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Connecting polymers to the quantum Hall plateau transition
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A mapping is developed between the quantum Hall plateau transition and two-dimensional self-interacting
lattice polymers. This mapping is exact in the classical percolation limit of the plateau transition, and diffusive
behavior at the critical energy is shown to be related to the critical exponents of a class of chiral polymers at
the u point. The exact critical exponents of the chiral polymer model on the honeycomb lattice are found,
verifying that this model is in the same universality class as a previously solved model of polymers on the
Manhattan lattice. The mapping is obtained by averaging analytically over the local random potentials in a
previously studied lattice model for the classical plateau transition. This average generates a weight on chiral
polymers associated with the classical localization length exponentn5

4
3. We discuss the differences between

the classical and quantum transitions in the context of polymer models and use numerical results on higher-
moment scaling laws at the quantum transition to constrain possible polymer descriptions. Some properties of
the polymer models are verified by transfer matrix and Monte Carlo studies.

DOI: 10.1103/PhysRevB.65.035307 PACS number~s!: 73.43.Nq, 72.15.Rn, 61.41.1e
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I. INTRODUCTION

The quantum Hall plateau transition is of great inter
because it links Anderson localization and the quantum H
effect ~QHE!, two of the fundamental phenomena of co
densed matter physics. Noninteracting electrons moving
two dimensions in a random potential form energy eig
states which do not extend to infinity but are exponentia
localized in finite regions of the plane. The situation chan
drastically in a magnetic field: There are then extended st
at discrete critical energiesEc separated by the cyclotro
energy\vc . These extended states are remnants of the L
dau bands at zero disorder. At other energies the elec
eigenstates are localized, and the localization length ne
critical energy scales according to

j~E!5j0S Ec

E2Ec
D n

. ~1.1!

An understanding of this behavior, which determines the p
sage from one quantum Hall plateau to another, is esse
to the explanation of the integer QHE.1 Despite progress in
finding an effective theory for this transition,2,3 the scaling
law ~1.1! and other universal properties of the transition ha
still not been obtained analytically.

The clearest picture for the scaling~1.1! remains the con-
nection between hulls of percolation clusters and class
electron trajectories in a strong magnetic field and rand
potential.4 Classical percolation was recently shown to d
scribe correctly some aspects of thespin quantum Hall
transition,5 but the ordinary quantum Hall transition
known from numerical studies6,7 not to lie in the percolation
universality class. Considerable effort has been devote
how quantum effects modify the percolation picture, a
while there is now an understanding via numerics of
essential ingredients required to model the transition,7 ana-
lytic progress on generalizing percolation has been q
limited.8 This paper develops a mapping between the plat
0163-1829/2001/65~3!/035307~9!/$20.00 65 0353
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transition and the physics of self-interacting two-dimensio
lattice polymers. Many statistical properties are known
such polymers because they in turn can be mapped to sim
magnetic systems with known critical properties.9,10 The fi-
nal section discusses how quantum effects might be inco
rated in a polymer description. However, numerically det
mined scaling laws for higher moments in the quantum ca
which result from strong interference of quantum pat
seem to rule out a simple polymer mapping.

The properties of a lattice version of the classical plate
transition are mapped after disorder averaging onto polym
at theu point, which is a tricritical point separating the co
lapsed and extended phases of polymers with an attrac
short-ranged self-interaction. The polymer model for t
classical transition gives a useful complementary picture
the percolation description, in which some facts, such as
fusion at the critical energy, are more easily recovered
side benefit is that some new results on polymers come
naturally from the mapping to the plateau transition.

The polymer mapping provides an alternate connect
between the classical limit of the plateau transition and~clas-
sical! percolation,4,11,12 as ring polymers at theu point are
equivalent to percolation hulls.13,14One result of this paper is
that directly mapping the plateau transition to polymers wi
out the intermediate step of percolation gives many m
relations. The exponentnu which governs the typical size o
a polymer~for a polymer ofN units, ^R2&;N2nu, where^ &
denote averages over the ensemble of polymers!, andm and
g, which determine essentially the number;mNNg21 of
polymers of lengthN, can all be connected to the platea
transition.

