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Two-vibron state dynamics in an anharmonic confined adlayer
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The two-vibron dynamics of an anharmonic molecular monolayer confined between surface steps is inves-
tigated. Using the number states method, the equivalence between the two-vibron dynamics and the dynamics
of a single fictitious particle moving in a three-dimensional lattice is established. This latter lattice contains
local defects which characterize both the influence of the confinement and the effect of the anharmonicity, and
give rise to localized states. The anharmonicity is responsible for the occurrence of localized two-vibron bound
states, for which two quanta are located on the same molecule adsorbed close to the surface step. These states
are more strongly localized than the corresponding single-vibron states. In addition, the sensitivity of the
spectral response of the two-vibron states to the structure and the confinement size is demonstrated using a
limited set of dynamical parametegi@nharmonicity, lateral hopping constant, and internal vibration frequency
As a result, two-vibron spectroscopy appears as a powerful tool to investigate the growth of molecular mono-
layers adsorbed on stepped surfaces.
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[. INTRODUCTION tiphonon excitations, which require in general much longer
lifetimes. A remarkable example is given by the lifetime of
The creation of low-dimensional atomic or molecular de-the stretching vibration of CO on NaCl which was measured
vices, which are able to transfer information at the nanometeto be about 10 m¥ Recently, it has been demonstrated that
scale, constitutes one of the challenges of the modern teclwnic vicinal surfaces can be obtained from epitaxial growth
nology. In this context, surfaces exhibiting self-organized de-of NaCl films on vicinal G&100) or Al(111) substrate's and
fects play a key role in the formation of nanostructures withwe can expect the creation of low-dimensional layers on
a well-defined geometry. As an example, vicinal surfacesuch stepped surfaces. Another example is given by the
show regularly arranged steps that are ideal templates for tHeydrogen-terminated vicinal Si surfacés’which exhibit a
formation of one-dimensional wires or two-dimensional con-well-defined geometry and offer a good compromise for the
fined monolayers=3 The interest in adsorbed layers for the vibron lifetime [about 1 ns at 300 KRef. 18].
nanotechnology is still reinforced by the use of local probes In a two-dimensional periodic and infinite molecular
(scanning tunneling microscopy, atomic force micros-monolayer, vibrons are Bloch waves characterized by a two-
copy,..), which can serve as tools to build nanostructures bydimensional wave vector, which propagate freely inside the
manipulating the adsorbate or inducing chemical reactihs layer. However, the confinement of the monolayer modifies
and to excite the electronic and vibrational degrees of freethe nature of both vibronsand phonond®?°First, the finite
dom of the admoleculés. size of the adlayer yields the quantization of the wave vector
Recently, it has been suggested that the transfer of inforeomponent perpendicular to the confinement direction due to
mation in molecular nanostructures can be achieved usinthe reflections of the vibronic waves on both sides. Then, the
the collective internal vibrations of the admolecut&$! In- internal frequencies of the molecules adsorbed close to the
deed, the coupling between the internal degrees of freedosteps are either redshifted or blueshifted with respect to their
of the admolecules through the lateral interaction favors thealues on the terrace. This frequency shift is responsible for
coherent propagation of the internal vibrations from onethe occurrence of localized states described by a wave func-
molecule to another yielding the formation of vibrons. How- tion which is delocalized along the direction parallel to the
ever, using vibrons as a vehicle for the information transfer isteps and strongly localized along the finite size direction.
subjected to two related conditions. The first condition is the The previous results, obtained within the harmonic ap-
confinement of the vibrational energy inside the nanostrucproximation, were therefore restricted to single-vibron states,
ture without dramatic energy losses over relatively longonly. However, the intramolecular anharmonicity is usually
times. The second condition is the fabrication of nanosysnon-negligible with respect to the lateral coupling and play a
tems with well-defined geometry and size able to prevenkey role in the localization of the vibrational energy as well
these energy losses. Although the formation of vicinal suras in energy transport in both classical and quantum lattices.
faces on metal surfaces has reached a high level of sophisti classical lattices, the one-site anharmonicty leads to a non-
cation, it is well-known that the vibron dynamics exhibits alinear dynamics usually described by the nonlinear Schro
fast energy relaxation due to resonances between the vibratinger equation, which exhibits solitary wave-type solutions
energies and the continuum of electron-hole pair excitationssuch as the Davydov’s soliton in one dimenstémnother
By contrast, ionic and semiconductor substrates appear to hiemarkable feature given by this equation is the occurrence
good candidates since the energy relaxation occurs via mubf intrinsic localized modes or discrete breathiéos a recent
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(@) (b) FIG. 1. (a) Molecular monolayer adsorbed on
e O —0O—~0O a vicinal surface. The molecules form a periodic
; : ; T lattice along theY direction parallel to the steps.

Ya &7 :3 :3 - The unit cell containdN; molecules along th&
! ; . - direction perpendicular to the stefb) The sin-

gularity of the molecule-surface interaction leads

I+1 &J\%C —® to the discrimination between the core molecules
a3 e 35:3 - (empty circle$ adsorbed on the terrace and the
lwfd?l(\')_f{jk%j sides moIecng:{gray circlg adsorbed close to
: o, : the steps.®, is the hopping constant between
1 g&ﬂ/ﬁ {‘;%f'\) nearest neighbor molecules beIongm_g to the same
~ ~ unit cell and®, between nearest neighbor mol-
> ecules belonging to adjacent cellg, is used as
X frequency unit.

review, see for instance Ref. P@&hich are not restricted to interaction process between admolecules and between the
one-dimensional lattices and correspond to quite general andolecules and the surfacthat could be extracted from the
robust solutiong® In quantum lattices, the intramolecular an- comparison of the details of experimental spectra with the
harmonicity is responsible for the interaction between theheoretical spectral response.

