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A mapping is developed between the quantum Hall plateau transition and two-dimensional self-interacting
lattice polymers. This mapping is exact in the classical percolation limit of the plateau transition, and diffusive
behavior at the critical energy is shown to be related to the critical exponents of a class of chiral polymers at
the 6 point. The exact critical exponents of the chiral polymer model on the honeycomb lattice are found,
verifying that this model is in the same universality class as a previously solved model of polymers on the
Manhattan lattice. The mapping is obtained by averaging analytically over the local random potentials in a
previously studied lattice model for the classical plateau transition. This average generates a weight on chiral
polymers associated with the classical localization length expoweét We discuss the differences between
the classical and quantum transitions in the context of polymer models and use numerical results on higher-
moment scaling laws at the quantum transition to constrain possible polymer descriptions. Some properties of
the polymer models are verified by transfer matrix and Monte Carlo studies.
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I. INTRODUCTION transition and the physics of self-interacting two-dimensional
lattice polymers. Many statistical properties are known for
The quantum Hall plateau transition is of great interestsuch polymers because they in turn can be mapped to simple
because it links Anderson localization and the quantum Halinagnetic systems with known critical propertéd.The fi-
effect (QHE), two of the fundamental phenomena of con- nal section discusses how quantum effects might be incorpo-
densed matter physics. Noninteracting electrons moving imated in a polymer description. However, numerically deter-
two dimensions in a random potential form energy eigen-mined scaling laws for higher moments in the quantum case,
states which do not extend to infinity but are exponentiallywhich result from strong interference of quantum paths,
localized in finite regions of the plane. The situation changeseem to rule out a simple polymer mapping.
drastically in a magnetic field: There are then extended states The properties of a lattice version of the classical plateau
at discrete critical energieE. separated by the cyclotron transition are mapped after disorder averaging onto polymers
energyfw.. These extended states are remnants of the Larat the  point, which is a tricritical point separating the col-
dau bands at zero disorder. At other energies the electrdapsed and extended phases of polymers with an attractive
eigenstates are localized, and the localization length near short-ranged self-interaction. The polymer model for the
critical energy scales according to classical transition gives a useful complementary picture to
the percolation description, in which some facts, such as dif-
c |7 fusion at the critical energy, are more easily recovered. A
§(E)=§0( E_E ) : (1.1 side benefit is that some new results on polymers come out
¢ naturally from the mapping to the plateau transition.
An understanding of this behavior, which determines the pas- The polymer mapping provides an alternate connection
sage from one quantum Hall plateau to another, is essentiflietween the classical limit of the plateau transition éotals-
to the explanation of the integer QHEDespite progress in sica) percolatiorf''?as ring polymers at the point are
finding an effective theory for this transitidr, the scaling equivalent to percolation hull$:**One result of this paper is
law (1.1) and other universal properties of the transition havethat directly mapping the plateau transition to polymers with-
still not been obtained analytically. out the intermediate step of percolation gives many more
The clearest picture for the scalifit.1) remains the con- relations. The exponent, which governs the typical size of
nection between hulls of percolation clusters and classicak polymer(for a polymer ofN units, (R?)~N?"¢, where()
electron trajectories in a strong magnetic field and randontlenote averages over the ensemble of polymersd x and
potential* Classical percolation was recently shown to de-y, which determine essentially the numberu"N?~1 of
scribe correctly some aspects of tilspin quantum Hall polymers of lengthN, can all be connected to the plateau
transition® but the ordinary quantum Hall transition is transition.
known from numerical studi€ not to lie in the percolation The localization length exponent in Ed..1) is v=4/3 for
universality class. Considerable effort has been devoted tolassical percolation, while numerical studié$or the quan-
how quantum effects modify the percolation picture, andtum case predict=2.35+0.05 for the lowest Landau level
while there is now an understanding via numerics of the(LLL ), consistent with experiments.In this paperv will be
essential ingredients required to model the transitiana-  studied via the subdiffusive propagation of electrons in a
lytic progress on generalizing percolation has been quitenagnetic field and quenched random potential, which is now
limited 2 This paper develops a mapping between the plateateviewed. Recently it was shown by Sinova, Meden, and
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Girvin'® that the localization length exponentappears in
the energy-integrated correlation  functionII(x,t)
={(p(0,0)p(x,t))), wherep is the LLL-projected electron
density operator and()) denote disorder averagingThe
discussion in this paper is generally restricted to the LLL,
althoughv is believed to be universalThe Fourier trans-
form was verified numerically to have the scaling form

o ImII(g,0)=w'?f(q% w) (1.2

in the limit g, «—0 with g?<w. This scaling form can be
understood as resulting from a simple form 1d{q, ) in
this limit,

1

(g, @)~ —=—5-,
w—iD(w)q FIG. 1. Sample self-avoiding walk fros to B of 20 steps, with

with the frequency-dependent diffusion constabi o) 19 neighboring hexagons. The dotted edges are self-contacts: the
ol edge betweeW; andV, is an antiparallel self-contact, while that

