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Calculation of ballistic conductance through Tamm surface states

Katsuyoshi Kobayashi
Department of Physics, Faculty of Science, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan

~Received 19 May 2001; revised manuscript received 31 July 2001; published 2 January 2002!

Ballistic conduction through Tamm surface states is studied theoretically. We calculate the conductance in
systems of scanning tunneling microscopy~STM! with double tips as well as a single tip. Conductance spectra
of flat surfaces containing surface states are qualitatively proportional to the density of states at the first layer
of surfaces if we calculate on boundary conditions that allow net current to flow parallel to surfaces. The
potential difference between the first layer and inner layers enhances the conduction through Tamm states.
When a STM tip is put on an island of a surface, the conductance varies as a function of the step height of the
island. The variation is explained by the difference in the step-height dependence between surface-state and
bulk-state conduction. The tunneling between the surface states of islands and substrates is the main path of the
surface-state conduction at low step heights. The study of the conduction in islands demonstrates the impor-
tance of the conduction path in surfaces to electrodes. The ballistic conductance spectra between two tips in
double-tip systems show one-dimensional features, which suggests high conductance when the Fermi energy is
located near band edges of surface states.

DOI: 10.1103/PhysRevB.65.035419 PACS number~s!: 73.20.At, 73.25.1i, 68.37.Ef, 73.23.Ad
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I. INTRODUCTION

Surface states are formed at interfaces of the vacuum
materials and are intrinsic to surfaces of materials. Until n
they have been observed using various experimental t
niques in surface science. However, very recently, cond
tion through surface states has attracted much attention1 and
its properties have been studied directly using microsco
methods such as scanning tunneling microscopy~STM!.2–4

On the other hand, surface states have been extens
studied theoretically5,6 since the early works by Tamm7 and
Shockley.8 But, the number of theoretical works that studi
directly the transport properties through surface states is
so large. In particular, little is known about ballistic transp
through surface states, despite its importantance in mi
scopic measurements. For example, how large is the co
bution of the surface-state conduction to the total conduc
when both surface and bulk states coexist? How sensitiv
the surface-state conduction to irregularities such as step
defects? What information about surface states is obta
from conduction measurements? These questions are im
tant for analyzing experimental data, but they remain un
swered, mainly due to lack of quantitative calculations
conduction through surface states. In earlier theoret
works, conduction though surface states was studied u
such approximations as the neglect of bulk states or the
turbative approach of tunneling.

In this paper we present numerical calculations of the b
listic conduction through surface states and clarify the pr
erties theoretically. The model for surfaces used in this pa
is very simple. But, since it describes both surface and b
states within a single Hamiltonian and we do not use s
approximations as tunneling, we can determine without a
biguity the magnitude of the conduction through surfa
states. This is a starting point for more realistic calculatio

In this paper we discuss three topics on the surface-s
conduction. One is the mechanism of the observation of
face states in STM. In the early stage of development
0163-1829/2002/65~3!/035419~11!/$20.00 65 0354
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STM surface states were observed on semicondu
surfaces.9–11 Peaks corresponding to surface states w
clearly seen in the spectra obtained by scanning tunne
spectroscopy~STS!. So far, the STS spectra have been e
plained qualitatively in terms of the local density of stat
~LDOS! of sample surfaces using the Tersoff-Hama
theory.12 Since the component of surface states is finite in
LDOS at surfaces, it seems that the surface states observ
STS can also be explained by the Tersoff-Hamann the
However, the observation of surface states in STM is
trivial, as shown below.

Using scattering theory, Noguera pointed out that surf
states may not be observed in STM because the group ve
ity of surface states is zero in the direction perpendicula
surfaces.13,14 The reason for the seeming success of
theory of Tersoff and Hamann in explaining the observat
of surface states is that it takes account of only the tunne
process between a tip and a surface, and the paths o
tunneling electrons to the electrodes in contact with surfa
are not explicitly considered. If we consider that surfa
states decay into the bulk, it is not clear why the electrons
surface states travel to the electrodes. Furthermore, Nog
showed that Bardeen’s perturbative approach is not valid
surface states. Since the Tersoff-Hamann theory is base
Bardeen’s formalism, there are no grounds for its applicat
to STS spectra of surface states. The reason for the obse
tion of surface states in STM is not clear.

Noguera mentioned two possibilities for the surface-st
observation. One is the current flowing parallel to surfac
The other is the effect of inelastic scattering or temperat
in surfaces. Makoshi made a similar argument and show
other possibilities.15 For example, surface states and bu
states may mix due to irregularities such as defects. Elect
in surface-state bands may tunnel to bulk bands due to
band bending. Though there are several possibilities, it
not yet been settled which is dominant for the surface-s
observation, due to the lack of concrete calculations of
surface-state conduction.
©2002 The American Physical Society19-1
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KATSUYOSHI KOBAYASHI PHYSICAL REVIEW B 65 035419
In this paper we calculate the conductance in a STM s
tem containing surface states and discuss a possibility
the observation of surface states in STS is explained by
lateral current. In the calculations of conductance we do
use the periodic boundary condition for the directions pa
lel to the surface. The periodic boundary condition is use
in the case for which only bulk states exist in surfaces, an
widely used. However it cannot be used to calculate the c
ductance through surface states, because only the cha
propagating perpendicular to surfaces contribute to the c
ductance calculated on the periodic boundary condition,
the contribution of surfaces states is not taken into acco
Therefore, in this paper we calculate the conductance o
boundary condition that allows net current to flow latera
and we determine the magnitudes of the conductions tho
bulk and surface states. We find that in the case of flat
faces without surface defects and steps the ratio of
surface-state component in conductance to the bulk-s
component is qualitatively reproduced by the density
states~DOS! at the outermost layer of the surface. This res
suggests that the observation of surface states in STS is
plained by the lateral current and supports partially the us
LDOS for analyzing STS spectra of surface states.