vibrons, which favors the formation of bound staté#lore The paper is organized as follows. In Sec. I, the model
precisely, when two vibrons are excited, a bound state corrdor the confined layer and the Hamiltonian of the vibrons are
sponds to the trapping of two quanta over only a few neighdescribed. In Sec. lll, we first introduce the number states
boring molecules with a resulting energy which is lesser thammethod and build the Schdinger equation for the two-
the energy of two quanta lying far apart. The lateral interacvibron states. Then, the equivalence between the two-vibron
tion yields a motion of such a state from one molecule todynamics and the motion of a single fictitious particle in a
another, thus leading to the formation of a delocalized wavéehree-dimensional lattice is established. This equivalence is
packet with a well-defined momentum. As a result, thesdinally used to determine the two-vibron Green function,
bound states can be viewed as the quantum counterpart wfhich allows us to calculate the spectral response. In Sec. 1V,
breather or soliton excitatioffsand may play an important some properties of the two-vibron states are presented and
role in information transfer in a confined molecular they are discussed in Sec. V.

monolayer.
In two-dimensional molecular adsorbates, the formation Il. MODEL AND HAMILTONIAN
of two-vibron bound states was observed in several systems .
such as H/SL1Y) (Ref. 26 and H/G111) (Ref. 27 using Let us consider a set dfl =N, XN, molecules adsorbed

nonlinear sum frequency generation spectroscopy and CCn @ terrace of a well-defined stepped surfegig. 1). These
Ru(100) using infrared absorption spectroscéByBound molecules are_cpnflned between_two parallel and infinite sur-
states in the system H/NiL1) were investigated using high face steps defining the terrace Wldth and they are assumed to
resolution electron energy loss spectrosc8pin addition, form an ordgred monollayer .Wlt.h a square or _rectangular
on the basis of examples representative of one, twostructure. This struc_turt_e is periodic a_Iong thellrectlon_ par-
dimensional and intermediate cases of lateral couplingd!le! to the stepgperiodicity Npa,) while along theX direc-
JakoB° has demonstrated very recently the powerfulness ofion €ach unit celll contains N, molecules labeleds
two-vibron excitation infrared spectroscopy in probing the = 1:--N1 (size of confinemenh,a,).
density of states of vibrational bands. He has shown that the TO characterize the internal dynamics of the monolayer,
spectrum contains sufficient information to derive the dimenWe assume that each molecules) behaves as an internal
sionality of an adsorbate and to extract the values of th@scillator described by the standard creation and annihilation
vibrational anharmonicity. operators,; andbs. The (s)th molecule interacts with the
The goal of the present paper is to investigate the twosurrounding molecules and with the substrate, leading to a
vibron dynamics in an anharmonic molecular mono|ayer admiXing of the internal and external degrees of freedom of the
sorbed on a stepped surface. A general formalism is introwhole system “monolayersubstrate.” The Hamiltonian for
duce to express the Schiinger equation of the two-vibron the whole system can be written in an improved way using
states and a Green function calculation is performed to chathe rotating wave approximatiofRWA) and the renormal-
acterize the signature of both the anharmonicity and the corization procedure detailed in Refs. 32 and 33. When the dy-
finement on the spectral response of the two-vibron excitatamical coupling between the internal and external motions
tions. This latter is determined on the basis of a reduced sé$ disregarded, the Hamiltonian which describes the collec-
of parameters connected to the confinement size, the irfive dynamics of the internal vibrations is expressed as
tramolecular anharmonicity, the internal frequency shift in-(using the conventior = 1)
duced by molecular adsorption close to the steps, and the
lateral hopping constants between molecules. Then, the ques- H=> het > ®(ls,l 's")bjby g, (1)
tion is opened about the molecular informati@ynamical Is Is,I”s’
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where hjs defines the internal vibration Hamiltonian of the uct of these single molecule number states. SiHceom-

(Is)th molecule renormalized by the static influence of itsmutes with the operatdd=3;b;5b;s which counts the total

surrounding andb(ls,l’s’) represents the lateral dynamical number of vibrational quanta, it is possible to find simulta-

coupling between the internal coordinates at the quadratioeously eigenstates of both operators. Therefore, the Hilbert

order. To minimize the number of parameters, we considegpaceE of the vibrational states can be written as the tensor

interactions between nearest neighbor molecules and defif0dUCtE=E,®E,®E,®---®E, -+, whereE, denotes the

the hopping constan®, between adjacent molecules be- sgbspace containing the eigenvectordNodissociated to the

longing to the same unit cell, and the hopping consthnt elgenyaluq), namely, the.subspace ponnected to the presence

between molecules belonging to adjacent unit cells. Note thf P Vibrational quanta in the confined monolayer. The di-

long range lateral interactions may affect the two-vibron dy-Tension ofE,, is equal to the number of ways of distributing

namics by inducing changes in the vibron dispersion curve® Indistinguishable quanta ontd molecules, i.e., g+M

and could modify the formation of localized states. However,  1)!/P'(M —1)1. Within this representation, the Hamil-

these processes are disregarded in the present work. The jgnian appears as bIock-dlagor]aI, each block corresponding
Lo Lo X : ) to a particular number of vibrational quanta.

ternal vibration Hamiltoniarn,, including the intramolecu-

lar anharmonicity of each molecule, is described accordin%t

to the model of Kimballet al?* In this model, the intramo-

lecular poten_tial is expand_ed up to the fo_urth order with réconstructed by applying two creation operators on the

;pect to the internal coordl_nate and a umtary transformatiogzcyum statd0) as

is performed to keep the vibron-conserving terms, only. The

resulting HamiltoniarH is essentially a Bose version of the 1

Hubbard model with attractive interactions, which has [l1,5112,82)=|1— 5|1|253132( 1- E)

demonstrated its usefulness to study molecular vibrations in )

one-dimensional chains and molecular crystals.

