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Thermodynamic and tunneling density of states of the integer quantum Hall critical state
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We examine the long wavelength limit of the self-consistent Hartree-Fock approximation irreducible static
density-density response function by evaluating the charge induced by an external charge. Our results are
consistent with the compressibility sum rule and inconsistent with earlier work that did not account for
consistency between the exchange local field and the disorder potential. We conclude that the thermodynamic
density of states is finite, in spite of the vanishing tunneling density of states at the critical energy of the integer
quantum Hall transition.
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A two-dimensional ~2D! electron gas in the stron
magnetic-field limit has a zero-temperature insulator-me
insulator transition in the presence of random disorder. W
the strength of the magnetic field sweeps past a critical va
the off-diagonal ~Hall! conductance changes abruptly b
(e2/h) while the diagonal~dissipative! conductance rises
from zero to a finite value of ordere2/2h and then returns to
zero. This transition is often referred to as the integer qu
tum Hall transition. The filling factor range of the interm
diate metallic phase is believed to collapse to a conduc
critical point in the low-temperature thermodynamic lim
According to the noninteracting theory of the integer qua
tum Hall effect, this behavior occurs because single-elec
states are extended at an isolated critical energy near
middle of each disorder broadened Landau level. T
insulator-metal-insulator transition takes place when
Fermi level of the 2D electron system and one of the disc
critical energies cross.

Our current understanding of the integer quantum H
transition1 is far from complete, however, since Coulom
interaction between electrons are expected to provide a
evant perturbation at the noninteracting fixed point.2 In ad-
dition there are several discrepancies between the resul
the noninteracting theory and the experimental findings
may be due to the role of interactions. For example, rec
experimental work has shown that the tunneling density
states~DOS! vanishes linearly at the Fermi energy3 in sharp
contrast to the finite DOS of the noninteracting theory.
account for this discrepancy Yang and MacDonald4 carried
out a numerical study in which disorder was treated exa
and Coulomb interaction was described by a self-consis
Hartree-Fock~HF! approximation. They found a linear Cou
lomb gap at all filling factors of the lowest Landau leve
even at the critical energy. Wang and Xiong5 investigated the
effects of dynamical screening in a systematic nonpertu
tive resummation of the most singular diagrams. They fou
that the DOS is linear at the critical energy, as in the Hartr
Fock theory, exhibiting quantum Coulomb gap behavior.
spite of the qualitative DOS change due to interactions, h
ever, Yang, MacDonald, and Huckestein6 found that the
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value of the localization length exponentn loc is identical to
that of the noninteracting theory.7–11

A second discrepancy between noninteracting elect
theory and experimental findings is the value of the dyna
cal scaling exponentz. For noninteracting electrons,z equals
the space dimensiond52. This remains true for short
ranged interactions since they are irrelevant at the nonin
acting fixed point.2,12 However, experimental data are co
sistent withz'1.13 Lee and Wang2 conjectured that a chang
in z with no change inn loc is due to the noncritical linea
suppression of the single-particle DOS induced by Coulo
interactions.4,6 Recently, Huckestein and Backhaus14 at-
tempted to substantiate this conjecture by evaluating
density-density response function in the quantum Hall
gime, including interaction effects within a time-depende
Hartree-Fock approximation~TDHFA!. Their analysis of dy-
namic scaling givesz51 and appears to be consistent wi
the result of a naive scaling argument incorporating the
early vanishing DOS: the frequency-dependent length s
Lv5v21/z5(1/Ar0\v) with density of statesr0}v implies
z51. However, it is not clear that ther0 that entersLv is the
tunneling DOS. In fact, it has been argued15 that the relevant
DOS here is the thermodynamics DOS or the compressib
dn/dm, which should be smooth and finite for a disorder
system on general grounds. Huckestein and Backhaus, h
ever, found that the thermodynamic DOS or the compre
ibility is zero at the transition. Since the compressibility
proportional to the inverse screening length,qsc
52pe2dn/dm, their result would imply an infinite screenin
length. The screening properties of the conducting criti
state would, therefore, be highly unconventional. This res
is plausible since the single particle states at a quantum
transition have the special property that only states at
critical energy are delocalized while all other states are
calized. However, in order to make their calculation nume
cally manageable, Huckestein and Backhaus14 were forced to
neglect correlations between the Hartree-Fock theory s
energy and the random potentials. Closely related appr
mations have long been common in a number of circu
stances, for example, in addressing the properties
disordered superconductors where it has recently been d
onstrated that they are unreliable.16

