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Two-vibron state dynamics in an anharmonic confined adlayer

V. Pouthier and C. Girardet
Laboratoire de Physique Mole´culaire, UMR CNRS 6624. Faculte´ des Sciences-La Bouloie, Universite´ de Franche-Comte´,

25030 Besanc¸on cedex, France
~Received 30 July 2001; published 27 December 2001!

The two-vibron dynamics of an anharmonic molecular monolayer confined between surface steps is inves-
tigated. Using the number states method, the equivalence between the two-vibron dynamics and the dynamics
of a single fictitious particle moving in a three-dimensional lattice is established. This latter lattice contains
local defects which characterize both the influence of the confinement and the effect of the anharmonicity, and
give rise to localized states. The anharmonicity is responsible for the occurrence of localized two-vibron bound
states, for which two quanta are located on the same molecule adsorbed close to the surface step. These states
are more strongly localized than the corresponding single-vibron states. In addition, the sensitivity of the
spectral response of the two-vibron states to the structure and the confinement size is demonstrated using a
limited set of dynamical parameters~anharmonicity, lateral hopping constant, and internal vibration frequency!.
As a result, two-vibron spectroscopy appears as a powerful tool to investigate the growth of molecular mono-
layers adsorbed on stepped surfaces.
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I. INTRODUCTION

The creation of low-dimensional atomic or molecular d
vices, which are able to transfer information at the nanom
scale, constitutes one of the challenges of the modern t
nology. In this context, surfaces exhibiting self-organized
fects play a key role in the formation of nanostructures w
a well-defined geometry. As an example, vicinal surfa
show regularly arranged steps that are ideal templates fo
formation of one-dimensional wires or two-dimensional co
fined monolayers.1–3 The interest in adsorbed layers for th
nanotechnology is still reinforced by the use of local prob
~scanning tunneling microscopy, atomic force micro
copy,...!, which can serve as tools to build nanostructures
manipulating the adsorbate or inducing chemical reaction4–8

and to excite the electronic and vibrational degrees of fr
dom of the admolecules.9

Recently, it has been suggested that the transfer of in
mation in molecular nanostructures can be achieved u
the collective internal vibrations of the admolecules.10,11 In-
deed, the coupling between the internal degrees of free
of the admolecules through the lateral interaction favors
coherent propagation of the internal vibrations from o
molecule to another yielding the formation of vibrons. Ho
ever, using vibrons as a vehicle for the information transfe
subjected to two related conditions. The first condition is
confinement of the vibrational energy inside the nanostr
ture without dramatic energy losses over relatively lo
times. The second condition is the fabrication of nanos
tems with well-defined geometry and size able to prev
these energy losses. Although the formation of vicinal s
faces on metal surfaces has reached a high level of soph
cation, it is well-known that the vibron dynamics exhibits
fast energy relaxation due to resonances between the vi
energies and the continuum of electron-hole pair excitatio
By contrast, ionic and semiconductor substrates appear t
good candidates since the energy relaxation occurs via m
0163-1829/2001/65~3!/035414~13!/$20.00 65 0354
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tiphonon excitations, which require in general much long
lifetimes. A remarkable example is given by the lifetime
the stretching vibration of CO on NaCl which was measu
to be about 10 ms.12 Recently, it has been demonstrated th
ionic vicinal surfaces can be obtained from epitaxial grow
of NaCl films on vicinal Ge~100! or Al~111! substrates13 and
we can expect the creation of low-dimensional layers
such stepped surfaces. Another example is given by
hydrogen-terminated vicinal Si surfaces,14–17which exhibit a
well-defined geometry and offer a good compromise for
vibron lifetime @about 1 ns at 300 K~Ref. 18!#.

In a two-dimensional periodic and infinite molecul
monolayer, vibrons are Bloch waves characterized by a t
dimensional wave vector, which propagate freely inside
layer. However, the confinement of the monolayer modifi
the nature of both vibrons11 and phonons.19,20First, the finite
size of the adlayer yields the quantization of the wave vec
component perpendicular to the confinement direction du
the reflections of the vibronic waves on both sides. Then,
internal frequencies of the molecules adsorbed close to
steps are either redshifted or blueshifted with respect to t
values on the terrace. This frequency shift is responsible
the occurrence of localized states described by a wave fu
tion which is delocalized along the direction parallel to t
steps and strongly localized along the finite size direction

The previous results, obtained within the harmonic a
proximation, were therefore restricted to single-vibron sta
only. However, the intramolecular anharmonicity is usua
non-negligible with respect to the lateral coupling and pla
key role in the localization of the vibrational energy as w
as in energy transport in both classical and quantum latti
In classical lattices, the one-site anharmonicty leads to a n
linear dynamics usually described by the nonlinear Sch¨-
dinger equation, which exhibits solitary wave-type solutio
such as the Davydov’s soliton in one dimension.21 Another
remarkable feature given by this equation is the occurre
of intrinsic localized modes or discrete breathers~for a recent
©2001 The American Physical Society14-1
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FIG. 1. ~a! Molecular monolayer adsorbed o
a vicinal surface. The molecules form a period
lattice along theY direction parallel to the steps
The unit cell containsN1 molecules along theX
direction perpendicular to the steps.~b! The sin-
gularity of the molecule-surface interaction lea
to the discrimination between the core molecul
~empty circles! adsorbed on the terrace and th
sides molecules~gray circle! adsorbed close to
the steps.F' is the hopping constant betwee
nearest neighbor molecules belonging to the sa
unit cell andF i between nearest neighbor mo
ecules belonging to adjacent cells.F' is used as
frequency unit.
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review, see for instance Ref. 22! which are not restricted to
one-dimensional lattices and correspond to quite general
robust solutions.23 In quantum lattices, the intramolecular a
harmonicity is responsible for the interaction between
vibrons, which favors the formation of bound states.24 More
precisely, when two vibrons are excited, a bound state co
sponds to the trapping of two quanta over only a few nei
boring molecules with a resulting energy which is lesser th
the energy of two quanta lying far apart. The lateral inter
tion yields a motion of such a state from one molecule
another, thus leading to the formation of a delocalized w
packet with a well-defined momentum. As a result, the
bound states can be viewed as the quantum counterpa
breather or soliton excitations25 and may play an importan
role in information transfer in a confined molecul
monolayer.