The result(1.2) depends on the assumption that only atbetweenvl _and V2_is a parallel self-contact. This pa_lth is not al-
isolated critical energiek, are there extended states. It can '©Wed classically since the walk passégboth on the right and on
be understood from the following argument, which is some—the left.
what different from that in Ref. 16. Electrons at enefgy
with localization lengthé(E) move diffusively over short electron propagation is nearly classical except near a saddle
times but cross over to localized behavior onde point of the potential, where quantum tunneling becomes sig-
=¢(E)?/D,. The diffusion constand, should have a finite nificant.
limit as E—E_; since the conductivityr,, is finite at the The first part of this paper shows that a discrete-time lat-
transition, and can be approximated by this limiting value intice version of Eq(1.6), known to have the corre¢perco-
the scaling limit. So for a particle at the origintat 0 (where |ative) critical scaling for the classical limit, maps after dis-

(1.3

it projects onto eigenstates of different energies order averaging onto a model of two-dimensional interacting
- polymers on the same lattice. Although the lattice is useful to
o &(E)= Dot g . iy .
(xz(t)>=f dEp§2(E)+f dE pDot derive the mapping, the critical properties related by the
&E)= Dot Ec mapping are universal and hence lattice independent. In the

(1.4 remainder of the Introduction, we outline the lattice model of
Eqg. (1.6) and some basic properties of interacting polymers,
then summarize the main results.
In order to establish the connection between polymers and
£ v motion along level surfaces, we use a lattice model due to
_0) v (1.5 Gurarie and Zeé&? The particle is taken to have constant
\/D_o velocity along level surfaces: A nonzero mean velocity at

which corresponds to Eq1.2) with f(x)ex for x<1. criticality was found numerically in Refs. 11 and 12 for simi-

Our starting point to obtain the anomalous diffusiar). lar models, and fixing the particle velocity does not alter the

. . X . . critical scaling. Particles move on the edges of the honey-
is a single electron moving either classically or quantum me-

chanically in thex-y plane in a random potential(x) and comb lattice of Fig. 1, where each hexagonal face has an
y y planéin a ra P . associated random potential energy. Except in Sec. I, the
strong constant magnetic fielBz. The classical coarse-

: . . energyE of a particle starting at verteX will be taken to be
grained equation of motion the average of the three neighboring potentijsV,,Vs,
BX = — i d;V(X) (1.6 in;tead of an independent q_uantity as in Ref. 12. The ,en(.argy
E is constant along the particle trajectory. The particle’s first
can also be obtainétiby taking a certain limit of the Liou- step is chosen so that the potential to the left is larger than
villian formalism. The lowest-Landau-level projected elec-the particle energ¥, which is larger than the potential to the
tron density operator in this limit becomes a classical distriright. In successive steps, there is always a choice between
bution function of particles moving according to E3d.6).  two directions aside from the direction by which the particle
Of course, the equation of motigii.6) can also be derived entered, and only one of these choices will satisfy the con-
simply from classical physics: A single electron moving in dition that the energy to the leftight) be greatefless than
constant electric and magnetic fields wigk<B has average E. For each realization of the random potentials and each
velocity (E/B)c along the directiorEXB. Since the direc- starting point, there is a unique locus of the particle after
tion of motion is always perpendicular 8V, the particle steps. The connection to the classical localization exponent
moves along a constant-energy contour of the potential. The=3 is that the mean-square displacement aNesteps is
picture underlying network modélef the transition is that found to show subdiffusive behavior:

where p is the density of states ned,. This results in
subdiffusive behavior:

