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Spin effects and transport in quantum dots with overlapping resonances
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The role of spin is investigated in the transport through a quantum dot with two overlapping resonances@one
having a width larger than the level separation and the other very narrow, cf. Silvestrov and Imry, Phys. Rev.
Lett. 85, 2565~2000!#. For a series of consecutive charging resonances, one electron from the leads populates
one and the same broad level in the dot. Moreover, there is the tendency to occupy the same level also by the
second electron within the same resonance. This second electron is taken from the narrow levels in the dot. The
narrow levels are populated~and broad level is depopulated! via sharp rearrangements of the electronic
configuration in the Coulomb blockade valleys. Possible experimental manifestations of this scenario are
considered. Among these there are sharp features in the valleys and in the mixed-valence regime and an
unusual Kondo effect.

DOI: 10.1103/PhysRevB.65.035309 PACS number~s!: 73.23.Hk, 73.21.2b, 72.15.Qm, 73.21.La
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I. INTRODUCTION

In this paper, we consider the transmission through a m
tilevel quantum dot1 having only one broad level wel
coupled to the leads. Such a model has been suggest
Ref. 2 in order to provide an explanation for the behavior
the transmission phase through a quantum dot observe
the experiment~Ref. 3!. Within that model, electrons ar
transferred from the leads to the broad level in the quan
dot within the charging peaks, and are then transferred to
‘‘stored’’ in the narrow levels via sharp transitions in b
tween peaks. Thus, the charging~or conductance! peaks are
very similar to each other, in the behaviors of both the c
ductance and the transmission phase. In the present pape
treat the effects associated with the spin degeneracy of
levels for such quantum dots~QD’s!.

Many of the sharp rearrangements of the electronic c
figuration in the QD, which we will consider, take place d
to spin or are sufficiently modified compared to the spinl
case to make the discussion of spin rather interesting.
strong coupling of one level to the leads, leads now to
tendency to have this ‘‘valence’’ level either doubly occupi
or completely empty. However, the total number of electro
in the dot may change only by one at any charging re
nance. In particular, the resolution of this formal contrad
tion leads to prediction of singular behavior of the condu
tance just at the top of charging resonance.

The peculiar temperature~bias! dependence of the Kond
effect,4–6 which takes place in the transport through t
quantum dot with nonzero spin, may facilitate the expe
mental verification of our predictions. Moreover, in the e
periments ~see, e.g., Refs. 7–9! designed to observe th
Kondo effect, in order to measure the conductance in
Coulomb blockade valley the dot is strongly coupled to
leads. Thus, it may naturally happen that the widths of so
accidentally close levels will exceed the interlevel ene
difference. However, the new effects that we consider in
paper either take place in the mixed-valence regime,
0163-1829/2001/65~3!/035309~7!/$20.00 65 0353
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should be seen already at the temperature sufficiently hig
than the Kondo temperature.

In general, we consider the situation when the transp
through the quantum dot has well-defined resonance st
ture with pronounced peaks and Coulomb blockade valle
However, the coupling to the leads of the single broad le
is already strong enough to change the usual formation of
many-electron ground state of the dot via the consecu
occupation of single particle levels. The energetics of suc
system is described in the following section. In Sec. III, w
consider the conductance of such a quantum dot in the l
of vanishing width of all narrow ‘‘spectator’’ levels. In Sec
IV, we investigate the smearing of the sharp features of
conductance predicted in Sec. III due to the finite tempe
ture or width of narrow level. Following the experiment
tendency for miniaturization of the QD’s, we mainly con
sider only a two-level dot~with one narrow level and one
having the width exceeding the interlevel energy spacin!.
However, in Sec. V, we consider the effect of spin for t
transport in the quantum dot having many narrow and o
broad level withG@D ~with G being the width of the broad
level andD the interlevel spacing!. Discussion and conclu
sions are given in Sec. VI.

II. THE GROUND STATE ENERGY

To model the quantum dot, we use the tunneling Ham
tonian in the constant interaction~U! approximation

H5(
i

« iai
1ai1U(

i , j
ai

1aiaj
1aj1(

k
«L~k!bk

L1bk
L

1(
k, j

@ t j
Laj

1bk
L1H.c.#1L↔R. ~1!