In two-dimensional molecular adsorbates, the format
of two-vibron bound states was observed in several syst
such as H/Si~111! ~Ref. 26! and H/C~111! ~Ref. 27! using
nonlinear sum frequency generation spectroscopy and
Ru~100! using infrared absorption spectroscopy.28 Bound
states in the system H/Ni~111! were investigated using hig
resolution electron energy loss spectroscopy.29 In addition,
on the basis of examples representative of one, t
dimensional and intermediate cases of lateral coupl
Jakob30 has demonstrated very recently the powerfulness
two-vibron excitation infrared spectroscopy in probing t
density of states of vibrational bands. He has shown that
spectrum contains sufficient information to derive the dim
sionality of an adsorbate and to extract the values of
vibrational anharmonicity.

The goal of the present paper is to investigate the tw
vibron dynamics in an anharmonic molecular monolayer
sorbed on a stepped surface. A general formalism is in
duce to express the Schro¨dinger equation of the two-vibron
states and a Green function calculation is performed to c
acterize the signature of both the anharmonicity and the c
finement on the spectral response of the two-vibron exc
tions. This latter is determined on the basis of a reduced
of parameters connected to the confinement size, the
tramolecular anharmonicity, the internal frequency shift
duced by molecular adsorption close to the steps, and
lateral hopping constants between molecules. Then, the q
tion is opened about the molecular information~dynamical
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interaction process between admolecules and between
molecules and the surface! that could be extracted from th
comparison of the details of experimental spectra with
theoretical spectral response.

The paper is organized as follows. In Sec. II, the mo
for the confined layer and the Hamiltonian of the vibrons a
described. In Sec. III, we first introduce the number sta
method and build the Schro¨dinger equation for the two-
vibron states. Then, the equivalence between the two-vib
dynamics and the motion of a single fictitious particle in
three-dimensional lattice is established. This equivalenc
finally used to determine the two-vibron Green functio
which allows us to calculate the spectral response. In Sec
some properties of the two-vibron states are presented
they are discussed in Sec. V.

II. MODEL AND HAMILTONIAN

Let us consider a set ofM5N13N2 molecules adsorbed
on a terrace of a well-defined stepped surface~Fig. 1!. These
molecules are confined between two parallel and infinite s
face steps defining the terrace width and they are assume
form an ordered monolayer with a square or rectangu
structure. This structure is periodic along theY direction par-
allel to the steps~periodicity N2a2! while along theX direc-
tion each unit cell l contains N1 molecules labeleds
51,...,N1 ~size of confinementN1a1!.

To characterize the internal dynamics of the monolay
we assume that each molecule~l,s! behaves as an interna
oscillator described by the standard creation and annihila
operatorsbls

1 andbls . The (ls)th molecule interacts with the
surrounding molecules and with the substrate, leading t
mixing of the internal and external degrees of freedom of
whole system ‘‘monolayer1substrate.’’ The Hamiltonian for
the whole system can be written in an improved way us
the rotating wave approximation~RWA! and the renormal-
ization procedure detailed in Refs. 32 and 33. When the
namical coupling between the internal and external moti
is disregarded, the Hamiltonian which describes the coll
tive dynamics of the internal vibrations is expressed
~using the convention\51!

H5(
ls

hls1 (
ls,l 8s8

F~ ls,l 8s8!bls
1bl 8s8 , ~1!
4-2
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TWO-VIBRON STATE DYNAMICS IN AN ANHARMONIC . . . PHYSICAL REVIEW B 65 035414
wherehls defines the internal vibration Hamiltonian of th
( ls)th molecule renormalized by the static influence of
surrounding andF( ls,l 8s8) represents the lateral dynamic
coupling between the internal coordinates at the quadr
order. To minimize the number of parameters, we cons
interactions between nearest neighbor molecules and d
the hopping constantF' between adjacent molecules b
longing to the same unit cell, and the hopping constantF i

between molecules belonging to adjacent unit cells. Note
long range lateral interactions may affect the two-vibron d
namics by inducing changes in the vibron dispersion cur
and could modify the formation of localized states. Howev
these processes are disregarded in the present work. Th
ternal vibration Hamiltonianhls , including the intramolecu-
lar anharmonicity of each molecule, is described accord
to the model of Kimballet al.24 In this model, the intramo-
lecular potential is expanded up to the fourth order with
spect to the internal coordinate and a unitary transforma
is performed to keep the vibron-conserving terms, only. T
resulting HamiltonianH is essentially a Bose version of th
Hubbard model with attractive interactions, which h
demonstrated its usefulness to study molecular vibration
one-dimensional chains and molecular crystals.

For a confined monolayer,H is expressed as

H5(
ls

~vsbls
1bls2Abls

1bls
1blsbls!

1 (
ls,l 8s8

F~ ls,l 8s8!bls
1bl 8s8 , ~2!

wherevs stands for the renormalized internal frequency
the (ls)th molecule andA denotes the positive anharmon
parameter due to both the intrinsic anharmonicity of ea
oscillator and the renormalization of the internal vibration
the interaction with the substrate. The confinement is resp
sible for a discrimination between the side moleculess51
andN1 , and the core moleculess52,...,N121, which do not
experience the same surrounding. To account for this eff
we assume that the renormalization acts differently on
side and core molecules and write the internal frequency

vs5v01~v12v0!ds,11~vN1
2v0!ds,N1

, ~3!

wherev0 is the internal frequency of every core molecu
while v1 andvN1

stand for the frequencies of the side mo
ecules. Note that we assume that the anharmonicity is
same for the core and the side molecules.

