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Relation between dipole moment and radiative lifetime in interface fluctuation quantum dots
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A relation between dipole moment and radiative lifetime of quantum dots for arbitrary indices of refraction
of the quantum dot and surrounding medium is derived. As limiting cases several formulas already in use are
obtained and their correct use is discussed. We proceed to discuss the relation between dipole moment and
radiative lifetime in interface fluctuation quantum d@sQD’s) taking into account nonsphericity effects. This
introduces a dependence on the light propagation direction. We calculate how to account for the nonsphericity
of an interface fluctuation quantum dot depending on its diameter and well thickness and find that the lifetime
of a typical IFQD with a 50 nm diameter is reduced by about 10% due to nonsphericity effects.

DOI: 10.1103/PhysRevB.65.035327 PACS nuntber78.67.Hc, 78.60-b, 78.70-—g

[. INTRODUCTION quantum dot results in a complex band structure. When re-
ducing the band structure to a two-band model, all other
There has been some confusion about the correct relatiopotential transitions are taken into account approximately by
between dipole moment and radiative lifetime in semiconthe so-called background relative dielectric constestn?
ductor quantum dots. For atoms, this relation is well estab¢Ref. 9. Its introduction is the basis on which a semiconduc-
lished. The radiative broadening,,. of an atom emitting tor quantum dot may be considered to have only one primary
into vacuum is derived from its dipole moment throtigh transition and thus act as a two-level system. Therefore, al-
though a semiconductor quantum dot may often be consid-
w®|D|? ered analogously to an atom and as a two-level system, one
(1) may do so only when using the proper dielectric constants.
Interface fluctuation quantum dotdFQD) are large
where D is the dipole momentw is the frequency of the monolayer islands naturally formed when growing structures
optical transition g, is the permittivity of free space, amg,. ~ with growth interruption:®=*2 Recently, interest has focused
is the vacuum speed of light. We use MKS units throughouton them due to their large dipole moméntyhich may make
When immersing the emitting object in a medium the radia-the observation of quantum entanglement in a semiconductor
tive lifetime is changed, as has been shown by Yablonovitclstructure possible. In order to achieve this, a single quantum
for the case of quantum welfdn quantum dots, the index of dot has to be coupled to an electromagnetic field such that
refractionn has often been introduced as a factor to accounthe Rabi splitting is larger than the energy associated with all

vac— )
3mephcs,,

for the effects of the mediurh? broadening mechanismg? The Rabi energy is proportional
to the dipole momenD which in turn is proportional to the
I'=nlya. 2 square root of the area of an interface quantum dot. Except

) for very-highQ whispering-gallery-mode cavities, the pho-
Another approach uses a more complicated factor t0 aGpp decay rate exceeds the dipole dephasing rate so the larger

count for the semiconductor medin, the dipole moment the better for achieving strong coupling.
5 Therefore, large IFQD’s seem ideally suited to achieve quan-
on 3) tum entanglement.

The dipole moment is a function of the wave vector of the
light it couples to, i.e.D="D(K). The magnitudeK of the

Here, we show that these different approaches can bkght wave vector is determined by the transition energy. For
viewed as special cases of a general formula including bothpherical quantum dots, the dependence on the wave vector
the index of refraction of the quantum dw$p and the index  direction disappears and the dipole moment may thus be
of refraction of the surrounding mediumexplicitly. Equa-  written as a simple numbé&p(K) =D. For quantum dots that
tion (2) assumes that the quantum dot has the same index @fe small compared to the wavelength of light in the medium
refraction as the medium, while E€) is based on an index the direction dependence also disappears. Interface fluctua-
of refraction of 1 for the emitting particle and applies to thetion quantum dots, however, are highly nonspherical, having
case of an atom in a medium. The approach has been usedhickness of a few nanometers in the growth direction and
for semiconductor quantum ddtéwhere, however, it is not a radius in the quantum well plane of several tens to hun-
justified and Eq(2) should be used. The result may be modi-dreds of nanometers, which is quite an appreciable fraction
fied by local field effects in an absorptive and dispersive hosof the transition wavelength in the medium. TKedepen-
medium® dence must thus not be neglected. However, it is still pos-