The localization length exponent in Eq.~1.1! is n54/3 for
classical percolation, while numerical studies6,7 for the quan-
tum case predictn52.3560.05 for the lowest Landau leve
~LLL !, consistent with experiments.15 In this papern will be
studied via the subdiffusive propagation of electrons in
magnetic field and quenched random potential, which is n
reviewed. Recently it was shown by Sinova, Meden, a
©2001 The American Physical Society07-1
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JOEL E. MOORE PHYSICAL REVIEW B 65 035307
Girvin16 that the localization length exponentn appears in
the energy-integrated correlation functionP(x,t)
[^^r̄(0,0)r̄(x,t)&&, where r̄ is the LLL-projected electron
density operator and̂^ && denote disorder averaging.~The
discussion in this paper is generally restricted to the LL
althoughn is believed to be universal.! The Fourier trans-
form was verified numerically to have the scaling form

v Im P~q,v!5v1/2n f ~q2/v! ~1.2!

in the limit q, v→0 with q2!v. This scaling form can be
understood as resulting from a simple form forP(q,v) in
this limit,

P~q,v!;
1

v2 iD ~v!q2 , ~1.3!

with the frequency-dependent diffusion constantD(v)
}v1/2n.

The result~1.2! depends on the assumption that only
isolated critical energiesEc are there extended states. It c
be understood from the following argument, which is som
what different from that in Ref. 16. Electrons at energyE
with localization lengthj(E) move diffusively over short
times but cross over to localized behavior oncet
>j(E)2/D0 . The diffusion constantD0 should have a finite
limit as E→Ec since the conductivitysxx is finite at the
transition, and can be approximated by this limiting value
the scaling limit. So for a particle at the origin att50 ~where
it projects onto eigenstates of different energies!,

^x2~ t !&5E
j~E!5AD0t

`

dE rj2~E!1E
Ec

j~E!5AD0t
dE rD0t,

~1.4!

where r is the density of states nearEc . This results in
subdiffusive behavior:

D̃[
d

dt
^x2~ t !&5rEcD0S j0

AD0
D 1/n

t21/2n, ~1.5!

which corresponds to Eq.~1.2! with f (x)}x for x!1.
Our starting point to obtain the anomalous diffusion~1.2!,

is a single electron moving either classically or quantum m
chanically in thex-y plane in a random potentialV(x) and
strong constant magnetic fieldBẑ. The classical coarse
grained equation of motion

Bẋi52e i j ] jV~x! ~1.6!

can also be obtained12 by taking a certain limit of the Liou-
villian formalism. The lowest-Landau-level projected ele
tron density operator in this limit becomes a classical dis
bution function of particles moving according to Eq.~1.6!.
Of course, the equation of motion~1.6! can also be derived
simply from classical physics: A single electron moving
constant electric and magnetic fields withE,B has average
velocity (E/B)c along the directionE3B. Since the direc-
tion of motion is always perpendicular to“V, the particle
moves along a constant-energy contour of the potential.
picture underlying network models7 of the transition is that
03530
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electron propagation is nearly classical except near a sa
point of the potential, where quantum tunneling becomes
nificant.

The first part of this paper shows that a discrete-time
tice version of Eq.~1.6!, known to have the correct~perco-
lative! critical scaling for the classical limit, maps after di
order averaging onto a model of two-dimensional interact
polymers on the same lattice. Although the lattice is usefu
derive the mapping, the critical properties related by
mapping are universal and hence lattice independent. In
remainder of the Introduction, we outline the lattice model
Eq. ~1.6! and some basic properties of interacting polyme
then summarize the main results.

In order to establish the connection between polymers
motion along level surfaces, we use a lattice model due
Gurarie and Zee.12 The particle is taken to have consta
velocity along level surfaces: A nonzero mean velocity
criticality was found numerically in Refs. 11 and 12 for sim
lar models, and fixing the particle velocity does not alter t
critical scaling. Particles move on the edges of the hon
comb lattice of Fig. 1, where each hexagonal face has
associated random potential energy. Except in Sec. II,
energyE of a particle starting at vertexA will be taken to be
the average of the three neighboring potentialsV1 ,V2 ,V3 ,
instead of an independent quantity as in Ref. 12. The ene
E is constant along the particle trajectory. The particle’s fi
step is chosen so that the potential to the left is larger t
the particle energyE, which is larger than the potential to th
right. In successive steps, there is always a choice betw
two directions aside from the direction by which the partic
entered, and only one of these choices will satisfy the c
dition that the energy to the left~right! be greater~less! than
E. For each realization of the random potentials and e
starting point, there is a unique locus of the particle afteN
steps. The connection to the classical localization expon
n54