Here,a andbL(R) are the annihilation operators for the ele
trons in the dot and in the left~right! lead, respectively. We
will use «(k)5k2/2m2EF and will not introduce anyk de-
pendence of the tunneling matrix elementst j . All summa-
©2001 The American Physical Society09-1
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tions in Eq.~1! include also the summation over spin. On
one level«1 is well coupled to the leads, having the width

G[G152p (
i 5L,R

ut1
i u2dni /d«.D. ~2!

We takeG!U. Since we have in mind the experiments wi
really very small quantum dots, let us consider only tw
levels in the dot~e.g., having accidentally close energie!.
The generalization to many narrow levels will be conside
in Sec. V. We assume that coupling between the dot and
gate electrode is pure capacitive. Then, the levels flow u
formly with the gate voltaged« i /dV5const and without a
loss of generality we may put

«152V, «252V1D. ~3!

There are four charging resonances of the conductanceG(V)
at V'0, U, 2U, and 3U ~see for the review on the Coulom
blockade in quantum dots, e.g., Ref. 10!.

Our first aim will be to find the ground state of the syste
~1! at different values ofV. In the limit G2→0, the number
of electrons on level 2 is a good quantum number. Let
denote byE(0), E(1), andE(2) the total energy of the lowes
state of the quantum dot interacting with the leads, with
narrow level populated by, respectively, 0, 1, and 2 electr
@more precisely,E( i ) is defined as the eigenenergy of th
Hamiltonian~1! minus the trivial energy of the electrons
the leads(«(k)]. The functionsE( i )(V) evolve smoothly
with the gate voltage and the~averaged! occupation number
of the broad level 1 also changes continuously. For exam
the branchE(0) corresponds to an empty level 1 atV,0,
singly occupied at 0,V,U and doubly occupied atU,V.
For t2

L,R50 the functionsE( i ) may cross at some values ofV,
which, in particular, may lead to a sharp change of grou
state.

With the use of perturbation theory int1
L,R , it is easy to

find E( i ) far from the charging peaks. Below the first res
nance~at V!2G) the true ground state is evidentlyE(0).
However, already here the virtual jumps of the electro
from the wire to level 1 give rise to the correction

E(0)52 (
k,kF

utL,Ru2

«~k!2«1
5

2G

p
lnS 4EF

«1
D , ~4!

E(1)'«2 , E(2)'2«21U.

The overall factor 2 inE(0) accounts for the spin. It is clea
that E(0) in this region lies significantly belowE(1) and
E(2) (E(0) is the true ground state!. The factor of 4 in the
argument of the logarithm, is specific to the dispersion of
conduction electrons we took. It does not appear in
physical results.

When the~increasing! voltage crosses the regionuVu;G,
the dot is charged by the first electron. However, this elect
may stay in the dot on the level 1~described byE(0)) or on
the level 2 (E(1)). Depending on what level is occupied, th
perturbation theory gives in this range ofV
03530
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E(0)5«12
G

2p H lnS 4EF

u«1u D1 lnS 4EF

«11U D J , ~5!

E(1)5«22
G

p
lnS 4EF

«11U D , E(2)'2«21U.

The first logarithm inE(0) accounts for the virtual jumps o
an electron from the level 1 in the dot to the wire. The oth
logarithms correspond to virtually adding the second elect
to the dot~having«11U instead of«1 in the denominator!.
The two levelsE(0) andE(1) cross at a gate voltage given by2

V5VI5
U

exp$22pD/G%11
. ~6!

This result is valid for both signs ofD. For G@uDu, Eq. ~6!
reduces to«1'2U/2. At V5VI the electron in the dot
jumps from the broad level to the narrow one.2 We will de-
scribe the consequences of such a ‘‘jump’’ for the transm
sion below.

In the second valley,U,V,2U the dot is charged al-
ready by two electrons, which may populate the two dou
degenerate levels in the dot in different ways. Thus,

E(0)52«11U2
G

p
lnS 4EF

u«11Uu D , ~7!

E(1)5«11«21U2
G

2p H lnS 4EF

u«11Uu D1 lnS 4EF

«112U D J ,

E(2)52«21U2
G

p
lnS 4EF

«112U D .