For a confined monolayeH is expressed as where the factor in the right-hand side of H¢) is a nor-
malization coefficient. To avoid counting twice the vectors

[l1,81;15,5,) due to the indistinguishable character of the

H=2 (wsbithis—Abibibisbys) vibrational quanta, the following restrictions are applied to
s the number$ ands: 1,=1,; whenl,=1,, s; varies from 1 to
N; ands,=s;, whereas wheh,>1,, s; ands, vary inde-

In this paper, we focus our attention on the two quanta
ates belonging to the subspagg with dimensionM (M
+1)/2. A useful basis set to generate thesubspace can be

by e,bi’40),

158,

+ > @(Is,1's")bbyg (2)  pendently both from 1 tN, .
Is,I”s’
where w, stands for the renormalized internal frequency of B. The Schradinger equation

the (s)th molecule andA denotes the positive anharmonic  The most general two vibron eigenstate of the Hamil-
parameter due to both the intrinsic anharmonicity of eachonian can be expanded as a linear combination of the pre-
oscillator and the renormalization of the internal vibration byvious basis vectors as
the interaction with the substrate. The confinement is respon-
sible for a discrimination between the side molecudesl

X P)= W(lq,81;12,8)11,81;12,5,). 5
andN,, and the core molecules=2,...N;— 1, which do not ¥) z‘l |2§s:2 (1.90312,8)l11.81:12.52) ©

experience the same surrounding. To account for this eﬁectrhe expression of the corresponding time independent

we assume that the renormalization acts differently on th%chr"cdinger equatiorH|¥) = w| W) depends on the nature

side and core molecules and write the internal frequency a3f the basis vectors involved in. Indeed, there are two differ-

ent kinds of basis vectors either describing two quanta lo-
cated onto molecules which are far apart or two quanta lo-

where w, is the internal frequency of every core molecule cated onto the same molecule.

while ©; and wy, stand for the frequencies of the side mol- In the first situation (;>1,+1), the Schrdinger equa-

ecules. Note that we assume that the anharmonicity is thtéOn IS written as

ws=wot (w1~ w) I 1+ (wn, — o) Fs N, s ()

same for the core and the side molecules. [ws, twg,—w+ DA +A))
1 2 1 2
IIl. THEORETICAL BACKGROUND +®, (Ag +As)]
A. Representation of the two-vibron states XW(l1,81:15,5,)=0, (6)

The number states methdds used to characterize the whereA; denotes the discrete Laplacian operator which acts
two-vibron states of the confined monolayer. In a generabn the ith freedom, i.e.,A;¥W(g,h,i,j)=¥(g,h,i+1})
way, the vibrational quantum states of the)th single mol- ~ +W(g,h,i—1,j). Note that the finite size of the system
ecule can be described by the usual number statgscon-  alongX is implicitly taken into account in Eq(6) by setting
nected to the eigenvectors of the local number operatofo zero the wave function whesj or s, lie outside the range
byshis. To represent the Hamiltoniad [Eq. (2)], a general [1;N,]. Since Eq(6) involves quanta which are located far
orthonormal basis is constructed using ¥éh tensor prod- from each other, it does not depend on the anharmonic pa-
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rameter. Th!_s is no longer the case wHerl,. Fors;=s, [Zwsl_ZA_ 0]¥(s,s;0)
=s the Schrdinger equation becomes

+VID (K)W(s,5,1) +V2D [V (s—15;0)
[2(1)5_ 2A_ w]‘l’(l 1 ,S, I 1 ,S)

+W,(s,s+1;0)]=0 (11
+V20, [V (lq,s;11+18)+W(1,—15;14,5)] and
+\/2CI)L[\P(|1,S_1,'1,S)+\I’(|1,S,|1,S+ 1)]:01 (7) [a)sl+ wsz_w]qjk(5115210)
whereas, fois,>s,, it is expressed as +5>”(k)[‘1’k(81,52;1)+‘l’k(Sz,Sl:1)]
[ws, + 0s,~ ©]¥(I1,5:;11,5;) TP [Vi(s1,5:+1;0)+ W (51-15,;0)]
+ O [W(14,81:11+18) + W (1~ 18::11,8,)] 1+ (V2=1)85, 541
T [W(ly,sp511+18) +W(l1—187;11,81)] XD [Wy(s1,5,—1;0)+Wy(s,+15,;0)]=0.
+ @, [V(l1,51511,8+1)+W(l1,8—-1511,S;)] (12
_ . Equations(10)—(12) clearly indicate how the physics of
+(1+ +
(1+(v2 1)552’51+1)(Dl[q,(| L8t Lils) the two vibron states is related to the dynamics of a fictitious
+W(l4,8.:11,5,—1)]=0. (8)  Single particle moving quantum mechanically inside a three-

dimensional lattice. This lattice, shown in Figag appears
Note that the Scﬁnﬁnger equation f0|'2: | 1+ 1 canbecon- asa discrete, finite size rod with a Iength which extends from
structed straightforwardly fron{Eqgs. (6)—(8)] since the mM=0 to (N>—1)/2. For a given value ah#0, the basis of
HamiltonianH is Hermitian. the rod is a finite size square unit cell which corresponds to
From a topological point of view, the Schinger equa- the different values taken by the two indicgsands,. The
tion [Eqgs.(6)—(8)] is equivalent to the Schdinger equation cell atm=0 has a triangular shape due to the fact that two
for a single particle moving in a four-dimensional hypercubicquanta are indistinguishable. Within this equivalence, the
lattice. This dimensionD=4 is equal to the number of wave functionW¥,(s;,s,;m) associated to the relative dis-
quanta(i.e., 2 times the Euclidian dimension of the confined tance between the two-vibron excitations, can be viewed as
monolayer(i.e., 2. However, this dimensio can be re- the wave function of the fictitious particle with quasimomen-

duced to 3 by taking advantage of the periodicity of thetum k. Its dynamics is thus described by a tight-binding
confined mono|ayer a|0ng the direction. Indeed, since the Hamiltonian characterized by self energies located on each

wave function¥(l,,s;;l,,s,) is invariant with respect to a Site and hopping matrices which couple nearest neighbor
translation a|ong this direction, it depends ka_nand m:|2 sites. Both the anharm0n|C|ty and the confinement of the

