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Relation between dipole moment and radiative lifetime in interface fluctuation quantum dots
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~Received 21 August 2001; published 2 January 2002!

A relation between dipole moment and radiative lifetime of quantum dots for arbitrary indices of refraction
of the quantum dot and surrounding medium is derived. As limiting cases several formulas already in use are
obtained and their correct use is discussed. We proceed to discuss the relation between dipole moment and
radiative lifetime in interface fluctuation quantum dots~IFQD’s! taking into account nonsphericity effects. This
introduces a dependence on the light propagation direction. We calculate how to account for the nonsphericity
of an interface fluctuation quantum dot depending on its diameter and well thickness and find that the lifetime
of a typical IFQD with a 50 nm diameter is reduced by about 10% due to nonsphericity effects.
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I. INTRODUCTION

There has been some confusion about the correct rela
between dipole moment and radiative lifetime in semico
ductor quantum dots. For atoms, this relation is well est
lished. The radiative broadeningGvac of an atom emitting
into vacuum is derived from its dipole moment through1

Gvac5
v3uDu2

3pe0\cvac
3

, ~1!

where D is the dipole moment,v is the frequency of the
optical transition,e0 is the permittivity of free space, andcvac
is the vacuum speed of light. We use MKS units througho
When immersing the emitting object in a medium the rad
tive lifetime is changed, as has been shown by Yablonov
for the case of quantum wells.2 In quantum dots, the index o
refractionn has often been introduced as a factor to acco
for the effects of the medium,3,4

G5nGvac. ~2!

Another approach uses a more complicated factor to
count for the semiconductor medium,5

G5
9n5

~2n211!2
Gvac. ~3!

Here, we show that these different approaches can
viewed as special cases of a general formula including b
the index of refraction of the quantum dotnQD and the index
of refraction of the surrounding mediumn explicitly. Equa-
tion ~2! assumes that the quantum dot has the same inde
refraction as the medium, while Eq.~3! is based on an index
of refraction of 1 for the emitting particle and applies to t
case of an atom in a medium. The approach has been
for semiconductor quantum dots,6,7 where, however, it is no
justified and Eq.~2! should be used. The result may be mo
fied by local field effects in an absorptive and dispersive h
medium.8

Semiconductor quantum dots in general have dielec
constants very similar to the surrounding semiconductor
dium. The complex interplay between about 106 atoms in a
0163-1829/2002/65~3!/035327~6!/$20.00 65 0353
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quantum dot results in a complex band structure. When
ducing the band structure to a two-band model, all ot
potential transitions are taken into account approximately
the so-called background relative dielectric constante5n2

~Ref. 9!. Its introduction is the basis on which a semicondu
tor quantum dot may be considered to have only one prim
transition and thus act as a two-level system. Therefore,
though a semiconductor quantum dot may often be con
ered analogously to an atom and as a two-level system,
may do so only when using the proper dielectric constan

Interface fluctuation quantum dots~IFQD! are large
monolayer islands naturally formed when growing structu
with growth interruption.10–12 Recently, interest has focuse
on them due to their large dipole moment,13 which may make
the observation of quantum entanglement in a semicondu
structure possible. In order to achieve this, a single quan
dot has to be coupled to an electromagnetic field such
the Rabi splitting is larger than the energy associated with
broadening mechanisms.7,14 The Rabi energy is proportiona
to the dipole momentD which in turn is proportional to the
square root of the area of an interface quantum dot. Exc
for very-high-Q whispering-gallery-mode cavities, the pho
ton decay rate exceeds the dipole dephasing rate so the l
the dipole moment the better for achieving strong coupli
Therefore, large IFQD’s seem ideally suited to achieve qu
tum entanglement.