The second topic of the present paper is to investigate
surface-state conduction in islands on surfaces. Haseg
Lyo, and Avouris performed point-contact measurement
silicon surfaces using STM.2 They compared the electrica
conductances between when an STM tip is put on flat
races and when on islands and found that the conductan
the latter is lower than that of the former by about one or
of magnitude. This result suggests that the electrical cur
flows mainly through surface states in their experiment.
this paper we present calculations of the conductance wh
tip is put on an island and investigate properties of the c
duction in islands.

So far, the reduction of electrical conduction in islan
has usually been explained by the scattering of electron
the steps of islands in the diffusive regime. However, sin
the lateral size of the islands in the experiment by Hasega
Lyo, and Avouris is about 1003100 Å2, the electrical con-
duction in the islands can be assumed to be ballistic.
show that in such a ballistic regime the tunneling from t
surface states of islands to those of substrates rather tha
scattering at steps is a good picture for explaining the red
tion of conductance in islands.

The third topic of this paper is to simulate the condu
tance measurement using the double-tip STM. Recently
electrical conduction of surfaces was directly measured u
micro-four-point probes,4,16 where the contribution of sur
face states to surface conduction was discussed. The dis
between probes in these experiments is of micrometer o
and the electrical conduction is not ballistic. But it is a pro
ising tool for measuring directly the electrical transport
the nanometer scale, and in the future it may become p
sible to study directly the ballistic conduction of surfaces
decreasing the distance between probes. In this pape
present calculations of ballistic conductance in the double
STM and discuss the role of surface states in the conduc
of this system.
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Theoretical studies on the two-probe measurement h
been performed by two groups.17,18 They assumed that th
conduction between probes and sample surfaces is thro
tunneling and derived expressions for tunneling current
using the perturbation theory similar to Bardeen’s approa
In the present paper we use the Landauer formula19 for cal-
culating conductance. The Landauer formalism allows us
calculate the ballistic conductance exactly without the
proximation of tunneling and can be used even when pro
are in close contact with sample surfaces. In this formalism
is easy to take account of minute atomic structures of
surface contacts and to extend to calculations of the cond
tance of realistic surfaces. We discuss the surface-state
duction from an atomistic point of view.

The surface state studied in this paper is the Tamm sta7

Tamm states exist when the potential of the outermost la
of surfaces is different from that of inner layers by a certa
amount.5,6 Tamm states were experimentally observed
Cu~100! and Cu~111! surfaces20 and superlattices.21 Different
from the Shockley state,8 Tamm states exist in single-ban
systems without band gaps. The reason for studying
Tamm state in this paper is that the system of Tamm state
very simple, though there is no difficulty in principle in ca
culating the conductance through Shockley states. In Sec
we present the model studied in this paper and the metho
calculation. Results calculated for flat surfaces, islands,
double-tip systems are shown in Sec. III.

II. METHOD OF CALCULATION

A. Model

Figure 1 shows the schematic of the models studied in
paper. We calculate the conductance for three systems.
is a system consisting of a single STM tip and a flat surfa
which corresponds to Fig. 1~a! with neglect of the second tip
The second is an island on a substrate surface with a si
tip as shown in Fig. 1~b!. The third is a system of double tip
on a flat surface as shown in Fig. 1~a!.

In single-tip systems we assume chemical potentials
spective for the tip and sample surface and consider the
ation in which a current flows from the tip to the samp
surface by the difference of the chemical potentials.
double -tip systems we can assume three independent ch
cal potentials for the first tip, the second tip, and the sam
surface, if we connect the third electrode to the sample
face. In this paper we consider a situation in which t
chemical potential of the first tip is higher than that of t
sample surface, and the chemical potential of the second
is equal to that of the sample surface. Therefore a par
electrons injected from the first tip into the sample surface
ejected through the second tip, and the remaining electr
go out through the electrode contacted with the sample
face. This is similar to the setup assumed in the earlier t
oretical works of two-probe measurements17,18except for the
absence of the bias voltage between the second tip
sample surface. Note that this is different from the setup
the two-probe measurement where sample surfaces are
connected with the third electrode and the current flows o
between the two probes.
9-2



ar
in
d
r
y
r

e
t

an
It

tua-
in

c-
on

of
e

uc-
-
stic
is

this
per.
the
is

end
is-
the
ed

ms
lec-

uer
r-

he
.
he
. A
ic
in

onal
ith
ob-
ary
gh
and

nce
on-
tes,

out-
he

ce

on-
ox
ch

ce
se
a
ac
Gr

CALCULATION OF BALLISTIC CONDUCTANCE . . . PHYSICAL REVIEW B 65 035419
The surface atoms including the part of the island
arranged in the simple-cubic lattice. We use a tight-bind
method with only a singles orbital for each atomic site an
the transfer energy2tS (tS.0) between nearest-neighbo
atoms. We neglect the overlap integral. The on-site energ
zero except for the outermost layer where the on-site ene
is U. WhenuUu is greater thantS , a Tamm state exists.5,6 The
energy dispersion of this state is given by

E~ki!5U1
tS
2

U
22tS~coskxa1coskya!, ~2.1!

whereki5(kx ,ky) is a wave vector parallel to the surfac
anda is the lattice constant. The wave function of this sta
decays exponentially into the surface by a ratio of2tS /U for
every layer.