—1,, and it can be written as a Bloch wave, as monolayer are responsible for the presence of local defects
leading to a shift of the self-energies. As shown in Fi@)2
1 the confinement induces the finite size of the different cells
— > W,(s,,s,,m)ekl1712/2 (g9)  and leads to defects located on the contour of these cells. By
\/N—Z k contrast, the anharmonicity acts onto the triangular aall (
=0), only, and leads to an energy shift equat-t@A for the
The total momentunk of the two-vibron states is associated sjtes belonging to the diagonéhe sites for whicts;=s,).
to the motion of the center of mass of the two quanta along Although the Schidinger equation cannot be solved ex-
Y. The values ofk are determined by imposing periodic plicitly, we can take advantage of its equivalence with the
boundary conditions to the wave function over a selNgf  single particle problem to obtain relevant information on the
unit cells. The resulting wave functioW,(s;,s,,m) refers  two quanta dynamics. Such an approach is illustrated in the
to the degree of freedom which characterizes the reduced following section to evaluate the two-vibron Green function.
distance between the two vibronic excitations. Note that the
previous periodic boundary conditions lead to limit the val- C. Green function calculation
ues taken by the indem which cannot exceed the half size
of the periodic box and thus varies from 0 tN4—1)/2.
Applying the Bloch transformation to E@6) leads to

W(ly,81:l2,5)=

A useful way to characterize the two vibron dynamics of
the confined monolayer is to evaluate the Green fundBon
=(w—H) ! associated to the Hamiltoniad. Indeed, the
knowledge of the Green function allows us to determine sev-

[w51+ wSZ—w+<"I'>H(k)Am+ (I’J_(Asl+ ASZ)]\Ifk(sl,sz;m) eral observables such as the weighted density of states and
the spectral response to an external probe. The two vibron
=0, (10) density of stateg(w) is expressed as

where®, (k) =2®, cosk/2). Note that this equation is satis- - _ EI | 5]’ s +ioN\ s’ s
fied for m>1, only. In a similar way, Egs(7) and (8) are g(w) iy m% z‘ (1.s1".8[G(o+ioT)[l.si1",s"),
expressed as 13
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FIG. 2. Equivalence between
the Schrdinger equation of the
two-vibron states and the dynam-
ics of a single fictitious particle
moving quantum mechanically in
a three-dimensional lattice(a)
The equivalent lattice, called the
real lattice, appears as a finite size,
discrete rod with a length which
extends fromm=0 to m=(N,
—1)/2. For a given value, it ex-
hibits a finite size, square unit cell
which corresponds to the different
values taken by the two indices
ands,. The cell located am=0
shows a triangular shape instead
of a square shape due to the fact
that two quanta are indistinguish-
able. (b) Ideal lattice used to cal-
culate the Green function. The
circles define the self frequencies
of the sites §;,s,,m) and the
lines characterize the hopping
constants®, (thin line), vV2®,

(full line), &)H(k) (dashed ling

andv2® (k) (dotted ling (see the
text).

whereas the two vibron infrared spectrum is proportional toH can be obtained by adding an operatoto H, and by
the spectral responsk w) defined as taking the restriction to the sites which belong to the real
lattice as

J(w)=—%lm|2 > (1Ls1,s|G(w+io)|l",s";1",8").
S |'s!

(14
To calculate the two vibron Green function, we take advan-The goal of the operatolV, known as the cleavage

tage of the equivalence of the Sétimger equation and the operator* is first to disconnect in the ideal lattice the sites
single particle problem, and use the formalism introduced b hh'Ch ?%not gelong t%_ihe re?:l Iatt|ce,5an;jhthgn to w;troduce
DobrzynskT’4 to determine the response function of super-_. € real bounaary conaitions. From HG ) € Lreen unc-
lattices and composite materials. tion of the real lattice is thus expressed in terms of the Green

function Go=(w—Hy) ! of the ideal lattice, as

H=P(Ho+V)P. (15)

1. General method .

To proceed, we first consider the lattice shown in Figp) 2 G=PGoP+PGoVP(1=GoV) "PGoP. (16
which corresponds to a fully symmetric discrete rod with . ,
finite size. It is denoted the ideal lattice by opposition to the’gsu:ti;is‘;g’r assuming l;ﬁ;‘ée""?’vg""gr esoa'l‘éfe t?ne S‘ﬂrin'c"gﬁi i
real lattice drawn in Fig. @). By comparing Figs. @) and cgm ute easily the exact Gre’en function of the Fr)eal Igttice
2(b), it is straightforward to see that; (N, — 1)/2 sites of the P y '
ideal lattice do not belong to the real lattice. We thus define
Q=1-P as the projector onto these sites.