3 is that the mean-square displacement afterN steps is
found to show subdiffusive behavior:

FIG. 1. Sample self-avoiding walk fromA to B of 20 steps, with
19 neighboring hexagons. The dotted edges are self-contacts
edge betweenV3 and V4 is an antiparallel self-contact, while tha
betweenV1 and V2 is a parallel self-contact. This path is not a
lowed classically since the walk passesV2 both on the right and on
the left.
7-2
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CONNECTING POLYMERS TO THE QUANTUM HALL . . . PHYSICAL REVIEW B 65 035307
^^R2~n!&&;N121/2n, ~1.7!

in accord with Eq.~1.5!. The value 121/2n'0.62 was found
by numerical simulation12 of Eq. ~1.6!, compared to the pre
dicted value5

850.625.
Now the connection between motion along level surfa

~1.6! and percolation hulls is quickly reviewed. Consider t
level-surface motion on the hexagonal lattice with whi
noise potentials~i.e., the disorder correlation lengthlD is
less than the lattice spacing!. Then all potentials on the left o
a trajectory are higher than the trajectory energyE, which is
higher than all potentials on the right. Now let all faces w
energy higher thanE be ‘‘colored,’’ while those with energy
lower thanE remain uncolored. The trajectory is then a h
separating colored faces from uncolored ones, and the p
erties of such hulls are a standard problem in percolat
Although the choice of lattice affects such properties as
density of colored faces at the critical point, critical exp
nents are universal~independent of the lattice!. Similarly a
lattice model is used here to establish the mapping to a p
mer problem, but the universal polymer propertiesg and n
discussed below do not depend on this lattice.

The usual way to study this type of lattice model11,12 is by
summing numerically over paths at fixed particle ener
Here the path will be held fixed for the integration over ra
dom potentials: The goal is to assign a weight to each p
according to the fraction of the space of random potent
for which that path is the particle trajectory. For conv
nience, the potentials are assumed to be uniformly dist
uted on@21, 1#, so the critical energy isE050. After N steps
the particle has either moved along a self-avoiding w
~SAW! of length N, or else has looped and begun retraci
previous steps. There is a constraint of ‘‘no parallel se
contacts’’ ~the terminology is explained in Sec. II! on al-
lowed SAW’s resulting from the restriction that no hexag
can be passed on both the left and right~Fig. 1!.

The probabilityP(a,b,N) to reachb from a afterN steps
can be written as a sum over an ensemble of paths inclu
both closed self-avoiding polygons~SAP’s! as well as open
SAW’s with no parallel self-contacts. WritingWi for the
weight of closed or open curvei, the disorder-averaged prob
ability to be atb after N steps starting froma is ~H is the
number of different hexagons visited by the SAW or SAP!

P~a,b,N!} (
SAP’s i througha andb,

l 5 length of SAP,
q5steps froma to b

dN mod l ,qWi

1 (
SAW’s j of lengthN

from a to b
noiself-contacts

Wj . ~1.8!

In the above each SAP should actually be summed tw
once with distanceq and once with distancel 2q. The d
function in the SAW part ensures that the particle locat
after N steps isb. Sections II and III carry out the disorde
average to calculate the weightsWi , j exactly for cases of
interest. The weights turn out to have a natural interpreta
in terms of self-interacting polymers.
03530
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In Sec. II we demonstrate that the trajectories of the
tice model at the critical energyE are related to a chira
polymer model, whose exact critical properties are fou
The property of diffusion at the critical energy is shown
follow from the critical exponentsg56

7 and nu5 4
7 of the

polymer problem. Then in Sec. III we modify the model
that the energy of a trajectory is a function of initial positio
rather than an independent quantity, and study the local
tion exponentn. An inequality is derived which connectsn to
the exponents of the associated polymer problem. Finally
Sec. IV we discuss modifications resulting from quantu
mechanical effects, which are most clearly apparent in s
ing laws for higher moments of the particle distribution fun
tion.