D= —(x*(1))=pE:Dy

2le
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((R?(n)))~Ni-12v, (1.7 In Sec. Il we demonstrate that the trajectories of the lat-
tice model at the critical energl are related to a chiral
in accord with Eq(1.5. The value +1/2v~0.62 was found polymer model, whose exact critical properties are found.
by numerical simulatiolf of Eq. (1.6), compared to the pre- The property of diffusion at the critical energy is shown to
dicted value3=0.625. follow from the critical exponentsy=2 and v,=3% of the
Now the connection between motion along level surfacepolymer problem. Then in Sec. Ill we modify the model so
(1.6) and percolation hulls is quickly reviewed. Consider thethat the energy of a trajectory is a function of initial position
level-surface motion on the hexagonal lattice with white-rather than an independent quantity, and study the localiza-
noise potentialgi.e., the disorder correlation lengtty is  tion exponent. An inequality is derived which connecigo
less than the lattice spacinghen all potentials on the left of the exponents of the associated polymer problem. Finally, in
a trajectory are higher than the trajectory eneflgwhich is  Sec. IV we discuss modifications resulting from quantum-
higher than all potentials on the right. Now let all faces with mechanical effects, which are most clearly apparent in scal-
energy higher thait be “colored,” while those with energy ing laws for higher moments of the particle distribution func-
lower thanE remain uncolored. The trajectory is then a hull tion.
separating colored faces from uncolored ones, and the prop-
erties of such hulls are a standard problem in percolation. || TRAJECTORIES AT THE CRITICAL ENERGY
Although the choice of lattice affects such properties as the
density of colored faces at the critical point, critical expo- At the critical energy, the particle motion is diffusive:
nents are universdindependent of the lattigeSimilarly a  ((R?(N)))~N for long timesN. This section shows that the
lattice model is used here to establish the mapping to a polyconditional probabilityP(a,b,N,Eo) for the particle moves
mer problem, but the universal polymer propertieand v from ato b afterN steps, given that the particle energy is the
discussed below do not depend on this lattice. critical energyEg, and is related to critical properties of
The usual way to study this type of lattice modéfis by  self-interacting polymers at thé point. Then in the follow-
summing numerically over paths at fixed particle energying section the same mapping will be shown to give infor-
Here the path will be held fixed for the integration over ran-mation about trajectories at other energies, and hence about
dom potentials: The goal is to assign a weight to each patl. We note in passing that in the percolation picture, diffu-
according to the fraction of the space of random potentialsion at the critical energy is somewhat surprising. A particle
for which that path is the particle trajectory. For conve-on the hull of the infinite cluster moves superdiffusively,
nience, the potentials are assumed to be uniformly distribwhile a particle on a finite cluster has only bounded motion:
uted on[—1, 1], so the critical energy iE,=0. After N steps  The diffusive motion obtained after averaging over initial
the particle has either moved along a self-avoiding walkposition essentially interpolates between these two limits.
(SAW) of length N, or else has looped and begun retracing For a pathP,g at the critical energyg,, the probability
previous steps. There is a constraint of “no parallel self-thatP,g is the trajectory in a random potential realization is
contacts” (the terminology is explained in Sec.) Ibn al-  proportional to 2.2 Hr=2"H HereH, (Hg) is the num-
lowed SAW'’s resulting from the restriction that no hexagonber of hexagons passed on the lgfght) by the path, and
can be passed on both the left and ri¢fig. 1). H=H_+Hg: the probability 2" comes about because each
The probabilityP(a,b,N) to reachb from a after N steps  hexagon with potentialV; is as likely to have/,>E, as to
can be written as a sum over an ensemble of paths includingaveV;<E,. Then the ensemblé€l.8) becomes
both closed self-avoiding polygorfSAP’s) as well as open

SAW's with no parallel self-contacts. WritingV' for the P(a.b.N,Eg) = 2 ON modl,q
weight of closed or open curiethe disorder-averaged prob- (a,b,N.Eq  sAPsthrougha andb, 2"
ability to be atb after N steps starting frona is (H is the Lz{%ngtggégﬁt\gb
number of different hexagons visited by the SAW or SAP amse
1
. + ‘ 2_H (2.1
PlabN<_ > SN mod,gW! Aomaioh
SAP'si througha andb, ndself-contacts

| =length of SAP,
g=steps froma to b . . .
The connection to self-interacting polymers appears be-

+ 2 Wi 1.9 cause the number of hexagons visited by an SAW is related
SAW's [oflengthN ' to the number of self-contacts of the SAW. A self-contact is a
from a to b point where the SAW is within one edge of intersecting it-

no|self-contacts . L . .
self. Counting hexagons in lieu of self-contacts gives rise to

In the above each SAP should actually be summed twicethe famous ¢ model*** of a two-dimensional self-
once with distanceg and once with distance—q. The § interacting polymer. The number of hexagons visited by an
function in the SAW part ensures that the particle locationSAW of lengthN is H=N+1—N,—2N3, whereN, andN;
after N steps ish. Sections Il and Il carry out the disorder are the numbers of hexagons visited twice and thrice by the
average to calculate the weight¥'' exactly for cases of SAW. Checking possible paths on the lattice shows that
interest. The weights turn out to have a natural interpretatior=N-+1—1—1', wherel is the number of self-contacts and
in terms of self-interacting polymers. I” the number of a certain type of next-nearest-neighbor con-
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tacts. The effects of’ are not believed to alter the univer- means that the critical exponents for the chiral model can be
sality class of the modE**and will be ignored. The weight deduced from the known values for the nonchiral model.
2 H=2"N=1*1 thus corresponds to the grand-canonical en- The L-leg exponents, 1***are defined from the correla-
semble for polymers at chemical potentjakE —log2 and tion functions G, (a,b) of L mutually avoiding SAW'’s
with an attractive interaction energgU=—1In2 for each from a to b at criticality: G, (a,b)=|a—b| 2", The
self-contact. We call a self-contact parall@ntiparalle] if, natural generalization for the chiral case is that theelf-
once a direction is defined along the polymer, the two secavoiding walks have no parallel self-contacts. Then the com-
tions of polymer in contact have the sarfapposit¢ direc-  putation below of the transfer matrix at criticalitye & 1) on
tion. For a long polymer, almost all self-contacts are antiparfinite strips shows that the chiral expone&tsare identical
allel, as might be expected since parallel self-contacts are t the nonchiral exponenss, for twice as many connectors.
boundary effect, in the weak sense that a closed polymer haghe nonchiral valuesx, =(L?—1)/12 known from the
none. Coulomb-gas technigti®then determine all th, .