Let Hy denote the tight-binding Hamiltonian which char-  The single particle Schdinger equation for the ideal lat-
acterizes the dynamics of this ideal lattice. The Hamiltoniartice is expressed as

2. Dynamics of the ideal lattice
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[wsl+ w5, 0 F &)”(k)Am-" (DJ.(A51+ Asz)]\I'E(Sl ,Sp;m) (a1— e_iqi)(aNl_ e i)

~0 17) (a;—e'N)(ay,—e'h)
where the appropriate boundary conditions are implicitly‘"’herei:l’2 anday n, = (w1, ~ o)/ P, . TheN, solutions

used. To solve Eq(17), we use the method based on theof Eg. (23) are either real or complex, depending on the
separation of variables and seek for a solution written as Values of the parametets;, ay , N;. A real solution forg;
0 characterizes a stationary wave with a frequency inside the
Wi (S1,S2:M) = 1(S1) Po(S2) p3(m). (18 vibron band of the chain. A complex value gf leads to the
occurrence of a localized mode, with an amplitude strongly
localized at the chain sides and a frequency lying below or

:e2iqi(N171), (23)

Inserting Eq.(18) into Eqg. (17) leads to the following sys-

tem: above the vibron band.
ot B -0, e S st o e e
(ws,~ €2) ha(S2) + P [ Pa(Sp+1) + (s~ 1)]=0, 0 (Q1,02,P) =2wo+ 2P, cogq;)+2d, cogqy)
(On D LT T b8 11=0, +za3(k)cos( ‘i—j) (2

where the separated eigenvalues obey the equalitye; and the corresponding eigenvectors are expressed as
+€e,+ €5. As shown by Eq(19), the separation of the vari-

ables reduces the initial problem connected to a three- .0 ;

pmr(m+1)
(S1,82:M)=Aq, q,.p sm(—

dimensional lattice to three similar problems related to the ka1.02.p Lo

propagation of a single particle in a one-dimensional discrete . T

chain. The general solution of each equation in B@) is X{aysinfa(s;—1)]—sin(g.81)}
expressed as a superimposition of plane waves that propa- X{agsingx(s;—1)]—sin(d,s,)},

gate in both directions along each chain as (25)

where Aq, q, p is @ normalization factor. The ideal Green

wherex stands form, s;, ands,. Because of the finite size function is thus written as
of the discrete chains, the values taken by the reduced wave L
vectorsq; are unknown at this stage. However, substituting Gok(S1,52;m:s;,S;;m’)

i(x)=APeldX+ AlTemitix:j=1 2 3 (20)

Eqg. (20) into Eg.(19), leads to a system of equations for the 0 . 0% roal et
side and core sites of each chain. For the core sites, the - Wicay.0,0051:52:MWiq, q, p(S1:S2:M")
solutions satisfy the equations of propagation subjected to p.07.q2 o—o(q1,92,p)

the dispersion relations of ideal chains, as (26)

€§i=wot2®, cogq;);i=1.2, At this step, we have an exact expression for the ideal

~ lattice Green functiorG, [Eg. (26)] which can be used to
€3=2®(k)cogqs). (21 compute the real lattice Green function as shown in Sec.
For the side sites, the system of equatipBs. (19)] is di- I'C1 [Eq. (16)]. Note that such a procedure requires the
rectly connected to the boundary conditions imposed to eacknowledge of the cleavage operatdrwhich can be built
chain. The first equation in Eq19) refers to a finite size Straightforwardly by comparing the Schiioger equations of
discrete chain with two free sides. The waves which propathe real and ideal lattices.
gate into such a system are stationary, with a quantization of

the wave vector; satisfying to the solution IV. NUMERICAL RESULTS
pr In this section, we apply the previous formalism to a
q3=L—, (22 model monolayer confined between two surface steps. To
2

minimize the number of relevant parameters, we consider a
whereL,=(N,+1)/2+1 andp=1,2,...,N,+1)/2. By con- symmetric confinement and assume that the two side mol-
trast, the second and third equations in Ekf) characterize ecules exhibit the same frequency redshift, i@,=wy,
the motion of a single particle confined in a chain containing= wy,— Aw, with Aw=0. An extension to the general situa-
N, sites. The confinement induces specific boundary condition with asymmetric blueshifts or redshifts could be done
tions due to the frequency shifts;, and wy with respect to  straightforwardly using the same formalism.

the core frequencyw,. As shown in previous works;*%20 The dynamics of the monolayer is studied in two stages.
the allowed values of the wave vectays and g, are the  First, we assume that the molecules belonging to adjacent
solutions of the equation unit cells do not interact®;=0). Such a situation corre-

035414-6



TWO-VIBRON STATE DYNAMICS IN AN ANHARMONIC . .. PHYSICAL REVIEW B 65 035414

4
3 4
)
S : _FIG. 3. Density of s_tatesg(w) in arbitrary _
8 o : unit of a one-dimensional molecular chain
8 : formed by N;=6 molecules confined between
= two symmetric surface steps. Dotted lines and
= full lines correspond to the density of states of the
harmonic chain A=0) and anharmonic chain
b (A=3.0), respectively.
0 T T T T

co-20)o

sponds to a set of one-dimensional linear chains perpendicered. Note that all the numerical calculations are performed
lar to the steps, the dynamics of which can be analyzed inusing the perpendicular hopping constdnt as frequency
dependently. The simplicity of this model allows us to unit.

understand the physics of the two-vibron states and the in- The density of the two-vibron states for a chain formed by
terplay between bound and localized two-vibron statesN;=6 molecules and two free sided ¢ =0) is shown in
Then, the two-dimensional confined monolayer is considFig. 3. For a harmonic systenAE&0), the density of states

J(w) (arb. units)

-
-
-
—

>

e

!Q)

>

/' | A IIJL. o

T T I T 1 Aw=0.5
T T T J T JT T 1 Aw=0.0
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FIG. 4. Behavior of the spectral responKev) in arbitrary unit of a one-dimensional anharmorice<3.0) molecular chainN;=6) vs
the valueAw of the frequency shift of the two side molecules.
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0-20),
©

-10 4

exhibits N;(N;+1)/2=21 quantum states, the energies of
which range betweer-4.0 and 4.0 around the overtone en-
ergy 2w, of a single oscillator. Three states are degenerated
with a frequency equal to the overtone frequency. This fea-
ture is general sinceN;+ 1)/2 states are degenerated in a
confined chain with free sides formed by molecules. For
an anharmonic systemAg 0), the density of states clearly
shows the occurrence df;=6 states lying outside the pre-
vious frequency range since their frequencies are redshifted
with respect to the harmonic frequencies. These states corre-
spond to the well-known two-vibron bound states.