II. TRAJECTORIES AT THE CRITICAL ENERGY

At the critical energy, the particle motion is diffusive
^^R2(N)&&;N for long timesN. This section shows that th
conditional probabilityP(a,b,N,E0) for the particle moves
from a to b afterN steps, given that the particle energy is t
critical energyE0 , and is related to critical properties o
self-interacting polymers at theu point. Then in the follow-
ing section the same mapping will be shown to give info
mation about trajectories at other energies, and hence a
n. We note in passing that in the percolation picture, dif
sion at the critical energy is somewhat surprising. A parti
on the hull of the infinite cluster moves superdiffusive
while a particle on a finite cluster has only bounded motio
The diffusive motion obtained after averaging over init
position essentially interpolates between these two limits

For a pathPAB at the critical energyE0 , the probability
that PAB is the trajectory in a random potential realization
proportional to 22HL22HR522H. HereHL (HR) is the num-
ber of hexagons passed on the left~right! by the path, and
H5HL1HR : the probability 22H comes about because ea
hexagoni with potentialVi is as likely to haveVi.E0 as to
haveVi,E0 . Then the ensemble~1.8! becomes

P~a,b,N,E0!5 (
SAP’s througha andb,

l 5 length of SAP,
q5steps froma to b

dN mod l ,q

2H

1 (
SAW’s of lengthN

from a to b
noiself-contacts

1

2H . ~2.1!

The connection to self-interacting polymers appears
cause the number of hexagons visited by an SAW is rela
to the number of self-contacts of the SAW. A self-contact i
point where the SAW is within one edge of intersecting
self. Counting hexagons in lieu of self-contacts gives rise
the famous u8 model13,14 of a two-dimensional self-
interacting polymer. The number of hexagons visited by
SAW of lengthN is H5N112N222N3 , whereN2 andN3
are the numbers of hexagons visited twice and thrice by
SAW. Checking possible paths on the lattice shows thaH
5N112I 2I 8, whereI is the number of self-contacts an
I 8 the number of a certain type of next-nearest-neighbor c
7-3
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JOEL E. MOORE PHYSICAL REVIEW B 65 035307
tacts. The effects ofI 8 are not believed to alter the unive
sality class of the model13,14and will be ignored. The weigh
22H522N211I thus corresponds to the grand-canonical
semble for polymers at chemical potentialm52 log 2 and
with an attractive interaction energybU52 ln 2 for each
self-contact. We call a self-contact parallel~antiparallel! if,
once a direction is defined along the polymer, the two s
tions of polymer in contact have the same~opposite! direc-
tion. For a long polymer, almost all self-contacts are antip
allel, as might be expected since parallel self-contacts a
boundary effect, in the weak sense that a closed polymer
none.

There are three phases of theu8 model for a two-
dimensional self-interacting polymer. At high temperatu
the statistical properties are those of the noninteracting S
and the mean radius of gyration isR;N3/4. At low tempera-
ture, the polymer is in a collapsed phase withR;N1/2. There
is a tricritical point, called theu point, separating these tw
behaviors, withR;N4/7. The importance of theu point for
the plateau transition is that the weight 22H corresponds
exactly to theu point on a honeycomb lattice. The chiralit
constraint will be shown to change the scaling and give
same universal properties as the solvable Manhattan lattiu
point.

Now the diffusion at the critical energy can be obtain
from Eq. ~1.8!. Considering for the moment only the SAW
term in Eq. ~1.8!, the mean particle displacement afterN
steps is

^^R2~N!&&5(
b

P~a,b,N!~xb2xa!2

5 (
SAW’s of lengthN

RSAW
2

2H ;mNNg2112nu.

~2.2!

Here we have introduced the standard polymer exponeng
andnu , defined through

(
SAW’s of lengthN

1

2H ;mNNg21,

S
SAW’s of lengthN

~RSAW
2 /2H!

S
SAW’s of lengthN

~1/2H!
;N2nu. ~2.3!

For ordinary polymers~no chirality constraint! at u, m51,
g58

7, and nu5 4
7 . The effect of the chirality constraint i

clearly to reduceg, since some polymers are forbidden:
fact, we now show thatg5 6

7 with the chirality constraint~m
and nu are unchanged!, so that^^R2(N)&&}N in Eq. ~2.2!
and motion is diffusive at the critical energy.

The critical properties of chiral polymers atu are actually
related in a very simple way to those of ordinary polymers
u. As shown at the end of this section, the transfer matrix
L chiral polymers on a cylinder of finite circumferenceN
hexagons has the same leading eigenvalue as the tra
matrix of 2L nonchiral polymers on the same cylinder. Th
03530
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means that the critical exponents for the chiral model can
deduced from the known values for the nonchiral model.