We assume that the apex of the tips is a single atom
electrons always pass through the single apical atom.

FIG. 1. Schematic of the models studied in this paper. Surfa
are~a! a flat surface and~b! an island on a flat substrate. In the ca
of the flat surface we study the configuration with double tips
well as with a single tip. Open and closed circles show the surf
atoms and the atoms at the apexes of the tips, respectively.
circles show the atoms of the island.
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conjectured based on theoretical calculations that this si
tion is realized when normal STM images are observed
experiments.22 In such a situation we expect that the condu
tion between a tip and a surface does not depend much
the minute atomic structure of the tip. Therefore, instead
taking realistic atomic structures of tips into account, w
substitute a semi-infinite one-dimensional chain for the str
ture of the tips in this paper for simplicity. It is not so diffi
cult to extend the present calculations using more reali
models for the tips. But, since our interest in this paper
concentrated on the transport in surfaces, we think
simple model enough for the purposes of the present pa

We calculate the conductance on the condition that
transfer energy2tT between neighboring atoms in the tips
equal to2tS or 22tS . As long astT is not smaller than the
energy range concerned, results do not qualitatively dep
on tT . The on-site energy of the tips is zero. Since we d
cuss the transport in the contact condition rather than
tunneling condition in this paper, calculations are perform
on the condition that the transfer energy2tTS between the
tip and surface is the same as2tS .

B. Calculation of conductance

In this paper we calculate the conductance of syste
from the atomic scale to the nanometer scale where the e
trical transport is ballistic. Therefore we use the Landa
formula19 for calculating conductance. In the Landauer fo
malism, conductanceG is expressed as

G5G0(
mn

Tmn , ~2.2!

whereTmn is the transmission probability from themth inci-
dent channel to thenth scattered channel.G0 is the units of
the quantized conductance given by 2e2/h. Since we use a
one-dimensional chain for the tip-injecting electrons in t
present paper, the number of the incident channel is one

In order to obtain transmission probability, we solve t
Schrödinger equation on appropriate boundary conditions
simple boundary condition used widely is the period
boundary condition on the directions parallel to surfaces
the supercell geometry. This reduces the three-dimensi
problem to the essentially one-dimensional problem w
plural channels, and the methods for solving the latter pr
lem are well established. However, the periodic bound
condition is inadequate to calculate the conduction throu
surface states, because surface states decay into bulk
propagate only parallel to surfaces. Actually the conducta
calculated on the periodic boundary condition does not c
tain the component of the conduction though surface sta
as shown in the next section. Therefore we impose the
going boundary condition on the directions parallel to t
surface, as illustrated in Fig. 1.

In order to impose this boundary condition on the surfa
we consider an artificial box consisting ofNx3Ny3Nz
atomic sites in the semi-infinite surface, where thez direction
is perpendicular to the surface. We impose the boundary c
dition of only outgoing waves on the five sides of the b
except for one side facing the vacuum. The outgoing Blo
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KATSUYOSHI KOBAYASHI PHYSICAL REVIEW B 65 035419
states for each side are obtained by diagonalizing the tran
matrix defined for each side.23 Different from imposing
hemispherically outgoing waves in the surface, this bound
condition produces artificial scattering at the edges of
box. But, as the size of the box increases, the effect of
scattering becomes small. We use typically a box consis
of 21321315 atomic sites in this paper. For the directio
parallel to the surface, this size is not large enough to eli
nate perfectly the effect of the scattering, especially on
conduction through surface states. However, we verified
calculated results are qualitatively unchanged by increa
the size of the box. In the double-tip case we use a larger
in order to discuss the transport between two tips on s
faces.

The wave function of the tip which injects electrons in
the surface is written as a linear combination of the incid
and reflected waves. In the double-tip case, the wave fu
tion of the second tip is composed of only the outgoi
wave.

The transmission probability is calculated by the stand
method.23 In the tight-binding method, the Schro¨dinger equa-
tion is written as

HC5EC, ~2.3!

where themncomponent ofH is the transfer energy betwee
the m andn sites and thenth component ofC is the ampli-
tude of the wave function atn site.

The coefficient of thenth atom belonging to the tip which
injects electrons into the surface is written as

Cn5eikTan1re2 ikTan, ~2.4!

wherer is the reflection coefficient andkT is the Bloch wave
number in the tip. Here we take the same lattice constan
the tips as the surface in this paper. In the double-tip c
the coefficient of the second tip is written as

Cn5sTeikTan, ~2.5!

wheresT is the transmission coefficient to the second tip.
Out of each side of the box in the surface, the coefficie

of the atoms in thel th layer are written as

Cl5(
m

~lm! lumsm , ~2.6!

wherelm and um are, respectively, themth eigenvalue and
eigenvector of the transfer matrix defined for each side of
box.sm is the transmission coefficient of themth channel.Cl
is a vector consisting of the same number of component
the atomic sites on the plane of each side of the box.
layer numberl is defined along the direction perpendicular
each side of the box. The summationm runs over only the
outgoing waves. Here the outgoing Bloch states are defi
by that the group velocity is directed toward the outside
the box.