To investigate the influence of the frequency shitb of

-0.5 0.0 0.5 1.0

Ao

T
1.5

20 o 2o the side molecules on the bound states, the spectral response
' ' ' in the frequency range of the two-vibron bound states is
shown in Fig. 4 for an anharmonic parameter equalto

FIG. 5. Behavior of the frequency of the localized two-vibron =3-0- ForAw =0, the spectral response exhibits three peaks
bound states as a function of the frequency shiftof the two side ~ Which characterize the response of the optically active bound

states. The most intense peak corresponds to the bound state

molecules.
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FIG. 6. Behavior of the spectral response of a two-dimensional weakly anharmfoni@.5) molecular monolayer as a function of the
number of confined molecular rows; . The side molecules do not exhibit any frequency shifto=0).
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®-20,

FIG. 7. Behavior of the spectral response of a two-dimensional strongly anharmoni2.Q) molecular monolayer as a function of the
number of confined molecular rows;. The side molecules do not exhibit any frequency shifto=0).

with the lower frequency. As the frequency shiftw in-  to a limit which is rapidly reached whe\, is greater than 4.
creases, the lowest frequency peak is strongly redshifteBor a given value oN;, the spectral response displayN 2
whereas another significant peak remains in the frequencyaxima. The low frequency part of the band shdwsin-
range of the bound states. As shown in Fig. 5, the position ofense peaks while the high frequency part exhibits
the lowest frequency peak slightly decreasedasncreases  maxima with a much lower intensity. As the anharmonicity
and shows a linear dependence, with a more abrupt slopgcreases, the shape of the spectral response is modified. In-
when Aw becomes greater than 0.5. Aso increases up 10 geeq, forA=2.0, the band asymmetry and the low frequency
3.0, there is no significant change in the spectral responsgey intensity are enhanced, while the features in the high
However,. for largedw values, a more complu_:a.ted structure frequency part disappear. The resulting spectral response ex-
oceurs W't.h several peaks and a strong splitting of the "Nibits a finite set of intense peaks with a lower frequency
t'a”FyOlrJTﬁg'?@g_gﬁggﬁsj ﬁgi;g;; 6&?(’3 behavior of thethan the overtone @,. Whatever the size of the confine-
spectral response with respect to the s';ilzleof the confine- mgnt, the intensity of the peaks decreases as their frequency
ment is shown in Figs. 6 and 7 for two different values of theShlfts towards the overtone valuesg. The frequency of the
anharmonic parametéy. The calculations are performed by r.no.st intense peak is redshiftedgincreases and reaches a
assuming isotropy of the lateral interactior, & ® ). For  limited value wherN, becomes greater than 4. The number
of remaining peaks is equal to the integer part of; (

a low anharmonicity(Fig. 6) corresponding toA=0.5, a _
broad band centered on the overtone,f a single oscil- +1)/2. For instance, there are one peak for lgik=1 and

lator occurs. The shape of the band is slightly asymmetri¢ and two peaks foN,=3 and 4. . '
with respect to the overtone frequency with intense low fre- The influence of the anisotropy of the lateral interactions

guency peaks. Its width increases as the nunhbeof con-  is shown in Fig. 8 forN;=2 confined molecular rows and
fined molecules par unit cell increases and clearly convergeor a weak anharmonicity A=0.3). When ®,=0.30,
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0.25
0.20 1 I
= | FIG. 8. Behavior of the spectral response of a
E 015 A | weakly anharmonic A=0.3) confined layer
> | formed byN;=2 molecular rows as a function of
2 | the lateral hopping constadt,. Three different
% 0.10 - I situations are illustrated corresponding b,
= I =0.3b, (dashed ling ®,=®, (full line), and
®,=1.50, (dotted ling, respectively. The side
molecules do not exhibit any frequency shift
0.05 1 (Aw=0).
0.00 . ;
-10 8 8 10

(dashed ling the spectral response is formed by two distinctlated from the second peak which belongs to the tail of the

bands located on both sides of the overtone frequengy. 2 broad band. As shown in Fig. 9, the frequency and the inten-
These bands have the same width and exhibit a similar shasity of the most intense peak do not depend on the even or
with a single intense peak. As the lateral coupliibg in-  odd number of confined molecular rows. By contrast, the

creases, the width of the two bands increases and their oventensity of the second peak increases by a factor 2 and its
lap takes place whed=0.5P, . For larger values ofb, frequency is slightly redshifted as the size of confinement

(full and dotted ling, the spectral response exhibits a singlevaries fromN;=5 to N;=6.

band which the characteristics have been discussed previ-

ously. The width of this single band increases &g in-
creases. V. DISCUSSION

The symmetric confinement of strongly anharmonic mol- o interpret the features observed for the one-dimensional
ecules 9\:30) is illustrated in Flg 9, for two different val- confined Chain, let us remind that the S(ﬂhr[ger equation
uesN;=5 andN; =6 of the size of confinement. The inter- for the two-vibron states is equivalent to the single particle
nal frequency of the side molecules is assumed to b@roblem on the three-dimensional lattice shown in Fig).2
redshifted identically and is equal 0y~ w1y, =Aw=2.0.  Sinced,=0, this lattice reduces to the two-dimensional tri-
In both cases, the spectral response exhibits two intensengular cell located an=0. Within this picture, the bound
peaks as expected from the previous rule. The lowest frestates correspond to localized states occurring in the vicinity
guency peak, which is the most intense, appears to be isof the defects associated to the anharmonic effects, i.e., the