In order to evaluate the Hartree-Fock irreducible dens
©2001 The American Physical Society02-1
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density response function directly, it is necessary to solv
complicated integral equation. Huckestein and Backhaus
cumvented this difficulty by disorder averaging the quasip
ticle response function and the self-energy separately.
circumvent this difficulty without making approximation
by evaluating only the total charge responseQ to the external
potential from a point charge, solving the Hartree-Fo
equations for the self-energy that is consistent17 with
each disorder realization. In linear response,Q
5 lim

q→0
x(q)2pe2/eq where x(q) is the full static re-

sponse function, related to the irreducible response byx(q)
5x irr(q)/@11(2pe2/eq)x irr(q)#, and e is the dielectric
constant. It follows that

Q21511 lim
q→0

eq

2pe2x irr~q!
. ~1!

In the approximation studied by Huckestein and Backhau14

it was determined numerically~see their Fig. 3 and discus
sions! that xHB

irr (q)5s(eq/e2)1O( l /L), where s.0.2 is a
numerical constant andl is the magnetic length. This woul
imply that the second term on the right-hand side of Eq.~1!
has a finite value andQHB.0.56. On the other hand, it i
normally the case for metals that the screening wave ve
qsc52pe2lim

q→0
x irr(q), is related to the thermodynami

density of states according toqsc52pe2dn/dm,18 a result
often referred to as the compressibility sum rule, wh
would imply that Q51. ~It is clear from experiment tha
dn/dm must be finite at the integer quantum Hall transitio!
Our numerical results support the applicability of the co
pressibility sum rule and are clearly inconsistent with t
value ofQHB that violates this sum rule by about 50%. Wh
this rule is satisfiedQ51, the external charge is perfect
screened, and the screening lengthqsc is finite. Our results
show that despite the linearly vanishing Coulomb gap in
tunneling DOS,x irr(q50) is finite and imply that transpor
is indeed governed by diffusion, as for noninteracting el
trons.

We perform our calculations in the Landau gauge@AW
5(0,Bx,0)# and apply quasiperiodic boundary conditions
the HF single-particle orbitals inside a square with areaA
5a2. The basis states used to represent the HF Hamilto
are related to elliptic theta functions and can be labeled b
set of guiding centersuXj&, j 51, . . . ,Nf inside the funda-
mental cell of the finite system (Nf is the total flux quantum
passing through the area A!. The wave functions of the basi
states arêrWuXj&5(k52`

` fXj 1ka(rW), where

fX~rW !5S 1

aAp l
D 1/2

expS i
Xy

l 2
2

~X2x!2

2l 2 D . ~2!

The HF eigenstate is given by a linear combination of
basis states.ua&5( i uXi&^Xi ua&. The coefficientŝXi ua& sat-
isfy a set of matrix equations for the HF Hamiltonian,HHF
5VHF1VI1Vion , which is a sum of the HF potential in th
LLL, the impurity potential, and the ionic potential of th
inserted test charge,
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@^Xj uVI uXi&1^Xj uVionuXi&1^Xj uVHFuXi&#^Xi ua&

5ea^Xj ua&. ~3!

The position of the ion isRW 5a(1/2,1/2). The matrix ele-
ments of the ion potential is

^Xj 8uVionuXj&52
1

A (
qW

2pe2

eq
eqW •RW

3d j 8, j 1my
8 exp@ iqx~Xj1qyl

2/2!2q2l 2/4#,

~4!

where qW 5(2p/a)(mx1sNf ,my1tNf) with mx,y
51, . . . ,Nf and s,t are integers. We have used a mod
disorder potential consisting ofNI d-function scatters with
strength uniformly distributed between2l andl and scat-
tering centers uniformly distributed inside the fundamen
cell of the finite-size system. Hartree and Fock potentials
be expressed as a function of the electron density

^Xj uVHFuXi&5(
qW

D~qW !expF iqx~Xi1Xj !

2 G
3d8~ j ,i 1my!UHF~qW !. ~5!

Here the sum overqW is over the discrete set of wave vecto
consistent with the boundary conditions andd8(n,n8) is 1 if
n85n(modNf) and 0 otherwise.UHF(qW ) is proportional to
e2/e l and includes both Coulomb and exchange interactio
The quantityD(qW ) is proportional to the Fourier componen
of the charge density and is calculated self-consistently fr
the eigenvectors of the HF Hamiltonian by

FIG. 1. Induced charge distribution for the critical state. Ea
curve represents one ofDr(x,yi) for i 510,11, . . . ,19,20, where
yi5@a( i 21)/29#. These curves are shifted vertically for the sake
clear presentation. The parameters aren51/2, g50.6, ND54, and
Nf5200. The unit of length isl. Inset: Integrated induced charge a
a function of the distance to the position of the ion. The dashed
corresponds toQHB.0.56.
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D~qW !5
1

Nf
(
j 51

Nf

(
j 851

Nf

d8~ j ,i 1my!