First of all, we see that just after the charging peak, aV
.U the true ground state isE(0). This is in contrast with the
situation atV,U, where the ground state wasE(1) ~5!. Thus,
we may conclude, that within the resonance not only is o
electron gradually transmitted from the wire to the level 1
the dot, but also a second electron is taken from the nar
level 2 to the broad one 1~see Fig. 1!. In the limit G2→0 this
second ‘‘transfer’’ is abrupt and takes place at someV5WI

'U ~we remind the reader that we consider only the grou

FIG. 1. Schematic drawing of the averaged occupation num
^n↑1n↓& for the broad level 1~solid! and narrow level 2~dashed!.
The gate voltageV is measured in units of the charging energyU.
The charging resonances are atV/U'0,1,2,3.
9-2
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SPIN EFFECTS AND TRANSPORT IN QUANTUM DOTS . . . PHYSICAL REVIEW B65 035309
state energy in this section and, therefore,T[0). This pre-
diction of the possibility to have sharp features within t
charging resonance is probably the main result of this pa

All three energies~7! cross at the same value of ga
voltage@c.f., ~6!#

VII 5U1
U

exp$22pD/G%11
~8!

and the true ground state becomesE(2). Now already two
electrons jump together from the broad level to the narr
one.

At V.VII ~8! the occupation of the quantum dot procee
in a fashion that is almost symmetric under particle-hole
placement. At the third peak the third electron is added to
dot. Were the branchE(2) the stable one, this would hav
been the uncoupled electron at the level 1. However,E(2)

and E(1) cross at the top of the third peak~at V5WII 5WI

1U) and the ground state for the first half of last valley h
a single unpaired electron at the narrow level. Finally, at

VIII 52U1
U

exp$22pD/G%11
~9!

E(2) andE(1) cross and the broad level became singly oc
pied again. The fourth peak (V'3U) completes the charging
of two levels in the quantum dot by four electrons.

To summarize the discussion of this section, we sh
schematically in Fig. 1 the averaged occupation number
our two levelŝ n1↑1n1↓& and^n2↑1n2↓&. The four charging
resonances correspond toV/U'0, 1, 2, and 3. One may se
on the figure many abrupt changes in the population of b
broad and narrow levels. Unfortunately, the averaged oc
pation number of the given level is not measured directly
the typical experiments, with the quantum dots. In order
make the connection with possible experiments, we cons
in the following sections the transport properties of the qu
tum dot described by the Hamiltonian Eq.~1!.

III. CONDUCTANCE, LEADING ORDER

The zero-bias conductanceG of our two-level quantum
dot is shown schematically in Fig. 2. In the limit of ‘‘invis
ible’’ level 2 (G2→0), we may introduce three conduc
tancesG(0,1,2) corresponding to empty, singly and doub
occupied narrow level~corresponding to the three ‘‘ground
state’’ energiesE(0,1,2) of the previous section!. The role of
electrons at the level 2 reduces in this case to simply rais
the current-transmitting level 1 via the Coulomb repulsio
Thus,

G(0)~V!5G(1)~V1U !5G(2)~V12U !. ~10!

We have shown schematically the functionG(0) on the same
Fig. 2 ~slightly offset vertically!. In the limit G2!G1 the
curve for two-level dot is obtained simply by cutting an
horizontally shifting the parts of the curve for single-lev
dot, in agreement with Eq.~10!, as shown in the figure. Thus
the relations Eq.~10! allow one to describe the singular b
havior of the conductance even without the explicit calcu
tion of G(0). This result is particularly useful at low temper
03530
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tures close to the charging resonances and in the Ko
valleys, where simple analytical formulas are not availab

Simple analytical expressions for the conductance may
found by means of perturbation theory only far from t
resonances. In particular, below the first resonance (V,0)
and above the second (V.U) one has forG(0)

G(0)52GQ

GLGR

«2
and G(0)52GQ

GLGR

~«1U !2
. ~11!

Here, GQ5e2/h. Because of Eq.~11! being valid only far
from the resonance, there is no need to distinguish betw
«1 and «2. The first formula here accounts for the virtu
jump of the electron~with any spin orientation! from the left
lead first to the dot and then to the right lead. ForV.U, first
one of the two electrons jumps from the dot to the right le
then another electron from the left lead fills in its place in t
quantum dot.