There are three phases of ti## model for a two- Now we connect the watermelon exponents to physical
dimensional self-interacting polymer. At high temperature,properties such ay and v,. First, the size exponent,
the statistical properties are those of the noninteracting SAWs (2—x,) ~! is unchanged by the chirality constraint be-
and the mean radius of gyrationRs- N At low tempera-  cause it takes the same value for ring polymers as for linear
ture, the polymer is in a collapsed phase W&k N2 There  polymers, and ring polymers are unaffected by the chirality
is a tricritical point, called the point, separating these two constraint. The exponeng is given by v,(d—2%,)=v,(d
behaviors, withR~N*”. The importance of thpoint for ~ —2x,)=2. Note that the ring exponent is** also & so the
the plateau transition is that the weight 2 corresponds two terms of Eq.(1.8) scale with the same power &, as
exactly to thed point on a honeycomb lattice. The chirality required for consistency.
constraint will be shown to change the scaling and give the The diffusion resul{(R?(N)))=N might seem almost co-
same universal properties as the solvable Manhattan laiticeincidental. However, it follows directly from the relationship
point. X1=X, between the chiral exponent with one leg and the

Now the diffusion at the critical energy can be obtainednonchiral exponent with two legs:
from Eqg. (1.8). Considering for the moment only the SAW
term in Eg.(1.8), the mean particle displacement affr 4—2x,
steps is vHevy—l=—5—

-1=1. (2.4
2

The “mysterious cancellation of exponent€’which yields
diffusion in the percolation picture is relatively simple in the
polymer picture, and does not depend on the specific value of
X5.
The resul, =x,, for chiral polymers is exactly the same
as for polymers a¥ on the Manhattan directed latti¢Eig.
(2.2 2), which by construction has no parallel self-contaéts.
Here we have introduced the standard po|ymer expongnts Hence we learn that the detailed structure of the Manhattan
andv,, defined through lattice is in some sense irrelevant: It is the short-ranged con-
straint of no parallel self-contacts which determines the uni-
1 N versality class. Another piece of information about polymers
, oA N5, follows from the beautiful result of Card§for the conduc-
SAWs offengthN tivity o,,=v3e?/4h at the critical energy. This fixes the lat-
s (REf2) tice diffusion constant through the Einstein 'relatféﬁ? and
SAW's of lengthN SA f[herefore predicts a value for the combination of prefactors
5 ) ~N?ve, (23  inEq.(2.2. _ o _
, The chiral polymer model discussed here is just one point
SAW's of lengthN . . .
of a two-parameter family of models with antiparallel self-
For ordinary polymergno chirality constraintat 6, u=1, contacts weighted by some real numkeand parallel self-
y=%, and v,=3%. The effect of the chirality constraint is contacts by some possibly different number Thenw=v
clearly to reducey, since some polymers are forbidden: In gives ordinary two-dimensional self-interacting polymers,
fact, we now show thay=$ with the chirality constrainfx ~ while v =0 gives the chiral polymer ensemble. One expects
and v, are unchanged so that((R*(N)))=N in Eqg. (2.2)  a “coiled” polymer phase forw=0 andv—=, different
and motion is diffusive at the critical energy. from the conventional collapsed polymer phase. The full
The critical properties of chiral polymers étare actually phase diagram of these models in the«) plane is a rich
related in a very simple way to those of ordinary polymers atubject; the corresponding problem defined in terms of par-
0. As shown at the end of this section, the transfer matrix forallel and antiparallel self-contacts, rather than hexagons, has
L chiral polymers on a cylinder of finite circumferendé  been investigated numerically on the square lafic8.A
hexagons has the same leading eigenvalue as the transf@nformal field theory approach suggests the possibility of
matrix of 2L nonchiral polymers on the same cylinder. This continuously varyingy between the chiral polymer and ordi-

<<R2<N)>>=§ P(a,b,N)(Xp—X,)?

R2
— SAWNMNN'y*lJrZVH_

= ’ 2H
SAW'’s of lengthN
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TABLE |. Results of transfer matrix calculations for one and
two chiral polymergidentical to results for two and four nonchiral
polymers, on cylinders of circumferenck hexagons. The largest
eigenvalue of the transfer matrix is relatedk{q, through Eq(2.6).