3expF iqx~Xi1Xj !

2 G (
a51

N

^Xj 8ua&^auXj&, ~6!

whereN is the number of electrons in the system. For ea
disorder realization the matrix equation is solved for seve
values of g5(e2/e l )/G, where G5(l2NI / l 2A)1/2 is the
characteristic disorder potential-energy scale andNI is the
number of impurities. For this model the self-consistent Bo
approximation ~SCBA! DOS is nonzero for ueu
,(2/3p)1/2G;0.46G.

For a system of N electrons in thek th realization of the
random disorder potential, we write the electron density
rP,N

(k) (rW)5(a51, . . . ,NuCa
(k)(rW)u2 whereP50,I , depending on

whether the ion is absent or present. Letr0,N be the density
of the uniform background charge. Whenr0,N

(k) (rW) is disorder

averaged overND number of realizations we findr0,N(rW)
[(1/ND)(kr0,N

(k) (rW)5r0,N . The charged density induced b

the ion may be evaluated by computingr I ,N11(rW)2r0,N(rW)

FIG. 2. Same as in Fig. 1 but for a more disorder broade
LLL with g50.1, ND510, andNf5162.

FIG. 3. Same as in Fig. 1 but for an insulating state withn
51/7, g50.1, ND510, andNf5175.
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5r I ,N11(rW)2r0,N . Since r0,N(rW)5r0,N11(rW)21/A the in-

duced densityDr(rW)5r I ,N11(rW)2r0,N11(rW)11/A.
Figure 1 displays the charge induced when an ion

placed at the center of the square at LLL filling fractionn
51/2 and for the parametersg50.6, ND54, andNf5200.
The inset in Fig. 1 shows how the total induced cha
changes as the distance from the ion is varied. These re
are consistent withQ51 and a finite screening lengthlsc
.5l . They are clearly inconsistent with Huckestein a
Backhaus’s resultQHF.0.56. Using the DOS of the SCBA
we obtain a shorter Thomas-Fermi screening length,lTF
52p/(ge).1l . Figure 2 shows the disorder averag
Dr(x,yi) for a much broader Landau level withg50.1, n
51/2, ND510, andNf5162. In this case we find that th
screening lengthlsc.11l while lTF.6l . Our results for the
g dependence of the screening length is in qualitative ag
ment with that implied by the DOS behavior in the SCB

d

FIG. 4. Contour plots of the charge density in the presence
strong the tendency towards crystallization forg50.6. at n51/7
with ND51 andNf5175. Plot~a! is without the ion while plot~b!
is with the ion. Comparing these two plots we can infer that the
captures an electron while the location of the other electrons
unchanged. The unit of length isl.
2-3
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For a more quantitative comparison for the disorder dep
dence of the screening length, a Hartree nonlinear scree
treatment, in which disorder is treated in the SCBA,19 may
be required instead of the simple SCBA.

We have also investigated the screening properties in
insulating regime atn51/7. Figure 3 displays the induce
densities forg50.1, ND510, and Nf5175. We observe
from the plot that the induced density does not decay rap
and that the fluctuations are spread over a wide range. In
case it is difficult to define a screening length. We belie
this reflects the incomplete screening property20 of an insu-
lator. Indeed from the inset we see that the screening len
appears to diverge with the finite system size. However
the presence of a weaker random disorder withg50.6,
where the tendency towards crystallization is strong, we fi
a different result. Contour plots ofr0

(k)(rW) and r I
(k)(rW) are

shown in Fig. 4. Plot~a! is without the ion while plot~b! is
with the ion. Comparing these two plots we can infer that
ion captures an electron while the location of the other e
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trons are unchanged. A similar abrupt reconfiguration of
ground state was found and studied in the pinning of Wig
crystals.21

We have shown here that despite the linearly vanish
Coulomb gap in the tunneling DOS, the thermodynam
DOS of the integer quantum Hall critical state remains fini
and transport is indeed governed by diffusion as for non
teracting electrons. It still remains an open question whet
an improved implementation of the TDHFA, that takes in
account self-consistently self-energy and vertex correctio
can give rise to the observed dynamic critical exponent
the integer quantum Hall transition.
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