III. THEORETICAL BACKGROUND

A. Representation of the two-vibron states

The number states method25 is used to characterize th
two-vibron states of the confined monolayer. In a gene
way, the vibrational quantum states of the (ls)th single mol-
ecule can be described by the usual number statesunls& con-
nected to the eigenvectors of the local number oper
bls

1bls . To represent the HamiltonianH @Eq. ~2!#, a general
orthonormal basis is constructed using theM th tensor prod-
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uct of these single molecule number states. SinceH com-
mutes with the operatorN5S lsbls

1bls which counts the total
number of vibrational quanta, it is possible to find simult
neously eigenstates of both operators. Therefore, the Hil
spaceE of the vibrational states can be written as the ten
productE5E0^ E1^ E2^¯^ Ep¯, whereEp denotes the
subspace containing the eigenvectors ofN associated to the
eigenvaluep, namely, the subspace connected to the prese
of p vibrational quanta in the confined monolayer. The
mension ofEp is equal to the number of ways of distributin
p indistinguishable quanta ontoM molecules, i.e., (p1M
21)!/p!( M21)!. Within this representation, the Hamil
tonian appears as block-diagonal, each block correspon
to a particular number of vibrational quanta.

In this paper, we focus our attention on the two qua
states belonging to the subspaceE2 with dimensionM (M
11)/2. A useful basis set to generate theE2 subspace can be
constructed by applying two creation operators on
vacuum stateu0& as

u l 1 ,s1 ; l 2 ,s2)5F12d l 1l 2
ds1s2S 12

1

&
D Gbl 1

1
s1

bl 2s2

1 u0&,

~4!

where the factor in the right-hand side of Eq.~4! is a nor-
malization coefficient. To avoid counting twice the vecto
u l 1 ,s1 ; l 2 ,s2) due to the indistinguishable character of t
vibrational quanta, the following restrictions are applied
the numbersl ands: l 2> l 1 ; whenl 25 l 1 , s1 varies from 1 to
N1 ands2>s1 , whereas whenl 2. l 1 , s1 ands2 vary inde-
pendently both from 1 toN1 .

B. The Schrödinger equation

The most general two vibron eigenstate of the Ham
tonian can be expanded as a linear combination of the
vious basis vectors as

uC&5(
l 1s1

(
l 2s2

C~ l 1 ,s1 ; l 2 ,s2!u l 1 ,s1 ; l 2 ,s2). ~5!

The expression of the corresponding time independ
Schrödinger equationHuC&5vuC& depends on the natur
of the basis vectors involved in. Indeed, there are two diff
ent kinds of basis vectors either describing two quanta
cated onto molecules which are far apart or two quanta
cated onto the same molecule.

In the first situation (l 2. l 111), the Schro¨dinger equa-
tion is written as

@vs1
1vs2

2v1F i~D l 1
1D l 2

!

1F'~Ds1
1Ds2

!#

3C~ l 1 ,s1 ; l 2 ,s2!50, ~6!

whereD i denotes the discrete Laplacian operator which a
on the i th freedom, i.e., D iC(g,h,i , j )5C(g,h,i 11,j )
1C(g,h,i 21,j ). Note that the finite size of the system
alongX is implicitly taken into account in Eq.~6! by setting
to zero the wave function whens1 or s2 lie outside the range
@1;N1#. Since Eq.~6! involves quanta which are located fa
from each other, it does not depend on the anharmonic
4-3
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V. POUTHIER AND C. GIRARDET PHYSICAL REVIEW B65 035414
rameter. This is no longer the case whenl 25 l 1 . For s15s2
5s the Schro¨dinger equation becomes

@2vs22A2v#C~ l 1 ,s; l 1 ,s!

1&F i@C~ l 1 ,s; l 111,s!1C~ l 121,s; l 1 ,s!#

1&F'@C~ l 1 ,s21;l 1 ,s!1C~ l 1 ,s; l 1 ,s11!#50, ~7!

whereas, fors2.s1 , it is expressed as

@vs1
1vs2

2v#C~ l 1 ,s1 ; l 1 ,s2!

1F i@C~ l 1 ,s1 ; l 111,s2!1C~ l 121,s1 ; l 1 ,s2!#

1F i@C~ l 1 ,s2 ; l 111,s1!1C~ l 121,s2 ; l 1 ,s1!#

1F'@C~ l 1 ,s1 ; l 1 ,s211!1C~ l 1 ,s121;l 1 ,s2!#

1~11~&21!ds2 ,s111!F'@C~ l 1 ,s111;l 1 ,s2!

1C~ l 1 ,s1 ; l 1 ,s221!#50. ~8!

Note that the Schro¨dinger equation forl 25 l 111 can be con-
structed straightforwardly from@Eqs. ~6!–~8!# since the
HamiltonianH is Hermitian.

From a topological point of view, the Schro¨dinger equa-
tion @Eqs.~6!–~8!# is equivalent to the Schro¨dinger equation
for a single particle moving in a four-dimensional hypercub
lattice. This dimensionD54 is equal to the number o
quanta~i.e., 2! times the Euclidian dimension of the confine
monolayer~i.e., 2!. However, this dimensionD can be re-
duced to 3 by taking advantage of the periodicity of t
confined monolayer along theY direction. Indeed, since th
wave functionC( l 1 ,s1 ; l 2 ,s2) is invariant with respect to a
translation along this direction, it depends onl 1 and m5 l 2
2 l 1 , and it can be written as a Bloch wave, as

C~ l 1 ,s1 ; l 2 ,s2!5
1

AN2
(

k
Ck~s1 ,s2 ,m!eik~ l 11 l 2!/2. ~9!