The convergence to the predicted valtigs % andX,= % is seen to

be quite rapid, The extrapolated values are obtained by using three
consecutive values of, to fix the constants ix,=c;+c,h™ %,

then takingc, as an estimate of,, .

h Kip=Xzn Xextrap Kon=Xap Xextrap

2 0.254 768

3 0.259 127 0.237 88

4 0.256 212 0.24859 1.52861 1.2814
5 0.254 221 0.24911 1.396 54 1.26398
6 0.253 007 1.34308 1.256 03
7 0.25224 1.31513

8 1.2984

® 3=0.25 2=1.25

FIG. 2. A directed walk on the Manhattan lattice. Note that all } ] ] )
allowed self-contacts on this lattice are antiparallel. over the different possible states of the vertical edges which

can link two configurations. Each entry is weighted by a
nary polymerd points?* We remark in passing that the lattice factor w for each hexagon passed on one sigdépr each
¢’ model defined here in terms of hexagon weightsz has  hexagon passed on both sides, antbr each edge. For the
a number of advantages for this problem: The critical pointcritical point of chiral polymersw=3, v=0, andu=1; set-
w=1 is known exactly, and the exact relation discussed beting v=w=3 gives the ordinary¢ point, while takingw
low between transfer matrices suggests that this model magv=1 and u=pu.=(2+v2) ! gives the critical point of
be solvable by vertex methods. noninteracting SAW's.

The remainder of this section establishes the connection Note that parallel self-contacts can only occur for one
X_=X,_ between the watermelon exponents of chiral poly-polymer in the cylindrical geometry when the polymer winds
mers on the hexagonal lattice and those of nonchiral polyaround the cylinder. As a result the surface critical expo-
mers, and can be skipped by nonspecialists. A powerfuhents, which follow from the transfer matrix on the strip
method to obtain properties of polymer models is by usingclosed boundary conditiopsather than on the cylindépe-
conformal invariance to analyze the results of finite-sizefiodic boundary conditions are unmodified from the non-
transfer matrix calculatior®?® Since there are reviews of chiral case. Upon conformal mapping from the cylinder back
the techniqué®?*some minor details will be omitted. to the plane, polymers which wrap around the cylinder be-

The goal will be to find the transfer matrix farpolymers ~ come polymers which wrap around the origin of the plane,
on a cylinder of circumferenck hexagons. The scaling di- and closed boundary conditions correspond to a branch cut
mensionsX, can be derived from the finite-size correlation which polymers cannot cross. The equivalence of surface
length &_p,, which is determined by the largest eigenvalueexponents to those of the nonchirpoint was previously

AL n of the transfer matrix: obtained for the Manhattan lattiée.
Table | gives the estimated scaling dimensig@psandX,
_ 1 from cylinders of various sizes. The first few can be done by
SLh=— N\ p° (2.9 hand, while the larger matrices are done by computer. The

_ ) . . leading eigenvalues are exactly the same as for those of
TheX_ are then estimated for successively larger cylindersice as many nonchiral polymers. This connection is in

using retrospect not too surprising, since the condition of no paral-
lel self-contacts for a polymer fror to B in the chiral case

~ | & iln)\ _ (2.6) is exactly the condition that another polymer can be added

L.h v3l2m  bh from A to B in the nonchiral case. The subleading eigenval-

, ues can differ, however, so there may not be a simple equiva-
The geometrical factor 8 comes from the hexagonal lat- |ence hetween states bfchiral polymers and 2 nonchiral

tice dimensions and is 1 for a square lattice. _ polymers. The critical properties of the nonchiral model fol-
The transfer matrix acts on “configurations” of horizontal |4y from Coulomb gas results for th@(n) model® so we
edges. A configuration consists of the state of all the horizong 56 ’

tal edges, plus information on which oppositely directed

edges are paire@riginated from the same logpplus infor- 5 )

mation on which hexagons between horizontal edges have X :L 1 % :4|- -1 2.7
been passed on the left or right. The entries in the matrix sum L= 12 0 12 - '
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The chiral exponentX are the same as those of th@oint SN modl.q
on the Manhattan lattic® There are Monte Carlo results for P(a,b,N)= > ARz
another hexagonal lattice model believed to lie in the Man- R
hattan universality class, the “smart kinetic growth SAW/,” q=steps froma to b
which are consistent with the above values. 1
+ o> S (3.2
SAW's oflengthN 2" H
IIl. THE CLASSICAL LOCALIZATION EXPONENT fromatob

nd|self-contacts

When the particle energi moves away from the critical , . .
energy, the trajectories become less extended and the melR 0 @ possible numerical constant. The typical number of

distance from the origin aftéd time steps is reduced. In this hei>/<2agonsH scales Iinearll% i to sufficient accuracy that
section, we take the lattice disorder average in order to ext can be replaced b)M™= (this is verified numerically by

pressP(a,b,N), the probability that afteN steps the particle Monte Carlo s'imulati_ons, and if false woulq require an un-
has moved froma to b, as a weighted sum over linear and expected multifractality at thé point). Summing over final

ring polymers. Simple properties of the weight function thenPositionsb to find the mean squared displacement then gives

yield an inequality connecting the localization expongmb
polymer exponents and v,,. ((R?(N)))=Nr—1t2vg=12 (3.3

