion is
placed at the center of the square at LLL filling fraction
=1/2 and for the parametens=0.6, Np=4, andN ,=200.

The inset in Fig. 1 shows how the total induced charge
changes as the distance from the ion is varied. These results
are consistent wittQ=1 and a finite screening length
=b5|. They are clearly inconsistent with Huckestein and
Backhaus’s resul@,=0.56. Using the DOS of the SCBA,
we obtain a shorter Thomas-Fermi screening lengths
=2m/(ye)=1l. Figure 2 shows the disorder averaged
Ap(x,y;) for a much broader Landau level witp=0.1, v
=1/2, Np=10, andN,=162. In this case we find that the
screening length =111 while Ntg=6I. Our results for the

v dependence of the screening length is in qualitative agree-
ment with that implied by the DOS behavior in the SCBA.
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For a more quantitative comparison for the disorder depentrons are unchanged. A similar abrupt reconfiguration of the
dence of the screening length, a Hartree nonlinear screenirground state was found and studied in the pinning of Wigner
treatment, in which disorder is treated in the SCBAnay  crystals?

be required instead of the simple SCBA. We have shown here that despite the linearly vanishing

We have also investigated the screening properties in theoulomb gap in the tunneling DOS, the thermodynamic

insulating regime at'=1/7. Figure 3 displays the induced DOS of the integer quantum Hall critical state remains finite,

densities fory=0.1, Np=10, andN4=175. We observe and transport is indeed governed by diffusion as for nonin-
from the plot that the induced density does not decay rapidlyeracting electrons. It still remains an open question whether
and that the fluctuations are spread over a wide range. In thig, improved implementation of the TDHFA, that takes into

case it is difficult to define a screening length. We believe,..qnt self-consistently self-energy and vertex corrections,

lth;S relflgcts dt?e mt;ﬁmpletet screemr;ﬁ ?f&p@fm an _msul- an give rise to the observed dynamic critical exponent for
ator. Indeed from the inset we see that the screening length) integer quantum Hall transition.

appears to diverge with the finite system size. However, in
the presence of a weaker random disorder wjtk 0.6, S.-R.E.Y. is supported in part by Grant No. 2000-2-12-
where the tendency towards crystallization is strong, we finhg1-5 from the interdisciplinary Research program of the
a different result. Contour plots gf{(r) and p{(r) are  KOSEF. A.H.M. is supported by the Welch foundation and
shown in Fig. 4. Plota) is without the ion while ploifb) is by the National Science Foundation under Grant No.
with the ion. Comparing these two plots we can infer that theDMR0115947. Z.W. is supported by DOE Grant No. DE-
ion captures an electron while the location of the other elecFG02-99ER45747 and by the Research Corporation.
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