The dipole moment is a function of the wave vector of t
light it couples to, i.e.,D5D(K ). The magnitudeK of the
light wave vector is determined by the transition energy. F
spherical quantum dots, the dependence on the wave ve
direction disappears and the dipole moment may thus
written as a simple numberD(K )5D. For quantum dots tha
are small compared to the wavelength of light in the medi
the direction dependence also disappears. Interface fluc
tion quantum dots, however, are highly nonspherical, hav
a thickness of a few nanometers in the growth direction a
a radius in the quantum well plane of several tens to h
dreds of nanometers, which is quite an appreciable frac
of the transition wavelength in the medium. TheK depen-
dence must thus not be neglected. However, it is still p
sible to use Eq.~2! for the calculation of the radiative life
time when using an average dipole momentDav. In
measurements of the dipole moment, the measured qua
©2002 The American Physical Society27-1
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is often the dipole moment for coupling to light traveling
the growth directionD(Kez).

15 In this paper, we numerically
calculate the form factorF(R0)5uDavu2/uD(Kez)u2 depend-
ing on the radius of the interface quantum dotR0. The non-
sphericity of interface quantum dots can then be correc
for by the simple factorF(R0) in lifetime calculations.

We have assumed the IFQD’s to have spherical symm
in the xy plane. In reality, IFQD’s can be elongated in th

@11̄0# direction.11 However, since relatively little is known
about the shape of IFQD’s we have not attempted a m
exact description.

II. CALCULATION OF THE RADIATIVE LIFETIME

Here, we derive the radiative lifetime of a quantum d
for an arbitrary dielectric constant of the mediume and di-
electric constant of the quantum doteQD as shown schemati
cally in Fig. 1. For simplicity, in this section we assume
sperical quantum dot with radiusR that is much smaller than
the wavelength of light in the quantum dot,R!lQD. We
start from the Hamiltonian of a two-level system interacti
with a quantized light field,1 thus restricting ourselves to th
lowest possible transition:

H5\(
s

Vsbs
†bs1\vcc

†c1\vvv†v

1\(
s

~gsbsc
†v1gs* bs

†v†c!. ~4!

Here, bs denotes photons in modes and c (c†) and
v (v†) are the annihilation~creation! operators for an elec
tron in the conduction~valence! band, respectively.gs is the
coupling constant between electrons and photons, ans
5$k,s% characterizes the photon modes by their wave ve
k and polarizations.

We write the state vectoruc(t)& as an expansion into th
excited stateuE$0%& and the ground stateuG$1s%&:

uc~ t !&5CE$0%~ t !e2 ivetuE$0%&

1(
s

CG$1s%~ t !e2 i (vh1Vs)tuG$1s%& ~5!

FIG. 1. Schematic picture of the quantum dot and surround
medium. The quantum dot and medium have dielectric constanteQD

ande, respectively.
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with expansion coefficientsCA$P% whereA is the QD state
andP denotes the photon states. As initial configuration
use

CE$0%~ t50!50, ~6!

where the quantum dot is in the excited stateuE$0%& and all
photon modes are empty. Thus, the interaction potential
tween electrons and photons@last term in Eq.~4!# only con-
nects this stateuE$0%& to statesuG$1s%& where the quantum
dot is in the ground state while modes is occupied by one
photon, which is why the state vector can be written in t
simple form of Eq.~5!.

Inserting Hamiltonian and state vector into the Sch¨-
dinger equationi\(]/]t)uc(t)&5Huc(t)& and projecting
onto each of the states, we derive

ĊE$0%~ t !52(
s

ugsu2E
t0

t

dt8e2 i (Vs2v)t8CE$0%~ t8!, ~7!

wherev5vc2vv . Let us consider a quantum dot in a d
electric medium with index of refractionn. The sum over the
wave numbers included into the sum over the photon mo
s may be converted into an integral as follows:

(
K

→ V

~2p!3E d3K5
Vn3

~2p!3cvac
3 E d3V

5
Vn3

~2p!3cvac
3 E

0

`

dV V2E
0

p

du sinuE
0

2p

df, ~8!

whereV is the quantization volume. Inserting this into E
~7!, we obtain

ĊE$0%~ t !52
Vn3

~2p!3cvac
3 E

0

`

dV V2E
0

p

du sinu

3E
0

2p

dfug~V,u!u2E
t0

t

dt8 e2 i (Vs2v)t8CE$0%~ t8!.

~9!

We solve the time integral by the method of coarse gra
ing, i.e., we assume thatCE$0%(t8) is slowly varying such
that CE$0%(t8)'CE$0%(t):

lim
t→`

E
t0

t

dt8e2 i (Vs2v)t8CE$0%~ t8!