On the boundary conditions above, the matrix equation
infinite dimensions in Eq.~2.3! is reduced to a finite-
dimensional coupled linear equation in the form of
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~H̃2E!C̃5D, ~2.7!

whereC̃ is a vector composed ofr, sT , sm , and the compo-
nents ofC inside the system, namely, the scattering regionD
is a constant vector, the components of which are zero ex
for one corresponding to the apex atom of the tip wh
injects electrons. Different from the usual one-dimensio
problems with plural channels,H̃ is not a block-tridiagonal
matrix and the recursive method23 cannot directly be applied
to solving the equation. But, since the major part inH̃ is
block tridiagonal, Eq.~2.7! can be solved by applying par
tially the recursive method. This saves much computatio
time and memories. Details are shown in the Appendix.

III. RESULT

A. Flat surface

Figure 2 shows the conductance of a flat surface a
function of the energyE. The size of the box in the surface
21321315 atomic sites. The tip is put on the center atom
the surface. The on-site energyU is 2.5tS . The transfer en-
ergy between the tip and surfacetTS is the same astS . The
transfer energy in the tiptT is 2tS . The dotted line shows the
total conductance. The total conductance spectra as a f
tion of E correspond to the shift of the Fermi level of th
system ordI/dV spectra in STS, though the change in ele
tronic structures induced by applying finite bias voltages
not taken into account in this paper. The thick and thin so
lines show the components of transmission to surface
bulk states, respectively. In this paper surface states are
criminated from bulk states on a criterion whether the am
tudes of wave functions at the first, second, and third lay
of the surface decay exponentially into the surface.

In the case of present parameters surface states
within the energy range21.1tS,E,6.9tS . Outside of this
range only the bulk states are conduction channels and
total conductance is much smaller than the conductance
G0 . There are two main reasons for this low conductan

FIG. 2. Conductance of the flat surface as a function ofE. U, tT ,
and tTS are 2.5tS , 2tS , and tS , respectively. Thick and thin solid
lines show the surface-state and bulk-state components, res
tively. The dotted line is the total conductance.
9-4
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CALCULATION OF BALLISTIC CONDUCTANCE . . . PHYSICAL REVIEW B 65 035419
One is that the transfer energy in the tip is different from t
in the surface and the matching of waves is not good. T
other is that when the on-site energyU is finite, the potential
energy at the first layer of the surface is different from tho
of other sites and it reflects waves. However, when
surface-state channels open, the conductance increases
In the present case the surface-state component is the m
channel of conduction.

Figure 3 shows the DOS at the first layer of the surfa
Here the first-layer DOS means the DOS weighted with
square of the absolute values of the coefficients at the
layer in the wave functions.U is 2.5tS . The spectra of the
first-layer DOS are similar to the conductance spectra sh
in Fig. 2. The ratio of the surface component to the bulk o
in the conductance spectra is well reproduced by the D
spectra. This result suggests that STS spectra of flat surf
containing surface states are approximately proportiona
the LDOS at the surface and justifies partially the use of
Tersoff-Hamann theory for a qualitative interpretation
STS spectra of surface states.

Note that this is not always the case for any surface.
shown in the next section the conductance is not proportio
to the first-layer DOS in the case of islands on substra
The first-layer DOS of surface states of islands is finite. B
the conduction through the surface states of islands is ne
gibly small when the step height of islands is high. This
due to the lack of conduction paths of the surface state
islands to the electrodes connected with substrates, whic
similar to the fact that surface states do not propagate
pendicular to surfaces. Therefore, it is conjectured that S
spectra containing surface states are proportional to the
layer DOS only when the electrons hopping into surfa
states can readily reach the electrodes connected with
faces.

The oscillating structures seen in the surface-state com
nent of conductance are due to the finiteness of the box in
surface along the directions parallel to the surface. The
plitude of the oscillation decreases as the lateral size of
box increases. On the other hand, the structures in the b
state component are very small. This result means
surface-state conduction is more sensitive to boundaries

FIG. 3. Density of states at the first layer of the flat surface.U is
2.5tS . Thick and thin solid lines show the surface-state and bu
state components, respectively. The dotted line is the total DO
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bulk-state conduction and we need larger systems in orde
discuss theoretically surface-state conduction.

In the calculation of the surface-state conductance
boundary condition is crucial. Figure 4 shows the cond
tance calculated on the periodic boundary condition impo
on the surface.U, tTS, andtT are the same as those in Fig.
The unit cell in the periodic boundary condition is a squa
consisting of 20320 atomic sites. The conductance is int
grated over the wave vectors parallel to the surface. On
periodic boundary condition each conductance spectrum
fixed wave vector shows structures: Conductance is clos
zero at the energy levels of surface states. These struc
are smeared out by the Brillouin-zone integral. The spectr
shown in Fig. 4 is integrated over 50350 wave vectors in the
two-dimensional Brillouin zone of the super cell.

On the periodic boundary condition also surface sta
exist and the surface-state component in the first-layer D
is finite. But they are not propagating channels perpendic
to the surface and do not contribute to the conduction on

- FIG. 4. Conductance of the flat surface calculated on the p
odic boundary condition,U, tT , and tTS are 2.5tS , 2tS , and tS ,
respectively.