As in the preceding section, we fix an open or closed
curve on the lattice and ask what fraction of potential real-Then from Eq.(1.7) we obtain an inequality connecting the
izations make this curve the correct trajectory. The particldocalization exponent for the plateau transition to polymer
energyE is also varied in order to find the energy-integratedexponentsv, and
diffusion constant, and hence The weight of a curve is
determined by the numbers of hexagons touched by the 1 3
curve to the left and right: The requirement for a path to be 1- —=y+2v,— =. (3.9
the correct trajectory is that all the hexagons to the right lie 2v 2
above the particle energy. The probability that a path is the
particle trajectory is a function of the number of different  For the chiral polymer model, the resulting prediction is
hexagons visited by the path. The requirement is that all the=1, which is satisfied by the actual value=3. The usual
hexagons to the immediate left have energies larger than theonchiral polymer exponents a would predict v=1 (cf.
particle energy, while those to the immediate right have enSec. I\), so again it is seen that the chirality constraint is
ergies smaller than the particle energy. Hig hexagons on  essential. The fact that the lower bound is not reached shows
the left must have higher energies than Hhg on the right,  that even in the limit of long paths, the number of hexagons

which is true for to the left and right of the path cannot be assumed equal in
calculating the weight3.1). At the critical energy(Sec. I),

H +Hg\ ! hexagons to the left and right contribute equally and this

( H, ) difference is irrelevant, but away from the critical energy the

difference affects the scaling.
of potentials. Furthermore, the particle energy must lie in the The exact value=1% is derived in the percolation pictute
window of width ~(H_+Hg) ~* between the lowest poten- from the equivalence of closed trajectories at enegjo
tial on the left and the highest potential on the right. So thePercolation hulls withp—p.<E—Eg, wherep, is the criti-

weight of an allowed pati® ,g is cal probability for percolation an&, is the critical energy.
Such percolation hult§ have average sizé~(p—pc) ~*°.
1 H IHg! We remark in passing that the valwe:3 can be understood
W(Ppp) in the polymer context from the fact the crossover exponent

of the tricritical 8 point is ¢=2 (this value was first obtained
using the connection to percolatidn then N~ ¢~ (p—p,)
and £~ (p—pe) 4= (p—p.)~¥°. The reasons for stressing
the inequality(3.4) here rather than the exact result are that
the inequality follows immediately from the classical path
H weight on polymers and can be used to gain information on
E) R higher momentgSec. I\).
2 The main result of this section is that the exact path
weight induced by averaging over disorder and particle en-
over particle energ¥ to obtain a beta function. ergy can be calculated for the classical lattice model. This
Now we can again connect the expressiar8) and the  weight yields the inequality3.4) connecting statistics of chi-
weight (3.1), to known properties of polymers. For fixétl  ral polymers to the critical exponentof the classical plateau
=H_+Hg, the weight is minimized iH_=Hg, and using transition. The focus of the next section will be whether a
Stirling’s approximation is thetW(H)~\2m/2"HY2 The  similar relationship to polymers exists for the quantum pla-
probability to get froma to b after N steps thus satisfies teau transition.

H o+ Hg| (H +Hgt 1)l
(HL+HR)( LHL R) ( L R )

(3.
The same result is obtained by integrating the probability

HL

(1+E
2
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IV. HIGHER MOMENTS AND THE QUANTUM self-intersections. The higher moments are more extended
TRANSITION than they would be for simple diffusive motiofrandom
walks).

The quantum Hall plateau transition shows several quali- A similar result holds for the classical case even when the

tative s_|m|lar|t|(_as with th_e semiclassical limit studied in th_e average is extended to include the particle energy. The in-
preceding sections of this paper. Both the quantum transition

and the semiclassical limit have power-law delocalization a{aquallty(3_.4) denyed in Sec. I bgtween polymer exponents
. . ] L at the chiral@ point and the scaling of the second moment

the critical energy and a finite critical conductivity. However, a(1)=1—1/2v from Eq. (4.1):

the quantum transition has proved much more difficult to q-1%-3

describe theoretically, and remains a major open problem. A 1 3 1

natural question is whether any generalization of the polymer 1-—=2vyty—5=53.
i i - 2v 2 2

mapping developed for the classical limit would serve as a

useful approach for the quantum case. The goal of this sed=or the classical transition with=%, the left-hand side i§

tion is to show that the diffusive behavior usually assumed tand the inequality is satisfied. Similarly for higher moments

exist up to the localization length in the quantum case would R?"(t))~ t ("

be inconsistent with almost any such generalization, and

present a nu_merlcal method and prellmlnqry r_esu_lts to \_/erlfy ag(N)=2np,+ y— E: 1 N 8(n—1) _ 45

this assumption. We focus on one generalization in particular 2 2 7

(to nonchiralpolymers atd, for reasons described belpyor

conciseness.