5CE$0%~ t !E
t0

t

dt8e2 i (Vs2v)t8

5CE$0%~ t !H pd~V2v!2P F i

V2vG J . ~10!

Neglecting the termP@ i /(V2v)# which leads to a fre-
quency shift related to the Lamb shift, we obtain

g
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ĊE$0%~ t !52
Vn3pv2

~2p!3cvac
3

3E
0

p

du sinuE
0

2p

dfug~v,u!u2CE$0%~ t !.

~11!

Let us now evaluate the coupling constantg(v,u) enter-
ing Eq. ~11!:

ug~v,u!u25 (
s51

2 S Ev

\ D 2

z^E$0%uer•esuG$1s%& z2

5 (
s51

2 S Ev

\ D 2U Ed3r uc* ~r !jc* ~r !er•esuv~r !jv~r !U2

,

~12!

where the electric field per photonEv describes the strengt
of the electric field at the location of the coupling, i.e., t
quantum dot. The electron wave functions have been wri
as products of the lattice periodic Bloch functio
uv(K ,r ) @uc(K ,r )# in the valence@conduction# band and
the envelope wave functionj(r ).9 The weak wave vecto
dependence of the Bloch functions has been neglected.es is
the polarization vector of the light with polarizations.

The integral is then split into an integral over a lattice c
and a sum over all the lattice cells with the envelope fu
tions varying slowly over a lattice cell,

ug~v,u!u25 (
s51

2 S Ev

\ D 2U(
n51

N

jc* ~Rn!jv~Rn!

3E
V0

d3r uc* ~r !er•esuv~r !U2

. ~13!

Here,V0 denotes the volume of a unit cell. We introduce t
interband optical dipole matrix element

dcv5
1

V0
E

V0

d3r uc* ~r !er uv~r ! ~14!

and derive

ug~v,u!u25 (
s51

2 S Ev

\ D 2U E d3R jc* ~R!jv~R!dcv•esU2

.

~15!

With s labeling the two linear polarization directions, we g

ug~v,u!u25S Ev

\ D 2U E d3R jc* ~R!jv~R!dcvU2

3sin2u~cos2f1sin2f!

5S Ev

\ D 2U E d3R jc* ~R!jv~R!dcvU2

sin2u.

~16!

The coupling constant is thus independent of the a
muthal coordinatef. Although the dipole momentdcv is a
03532
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vector quantity, the direction dependence of the dot prod
dcv•es is lifted by the sum over all possible polarizations.

The electric field per photonEv is determined by the
eigenmodesfKs(r ) of the light. We consider a quantum do
with dielectric constanteQD5nQD

2 in a dielectric medium of
dielectric constante5n2. ForeQD5e, the eigenmodes would
be plane wavesfKs(r )5(es /AeV)e2 iK•r. For the case of
different dielectric constants in quantum dot and mediu
the eigenfunctions must fulfill the wave equation

e
VK

2

cvac
2

fKs~r !2“3@“3fKs~r !#

2~e2eQD!Q~R02r !
VK

2

cvac
2

fKs~0!50, ~17!

where the quantum dot has been taken as a sphere wit
dius R0 around the origin. Here, we have assumedQ(R0
2r )fKs(r )'Q(R02r )fKs(0), which is valid for R0!l.
Generalizing the derivation of Glauber and Lewenstein,5 we
obtain

fKs~0!5
es

AeV

3e

2e1eQD
. ~18!

Thus the electric field per photonEv entering Eq.~16! is

Ev5A \v

e0eV

3e

2e1eQD
. ~19!

We remark that nonsphericity of a semiconductor qu
tum dot does not make the dipole momentK dependent as
long as the quantum dot is small compared with the wa
length of light in the medium. Although for a nonspheric
quantum dot the wave equation, Eq.~17!, cannot be written
in this simple form, the eigenmodes are given by Eq.~18! for
any small QD. Thus, as a result of the fact that only t
optical dipole matrix elementdcv is a vector quantity and its
directional dependence is obliterated by the sum over
possible polarizationss, the dipole moment is wave vecto
dependent only for large quantum dots.