Semiconductor quantum dots in general have dielectrisible to use Eq(2) for the calculation of the radiative life-
constants very similar to the surrounding semiconductor metime when using an average dipole momeht,. In
dium. The complex interplay between abouf Hloms in a measurements of the dipole moment, the measured quantity

r=—— T
(2n2+1)2 "
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with expansion coefficient€,p; whereA is the QD state
Medium and P denotes the photon states. As initial configuration we
e n // \\ use
Quantum Dot |
[\ £an Nad /] Cg(oy(t=0)=0, (6)
A 4
o where the quantum dot is in the excited stdE€0}) and all
photon modes are empty. Thus, the interaction potential be-
tween electrons and photofiast term in Eq(4)] only con-

o _nects this statéE{0}) to statedG{1s}) where the quantum
F_IG. 1. Schematic picture of the_ quantum _dot an_d surroundlngﬂot is in the ground state while modds occupied by one
medium. The quantum dot and medium have dielectric constgant photon, which is why the state vector can be written in the
and e, respectively. simple form of Eq.(5).
Inserting Hamiltonian and state vector into the Sehro

is often the dipole moment for coupling to light traveling in ginger equationif(d/at)|(t))=H|y(t)) and projecting
the growth directiorD(Ke,).™ In this paper, we numerically onto each of the states, we derive

calculate the form factoF (Ry) =|D,%/|D(Ke,)|? depend-
ing on the radius of the interface quantum &t The non- ) t _ /
sphericity of interface quantum dots can then be corrected ~ Cg)(t)=— 2>, |gs|2f dt'e” (s Cro(t’), (7)
for by the simple factoF(Ry) in lifetime calculations. S to

We have assumed the IFQD'’s to have spherical symmetr

in the xy plane. In reality, IFQD’s can be elongated in the %herew:w‘:_w”' Let us consider a quantum dot in a di-

electric medium with index of refractiom The sum over the

[110] direction™ However, since relatively little is known \yave numbers included into the sum over the photon modes
about the shape of IFQD’s we have not attempted a morg may be converted into an integral as follows:

exact description.

\Vj 3
3K — 3
[l. CALCULATION OF THE RADIATIVE LIFETIME - f d°K= f d*
CALCULATION © < (2m)? (27)%Chac
Here, we derive the radiative lifetime of a quantum dot 3 . )
for an arbitrary dielectric constant of the mediwnand di- _ vn J' d0 szwdasinej ﬁd(ﬁ ®)
. . 3 3 ’
electric constant of the quantum dejp as shown schemati- (21)7Cyacl 0 0 0

cally in Fig. 1. For simplicity, in this section we assume a

sperical quantum dot with radidthat is much smaller than whereV is the quantization volume. Inserting this into Eq.
the wavelength of light in the quantum d®®<Aqgp. We  (7), we obtain

start from the Hamiltonian of a two-level system interacting

with a quantized light field,thus restricting ourselves to the _ vnd w -
lowest possible transition: Ceqoy(t) = ——f dQ sz désing
(ZW)BC\?ac 0 0
27 t i ,
H=%>, Qblbs+iwcicthro,vv xf d¢|g(Q,a)|2f dt’ e H(@sm U Cr (t).
S 0 o
T * |t 1 (9)
+h§ (gsbcTv+g¥blvTe). (4)