FIG. 5. Conductance of the flat surface as a function ofU. E is
0.3tS . tT and tTS are equal totS . Thick and thin solid lines show
the surface-state and bulk-state components, respectively. The
ted line is the total conductance.
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KATSUYOSHI KOBAYASHI PHYSICAL REVIEW B 65 035419
periodic boundary condition. Therefore, the conductance
culated on the periodic boundary condition is almost
same as the bulk component on the outgoing boundary
dition shown in Fig. 2.

Figure 5 shows the conductance of the flat surface a
function of the on-site energyU. The energyE is fixed at
0.3tS . tTS and tT are equal totS . Other conditions are the
same as those of Fig. 2. As the absolute value ofU increases,
the total conductance decreases. But the magnitude of
crease is not very large as long as surface states exist. W
the surface states disappear, the conductance decr
abruptly, reflecting the two-dimensional DOS of surfa
states.

Figures 6 and 7 show the first-layer DOS and the cond
tance calculated on the periodic boundary condition, resp
tively, as a function ofU. The energyE is 0.3tS . tTS and tT
are equal totS . Other conditions are the same as those
Figs. 3 and 4. As a function ofU also the first-layer DOS
qualitatively reproduces the conductance spectra show

FIG. 6. Density of states at the first layer of the flat surface a
function of U. E is 0.3tS . Thick and thin solid lines show the
surface-state and bulk-state components, respectively. The d
line is the total DOS.

FIG. 7. Conductance of the flat surface calculated on the p
odic boundary condition as a function ofU. E is 0.3tS . tT and tTS

are equal totS . The dotted line shows the transmission probabil
given by Eq.~3.1!.
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Fig. 5. The ratio of the surface-state component to the bu
state component is well reproduced by the first-layer DO
The conductance on the periodic boundary condition agr
fairly well with the bulk component of the outgoing bound
ary condition shown in Fig. 5.

The bulk-state component decreases monotonically a
function of uUu. This is due to the scattering at the first lay
of the surface. The transmission to bulk states is roug
understood in terms of a one-dimensional chain with a
fect. Its transmission probability is given by

T5
1

11U2/W2 , ~3.1!

whereW5(4tS
22E2)1/2 and U is the on-site energy of the

defect. As shown in Fig. 7 the bulk-state component is qu
tatively reproduced by the dotted line given by Eq.~3.1!.

In contrast to the bulk-state component, the surface-s
component increases with increase ofuUu around uUu;tS .
This means that the stronger the scattering potential at
first layer, the larger the transmission to the Tamm surf
states. The reason for this initial increase is that since
wave functions of surface states are more localized with
increase ofuUu, the amplitude of wave functions at the fir
layer of the surface also increases. As the amplitude of w
functions at the first layer increases, the hopping probab
from the tip to the surface also increases. Once electrons
into surface states, they travel parallel to the surface
reach the electrode. The conductance is determined ma
by the hopping from the tip to the first layer of the surfac
Actually the conductance through surface states shown
Fig. 5 initially increases in proportion to 12(tS /U)2, which
is the square of the amplitude of wave functions at the fi
layer. With the further increase ofuUu, the whole of the
surface-state band shifts and the DOS at a fixed ene
slightly decreases. When the energy goes out of the rang
the surface-state band, the surface-state component is dis
tinuously reduced to zero.

It is probably specific to the Tamm state that the larger
difference in potential between the first layer and inner la
ers, the higher the conductance of surface states. Howev
might generally hold for all surface states that the mo
strongly wave functions localize at the first layer, the high
the conductance through surface states. In the case o
Shockley state, for example, band gap is an important fa
determining the decay of wave functions; the larger the b
gap, the more strongly wave functions localize.5 Therefore it
is expected that surface-state conductance is high w
Shockley states are formed in midgaps of materials w
large band gaps.

B. Island

Figure 8 shows the conductance when an STM tip is
on an island on a surface. In the present paper we us
model for the island surface that the on-site energy at the
layer of the island and at the part facing the vacuum am
the first layer of the substrate surface isU and that of other
parts is zero. The transfer energy in the island is the sam
that in the substrate. Figure 8 shows the case for whichU is

a
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2.5tS . tTS and tT are equal totS . The lateral size of the
island is fixed at 21321 atomic sites. The size of the box
the substrate is 23323315 atomic sites. The STM tip is pu
on the center atom of the island surface. The height of

FIG. 8. Conductance when an STM tip is put on an island. T
lateral size of the island is 21321 atomic sites. Each figure show
~a! total conductance,~b! the surface-state component, and~c! the
bulk-state component.U is 2.5tS . tT and tTS are equal totS . The
height of the island varies from 1 to 6 atomic steps. Thin and th
solid lines show the conductances from 1 to 3 and from 4 to 6 s
heights, respectively. Label Sn means the spectrum of then-step
height. S4, S5, and S6 are almost the same lines in~a! and ~c!.
Dotted lines show the conductances of the flat surface.
03541
e

island varies from 1 to 6 atomic steps. Figures 8~a!, 8~b!, and
8~c! show the total conductance, surface-state compon
and bulk-state component, respectively. Here the surfa
state and bulk-state components are defined as the
transmitting finally to the surface and bulk states of the s
strate, respectively. Except for the single-step height, the
tal conductance tends to decrease as the step heigh
creases. The spectrum almost converges at the three
height in the case of present parameters. These results
understood from the difference in the step-height depende
between the surface-state and bulk-state components.