The L-leg exponentsxL
10,14 are defined from the correla

tion functions Gn,L(a,b) of L mutually avoiding SAW’s
from a to b at criticality: Gn,L(a,b)}ua2bu22xL(n). The
natural generalization for the chiral case is that theL self-
avoiding walks have no parallel self-contacts. Then the co
putation below of the transfer matrix at criticality (m51) on
finite strips shows that the chiral exponentsx̃L are identical
to the nonchiral exponentsx2L for twice as many connectors
The nonchiral valuesxL5(L221)/12 known from the
Coulomb-gas technique10 then determine all thex̃L .

Now we connect the watermelon exponents to phys
properties such asg and nu . First, the size exponentnu
5(22x2)21 is unchanged by the chirality constraint b
cause it takes the same value for ring polymers as for lin
polymers, and ring polymers are unaffected by the chira
constraint. The exponentg is given by nu(d22x̃1)5nu(d
22x2)5 6

7 . Note that the ring exponenta is14 also 6
7 so the

two terms of Eq.~1.8! scale with the same power ofN, as
required for consistency.

The diffusion result̂ ^R2(N)&&}N might seem almost co
incidental. However, it follows directly from the relationsh
x̃15x2 between the chiral exponent with one leg and t
nonchiral exponent with two legs:

g12nu215
422x2

22x2
2151. ~2.4!

The ‘‘mysterious cancellation of exponents’’12 which yields
diffusion in the percolation picture is relatively simple in th
polymer picture, and does not depend on the specific valu
x2 .

The resultx̃L5x2L for chiral polymers is exactly the sam
as for polymers atu on the Manhattan directed lattice~Fig.
2!, which by construction has no parallel self-contacts17

Hence we learn that the detailed structure of the Manha
lattice is in some sense irrelevant: It is the short-ranged c
straint of no parallel self-contacts which determines the u
versality class. Another piece of information about polyme
follows from the beautiful result of Cardy18 for the conduc-
tivity sxx5)e2/4h at the critical energy. This fixes the la
tice diffusion constant through the Einstein relation,11,12 and
therefore predicts a value for the combination of prefact
in Eq. ~2.2!.

The chiral polymer model discussed here is just one po
of a two-parameter family of models with antiparallel se
contacts weighted by some real numberw and parallel self-
contacts by some possibly different numberv. Then w5v
gives ordinary two-dimensional self-interacting polyme
while v50 gives the chiral polymer ensemble. One expe
a ‘‘coiled’’ polymer phase forw50 and v→`, different
from the conventional collapsed polymer phase. The
phase diagram of these models in the (w,v) plane is a rich
subject; the corresponding problem defined in terms of p
allel and antiparallel self-contacts, rather than hexagons,
been investigated numerically on the square lattice.19,20 A
conformal field theory approach suggests the possibility
continuously varyingg between the chiral polymer and ord
7-4
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CONNECTING POLYMERS TO THE QUANTUM HALL . . . PHYSICAL REVIEW B 65 035307
nary polymeru points.21 We remark in passing that the lattic
u8 model defined here in terms of hexagon weights~w, z! has
a number of advantages for this problem: The critical po
w5 1

2 is known exactly, and the exact relation discussed
low between transfer matrices suggests that this model
be solvable by vertex methods.

The remainder of this section establishes the connec
x̃L5x2L between the watermelon exponents of chiral po
mers on the hexagonal lattice and those of nonchiral p
mers, and can be skipped by nonspecialists. A powe
method to obtain properties of polymer models is by us
conformal invariance to analyze the results of finite-s
transfer matrix calculations.22,23 Since there are reviews o
the technique,23,24 some minor details will be omitted.

The goal will be to find the transfer matrix forL polymers
on a cylinder of circumferenceh hexagons. The scaling di
mensionsx̃L can be derived from the finite-size correlatio
length jL,h , which is determined by the largest eigenval
lL,h of the transfer matrix:

jL,h52
1

ln lL,h
. ~2.5!

The x̃L are then estimated for successively larger cylind
using

x̃L,h52S 2

)
D h

2p
ln lL,h . ~2.6!