The total momentumk of the two-vibron states is associate
to the motion of the center of mass of the two quanta alo
Y. The values ofk are determined by imposing period
boundary conditions to the wave function over a set ofN2
unit cells. The resulting wave functionCk(s1 ,s2 ,m) refers
to the degree of freedomm which characterizes the reduce
distance between the two vibronic excitations. Note that
previous periodic boundary conditions lead to limit the v
ues taken by the indexm which cannot exceed the half siz
of the periodic box and thus varies from 0 to (N221)/2.

Applying the Bloch transformation to Eq.~6! leads to

@vs1
1vs2

2v1F̃ i~k!Dm1F'~Ds1
1Ds2

!#Ck~s1 ,s2 ;m!

50, ~10!

whereF̃ i(k)52F i cos(k/2). Note that this equation is satis
fied for m.1, only. In a similar way, Eqs.~7! and ~8! are
expressed as
03541
g
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@2vs1
22A2v#Ck~s,s;0!

1&F̃ i~k!Ck~s,s,1!1&F'@Ck~s21,s;0!

1Ck~s,s11;0!#50 ~11!

and

@vs1
1vs2

2v#Ck~s1 ,s2 ;0!

1F̃ i~k!@Ck~s1 ,s2 ;1!1Ck~s2 ,s1 ;1!#

1F'@Ck~s1 ,s211;0!1Ck~s121,s2 ;0!#

1@11~&21!ds2 ,s111#

3F'@Ck~s1 ,s221;0!1Ck~s111,s2 ;0!#50.

~12!

Equations~10!–~12! clearly indicate how the physics o
the two vibron states is related to the dynamics of a fictitio
single particle moving quantum mechanically inside a thr
dimensional lattice. This lattice, shown in Fig. 2~a!, appears
as a discrete, finite size rod with a length which extends fr
m50 to (N221)/2. For a given value ofmÞ0, the basis of
the rod is a finite size square unit cell which corresponds
the different values taken by the two indicess1 ands2 . The
cell at m50 has a triangular shape due to the fact that t
quanta are indistinguishable. Within this equivalence,
wave functionCk(s1 ,s2 ;m) associated to the relative dis
tance between the two-vibron excitations, can be viewed
the wave function of the fictitious particle with quasimome
tum k. Its dynamics is thus described by a tight-bindin
Hamiltonian characterized by self energies located on e
site and hopping matrices which couple nearest neigh
sites. Both the anharmonicity and the confinement of
monolayer are responsible for the presence of local def
leading to a shift of the self-energies. As shown in Fig. 2~a!,
the confinement induces the finite size of the different ce
and leads to defects located on the contour of these cells
contrast, the anharmonicity acts onto the triangular cellm
50), only, and leads to an energy shift equal to22A for the
sites belonging to the diagonal~the sites for whichs15s2!.

Although the Schro¨dinger equation cannot be solved e
plicitly, we can take advantage of its equivalence with t
single particle problem to obtain relevant information on t
two quanta dynamics. Such an approach is illustrated in
following section to evaluate the two-vibron Green functio

C. Green function calculation

A useful way to characterize the two vibron dynamics
the confined monolayer is to evaluate the Green functionG
5(v2H)21 associated to the HamiltonianH. Indeed, the
knowledge of the Green function allows us to determine s
eral observables such as the weighted density of states
the spectral response to an external probe. The two vib
density of statesg(v) is expressed as

g~v!52
1

p
Im (

ls
(
l 8s8

~ l ,s; l 8,s8uG~v1 io1!u l ,s; l 8,s8!,

~13!
4-4
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FIG. 2. Equivalence between
the Schro¨dinger equation of the
two-vibron states and the dynam
ics of a single fictitious particle
moving quantum mechanically in
a three-dimensional lattice.~a!
The equivalent lattice, called the
real lattice, appears as a finite siz
discrete rod with a length which
extends fromm50 to m5(N2

21)/2. For a given valuem, it ex-
hibits a finite size, square unit ce
which corresponds to the differen
values taken by the two indicess1

and s2 . The cell located atm50
shows a triangular shape instea
of a square shape due to the fa
that two quanta are indistinguish
able. ~b! Ideal lattice used to cal-
culate the Green function. The
circles define the self frequencie
of the sites (s1 ,s2 ,m) and the
lines characterize the hoppin
constantsF' ~thin line!, &F'

~full line!, F̃ i(k) ~dashed line!,

and&F̃ i(k) ~dotted line! ~see the
text!.
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whereas the two vibron infrared spectrum is proportiona
the spectral responseJ(v) defined as

J~v!52
1

p
Im (

ls
(
l 8s8

~ l ,s; l ,suG~v1 io1!u l 8,s8; l 8,s8!.

~14!

To calculate the two vibron Green function, we take adv
tage of the equivalence of the Schro¨dinger equation and the
single particle problem, and use the formalism introduced
Dobrzynski34 to determine the response function of sup
lattices and composite materials.

1. General method

To proceed, we first consider the lattice shown in Fig. 2~b!
which corresponds to a fully symmetric discrete rod w
finite size. It is denoted the ideal lattice by opposition to t
real lattice drawn in Fig. 2~a!. By comparing Figs. 2~a! and
2~b!, it is straightforward to see thatN1(N121)/2 sites of the
ideal lattice do not belong to the real lattice. We thus defi
Q512P as the projector onto these sites.

Let H0 denote the tight-binding Hamiltonian which cha
acterizes the dynamics of this ideal lattice. The Hamilton
03541
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H can be obtained by adding an operatorV to H0 and by
taking the restriction to the sites which belong to the r
lattice as

H5P~H01V!P. ~15!

The goal of the operatorV, known as the cleavage
operator,34 is first to disconnect in the ideal lattice the sit
which do not belong to the real lattice, and then to introdu
the real boundary conditions. From Eq.~15!, the Green func-
tion of the real lattice is thus expressed in terms of the Gr
function G05(v2H0)21 of the ideal lattice, as

G5PG0P1PG0VP~12G0V!21PG0P. ~16!