In the valley 0,V,U one electron stays at the level 1
the dot. Let it have, e.g., a spin up↑. ~The total current is
evidently the ‘‘average’’ of two equal currents for the dot u
↑ and the dot down↓.! We calculate the current via th
transmission of electrons from the left to the right lea
There are two contributions to the spin-conserving curre
either an electron with spin down↓ goes from the left lead to
the dot and then to the right lead~energy denominator«
1U), or the ↑ electron from the quantum dot goes to th
right lead ~energy denominator«) and then a↑ electron
jumps to the dot from the left lead. Theprobabilitiesof these
two processes should be added. Then, there are two spin
processes, whose total current should be added to the
conserving one above: either a↓ electron goes from the lef
lead to the dot@energy denominator2(«1U)# and then the
↑ electron goes to the right lead, or the↑ electron goes to the
right lead first~energy denominator«) and then the↓ elec-
tron goes from the left lead to the dot. The amplitudes
these two last contributions, which simply accounts for t
two different intermediate states, has to be added. Thus,
total conductance is given by

FIG. 2. The gate-voltage dependence~schematic! of the conduc-
tance G. The upper curve showsG(0) in the case of only one
~broad! level in the quantum dot~vertically offset for clarity!. The
lower curve depicts the conductance given by differentG(n) in vari-
ous regimes. Sharp features at two peaks and three valleys are
9-3
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G(0)5GQGLGRF S 1

«
2

1

«1U D 2

1
1

«2
1

1

~«1U !2G . ~12!

The quantum dot in the regime described by Eq.~12! con-
tains one electron on the broad level 1. Effective antifer
magnetic interaction of this electron with the electrons in
lead conduction bands, leads to a strong enhancemen
conductance at low temperature. This is the Kondo effec
quantum dots.4–6 With the use of Schrieffer-Wolf transfor
mation, one easily maps the Anderson impurity mo
Hamiltonian @Eq. ~1! with only one level# onto the Kondo
Hamiltonian~see, e.g., Ref. 11!. Far from the resonances th
Kondo corrections to Eq.~12! are of the relative orde
; ln(T21)G/U, whereT is a ~small! temperature. AtT'TK
5(UG/2)1/2exp@p«d(«d1U)/2GU# the renormalized antifer
romagnetic coupling diverges and the conductance rea
the unitarity limit G'GQ . Explicit calculation ofG in this
regime may be done only by means of numerical renorm
ization group. Still even in this extreme case Eq.~10! allows
for qualitative description of singular behavior ofG.

Two kinds of sharp features are seen in Fig. 2. First, th
are a cusp and a jump at the peaksWI , where the curveG(1)

is replaced byG(0) andWII , whereG(2) is replaced byG(1).
Accurate analytical description ofG(V) in this mixed-
valence regime is possible only atT@G. ~Although at such a
high temperature the singularity becomes smeared out,
the next section.! The jump vanishes forD!G, but the pro-
nounced cusp survives even forD50.

Besides that, there are three jumps in the valleys.
values of the conductance atV5VI60 (VIII 70) are ~as-
sumingD!G)

G'48GQ

GLGR

U2
and G'16GQ

GLGR

U2
. ~13!

The contribution from the spin-flip processes forV,VI is
twice that from the elastic processes. Therefore, the con
tance drops nearV5VI by a factor of 3. AtV5VII the two
electrons jump from the broad to narrow level. The disco
tinuity at VII , which follows from the small difference in th
probability of the electronlike and holelike processes, v
ishes forD!G ~restoration of particle-hole symmetry atD
50).

In this paper, we consider mainly the zero-bias effec
The finite bias conductanceGb may also be found easily
assuming that the same model Eq.~1! describes the quantum
dot at finite bias~see, however,12 for a discussion of self-
consistent screening, strictly valid for small bias only!. In the
limit G12,G250, the differential conductanceGb acquires a
cusp at the bias voltageVb coinciding with the energy dif-
ference between the lowest and first excited state for
corresponding valley. This singularity should be seen as
lines inside the Coulomb blockade diamond relatively clo
to the zero-bias diagonal (Vb!U) crossing correspondingly
at the gate voltageV5VI ,VII ,VIII . Namely, this is Vb
56uE(0)2E(1)u for the first valley,Vb56uE(2)2E(1)u for
the third valley, andVb56uE(0)2E(1)u56uE(2)2E(1)u for
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the second valley. The explicit calculation ofGb(Vb) may be
done with the use of standard master equation technique