Inserting Eq.~16! into Eq. ~11! yields

ĊE$0%~ t !52
9e5/2

~2e1eQD!2

v3uDu2

6pe0\cvac
3

CE$0%~ t !, ~20!

where we have introduced the QD dipole moment

D5E d3R jc* ~R!jv~R!dcv . ~21!

We thus find

ĊE$0%~ t !52
G

2
CE$0%~ t !, ~22!

where
7-3
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G5
9e5/2

~2e1eQD!2

v3uDu2

3pe0\cvac
3

5
9e5/2

~2e1eQD!2
Gvac. ~23!

For the case of equal dielectric constants for quantum
and medium,eQD5e, we retrieve Eq.~2!. In contrast, for a
quantum dot with a dielectric constant of 1 (eQD51) we
obtain Eq.~3!. We also point out that were a quantum d
placed into vacuum, its radiative decay rate would be

G5
9

~21eQD!2
Gvac ~24!

due to its dielectric constante.
In a real~finite! semiconductor structure, the QD lifetim

may change due to etalon effects. The magnitude of
change is calculated by comparing the eigenmodes of
structure at the QD location to a plane wave eigenfunct
with an absolute value of 1/AV at the QD location whereV is
the quantization volume. Depending on whether the norm
the eigenmodes is greater or smaller than 1/AV at the QD
location spontaneous emission may be enhanced or
pressed. The eigenmodes of any semiconductor structure
be calculated in a transfer matrix calculation.

III. LIFETIME OF ASPHERIC QUANTUM DOTS

In this section, we calculate the lifetime of interface flu
tuation quantum dots. These generally have a dielectric c
stant very similar to the semiconductor medium arou
them, such that we can safely assumeeQD5e. The radiative
lifetime is then given by Eq.~2!. However, we can no longe
uphold the approximations made in Sec. II, namely spher
symmetry and a QD dimension which is much smaller th
the wavelength of light in the medium. An interface quantu
dot is highly aspherical, having a thickness of a few nano
eters in the growth direction and a radius of several ten
hundreds of nanometers in the quantum well plane.

Omitting the assumptionR!l, the eigenmodes are plan
wavesfKs(r )5(es /AeV)e2 iK•r for a homogeneous dielec
tric constant in medium and quantum dot. Thus, the elec
field per photon becomes

Ev5A \v

e0eV
. ~25!

Taking the light wave vector into account, we rewrite E
~12! as

ug~v,u!u25 (
s51

2 S Ev

\ D 2

z^E$0%uer•ese2 iK•ruG$1s%& z2.

~26!

This leads to a dipole moment

D~K !5E d3r jc* ~r !jv~r !e2 iK•rdcv ~27!

and a radiative broadening
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G5
nv3

3pe0\cvac
3

1

4pK0
2E d3KuD~K !u2d~K2K0!, ~28!

whereK05nv/cvac is determined by the transition energy.
order to derive a correction factor accounting for the no
equivalence between growth and in-plane direction, we n
to calculate theK -dependent dipole moment in Eq.~27!. We
assume a localized basis consisting of wave functionsf(r i)
in the in-plane (xy) direction and the confinement function
of an infinitely high quantum well in the growth~z! direction
with barriers atz56Lz/2. For the quantum well ground
state, we get

j~r !5f~r i!zz~z! ~29!

where

zz~z!5A 2

Lz
cos

pz

Lz
. ~30!

Thus,

D~K !5E d2r ifc* ~r i!fv~r i!e
2 iK i•r i

3sinxS 1

x
1

x

p22x2D dcv , ~31!

wherex5KzLz/2.
For the wave function in the in-plane directionf(r i) we

compare results obtained using two different trial functio
one being a step function

f~r i!5
1

ApR0
2
Q~R02r i! ~32!

for a quantum dot with radiusR0, the other being a Gaussia

f~r i!5A2

p
e2 r i

2/R0
2
. ~33!

We define a form factor

F~R0!5

E d3KuD~K !u2d~K2K0!

4pK0
2uD~K0ez!u2

, ~34!

whereez is the unit vector in the growth direction. Briefly
this form factor is the ratio between the dipole moment a
eraged over all directions and the dipole moment for c
pling to light propagating in the growth direction. Using th
factor, we can rewrite the lifetime of an interface quantu
dot as

G5
nv3uDu2F~R0!