Figure 8~b! shows that the surface-state component i
tially decreases rapidly with increase of the step height an
negligibly small at the three-step height. For heights grea
than three steps the surface-state component slightly
creases with the step height. This step-height dependenc
conductance is qualitatively understood by dividing t
surface-state component further into two components. On
the current traveling from the tip to the surface states of
island and then flowing into the surface states of the s
strate. The other is the current flowing into the surface sta
of the substrate through the bulk states of the island. We
the former and latter SS and BS components, respectiv
Though we cannot present the strict definition for dividi
the surface-state component into these two components,
way of classification helps to understand the step-height
pendence as follows.

When the step height is low, the SS component is do
nant. But as the step height increases, the SS compo
decreases rapidly because the wave functions of the sur
states decay exponentially into the surface and the proba
ity of tunneling from the surface states of the island to tho
of the substrate also decay exponentially with increase of
step height.

Contrary to the SS component, the BS component is sm
at the low-step heights, because the width of the elect
beam injected from a single atom of the tip into the bu
states of the island is much narrower than the lateral width
the island and the electron beam does not reach the w
functions of the surface states of the substrate. As the
height increases, the width of the electron beam on the p
at the first layer of the substrate widens and the probability
transmission to the surface states of the substrate incre
Though it is not shown in the figure, the surface-state co
ponent as a function of the step height reaches a local m
mum at about 10-step height and begins to decrease with
step height. This result might be interpreted as that the e
tron beam spreads as wide as the lateral size of the islan
about 10-step height, and that with further increase of
step height it begins to focus again by the reflection at
sides of the island.

Between the 3- and 4-step heights the SS and BS com
nents are comparable and the major path of conductio
switched from the SS component to the BS component. T
switch is reflected in the shapes of the spectra. In the cas
lower step heights there are peaks at energy levels co
sponding to the surface states of the island that are quan
due to the lateral confinement of the island. But in the hig
case these peaks are inverted to dips and the shapes o
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spectra are similar to the bulk component shown in Fig. 8~c!.
The reason for this is as follows. Since the wave functions
surface states have large amplitude at the top layer of
island, a large number of electrons in the tip hop into
surface states of the island at the energy levels of the sur
states. When the SS component is major at the low s
heights, the probability of transmission to the surface stat
the substrate is high at the energy levels of the surface s
of the island, which is reflected by the peaks. On the ot
hand when the step height is high, the electrons hopping
the surface states of the island cannot travel deep into
surface and return to the tip. Therefore the conductance s
tra show dips at the energies of the surface states of
island. Though experimentally it is not possible to separ
directly the surface-state component from the total cond
tance, it might be possible to measure the conductance
responding to the surface-state component by using do
tips, because the surface-state conduction is dominan
double-tip measurements as shown in the next section.

In contrast to the surface-state component, the magni
of the bulk-state component does not change much as
step height increases. The spectra converge on the con
tance from the tip to a wire, the cross section of which is
same as that of the island. When the step height of the is
is high, the bulk-state component is the dominant channe
conduction and the total conductance is also almost the s
as that of the wire.

In the bulk-state component also the peaks in the spe
at the energies of the surface states of the island are inve
to dips as the step height increases. This is also unders
by dividing the bulk-state component into two compone
similarly to the surface-state component. One is the cur
flowing into the bulk states of the substrate through the s
face states of the island and the other is through the b
states of the island. We call the former and latter SB and
components, respectively. As the step height increases
main path of conduction switches from the SB componen
the BB component.

In the case of the bulk-state component the magnitude
these components are comparable between the heights
and 2 steps, which are lower than those of the surface-s
component. The reason for this is that the BB componen
not small even at low step heights. In the case of the surfa
state component the BS component is small at low s
heights. It increases as the step height increases and the
tron beam spreads in the island. But in the case of the b
state component the magnitude of the BB component d
not depend much on the step height, and only the SB c
ponent decreases as the step height increases. Therefo
peaks are inverted to dips at the lower step height than
of the surface-state component.

Since the surface-state component is finite in the fi
layer DOS of islands, the fact that the SS and SB com
nents of the conductance are negligibly small at high s
heights means that the conductance is not proportional to
first-layer DOS in the case of islands. This result is in co
trast to the case of flat surfaces and demonstrates the im
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tance of the conduction path to electrodes especially in
case of the conduction through surface states, as mentio
in the preceding section.

Though the results of the present calculations canno
compared directly with the experiment on silicon surfaces
Hasegawa, Lyo, and Avouris,2 they reproduce the fact exper
mentally observed that the conductance measured wit
STM tip on islands is much lower than that on flat surfac
According to the present calculation, this result is ascribed
the reduction of the surface-state component in conducta
when a STM tip is put on islands. This reduction of th
surface-state conduction in the ballistic regime is somew
different from the usual resistance induced by the scatte
of bulk states at step edges. This is because in the cas
bulk states, step edges scatter three-dimensionally exte
states, whereas in the case of surface states, step he

FIG. 9. Conductance in a double-tip system as a function of
distance between two tips.U is 2.5tS tT and tTS are equal totS . E
is 20.5tS . ~a! Closed squares, open circles, crosses, and clo
circles show the total conductance, surface-state component, b
state component, and conductance to the second tip, respect
Dotted lines are the corresponding conductances in the singl
system.~b! Closed and open circles show the conductance to
second tip in the presence (U52.5tS) and in the absence (U50) of
surface states, respectively. The dotted line shows a curve inve
proportional to the distance.
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reduce the tunneling probability between two-dimensiona
localized states in islands and substrates.