IV. RESOLVING SHARP FEATURES

So far, we have considered only the case of an ‘‘invisib
second level in the dott2

L,R[0. However, even in this limit
the sharp features shown on Fig. 2 should be smoothed
to the finite temperature. We show this smoothening for
cusp1 jump atV5WI on the left panel of Fig. 3. The corre
sponding analytic expression

G5
G(1)exp$2E(1)/T%1G(0)exp$2E(0)/T%

exp$2E(1)/T%1exp$2E(0)/T%
~14!

accounts simply for a different probability of thermal pop
lations of the statesE(1) andE(0) of the dot. The same for-
mula describes the jump of the conductance in the middle
the left (V'VI) valley. Here, the smoothed conductance h
a form of a Fermi function$exp@(E(0)2E(1))/T#11%21.

The crossings of energy levelsE( i ) both at the peaks (Wi)
and in the valleys (Vi) become ‘‘avoided’’ due to the finite
coupling t2

L,R of the level 2 to the leads. This effect dete
mines the smearing of the conductance at very low temp
tures. Unfortunately, we do not have a simple way to ta
into account the coupling of the narrow level in the mixe
valence regime atV'WI ,II . On the other hand, taking th
second coupling into account at the valley, turns out to
relatively easy.13 Consider, for example, the first crossing
V'VI ~6!. First, in a way analogous to Eq.~2! one may
introduce the width of the second levelG2 and the interlevel
width G12 ~defined asG1252p( i 5L,Rt1

i t2
i* dni /d«). In the

first valley, there is~almost! always one electron in the do
either on the level 1, or on the level 2. Hence, we m
introduce the effective single-particle Hamiltonian, accou

FIG. 3. The fine structure of the sharp features ofG(V) seen in
Fig. 3. Left: The smearing of the second peak due to the fin
temperatureT at few values ofT. Dashed lines are the conductanc
for the dot staying in the state~0! or ~1!. Middle: G(V) at the
middle of the first valleyV'VI , without the Kondo effect~solid!
and with Kondo effect included for two different temperatures@Eq.
~18!#. The numbers 1,3/4,3 show the relative magnitude of the c
rent to the left and right of the transition and at the minimum
V5VI1g/A3. Right: Conductance at the middle of the second v
ley V'VII for the pure model Eq.~3! ~solid! and with the exchange
interaction Eq.~21! added~dashed!. The scales are the same fo
middle and right figures.
9-4
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ing also for the coupling to the leads. A simple calculation
the second order of perturbation theory gives for the e
ments of this Hamiltonian,

H1152
G1

2p
lnS «1U

u«u D , H225D2
G2

2p
lnS «1U

u«u D ,

~15!

H1252
G12

2p
lnS «1U

u«u D5H21* .

In particular, hereH11 and H22 are nothing more than th
renormalized single-particle energies«1 and«2 given by the
first two formulas in Eq.~5! ~with G2 included! minus a
proper constant~see also Refs. 19,20!. Moreover, the small
G2 may be omitted in the Eq.~15!. Only G12 is important,
since it is responsible for the mixing. We expect also t
G12;AG1G2@G2. Close to V5VI , the logarithms in Eq.
~15! may be expanded in series. Now by simple diagonali
tion of the 232 matrix one finds the closest level splittin
dE and the widthg ~in gate voltage! of the avoided crossing

dE52D
G12

G
; g5

G12D

G2
pU;

D

G
AG2

G1
U. ~16!

The temperature is taken to be small compared todE.
In the leading-order coupling to the leads of the two lev

found after diagonalization of the 232 Hamiltonian~15! is
simply determined by the amplitude of the broad level 1
the corresponding wave function (dV5V2VI)

t6
L,R5t1

L,RA1

2 S 16
dV

AdV21g2D . ~17!

The calculation of the conductance with thisV-dependent
coupling analogous to the derivation of Eq.~12! gives

G52G0

GLGR

~U/2!2 F12
dV

AdV21g2
1

dV2

dV21g2

1S 12
dV

AdV21g2D 3
3G

4pU
lnS U

T D G . ~18!