As a result, assuming that we can solve the Schro¨dinger
equation for the ideal lattice, we are able in principle
compute easily the exact Green function of the real lattic

2. Dynamics of the ideal lattice

The single particle Schro¨dinger equation for the ideal lat
tice is expressed as
4-5
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@vs1
1vs2

2v1F̃ i~k!Dm1F'~Ds1
1Ds2

!#Ck
0~s1 ,s2 ;m!

50, ~17!

where the appropriate boundary conditions are implic
used. To solve Eq.~17!, we use the method based on t
separation of variables and seek for a solution written as

Ck
0~s1 ,s2 ;m!5f1~s1!f2~s2!f3~m!. ~18!

Inserting Eq.~18! into Eq. ~17! leads to the following sys-
tem:

2e3f3~m!1F̃ i~k!@f3~m11!1f3~m21!#50,

~vs2
2e2!f2~s2!1F'@f2~s211!1f2~s221!#50,

~vs1
2e1!f1~s1!1F'@f1~s111!1f1~s121!#50,

~19!

where the separated eigenvalues obey the equalityv5e1
1e21e3 . As shown by Eq.~19!, the separation of the vari
ables reduces the initial problem connected to a thr
dimensional lattice to three similar problems related to
propagation of a single particle in a one-dimensional disc
chain. The general solution of each equation in Eq.~19! is
expressed as a superimposition of plane waves that pr
gate in both directions along each chain as

f i~x!5Ai
~1 !eiqix1Ai

~2 !e2 iqix; i 51,2,3, ~20!

wherex stands form, s1 , ands2 . Because of the finite size
of the discrete chains, the values taken by the reduced w
vectorsqi are unknown at this stage. However, substitut
Eq. ~20! into Eq. ~19!, leads to a system of equations for th
side and core sites of each chain. For the core sites,
solutions satisfy the equations of propagation subjected
the dispersion relations of ideal chains, as

e i5v012F' cos~qi !; i 51,2,

e352F̃ i~k!cos~q3!. ~21!

For the side sites, the system of equations@Eq. ~19!# is di-
rectly connected to the boundary conditions imposed to e
chain. The first equation in Eq.~19! refers to a finite size
discrete chain with two free sides. The waves which pro
gate into such a system are stationary, with a quantizatio
the wave vectorq3 satisfying to the solution

q35
pp

L2
, ~22!

whereL25(N211)/211 andp51,2,...,(N211)/2. By con-
trast, the second and third equations in Eq.~19! characterize
the motion of a single particle confined in a chain contain
N1 sites. The confinement induces specific boundary co
tions due to the frequency shiftsv1 andvN with respect to
the core frequencyv0 . As shown in previous works,11,19,20

the allowed values of the wave vectorsq1 and q2 are the
solutions of the equation
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~a12e2 iqi !~aN1
2e2 iqi !

~a12eiqi !~aN1
2eiqi !

5e2iqi ~N121!, ~23!

wherei 51,2 anda1,N1
5(v1,N1

2v0)/F' . TheN1 solutions
of Eq. ~23! are either real or complex, depending on t
values of the parametersa1 , aN1

, N1 . A real solution forqi

characterizes a stationary wave with a frequency inside
vibron band of the chain. A complex value ofqi leads to the
occurrence of a localized mode, with an amplitude stron
localized at the chain sides and a frequency lying below
above the vibron band.

Finally, the Schro¨dinger equation for the ideal lattice ca
be solved exactly. Its eigenenergies are given by

vk~q1 ,q2 ,p!52v012F' cos~q1!12F' cos~q2!

12F̃ i~k!cosS pp

L2
D ~24!

and the corresponding eigenvectors are expressed as

Ck,q1 ,q2 ,p
0 ~s1 ,s2 ;m!5Aq1 ,q2 ,p sinS pp~m11!

L2
D

3$a1 sin@q1~s121!#2sin~q1s1!%

3$a1 sin@q2~s221!#2sin~q2s2!%,

~25!

where Aq1 ,q2 ,p is a normalization factor. The ideal Gree
function is thus written as

G0,k~s1 ,s2 ;m:s18 ,s28 ;m8!

5 (
p,q1 ,q2

Ck,q1 ,q2 ,p
0 ~s1 ,s2 ;m!Ck,q1 ,q2 ,p

0* ~s18 ,s28 ;m8!

v2vk~q1 ,q2 ,p!
.

~26!

At this step, we have an exact expression for the id
lattice Green functionG0 @Eq. ~26!# which can be used to
compute the real lattice Green function as shown in S
III C 1 @Eq. ~16!#. Note that such a procedure requires t
knowledge of the cleavage operatorV which can be built
straightforwardly by comparing the Schro¨dinger equations of
the real and ideal lattices.

IV. NUMERICAL RESULTS

In this section, we apply the previous formalism to
model monolayer confined between two surface steps.
minimize the number of relevant parameters, we conside
symmetric confinement and assume that the two side m
ecules exhibit the same frequency redshift, i.e.,v15vN1

5v02Dv, with Dv>0. An extension to the general situa
tion with asymmetric blueshifts or redshifts could be do
straightforwardly using the same formalism.

The dynamics of the monolayer is studied in two stag
First, we assume that the molecules belonging to adjac
unit cells do not interact (F i50). Such a situation corre
4-6
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FIG. 3. Density of statesg(v) in arbitrary
unit of a one-dimensional molecular cha
formed by N156 molecules confined betwee
two symmetric surface steps. Dotted lines a
full lines correspond to the density of states of t
harmonic chain (A50) and anharmonic chain
(A53.0), respectively.
ic
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to
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sponds to a set of one-dimensional linear chains perpend
lar to the steps, the dynamics of which can be analyzed
dependently. The simplicity of this model allows us
understand the physics of the two-vibron states and the
terplay between bound and localized two-vibron stat
Then, the two-dimensional confined monolayer is cons
03541
u-
n-

n-
s.
-

ered. Note that all the numerical calculations are perform
using the perpendicular hopping constantF' as frequency
unit.