0.5 4
0.4

0.3 FIG. 9. Behavior of the spectral response of a
two-dimensional strongly anharmoni@ € 3.0)

monolayer vs the number of confined molecular
0.2 4 rows. The two side molecules exhibit the same

frequency shift equal td w=2.0.
0.1 4 J J

0.0 T T
-4 12 10 -8 -8 -4 -2 0 2 4 6 8

J(w) (arb. units)
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defects located on the diagonal of the lattice for whigh tained even if there is no localized single-vibron states. Sec-
=s,. In other words, for a reasonably strong anharmonicity,ond, if the frequency shift of the side molecules is sufficient
i.e.,, A>® , theseN; sites, with a self-frequency equal to to localize single-vibron states, then the localization of the
2wy—2A, are decoupled from the free sites which have atwo-vibron bound states will be still stronger than the local-
self-frequency equal to the overton@@ However, an ef- ization of the single-vibron state.

fective interaction occurs between theNg sites via high As shown in Fig. 4, the defects induced by the frequency
order processes involving the free sites. This interactiorshift of the side molecules are also responsible for other phe-
leads to the splitting of the frequencies of the bound stategiomena. Indeed, wheAw increases to reach a value of
To illustrate this feature we use a second order perturbatioabout the anharmonic shiftA2 a resonance occurs. More
theory to calculate the effective couplinh, between the precisely, a resonant coupling takes place between the sites
sites 6;,8;) and (5;+1,s,+1) mediated by site §,s; S1=2, ;=2 ands;=1, s,=2 and between the sites;
+1). We find thatd = — ®?/A. =N;—1, s,=N;—1, ands;=N;—1, s,=N;. Basically,

In addition to the defects due to the anharmonicity, thesuch a coupling involves a two-vibron bound state and a
frequency shift of the side molecules due to the confinemer#tate formed by the pair of a single-vibron localized either on
is responsible for the occurrence of defects distributed ovethe sites=1 or s=N; and a free vibron. This resonance is
the contour of the triangular cell. As a result, the restrictedresponsible for the breaking of the bound between two vi-
one-dimensional chain exhibits also two defects located oRrons induced by the anharmonic interaction. As a result, the
the side sites;=s,=1 ands;=s,=N;. These two defects eigenstates appear as a superimposition of both kinds of
are responsible for the occurrence of localized two-vibrorstates which leads to the occurrence of several peaks in the

bound states characterized by a wave function which ispectral response.
strongly localized on sites;=s,=1 ands;=s,=N;. As In a two-dimensional confined monolayer, the same fea-

shown in Fig. 4, the spectral signature of these localizedures are observed although the signature of theses features
bound states corresponds to the lower frequency peak whidR the spectral response can appear in a different way. As for
the frequency depends on the sHifb. From a mathematical the one-dimensional chain, the shape of the spectral response
point of view, this process can be formulated by restrictinggives information on the occurrence of localized modes in-
the Schrdinger equation of the triangular cell to the sitesduced by the frequency shift of the side molecules. Indeed,
located on the diagonal. Therefore, the second order reducdie lowest frequency peak characterizes the spectral response

Schralinger equation for the wave functiobi,=¥,(s,s,m  Of localized two-vibron bound states. Although the frequency
=0) is expressed as and the intensity of this peak do not depend on the size of the

confinement, its occurrence involves in a complicated way
[200—2A+ So( 551+ 55,N1)_w]\ys_q)e(q}s+l+q’sfl) the different dynamical parameters. Due to the symmetric
confinement, there are two localized two-vibron bound
=0, (27)  states, which correspond to the localization of two vibrons
onto the two side molecules. Within the strong anharmonic-
where dw=—2Aw+®,. By applying the renormalization ity |imit, the second order perturbation expansion can be
group theory used in previous papers to solve similafysed to determine an approximate value of the frequency of
equations;~*it is straightforward to show that EG27) ex-  the localized two-vibron bound state. Indeed, using the lat-
hibits two localized solutions which occur for two critical tice picture shown in F|g(3_), the renormalized Se|f-energy
values of the parameteYw equal to of the side sitg(s;=1,5,=1m=0) corresponds to its inter-
action with its two nearest neighbors located in the cells
=0 andm=1, respectively. As a result, the frequency of the
localized two-vibron states is approximated as

Aw* =

o2 ( 1+1 )
(29

Al 2TN 1)

This relation can be compared with the results obtained in
Ref. 11 since it was shown that localized single-vibron states
in a confined chain occur for critical valugsw* =® [1
+(1x1)/(N,—1)]. As aresult, Eq(28) shows that a strong As shown in Figs. 69, the line shape of the two-vibron
anharmonicity enhances the occurrence of localized states ypectral response appears to be very sensitive to the structure
softening the critical valuefA w* be/A instead ofAw* of the monolayer. Especially, this shape strongly depends on
~® ). The localization corresponds in fact to a competitionthe number of confined rows through the number of intense
between the lateral coupling which tends to delocalize the@eaks inJ(w). Such a feature indicates that infrared spec-
excitations and the frequency shift of the side moleculegroscopy applied to the two-vibron response of a confined
which tends to localize these excitations. In an anharmonieonolayer can provide valuable information on the nano-
molecular chain, a strong anharmonicity leads to the formastructuration of molecular rows at the steps of a vicinal sur-
tion of bound states which are the superimposition of stateface. This is a remarkable feature which adds to the informa-
formed by two quanta located on the same molecule. Sincton brought by the usual one vibron respof&ét low
the effective lateral interaction between these latter states gnharmonicity, the number of observed intense peaks is
strongly reduced by the anharmonicity, two situations carequal to the numbeX, of confined rows as shown in Fig. 6.
occur. First, localized two-vibron bound states can be obAt strong anharmonicity, the number of intense peaks is the