This result is illustrated in the central part of Fig. 2. The fi
line in Eq. ~18! is the result of the calculation in the leadin
order of perturbation theory, interpolating between the lim
ing values~13! at dV!2g and dV@g. In addition to the
smearing of the step atV'VI the conductance Eq.~18! ac-
quires a narrow minimum atdV5g/A3.

The last term in Eq.~18! is the ~first! Kondo correction.
The Kondo effect is present to the left of the drop ofG
~where the electron stays on the broad level! and vanishes
~became proportional to;G2

3) to the right of that drop. Cal-
culation of this low-temperature Kondo correction
straightforward. The factor (12dV/AdV21g2)3 accounts
for the renormalized coupling of spin to the leads~17!. As
03530
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usually this presence of the Kondo correction only atV
,VI may be easily checked by applying the small b
Vb.T.

The same effective Hamiltonian~15! describes the elec
tronic configuration of the quantum dot in the second vall
In this case, one simply has always two electrons with op
site spins occupying one of the two levels in the dot. T
coupling of these two levels to the leads changes rapidly
V2VII ;g. Since we always have a zero total spin,S50,
here, there is no Kondo effect. The transmission amplitu
includes two competing contributions, electronlike and ho
like, which lead to the vanishing of the conductance atV
5VII ~see Fig. 3, right frame!

G;
~V2VII !2

~V2VII !21g2
. ~19!

This formula is valid forD!G, but G has a node forD
;G as well.

In the constant interaction model, Eq.~1!, the transition at
the second valley is a triple crossingE(0)5E(1)5E(2). This
degeneracy is easily lifted if, e.g., in addition, to the dire
Coulomb interaction~1! one introduces the exchange inte
action of the usual form

Hexchange5J (
s,s8

a1,s
1 a2,sa2,s8

1 a1,s8 . ~20!

As long asJ is sufficiently small (J!G) the level crossing at
V5VII will be splitted into two close crossings with a spin
ground state of the quantum dot in between. The cond
tance in the three parts of the valley is now proportional

2

~«1U !2
; ~21!

1

~«1U !2
1

1

~«12U !2
1

1

2 S 1

«1U
2

1

«12U D 2

;

2

~«12U !2
.

The derivation of this result essentially repeats the proof
Eqs.~11!,~12!. The second expression in~21! corresponds to
the transmission through the dot having total spinS51. Al-
though only one of the two electrons constituting thisS51 is
visible ~i.e., well coupled to the leads! the spin conservation
within transition leads to a factor 1/2 in the spin-flip cont
bution. Since in Eq.~21!, we describe the states with diffe
ent spin, the crossing of the eigenstates is not avoided
the transitions are abrupt~at low T). Due to Eq.~21! the
current is enhanced around the transition in the second
ley. The Kondo effect~at S51) leads to a further increase o
the transmission. The interesting physics of the Kondo eff
at the triplet-singlet transition was investigated recently b
experimentally15 and theoretically.16–18
9-5
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V. TRANSMISSION THROUGH
A MULTILEVEL DOT „GšD…

It is generally believed that the Coulomb blockade in m
tilevel quantum dot may be seen only if the connection of
dot to the leads is weak enough. Namely, one expects
parameters of the dot to be chosen to satisfy the inequa

G!D,U, ~22!

whereG, D, andU are the typical width, the level spacin
and the charging energy. Just in order to fulfill this conditi
and still to have a largerG, very small quantum dots with
largeD were prepared for the Kondo experiments.7–9 How-
ever, in the case when only one level in the dot has
anomalously large width, the inequality~22! may be weak-
ened to2

D!G,U, ~23!

whereG is the width of single anomalously broad level. St
G i!D for all other levels. Such rare dominant levels a
common for integrable dots and for dots with the mix
~partly regular and partly chaotic! classical dynamics.Thus,
instead of miniaturization of the quantum dot, one may try
look for the new physics by making the dot more clean
symmetric.21

The model~23! with spinless electrons was used in Ref
in order to explain the transmission phase behavior obse
in the double-slit experiment of Ref. 3. Here, we briefly d
cuss the modification of the same scenario due to the sp