The density of the two-vibron states for a chain formed
N156 molecules and two free sides (Dv50) is shown in
Fig. 3. For a harmonic system (A50), the density of states
FIG. 4. Behavior of the spectral responseJ(v) in arbitrary unit of a one-dimensional anharmonic (A53.0) molecular chain (N156) vs
the valueDv of the frequency shift of the two side molecules.
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V. POUTHIER AND C. GIRARDET PHYSICAL REVIEW B65 035414
FIG. 5. Behavior of the frequency of the localized two-vibro
bound states as a function of the frequency shiftDv of the two side
molecules.
03541
exhibits N1(N111)/2521 quantum states, the energies
which range between24.0 and 4.0 around the overtone e
ergy 2v0 of a single oscillator. Three states are degenera
with a frequency equal to the overtone frequency. This f
ture is general since (N111)/2 states are degenerated in
confined chain with free sides formed byN1 molecules. For
an anharmonic system (AÞ0), the density of states clearl
shows the occurrence ofN156 states lying outside the pre
vious frequency range since their frequencies are redsh
with respect to the harmonic frequencies. These states co
spond to the well-known two-vibron bound states.

To investigate the influence of the frequency shiftDv of
the side molecules on the bound states, the spectral resp
in the frequency range of the two-vibron bound states
shown in Fig. 4 for an anharmonic parameter equal toA
53.0. ForDv50, the spectral response exhibits three pe
which characterize the response of the optically active bo
states. The most intense peak corresponds to the bound
e
FIG. 6. Behavior of the spectral response of a two-dimensional weakly anharmonic (A50.5) molecular monolayer as a function of th
number of confined molecular rowsN1 . The side molecules do not exhibit any frequency shift (Dv50).
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FIG. 7. Behavior of the spectral response of a two-dimensional strongly anharmonic (A52.0) molecular monolayer as a function of th
number of confined molecular rowsN1 . The side molecules do not exhibit any frequency shift (Dv50).
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with the lower frequency. As the frequency shiftDv in-
creases, the lowest frequency peak is strongly redshi
whereas another significant peak remains in the freque
range of the bound states. As shown in Fig. 5, the position
the lowest frequency peak slightly decreases asDv increases
and shows a linear dependence, with a more abrupt s
when Dv becomes greater than 0.5. AsDv increases up to
3.0, there is no significant change in the spectral respo
However, for largerDv values, a more complicated structu
occurs with several peaks and a strong splitting of the
tially unshifted peak takes place forDv'6.0.

For the two-dimensional monolayer, the behavior of t
spectral response with respect to the sizeN1 of the confine-
ment is shown in Figs. 6 and 7 for two different values of t
anharmonic parameterA. The calculations are performed b
assuming isotropy of the lateral interactions (F i5F'). For
a low anharmonicity~Fig. 6! corresponding toA50.5, a
broad band centered on the overtone 2v0 of a single oscil-
lator occurs. The shape of the band is slightly asymme
with respect to the overtone frequency with intense low f
quency peaks. Its width increases as the numberN1 of con-
fined molecules par unit cell increases and clearly conve
03541
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to a limit which is rapidly reached whenN1 is greater than 4.
For a given value ofN1 , the spectral response displays 2N1

maxima. The low frequency part of the band showsN1 in-
tense peaks while the high frequency part exhibitsN1

maxima with a much lower intensity. As the anharmonic
increases, the shape of the spectral response is modified
deed, forA52.0, the band asymmetry and the low frequen
peak intensity are enhanced, while the features in the h
frequency part disappear. The resulting spectral response
hibits a finite set of intense peaks with a lower frequen
than the overtone 2v0 . Whatever the size of the confine
ment, the intensity of the peaks decreases as their frequ
shifts towards the overtone value 2v0 . The frequency of the
most intense peak is redshifted asN1 increases and reaches
limited value whenN1 becomes greater than 4. The numb
of remaining peaks is equal to the integer part of (N1

11)/2. For instance, there are one peak for bothN151 and
2 and two peaks forN153 and 4.

The influence of the anisotropy of the lateral interactio
is shown in Fig. 8 forN152 confined molecular rows an
for a weak anharmonicity (A50.3). When F i50.3F'
4-9
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FIG. 8. Behavior of the spectral response of
weakly anharmonic (A50.3) confined layer
formed byN152 molecular rows as a function o
the lateral hopping constantF i . Three different
situations are illustrated corresponding toF i

50.3F' ~dashed line!, F i5F' ~full line!, and
F i51.5F' ~dotted line!, respectively. The side
molecules do not exhibit any frequency sh
(Dv50).
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the
~dashed line!, the spectral response is formed by two distin
bands located on both sides of the overtone frequency 2v0 .
These bands have the same width and exhibit a similar sh
with a single intense peak. As the lateral couplingF i in-
creases, the width of the two bands increases and their o
lap takes place whenF i'0.5F' . For larger values ofF i

~full and dotted line!, the spectral response exhibits a sing
band which the characteristics have been discussed p
ously. The width of this single band increases asF i in-
creases.

The symmetric confinement of strongly anharmonic m
ecules (A53.0) is illustrated in Fig. 9, for two different val
uesN155 andN156 of the size of confinement. The inte
nal frequency of the side molecules is assumed to
redshifted identically and is equal tov02v1,N1

5Dv52.0.
In both cases, the spectral response exhibits two inte
peaks as expected from the previous rule. The lowest
quency peak, which is the most intense, appears to be
03541
t

pe

er-

vi-
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e

se
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lated from the second peak which belongs to the tail of
broad band. As shown in Fig. 9, the frequency and the int
sity of the most intense peak do not depend on the eve
odd number of confined molecular rows. By contrast,
intensity of the second peak increases by a factor 2 and
frequency is slightly redshifted as the size of confinem
varies fromN155 to N156.