3pe0\cvac
3

, ~35!

where D5D(K0ez) is the dipole moment for coupling to
light propagating in the growth direction which is usual
referred to asthedipole moment of an IFQD~e.g., in normal
7-4
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incidence absorption measurements15 or normal-incidence
coupling to an IFQD in a microcavity!.

Figure 2 shows the form factor for the two in-plane tr
functions (e513.71,Lz54 nm). For small IFQD’s, the ef-
fects of nonsphericity are negligible, yielding a form fact
F(0)51 as expected. For larger radii, the form factor d
creases strongly. We also observe that the results for the
sets of trial functions deviate little from each other, indic
ing that the result is insensitive to the choice of trial functio
For a typical dot size of 50 nm,11,12 we find a form factor of
about 0.9. The lifetime is thus reduced to 90% of its value
a spherical QD with the same dipole momentD(K0ez). Since
Lz is much smaller than the wavelength of light, the resu
depend very little on its choice.

The dipole moment of a large quantum dot depen
strongly on the inclusion of the Coulomb interaction whi
has not been taken into account in the one-particle trial w
functions discussed so far. In order to estimate its effects
consider a two-dimensional Coulomb potential. We also
sume that the relative in-plane motion remain unaffected
the quantum dot confinement potential. This approximat
is valid only when the quantum dot radius is large compa
with the 2D exciton Bohr radiusa0. We write the electron-
hole wave function as

C~re ,rh!5
1

ApR0
2
Q~R2R0!F1s~r !zz~ze!zz~zh!,

~36!

taking into account only 1s states and assuming a step fun
tion for the center of mass motion.R and r are the in-plane
center of mass and relative motion coordinates, respectiv

R5
me

me1mh
re1

mh

me1mh
rh , ~37!

r5re2rh ~38!

FIG. 2. Form factor for an interface quantum dot using a s
function ~solid line! and a Gaussian~dashed line! as eigenfunctions
in the growth direction as a function of the QD radius. We obse
that the results for both sets of trial functions deviate little fro
each other, indicating that the result is not sensitive to the cho
For a typical QD size of 50 nm the radiative lifetime is reduced
about 10% by the form factor.
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with electron~hole! massme (mh). Since the wave function
is no longer separable in electron and hole wave functio
the dipole moment is16

D~K !5dcvE d3R C~R,R!e2 iK•R

5dcvE d3r eE d3r hC~re ,rh!e2 iK•red~re2rh!

5
dcvF1s~r50!

ApR0
2 E d2Re2 i (K•R)Q~R2R0!

3E dz uzz~z!u2 e2 iK zz. ~39!

Inserting the wave function, Eq.~36!, into Eq. ~39!, we
derive for the form factor the same expression as for
single particle case when using a step function, Eq.~32!. We
thus conclude that the Coulomb interaction has little or
effect on the form factor. An elongation of the IFQD’s i

@11̄0# direction11 could be accounted for by choosing ellip
tical wave functions in thexy plane and would result in an
average form factor whose value is somewhere in betw
the values for the two axes. However, since relatively little
known about the shape of IFQD’s we have not attempte
more exact description.

IV. CONCLUSION

We have derived a formula for the calculation of the r
diative lifetime of a quantum dot for arbitrary dielectric co
stants of quantum doteQD and surrounding mediume,

G5
9e5/2

~2e1eQD!2
Gvac. ~40!

For the case of semiconductor quantum dots, we can in g
eral assumeeQD5e and thus the formula reduces to the we
known equation

G5Ae Gvac. ~41!

As for interface quantum dots, the dot is neither spheri
nor is its size in general small compared with the wavelen
of light in the semiconductor medium. This introduces
form factorF(R0) into Eq.~41! that we have calculated as
function of the quantum dot size. The form factor relates
dipole moment measured in IFQD’s coupling to light prop
gating in the growth direction to their total radiative lifetim
Due to their nonsphericity, we derive a reduction in lifetim
of about 10% in a typical IFQD with a 50 nm diameter.
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