C. Double tip

Figure 9 shows the conductance of a double-tip system
a function of the distance between the two tips. The surf
is a flat surface. The first tip injecting electrons is fixed
the center atom of the surface. The position of the second
is changed parallel to an axis of the simple square latt
The size of the box in the surface is 31331315 atomic sites.
The on-site energyU of the first layer is 2.5tS . tTS andtT are
equal totS . The energyE is 20.5tS .

Figure 9~a! shows the total conductance, surface-st
component, bulk-state component, and conductance for
second tip. The dotted lines are the corresponding cond
tances in the single-tip case. Except for the nearest-dista
case, the surface-state component is slightly enhanced in
presence of the second tip. But as a whole the conductan
not much affected by the second tip. The ballistic curr
flowing directly to the second tip is very small. It decreas
with increase of the distance between the two tips.

FIG. 10. Conductance between two tips as a function of~a! E
and ~b! U. The distance between tips is 5 atomic sites.~a! U is
2.5tS . tT and tTS are equal to 2tS and tS , respectively. Thick and
thin solid lines show the conductance between two tips and
surface state component, respectively. The dotted line show
curve given by Eq.~3.2!. ~b! E is 20.5tS . tT andtTS are equal to
tS . Solid and dotted lines show the conductance between two
and a curve given by Eq.~3.2!, respectively.
03541
y

as
e

ip
e.

e
he
c-
ce

the
is

t
s

Figure 9~b! shows a magnified figure of the ballistic con
ductance to the second tip. For comparison, the curve in
case without surface states (U50) is also shown. In the
absence of surface states the conductance to the secon
decreases rapidly with distance. But when surface states
ist, the decrease is not so fast; the conductance is inver
proportional to the distance between the tips. This result
flects the fact that surface states are two-dimensional st
and flux of current conserves. The dependence on the
tance is not changed much when the second tip is moved
the surface along the diagonal direction of the simple squ
lattice. This isotropy is due to the fact that in the present c
the energyE is near the bottom of the surface-state band a
the energy dispersion is nearly isotropic. When the energ
near the middle of the surface-state band, the energy ban
highly anisotropic and the conductance between two tip
also anisotropic as shown by Niu, Chang, and Shih using
effective-mass approximation.18

Figure 10 shows spectra of the conductance between
tips as a function of~a! the energyE and ~b! the on-site
energyU. U and E are fixed at 2.5tS and 20.5tS in Figs.
10~a! and 10~b!, respectively. In both spectra the distan
between tips is 5 atomic sites andtTS is equal totS . tT is ~a!
2tS and~b! tS . The size of the box is~a! 21321315 and~b!
31331315 atomic sites. For comparison the surface-st
component is also shown in Fig. 10~a!.

Figure 10~a! shows that the shape of the conductan
spectrum between two tips is different from that of t
surface-state component. The latter reflects the tw
dimensional DOS of surface states, but the former is sim
to the one-dimensional DOS. Near the bottom energyEc of
the surface-state band the conductance spectrum betw
two tips diverges proportional to 1/AE2Ec, reflecting the
one-dimensional feature. This result might be interpreted
that among two-dimensional surface states the o
dimensional states parallel to the vector connecting the p
tions of two tips mainly contributes to the conduction b
tween two tips.

The conductance spectra are roughly explained in te
of the Green’s function of the sample surface. Using a p
turbation theory Niu, Chang, and Shih showed18 that the con-
ductance between two tips is proportional to the square
the absolute value of the Green’s function as

G}ug~r1 ,r2 ;E!u2, ~3.2!

wherer1 andr2 are the positions of the first and second ti
on the surface, respectively. The two-dimensional Gree
function at the first layer of the surface is given by

g~r1 ,r2 ;E!5
V

~2p!2 E fki
~r1!fki

* ~r2!

E2E~ki!1 id
d2k, ~3.3!

whereV is the area of the two-dimensional unit cell andd is
a positive infinitesimal. In the tight-binding model for Tam
statesfki

(r ) at an atomic siter is expressed as

fki
~r !5F12S tS

U D 2G1/2

eiki•r, ~3.4!
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and the energy dispersionE(ki) is given by Eq.~2.1!. Dotted
lines in Fig. 10 show curves calculated using Eqs.~3.2!–
~3.4!. In numerical calculations of the Green’s function w
used 1022tS for d and integrated over 100031000 wave vec-
tors in the two-dimensional Brillouin zone.

The approximate curves using the Green’s function rep
duce well features of the conductance spectra. The osc
tions in the conductance spectra are due to the smallne
the box for the directions parallel to the surface. The sp
trum in Fig. 10~b! is proportional to@12(tS /U)2#2 nearU
;tS , which reflects the localization strength of wave fun
tions of the surface states.

The distance between tips is very small in the pres
calculations. When the distance is much greater, the foll
ing results are expected. First, since the bulk-state com
nent decreases with distance more rapidly than the surf
state component, most of the double-tip conductance is
conduction through surface states in the ballistic regim
Second, the shapes of the conductance spectra do not q
tatively change with the distance. Third, since the ballis
conductance between two tips decreases inversely pro
tional to the distance, its magnitude is very small when
distance between tips is large. But since the conducta
spectra diverge near the bottom or top of the surface-s
bands, it is possible that the ballistic conductance betw
two tips is high when the Fermi energy is located near b
edges.