V. DISCUSSION

To interpret the features observed for the one-dimensio
confined chain, let us remind that the Schro¨dinger equation
for the two-vibron states is equivalent to the single parti
problem on the three-dimensional lattice shown in Fig. 2~a!.
SinceF i50, this lattice reduces to the two-dimensional t
angular cell located atm50. Within this picture, the bound
states correspond to localized states occurring in the vici
of the defects associated to the anharmonic effects, i.e.,
a

ar
e

FIG. 9. Behavior of the spectral response of
two-dimensional strongly anharmonic (A53.0)
monolayer vs the number of confined molecul
rows. The two side molecules exhibit the sam
frequency shift equal toDv52.0.
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TWO-VIBRON STATE DYNAMICS IN AN ANHARMONIC . . . PHYSICAL REVIEW B 65 035414
defects located on the diagonal of the lattice for whichs1
5s2 . In other words, for a reasonably strong anharmonic
i.e., A.F' , theseN1 sites, with a self-frequency equal t
2v022A, are decoupled from the free sites which have
self-frequency equal to the overtone 2v0 . However, an ef-
fective interaction occurs between theseN1 sites via high
order processes involving the free sites. This interact
leads to the splitting of the frequencies of the bound sta
To illustrate this feature we use a second order perturba
theory to calculate the effective couplingFe between the
sites (s1 ,s1) and (s111,s111) mediated by site (s1 ,s1

11). We find thatFe52F'
2 /A.

In addition to the defects due to the anharmonicity,
frequency shift of the side molecules due to the confinem
is responsible for the occurrence of defects distributed o
the contour of the triangular cell. As a result, the restric
one-dimensional chain exhibits also two defects located
the side sitess15s251 ands15s25N1 . These two defects
are responsible for the occurrence of localized two-vib
bound states characterized by a wave function which
strongly localized on sitess15s251 and s15s25N1 . As
shown in Fig. 4, the spectral signature of these locali
bound states corresponds to the lower frequency peak w
the frequency depends on the shiftDv. From a mathematica
point of view, this process can be formulated by restrict
the Schro¨dinger equation of the triangular cell to the sit
located on the diagonal. Therefore, the second order red
Schrödinger equation for the wave functionCs5Ck(s,s,m
50) is expressed as

@2v022A1dv~ds,11ds,N1
!2v#Cs2Fe~Cs111Cs21!

50, ~27!

wheredv522Dv1Fe . By applying the renormalization
group theory used in previous papers to solve sim
equations,11,19 it is straightforward to show that Eq.~27! ex-
hibits two localized solutions which occur for two critica
values of the parameterDv equal to

Dv* 5
F'

2

2A S 21
161

N121D . ~28!

This relation can be compared with the results obtaine
Ref. 11 since it was shown that localized single-vibron sta
in a confined chain occur for critical valuesDv* 5F'@1
1(161)/(N121)#. As a result, Eq.~28! shows that a strong
anharmonicity enhances the occurrence of localized state
softening the critical values~Dv* 'F'

2 /A instead ofDv*
'F'!. The localization corresponds in fact to a competiti
between the lateral coupling which tends to delocalize
excitations and the frequency shift of the side molecu
which tends to localize these excitations. In an anharmo
molecular chain, a strong anharmonicity leads to the form
tion of bound states which are the superimposition of sta
formed by two quanta located on the same molecule. S
the effective lateral interaction between these latter state
strongly reduced by the anharmonicity, two situations c
occur. First, localized two-vibron bound states can be
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tained even if there is no localized single-vibron states. S
ond, if the frequency shift of the side molecules is sufficie
to localize single-vibron states, then the localization of t
two-vibron bound states will be still stronger than the loc
ization of the single-vibron state.

As shown in Fig. 4, the defects induced by the frequen
shift of the side molecules are also responsible for other p
nomena. Indeed, whenDv increases to reach a value o
about the anharmonic shift 2A, a resonance occurs. Mor
precisely, a resonant coupling takes place between the
s152, s252 and s151, s252 and between the sitess1
5N121, s25N121, and s15N121, s25N1 . Basically,
such a coupling involves a two-vibron bound state and
state formed by the pair of a single-vibron localized either
the sites51 or s5N1 and a free vibron. This resonance
responsible for the breaking of the bound between two
brons induced by the anharmonic interaction. As a result,
eigenstates appear as a superimposition of both kinds
states which leads to the occurrence of several peaks in
spectral response.

In a two-dimensional confined monolayer, the same f
tures are observed although the signature of theses fea
in the spectral response can appear in a different way. As
the one-dimensional chain, the shape of the spectral resp
gives information on the occurrence of localized modes
duced by the frequency shift of the side molecules. Inde
the lowest frequency peak characterizes the spectral resp
of localized two-vibron bound states. Although the frequen
and the intensity of this peak do not depend on the size of
confinement, its occurrence involves in a complicated w
the different dynamical parameters. Due to the symme
confinement, there are two localized two-vibron bou
states, which correspond to the localization of two vibro
onto the two side molecules. Within the strong anharmon
ity limit, the second order perturbation expansion can
used to determine an approximate value of the frequenc
the localized two-vibron bound state. Indeed, using the
tice picture shown in Fig. 2~a!, the renormalized self-energ
of the side site~s151,s251,m50) corresponds to its inter
action with its two nearest neighbors located in the cellsm
50 andm51, respectively. As a result, the frequency of t
localized two-vibron states is approximated as

vL'2v022Dv22A2
2

2A1Dv
~F'

2 14F i
2!. ~29!