The scaling laws of moments of the particle distribution
function

(4.9

Hence for sufficiently larg@ the classical scaling exponents
ac(n) are larger than the quantum exponentén)=n
—1/2v, if the motion in the quantum case is indeed diffu-
sive.
(R2(t))~te(m (4.2) In the remainder of this section, we consider the question
of how quantum interference keeps the quantum case from
demonstrate an essential difference between the classiceéing related to a polymer ensemble in the same way as the
limit and the conventional picture of the quantum case. Irclassical case. One polymer ensemble in particular is attrac-
this section() indicates averaging over particle energy andtive for the quantum case because the ensemble is similar to
random potentials, whilg )¢ indicates averaging over ran- the classical one and the value J appears in this ensemble,
dom potentials at fixed particle ener@y If particle motion  put this connection predicts nondiffusive motion up to the
is essentially diffusive on short length scales in the quantuniocalization length. Monte Carlo numerics are used to test
case, then higher scaling laws beyamet 1 in Eq.(4.1) do  the assumption of diffusive motion in the quantum case; if
not contain additional information. As discussed in the pre-verified this assumption would rule out a simple connection
vious section, the mean squared displacem@Rt(t))  to polymers.
~t1712 contains the localization exponent This formula The approach of the previous section was to generate a
was obtained from the assumption t{#&@>(t))e increases positive weight on electron paths by averaging over disorder
linearly in time at each energy until the localization length iswith the electron path held constant. In lattice models for the
reachedR?~ ¢(E)?), then saturates. quantum transition, it should be possible to attribute a posi-
If the particle motion is truly diffusive up to the localiza- tive weight to each path on the lattice, and then these weights
tion length, ther{R?"(t) )~ t" until the localization length is may be connected to some polymer problem, presumably
reached, and different from the chiral ensemble discussed above for the
classical limit. The first statemertthat there is an assign-
(R2N(t))~t" 12, (42 ment of weights is somewhat trivial from a mathematical
with the localization length exponemt~2.35+0.05° So if point qf view:.There are many.paths on thgllattice betwgen
any pair of points, and hence given any positive probabilities

motion in the quantum case is diffusive up to the localization

length, there are no nontrivial exponents to be found info reach different points on the lattice affdrsteps, there is

higher moments of the particle displacement some assignment of positive path weights which results in

Higher moments in theclassical case show nontrivial the given probabilities. The difficult question is whether

scaling, and consequently highly extended trajectories ar@ere is an assignment of weights Wh'(?h IS physmally mean-
ngful and related to some local two-dimensional theory, as

much more common in the classical case than in the quad ) .

tum case, even though the localization length diverges mor' the cla_55|cal case. The next .par_agrap_hs d_efme g(_mea_l
rapidly neark, for the quantum case. For walks at the criti- necessarily pos_|t|\bepath weight, this we|ght IS positive in

cal energy, it follows from the results of Sec. Il that the absence of interference, and the leading interference con-