In general forG@D, charging of the quantum dot for
large series of resonances resembles that for adding o
second and third electron into the two-level dot considere
the previous sections. In the case of largeG the electron
taken to the dot from the leads within the charging resona
always occupies the broad level~even if there are empty
narrow levels with smaller single-particle energies!. This ef-
fect may be understood by introducing the;G logarithmic
correction to the single-particle energies in the dot aris
due to the coupling to the leads@see Eq.~15!#. Due to the
spin degeneracy of the single-particle levels a larger gai
energy is achieved, if after the charging resonance the b
level becomes occupied by two electrons. Since only
external electron may be added to the dot at the resona
the second electron is taken to the broad level from the
row one ~of course, if there is such electron with clos
enough energy!. This fast rearrangement of the electron
configuration within the resonance leads to a new struc
of the conductance peaks~see two central peaks on Fig. 2!.
In the middle of the valley both two electrons from the bro
level jumps to the narrow level~again if there is such an
empty close level!. However, this double jump correspond
to the triple level crossing of the states of the quantum
~7! and may be easily splitted into two jumps by going b
yond the constant interaction model~Fig. 3, right!.

In Ref. 2 it was found that forG@D the transmission
phasef through the quantum dot increases byp through
03530
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e
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e
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t
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each charging peak and sharply decreases byp in
(2G/pD)ln(U/G) valleys. In the limit of vanishing width of
all the narrow levels the functionf(V) may be constructed
simply from the functionf (0)(V) describing the charging o
single level. The procedure is similar to the way we fou
the conductanceG from the single-level functionG(0)(V) on
Fig. 2 with the use of Eq.~10!. In the spinless case, th
function f (0)(V) is described by the Breit-Wigner formula
For the spinS51/2 ~the Anderson impurity model! the
f (0)(V) may be taken, e.g., from Ref. 14. Compared to
case of Ref. 2, the main new effect taking place due to s
is the sharp depopulation of the narrow level at the charg
resonance. The phase at the peak now first increa
smoothly fromf'0 to the value somewhat belowp/2, then
jumps up by some fraction ofp and then continues the
smooth increase towardsf'p. The finite temperature tend
to smear this three stage increase of phase. The plateau
f'p/2 at the Kondo valley predicted in Ref. 14 does n
appear in the model~23!. The crude behavior of the trans
mission phase remains the same as in Refs. 2~and consistent
with the experiment3!. The phase increases byp at the reso-
nance~although now the increase contains both smooth
abrupt component! and drops down abruptly close to th
middle of the valley.

Thus, taking into account spin does not lead to a seri
revision of the explanation2 of the transmission phase beha
ior of the experiment of Ref. 3. The sequence of resonan
accompanied by the2p jumps in the valley is even double
because of doubling of single-particle density of states du
spin. Other attempts to explain the same experiment ma
found in Ref. 22. Although, none of the mechanisms p
sented so far is capable to explain by itself the obser
phase behavior.

VI. CONCLUSIONS

In this paper, we have considered the effects of the s
on transport through a quantum dot having one level tha
strongly coupled to the leads. If this coupling is stro
enough, the coupled level will play an essential role for t
energetics of the dot and it can change the distribution
electrons over the discrete single-particle levels. We int
duced the model for multilevel quantum dot~1!,~2! with one
level having its Breit-Wigner width larger than the lev
spacingG.D. For spinless electrons~andG@D) the analo-
gous model was investigated in our recent paper.2 Here, we
were mostly interested in the effect of spin for electron
transport. Following the experimental tendency towards m
iaturization of the quantum dots, we also mainly conside
the sequence of charging resonances corresponding to o
pation of only two levels by four electrons.

The main effect taking place due to spin in our model
the fast change of electronic configuration close to the top
the charging resonance~in the mixed valence!. Within this
transition one of the electrons in the dot jumps from t
narrow level to the well-coupled one.23 The population of
narrow levels in our model takes place in the Coulom
blockade valleys and also leads to the peculiar behavio
the conductance~Fig. 3!.
9-6



o

t

-

le
nce

tion
i-
gy.

un-

SPIN EFFECTS AND TRANSPORT IN QUANTUM DOTS . . . PHYSICAL REVIEW B65 035309
Finally, due to a tendency to a double occupation~depopu-
lation! of well-coupled levels, we predict the suppression
the usual~odd valleyS51/2) Kondo effect forG.D. On the
other hand, the possibility to observe the sharp features in
mixed-valence regime, as well asS51 Kondo effect and
singlet-triplet transitions in the valley, should partially com
pensate this drawback.
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