We solve the time integral by the method of coarse grain-
ing, i.e., we assume thdlgg(t’) is slowly varying such
Here, b denotes photons in mode and ¢ (c') and that Cgyqy(t") ~Cgqy(t):
v (v') are the annihilatioricreation operators for an elec-
tron in the conductiorivalence band, respectivelys is the

t
coupling constant between electrons and photons, snd lim | dt’e "@sm ) Ceg(t)
={k,o} characterizes the photon modes by their wave vector t=eto
k and polarizations. t _
We write the state vectdw(t)) as an expansion into the =CE{0}(t)f dt’ e (@sme)t’
excited statdE{0}) and the ground staté{1s}): to

|(1)) = Cgyoy(t)e'“¢'| E{0}) O—ow

+2 CG{ls}(t)e—i(wh+Qs)t|G{ls}> (5) Neglecting_ the termP[i/(Q)— w)] w_hich Ieads_to a fre-
s guency shift related to the Lamb shift, we obtain
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_ Ve rw? vector quantity, the direction dependence of the dot product
Ceoy(t)=— 33 d.,- €, is lifted by the sum over all possible polarizations.
(27)°Clac The electric field per photorf, is determined by the
- on eigenmoded ,(r) of the light. We consider a quantum dot
X fo désin QJO d¢|g(w,¢9)|2CE{0}(t). with dielectric constantgp= néD in a dielectric medium of

dielectric constané=n?. For egp=, the eigenmodes would
(11)  be plane wavedy,(r)=(e,/\eV)e K" For the case of
different dielectric constants in quantum dot and medium,

Let us now evaluate the coupling constait, 6) enter- the eigenfunctions must fulfill the wave equation

ing Eq. (11):
5 (E4)2 02
|g(w,0)|2=021 (f) |(E{O}|er-e,|G{1s})[? € fio(r) = VX[V Xfi,(r)]
2 £\2 2 ﬁ
:Zl(f) fd3rué‘(r)gé‘(r)er.eguv(r)gv(r), — (€= €qp)O(Ry—1) 5= fk,(0)=0, (17
(12)

where the quantum dot has been taken as a sphere with ra-
where the electric field per photd, describes the strength dius R, around the origin. Here, we have assunm@{R,

of the electric field at the location of the coupling, i.e., the —r)fx,(r)~0(Ry—r)fx,(0), which is valid for Ry<<A\.
quantum dot. The electron wave functions have been writteiGeneralizing the derivation of Glauber and Lewenstaive

as products of the lattice periodic Bloch function obtain

u,(K,r) [uc(K,r)] in the valence[conductio band and

the envelope wave functiog(r).® The weak wave vector e, 3e
dependence of the Bloch functions has been negleeteid. fko(0)= =S5 (18
the polarization vector of the light with polarizatian €V £€7 €D

The integral is then split into an integral over a lattice cell 1,5 the electric field per photaf), entering Eq.(16) is
and a sum over all the lattice cells with the envelope func-

tions varying slowly over a lattice cell, \/ﬁ 3e
€u= €€V 2e+eqp (19

2 £ 2| N
|9(w,0)?= X (7) 2 £ (Rp&(Ry)
o=1 n=1

We remark that nonsphericity of a semiconductor quan-
2 tum dot does not make the dipole moméhtdependent as
. (13)  long as the quantum dot is small compared with the wave-
length of light in the medium. Although for a nonspherical
Here,V, denotes the volume of a unit cell. We introduce thequantum dot the wave equation, E47), cannot be written

xf d3ruk(r)er-e,u,(r)
Vo

interband optical dipole matrix element in this simple form, the eigenmodes are given by &4) for
1 any small QD. Thus, as a result of the fact that only the
_ = 3p % optical dipole matrix elemerd., is a vector quantity and its
de Vo Vod rug(rjeru,(r (14 directional dependence is obliterated by the sum over all
. possible polarizationsr, the dipole moment is wave vector
and derive
dependent only for large quantum dots.
2 g2 2 Inserting Eq.(16) into Eq. (11) yields
9(w.0)?= 2 (ﬂ f dRE (R)E,(R)dg, &, -
o=1 ) 965/2 w3|D|2
(19 Cero)(t) =~ Cefoy(D), (20
; ; ; (At T 0 2e+ eop)? B6meghcy 0}
With o labeling the two linear polarization directions, we get (2€+ €qp)” 67€0hClqc
, [Eo 2 5 2 where we have introduced the QD dipole moment
lg(w,0)]"= ?) fd RE(R)E,(R)d,
— 3
X SirP6(cog ¢+ sirt ) D—f d’RE(R)E,(R)d, - (21)
£,\? . We thus find
= ?) f d*REE(R)E,(R)d,| SinPo.
. r
(16) Cefo)()=— 5 Cepo)(1), (22