IV. CONCLUSION

In this paper we have presented the ballistic conducta
in STM systems where the Tamm surface states exist
order to discuss the conduction through surface states,
ductances were calculated for the outgoing boundary co
tion in the surfaces, which allows net current to flow para
to the surfaces.

In the case of flat surfaces with a single tip, the cond
tance spectra containing surface states are qualitatively
portional to the DOS at the first layer of the surfaces, wh
suggests that the surface-state observation in STS is
plained by the lateral current and justifies partially the use
the Tersoff-Hamann theory for analyzing STS spectra of s
face states. It was found that the conductance through sur
states is high when wave functions of surface states
strongly localized at the first layers of surfaces. In the cas
Tamm states, wave functions localize strongly when the
tential difference between the first layer and inner layers
large. The potential difference scatters waves and usu
reduces the bulk-state conduction. In contrast, it increa
the conduction through surface states in the case of Ta
states.

Conductances were calculated when a STM tip is put
an island of a surface. The variation in conductance a
function of the step height of the island was explained by
difference in the step-height dependence between
surface-state and bulk-state components. The surface-
component decreases rapidly with increase of the step he
This is because its main conduction path is the tunne
from the surface states of the islands to those of the s
03541
-
a-
of

c-

-

t
-

o-
e-

he
.

ali-
c
or-
e
ce
te
n
d

ce
In
n-
i-
l

-
o-
h
x-
f
r-
ce
re
of
-

is
lly
es
m

n
a
e
he
ate
ht.
g
b-

strates. In contrast to the flat surfaces the conductance is
proportional to the first-layer DOS at high step heights in
case of islands. This result demonstrates the importanc
the conduction path to electrodes connected with sample
faces especially in discussing the surface-state conductio

We simulated the ballistic conductance of a double-
system. In the absence of surface states, the ballistic con
tance between two tips decreases rapidly as a function o
distance between the tips. But when surface states exit,
decrease becomes slower and the conductance is inve
proportional to the distance. Therefore, when the dista
between tips is large, the surface-state conduction is
dominant channel in the ballistic regime. The ballistic co
ductance spectra between two tips show one-dimensi
features. Therefore the ballistic conductance between
tips might be high when the Fermi energy is located near
edges of surface-state bands.

In the present paper we have studied only the Tamm st
However, it is not difficult to extend the present calculatio
to the Shockley state. It is also interesting to study
surface-state conduction in more realistic systems such
silicon surfaces. However, in the present paper we use
simple tight-binding method and did not self-consisten
calculate the electronic states of the whole system. There
effects such as contact resistance were not taken into
count. The results in the present paper may be regarde
the case in which the work functions of the tip and surfa
are the same. In order to discuss the electronic transpo
realistic systems it is important to calculate electronic sta
self-consistently. These are studies left for the future.
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APPENDIX

The coupled linear equation in Eq.~2.7! has a form of

S A11 A12

A21 A22
D S x1

x2
D5S 0

cD , ~A1!

where A11 is a block-tridiagonal matrix. Using a matrixB
defined byA11B5A12, the equation is reduced to

Ã22x25c, ~A2!

whereÃ22[A222A21B. Once this coupled linear equation
solved,x1 is obtained fromx152Bx2 . Therefore, the prob-
lem is reduced to solving the equationA11B5A12, where
A11 has a form of
9-10
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A115S a11 a12 0 ¯ 0

a21 a22 a23 � ]

0 a32 � � 0

] � � aN21N21 aN21N

0 ¯ 0 aNN21 aNN

D , ~A3!

andai j is a square matrix. This equation can be solved by
well-known recursive method.23 If we write

B5S b1

]

bN

D , A125S d1

]

dN

D , ~A4!

the coupled linear equation is reduced to

a11b11a12b25d1 ,

aii 21bi 211aii bi1aii 11bi 115di ~ i 52,...,N21!,
~A5!

aNN21bN211aNNbN5dN .
ro

Re

hy

s

et
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If we defineãi i and d̃i by

ãi 21i 21[ai 21i 212ai 21i ãi i
21aii 21 ,

~A6!

d̃i 21[di 212ai 21i ãi i
21d̃i ,

with initial conditions ãNN5aNN and d̃N5dN , we obtain

ã11b15d̃1 , from which b1 can be solved. Otherbi are ob-
tained from

bi5ãi i
21~ d̃i2aii 21bi 21!. ~A7!

In practical calculations it is more efficient to rewrite Eq
~A6! and ~A7! in terms of pi and qi defined by ãi i pi

5aii 21 and ãi i qi5d̃i .
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yer,

-

. B
1S. Hasegawa, X. Tong, S. Takeda, N. Sato, and T. Nagao, P
Surf. Sci.60, 89 ~1999!.

2Y. Hasegawa, I. Lyo, and P. Avouris, Surf. Sci.357–358, 32
~1996!.

3S. Heike, S. Watanabe, Y. Wada, and T. Hashizume, Phys.
Lett. 81, 890 ~1998!.

4C. L. Petersen, F. Grey, I. Shiraki, and S. Hasegawa, Appl. P
Lett. 77, 3782~2000!.

5F. Forstmann, Prog. Surf. Sci.42, 21 ~1993!.
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