tribution to this path weight from “cooperons” vanishes,
(RE(1))g ~ 120" y=1_¢(8n-1)/7 (4.3 though _higher_ contribut_ions do not.
¢ For fixed disorder, different patha/,g from A to B con-
Hence, although the mean square displacement does incredgbute to the amplitude, and the probabilPyg to get from
linearly with time, higher moments have nontrivial power A to B includes both diagonal terni¥V},g|? and cross terms.
laws because the particle trajectories are not random wallidere and in the following we assume a discretized model for
but instead have “memory,” as required for the absence othe quantum case, similar to the lattice model introduced
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previously for the classical limit. We start by considering two semble describing the classical plateau transition. The lower
paths which do not cross: Then the disorder average geneound is realized if paths have asymptotically the same num-
ates a random phase which cancels the cross terms, leavipgr of hexagons to the left as to the right{~H,), which
only the(positive) diagonal terms. The remaining question is should be a better approximation for the less convoluted
what occurs for intersecting paths; this is known to be thelaaths in the quantum case. As seen below, however, this
case of interest for the quantum effects causing weak localnequality predicts scaling laws for higher moments which
Ization. _ _ . _ . appear to be ruled out numerically in the quantum case.
If the cross terms did vanish, then in the discretized modelygnce quantum interference seems to be relevant at the
wherely, is effectively zeroP,g would be a sum ovenot  guantum transition even beyond the level of changing path
necessarily self-avoidingpaths with some positive weight, weights.
the “quantum path weight(QPW). A real weight can be e note in passing that the desired property of diffusion
defined even if cross terms are present by adding to the diregf the critical energy does not have any simple interpretation
contribution of' each path half of all its dls'order—averagedas a statement about the polymer ensemble, since it is only
cross terms with other paths. The QPW picture can breakfier integrating over particle energy that the polymer
down if, for energies near the critical energy, the cross termgyeights may appear. This situation is familiar from the
become large enough to drive the weight negative for long joyvillian approach to the transitiolf;*! where the transi-
paths. However, the leading interference corrections vanisfion is mapped onto a different problem which contains the
upon disorder averaging, and a finite strength of interferencgyponenty but not the critical conductivity. Note that the
is required to drive the path weight negative, so it is seemprevious appearance of the vallim a semiclassical average
ingly possible that a positive QPW exists for the paths neapyer a single percolation trajectéfydoes not clearly relate
the critical energy which determine. This motivates the g g critical point, when the electron is delocalized over mul-
conjecture, tested in the remainder of this section, that thgp|e trajectories. Now we discuss how numerics can test
u_mversal large-length-scale properties of thg plateau transiyhether the appearance of this value in this polymer en-
tion may be related to those of some classical generalizegemple is just a numerical coincidence.
polymer modeli.e., a sum over paths with positive weights  There are numerically testable consequences which can
in similar fashion to the relationships found in Secs. Il andpe ysed to check whether nonchiral polymerg ate indeed
Il between the classical percolation limit and the chiral gjated to the guantum case. The polymer problem predicts
polymer model. _ . ~ various moments of the disorder- and energy-averaged dis-
The remaining step is to determine whether any univerpjacement: It was shown in the previous paragraph that the
sality class of classical polymers can reproduce the weightg,ean squared displaceme(®R2(N))~NY4 so thaty=1.
which follow fror_n dlsqrder_averagl_ng_ln the_quantum case. ltgimilar predictions follow for higher moments, such as
seems worthwhile to identify possibilities, since exact result RA(N))~ N4+ 732 N2714 or 4(2)=2 This can be com-

have been obtained for many two-dimensional polymer modpareq to the null hypothesis of diffusion up to the localiza-
els by Coulomb gas and CFT techniques. The QPW shoulgy, length, which predictéR4(N))~N*78

give nearly the classical weigtB.1) to paths which are clas-  \ye have performed Monte Carlo simulations with up to
sically allowed or include a small number of quantum tun-1g0g states in the lowest Landau level to track the evolution
neling events, but should not allow of orddF tunneling  of 5 |ocalized wave packet in a disordered potenttake
events for anN-step path since then the motion is Simply method is similar to that of Ref. 30The error bars are larger
diffusive even away from the critical energy. A speculativefq the fourth moment than for the second because finite-size
possibility for the quantum transition is the nonchiral pol_y- effects are more pronounced on the extended paths which
mer ensemble af. The expectation that quantum mechanicsyominate the fourth moment. but it appears thé?)=1.8
should allow some unfavorable stefiaut fewer than~N)  + 1 which if correct is sufficient to rule out(2)=27/14
matches the fact that a typical polymer in the nonchiral en-1 92 with larger system sizes, it should be straightforward
semble has some parallel self-contacts, but fewer than qf, confirm the assumption of diffusive motion up to the lo-
orderN. A simple argument that the number of parallel self- c5jization length. Then a polymer description would have to
contacts is subextensive<(N) is that a ring polymer has no “havev=1/2 (either dense polymers or random walKsut no
parallel self-contacts, so that parallel self-contacts are iRppropriate ensemble is obvious. It seems more likely that

some sense a boundary propert7y. ) strong quantum interference prevents a physically meaning-
A surprise is that the value=3 (which has attracted at- | assignment of path weights in the quantum case.
tention as the simplest rational consistent with numeags To summarize, this section discussed differences between

pears from exponents of the nonchiral ensemble. The infe classical and quantum transitions which become apparent
equality (3.4) connecting the localization exponemt to iy higher moments of the particle distribution function. Nu-

nonchiral polymer exponents predicts, singe?, merics seem to support the picture of diffusion up to the
localization length and rule out the simplest polymer model

1— i> Yoy §: 1_1 4.6 for the quantum case. In closing, we mention briefly connec-
2, YTEVeT T 1 ' tions between the polymer models discussed in this paper

and conformal field theoryCFT) approaches to the transi-
or v=%. Hence the valug appears in the critical properties tion. The low-temperaturé®(n) phase also appears in a
of a polymer ensemble closely related to the polymer enlargeN expansion of the disorder-averaged Liouvillian
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theory, which is similar to a partially supersymmetric com-

plex O(N) model, withN—1 the physical limit! Recent
work®233on the critical point of Dirac fermions in a nonabe-
lian random vector potential foundea= —2 dense polymer

problem hidden in the critical theory for several different

types of disorder. Since upon adding additional disofckeT-
dom mass and chemical potentitile Abelian version of this
critical point flows to the plateau transition fixed poifithe

PHYSICAL REVIEW B 65 035307

appearance of polymer subalgebras may be generic to this
class of random critical points.
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