The coupling constant is thus independent of the azi-
muthal coordinatep. Although the dipole momend,, is a  where
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965/2 w3|D|2 965/2 nw3 1

= = Ty (23 r=
(26+EQD)2 37Téoﬁcsac (26+€QD)2 vae 37Téoﬁc\3;ac47TKé

fd3K|D<K)|25<K—Ko>, (28)

aphereKo=nw/c,,cis determined by the transition energy. In
order to derive a correction factor accounting for the non-
equivalence between growth and in-plane direction, we need
to calculate thé&K-dependent dipole moment in EQ7). We
assume a localized basis consisting of wave functip(rs)
in the in-plane xy) direction and the confinement functions

9 of an infinitely high quantum well in the growitz) direction
= ——Ta (24)  With barriers atz=*L,/2. For the quantum well ground

(2+ €qp)? state, we get

For the case of equal dielectric constants for quantum d
and mediumeqp= €, We retrieve Eq(2). In contrast, for a
quantum dot with a dielectric constant of ¥gp=1) we
obtain Eq.(3). We also point out that were a quantum dot
placed into vacuum, its radiative decay rate would be

due to its dielectric constart §(r)=a(r)¢y(2) (29
In a real(finite) semiconductor structure, the QD lifetime
may change due to etalon effects. The magnitude of thi
change is calculated by comparing the eigenmodes of the 5
&2)= \/L:co
z

gvhere

7z
S—. (30

structure at the QD location to a plane wave eigenfunction i
z

with an absolute value of {¥ at the QD location wher¥ is

the quantization volume. Depending on whether the norm Oﬁ'hus,
the eigenmodes is greater or smaller thag\l/at the QD

location spontaneous emission may be enhanced or sup- B ok LK
pressed. The eigenmodes of any semiconductor structure can D(K)_f drye (rp) ¢, (rppe "Il
be calculated in a transfer matrix calculation.

X sinx
w2 —x2

} + X )ch , (32
Il. LIFETIME OF ASPHERIC QUANTUM DOTS X
In this section, we calculate the lifetime of interface fluc- wherex=K,L,/2.
tuation quantum dots. These generally have a dielectric con- For the wave function in the in-plane directigi(r) we
stant very similar to the semiconductor medium aroundcompare results obtained using two different trial functions,
them, such that we can safely assuegg= €. The radiative  one being a step function
lifetime is then given by Eq(2). However, we can no longer
uphold the approximations made in Sec. Il, namely spherical 1
symmetry and a QD dimension which is much smaller than é(r)= \/—Z(Ro—fu) (32
the wavelength of light in the medium. An interface quantum 7Ro
dot is highly aspherical, having a thickness of a few nanomfor a quantum dot with radiug,, the other being a Gaussian
eters in the growth direction and a radius of several tens to
hundreds of nanometers in the quantum well plane. 2 2.
d)(r”): \[;e rH/RO.

Omitting the assumptioR<\, the eigenmodes are plane (33
wavesfy(r)=(e,/\eV)e KT for a homogeneous dielec- '
tric constant in medium and quantum dot. Thus, the electri¢Ve define a form factor
field per photon becomes
- J d3K|D(K)[28(K—Kog)
- @ F(Ro)= : (34
€o €oeV’ (25 A7KE| D(Kqe,)|?