o ~2wy—2Aw—2A— (D2 +4d). (29

2A+Aw
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integer part of N;+1)/2 (Fig. 7). In this latter case, the ment has clearly characterized the frequency shift of their
ambiguity over the corresponding odd or even number ofnternal vibrations. However, it has been shown from theo-
rows can be removed by comparing the relative intensity ofetical calculations that adsorption of G€ose to ionic sur-
the peaks. Since the width of the spectral band depends Gace steps leads to a redshifw of the frequency of the
the size of confinement, row-by-row growth of molecular agsymmetric stretching mode equal to 9 ¢non NaCl and to
monolayer close to substrate steps could be followed using cm* on MgO3® Similar results for CO are expected. For
infrared spectroscopy. _ the (2x1) CO monolayer adsorbed on NaCl, the lateral in-
In addition, the fact that the shape &) is also very  teraction was shown to be strongly anisotropic with a vibron
dependent on the parameters characterizing the vibron dy;,,qwidth equal to 3 cit along the longer size of the unit

namics, especially the lateral hopping constants, the anha{:—e" and to 12 cr* along the perpendicular directihAs-

tr?%nlc]:t)r/nc?effllcmntnan? thzitfézqu;?r?g t?g: g#i;ﬁaiisgirt%'guming an anharmonic parameter equal to the gas phase pa-
on of molecules on step rameter A=13 cm 1), a strong anharmonicity together with
data on the two-vibron spectroscopy could be used as a

probe of such parameters. Indeed, the widthi@b) is di- a strong anisotropy in the vibron propagation characterizes

rectly connected to the lateral interaction between molecule§UCh a system and we thus expect the formation of localized

belonging to adjacent rows and it gives information on thetwo—wbron bound states close to the steps. Such a situation is

interaction process through the hopping constnt More- iIIustrgted in Figs. 7 and 9. For the hydrogen-t'erminated vici-
over, the profile of)(w), especially the relative positions of Nl Si surfaces, the steps were shown to induce a strong
the peaks in the spectrum, depends on the relative values Bfodification of the vibron dynamics leading to a frequency
®, and®,, and is thus an indirect probe of the anisotropyblue-shift which ranges from 11 to 52 crh For this
of the interactions in the confined monolayer. Last, the freSystem, the lateral interaction is very small, leading to a vi-
quency of the peaks connected to localized two-vibrorPron dispersion of about 10 ¢ while the anharmonicity
bound states can be used as an additional probe of the varas found to be close to that of the gas phase valueA.e.,
ous dynamical parameters in the strong anharmonicity limit=34 cm .
using EQ.(29). These results corroborate the recent results To conclude, let us mention first that infrared-visible sum
obtained by Jakol3 who has demonstrated the ability of in- frequency generatio(SFG spectroscopy should in principle
frared spectroscopy to study vibrational band structures iprovide still a more clear signature of the peaks in the spec-
adsorbates by exciting the two-vibron states. tral profile than conventional linear infrared spectroscopy.
In a general way, the relative values of the different dy-Indeed, the fact that the intensity of peaks in SFG spectrum
namical parameters do not follow well-defined rules and sevelepends on the square modulus of the nonlinear susceptibil-
eral situations can occur depending on the nature of both thi¢y tends to enhance the most intense peaks at the expense of
adsorbate and the substrate. Indeed, when the molecules ahe broad structure. Since the detection of two-vibron bands
adsorbed close to the steps of a metal surface, their intern@ not currently a straightforward experimental task, SFG
frequencies are either redshifted or blueshifted with respealata should therefore be an additional help to the peak as-
to their values on a terrace. For instance, the frequency of theignment. However, such a detection in linear and nonlinear
stretch vibration for the system CO(P1)) is redshifted by spectroscopy rests on the broadening of the peaks. Let us
about 20—30 cm'® (Ref. 30 whereas the presence of stepsremind that the present approach has been carried out by
for the system CO/QU00) (Ref. 39 leads to a blueshift of disregarding the dynamical influence of the external modes
about 15 cm* of the internal vibration frequency of the side of the monolayer(translational and orientational motions
molecules. The anharmonicity of small molecules on metahnd of the substratgphonon dynamigs Jakob and Persson
surfaces is usually close to the gas phase anharmonicityave showf that the energy relaxation rate for the two-
(typically of aboutA=10-20cm? for CO and NOQ and vibron states is twice the rate connected to the energy relax-
appears strong enough to induce two-vibron bound statestion of a single vibron. Moreover, the dephasing constant of
Therefore, we can expect the occurrence of localized twothe two-vibron states is about 4 times the single-vibron
vibron bound states when confining such molecules on @ephasing constant. As a result, dephasing and population
vicinal surface. However, as pointed out by JaRbthis no  relaxation could appreciably modify the infrared signals by
longer the case for the system (RQ1)-(2xX1)-(O+NO), for  inducing dynamical frequency shift and broadening of the
which the lateral coupling is stronger than the anharmonicitypeaks. At low temperature, these dynamical effects should
(A=~0.6x®,) and prevents the occurrence of bound statestemain small but increasing the temperature would require to
This latter case illustrates the theoretical situation consideredescribe the influence of the relaxation mechanism on the
in Fig. 6. Although CO and C®adsorption on ionic surfaces spectral response of a confined monolayer in a more sophis-
was shown to be different on steps and terrdtem experi- ticated theoretical formalism.
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