As shown in Figs. 6–9, the line shape of the two-vibr
spectral response appears to be very sensitive to the stru
of the monolayer. Especially, this shape strongly depends
the number of confined rows through the number of inte
peaks inJ(v). Such a feature indicates that infrared spe
troscopy applied to the two-vibron response of a confin
monolayer can provide valuable information on the nan
structuration of molecular rows at the steps of a vicinal s
face. This is a remarkable feature which adds to the inform
tion brought by the usual one vibron response.16 At low
anharmonicity, the number of observed intense peaks
equal to the numberN1 of confined rows as shown in Fig. 6
At strong anharmonicity, the number of intense peaks is
4-11
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V. POUTHIER AND C. GIRARDET PHYSICAL REVIEW B65 035414
integer part of (N111)/2 ~Fig. 7!. In this latter case, the
ambiguity over the corresponding odd or even number
rows can be removed by comparing the relative intensity
the peaks. Since the width of the spectral band depend
the size of confinement, row-by-row growth of molecul
monolayer close to substrate steps could be followed u
infrared spectroscopy.

In addition, the fact that the shape ofJ(v) is also very
dependent on the parameters characterizing the vibron
namics, especially the lateral hopping constants, the an
monicity coefficient and the frequency shift due to adso
tion of molecules on step sites rather than on terrace s
data on the two-vibron spectroscopy could be used a
probe of such parameters. Indeed, the width ofJ(v) is di-
rectly connected to the lateral interaction between molec
belonging to adjacent rows and it gives information on
interaction process through the hopping constantF' . More-
over, the profile ofJ(v), especially the relative positions o
the peaks in the spectrum, depends on the relative value
F' andF i , and is thus an indirect probe of the anisotro
of the interactions in the confined monolayer. Last, the f
quency of the peaks connected to localized two-vib
bound states can be used as an additional probe of the
ous dynamical parameters in the strong anharmonicity lim
using Eq.~29!. These results corroborate the recent res
obtained by Jakob30 who has demonstrated the ability of in
frared spectroscopy to study vibrational band structures
adsorbates by exciting the two-vibron states.

In a general way, the relative values of the different d
namical parameters do not follow well-defined rules and s
eral situations can occur depending on the nature of both
adsorbate and the substrate. Indeed, when the molecule
adsorbed close to the steps of a metal surface, their inte
frequencies are either redshifted or blueshifted with resp
to their values on a terrace. For instance, the frequency o
stretch vibration for the system CO/Pt~111! is redshifted by
about 20–30 cm21 ~Ref. 30! whereas the presence of ste
for the system CO/Cu~100! ~Ref. 35! leads to a blueshift of
about 15 cm21 of the internal vibration frequency of the sid
molecules. The anharmonicity of small molecules on me
surfaces is usually close to the gas phase anharmon
~typically of about A510– 20 cm21 for CO and NO! and
appears strong enough to induce two-vibron bound sta
Therefore, we can expect the occurrence of localized t
vibron bound states when confining such molecules o
vicinal surface. However, as pointed out by Jakob,30 this no
longer the case for the system Ru~001!-~231!-~O1NO!, for
which the lateral coupling is stronger than the anharmoni
(A'0.63F') and prevents the occurrence of bound sta
This latter case illustrates the theoretical situation conside
in Fig. 6. Although CO and CO2 adsorption on ionic surface
was shown to be different on steps and terraces,36 no experi-
ar
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ment has clearly characterized the frequency shift of th
internal vibrations. However, it has been shown from the
retical calculations that adsorption of CO2 close to ionic sur-
face steps leads to a redshiftDv of the frequency of the
asymmetric stretching mode equal to 9 cm21 on NaCl and to
3 cm21 on MgO.36 Similar results for CO are expected. Fo
the (231) CO monolayer adsorbed on NaCl, the lateral
teraction was shown to be strongly anisotropic with a vibr
bandwidth equal to 3 cm21 along the longer size of the un
cell and to 12 cm21 along the perpendicular direction.32 As-
suming an anharmonic parameter equal to the gas phas
rameter (A513 cm21), a strong anharmonicity together wit
a strong anisotropy in the vibron propagation characteri
such a system and we thus expect the formation of locali
two-vibron bound states close to the steps. Such a situatio
illustrated in Figs. 7 and 9. For the hydrogen-terminated v
nal Si surfaces, the steps were shown to induce a str
modification of the vibron dynamics leading to a frequen
blue-shift which ranges from 11 to 52 cm21.14–17 For this
system, the lateral interaction is very small, leading to a
bron dispersion of about 10 cm21 while the anharmonicity
was found to be close to that of the gas phase value, i.eA
534 cm21.

To conclude, let us mention first that infrared-visible su
frequency generation~SFG! spectroscopy should in principl
provide still a more clear signature of the peaks in the sp
tral profile than conventional linear infrared spectrosco
Indeed, the fact that the intensity of peaks in SFG spectr
depends on the square modulus of the nonlinear suscep
ity tends to enhance the most intense peaks at the expen
the broad structure. Since the detection of two-vibron ba
is not currently a straightforward experimental task, SF
data should therefore be an additional help to the peak
signment. However, such a detection in linear and nonlin
spectroscopy rests on the broadening of the peaks. Le
remind that the present approach has been carried ou
disregarding the dynamical influence of the external mo
of the monolayer~translational and orientational motions!
and of the substrate~phonon dynamics!. Jakob and Persso
have shown31 that the energy relaxation rate for the tw
vibron states is twice the rate connected to the energy re
ation of a single vibron. Moreover, the dephasing constan
the two-vibron states is about 4 times the single-vibr
dephasing constant. As a result, dephasing and popula
relaxation could appreciably modify the infrared signals
inducing dynamical frequency shift and broadening of t
peaks. At low temperature, these dynamical effects sho
remain small but increasing the temperature would requir
describe the influence of the relaxation mechanism on
spectral response of a confined monolayer in a more sop
ticated theoretical formalism.
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