Taking the light wave vector into account, we rewrite Eq.Wheree, is the unit vector in the growth direction. Briefly,
(12) as this form factor is the ratio between the dipole moment av-

eraged over all directions and the dipole moment for cou-

2 g2 . pling to light propagating in the growth direction. Using this
19(w,0)?= 2, (?“’) [(E{O}|er-e,e” 'K "|G{1s})|>. factor, we can rewrite the lifetime of an interface quantum
o=1 dot as
(26)
This leads to a dipole moment - Nw*|D|*F(Ro) (35
3mephcd,, ’
D(K)ZJ d®r &5 (r)€,(r)e”""dg, (27)  where D=D(Ke,) is the dipole moment for coupling to
light propagating in the growth direction which is usually
and a radiative broadening referred to ashe dipole moment of an IFQDe.g., in normal
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' ' ' ' ' ' ' with electron(hole) massm, (m;). Since the wave function
is no longer separable in electron and hole wave functions,
the dipole moment 8

D(K)zdcvf d®RV¥(R,R)e KR

Form factor

=dcuf d3ref dr W (re,rpe K red(re—ry)

de,® 1(r=0) |
o :%J d’Re 'K-RE(R-Ry)
0 20 40 60 8 100 120 140 VRS
Interface QD radius (nm})
FIG. 2. Form factor for an interface quantum dot using a step Xf dz|{,(2)|? e, (39

function (solid line) and a Gaussia(dashed lingas eigenfunctions

in the growth direction as a function of the QD radius. We observe Inserting the wave function, Eq36), into Eq. (39), we

that the results for both sets of trial functions deviate little from derive for the form factor the same expression as for the
each other, indicating that the result is not sensitive to the choicesingle particle case when using a step function, (B8). We

For a typical QD size of 50 nm the radiative lifetime is reduced bythus conclude that the Coulomb interaction has little or no
about 10% by the form factor. effect on the form factor. An elongation of the IFQD’s in

incidence absorption measureméhtsr normal-incidence L1101 directiori”_ could be accounted for by choosing ellip-
coupling to an IFQD in a microcavily tical wave functions in thexy plane and would result in an

Figure 2 shows the form factor for the two in-plane trial 2V€rage form factor whose value is somewhere in between
functions (€=13.71,L,=4 nm). For small IFQD’s, the ef- the values for the two axes. How’ever, since relatively little is
fects of nonsphericity are negligible, yielding a form factor K"own about the shape of IFQD’s we have not attempted a
F(0)=1 as expected. For larger radii, the form factor de-MOre exact description.
creases strongly. We also observe that the results for the two
sets of trial functions deviate little from each other, indicat- IV. CONCLUSION
ing that the result is insensitive to the choice of trial function. : .

For a typical dot size of 50 nitt;*?we find a form factor of . we h.avg derived a formula for the qalculat!on of.the ra-
about 0.9. The lifetime is thus reduced to 90% of its value ford'at've lifetime of a quantum dot for arl:_ntrary d|_e|ectr|c con-
a spherical QD with the same dipole mom@&Ke,). Since stants of quantum datop and surrounding mediure,

L, is much smaller than the wavelength of light, the results 59
depend very little on its choice. = 9e .

The dipole moment of a large quantum dot depends (2e+ eQD)2 vee
strongly on the inclusion of the Coulomb interaction which _ )
has not been taken into account in the one-particle trial wav&©r the case of semiconductor quantum dots, we can in gen-
functions discussed so far. In order to estimate its effects, weral assumegp= € and thus the formula reduces to the well-
consider a two-dimensional Coulomb potential. We also asknown equation
sume that the relative in-plane motion remain unaffected by

(40

the quantum dot confinement potential. This approximation I'=VeT yae. (41)
is valid only when the quantum dot radius is large compared
with the 2D exciton Bohr radius,. We write the electron- As for interface quantum dots, the dot is neither spherical
hole wave function as nor is its size in general small compared with the wavelength
of light in the semiconductor medium. This introduces a
1 form factorF(R) into Eq.(41) that we have calculated as a

W(re,rp)=—==0(R=Ro)P14(r){x(2e) {-(zh), function of the quantum dot size. The form factor relates the
V7RG dipole moment measured in IFQD’s coupling to light propa-

(36) gating in the growth direction to their total radiative lifetime.

taking into account only 4 states and assuming a step func- Due to their nonsphericity, we derive a reduction in lifetime
tion for the center of mass motioR andr are the in-plane ©f about 10% in a typical IFQD with a 50 nm diameter.

center of mass and relative motion coordinates, respectively,
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