The geometrical factor 2/) comes from the hexagonal la
tice dimensions and is 1 for a square lattice.

The transfer matrix acts on ‘‘configurations’’ of horizont
edges. A configuration consists of the state of all the horiz
tal edges, plus information on which oppositely direct
edges are paired~originated from the same loop!, plus infor-
mation on which hexagons between horizontal edges h
been passed on the left or right. The entries in the matrix s

FIG. 2. A directed walk on the Manhattan lattice. Note that
allowed self-contacts on this lattice are antiparallel.
03530
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over the different possible states of the vertical edges wh
can link two configurations. Each entry is weighted by
factor w for each hexagon passed on one side,v for each
hexagon passed on both sides, andm for each edge. For the
critical point of chiral polymers,w5 1

2 , v50, andm51; set-
ting v5w5 1

2 gives the ordinaryu point, while takingw
5v51 and m5mc5(21&)21 gives the critical point of
noninteracting SAW’s.

Note that parallel self-contacts can only occur for o
polymer in the cylindrical geometry when the polymer win
around the cylinder. As a result the surface critical exp
nents, which follow from the transfer matrix on the str
~closed boundary conditions! rather than on the cylinder~pe-
riodic boundary conditions!, are unmodified from the non
chiral case. Upon conformal mapping from the cylinder ba
to the plane, polymers which wrap around the cylinder b
come polymers which wrap around the origin of the plan
and closed boundary conditions correspond to a branch
which polymers cannot cross. The equivalence of surf
exponents to those of the nonchiralu point was previously
obtained for the Manhattan lattice.25

Table I gives the estimated scaling dimensionsx̃1 and x̃2
from cylinders of various sizes. The first few can be done
hand, while the larger matrices are done by computer.
leading eigenvalues are exactly the same as for thos
twice as many nonchiral polymers. This connection is
retrospect not too surprising, since the condition of no pa
lel self-contacts for a polymer fromA to B in the chiral case
is exactly the condition that another polymer can be ad
from A to B in the nonchiral case. The subleading eigenv
ues can differ, however, so there may not be a simple equ
lence between states ofL chiral polymers and 2L nonchiral
polymers. The critical properties of the nonchiral model fo
low from Coulomb gas results for theO(n) model,10 so we
have

xL5
L221

12
, x̃L5

4L221

12
. ~2.7!

l

TABLE I. Results of transfer matrix calculations for one an
two chiral polymers~identical to results for two and four nonchira
polymers!, on cylinders of circumferenceh hexagons. The larges
eigenvalue of the transfer matrix is related toxL,h through Eq.~2.6!.
The convergence to the predicted valuesx̃15

1
4 andx̃25

5
4 is seen to

be quite rapid, The extrapolated values are obtained by using t
consecutive values ofxh to fix the constants inxh5c11c2h2c3,
then takingc1 as an estimate ofx` .

h x̃1,h5x2,h xextrap x̃2,h5x4,h xextrap

2 0.254 768
3 0.259 127 0.237 88
4 0.256 212 0.248 59 1.528 61 1.2814
5 0.254 221 0.249 11 1.396 54 1.263 98
6 0.253 007 1.343 08 1.256 03
7 0.25 224 1.315 13
8 1.2984
` 1

450.25 5
451.25
7-5
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JOEL E. MOORE PHYSICAL REVIEW B 65 035307
The chiral exponentsx̃L are the same as those of theu point
on the Manhattan lattice.26 There are Monte Carlo results fo
another hexagonal lattice model believed to lie in the M
hattan universality class, the ‘‘smart kinetic growth SAW,’’27

which are consistent with the above values.

III. THE CLASSICAL LOCALIZATION EXPONENT

When the particle energyE moves away from the critica
energy, the trajectories become less extended and the m
distance from the origin afterN time steps is reduced. In thi
section, we take the lattice disorder average in order to
pressP(a,b,N), the probability that afterN steps the particle
has moved froma to b, as a weighted sum over linear an
ring polymers. Simple properties of the weight function th
yield an inequality connecting the localization exponentn to
polymer exponentsg andnu .

As in the preceding section, we fix an open or clos
curve on the lattice and ask what fraction of potential re
izations make this curve the correct trajectory. The part
energyE is also varied in order to find the energy-integrat
diffusion constant, and hencen. The weight of a curve is
determined by the numbers of hexagons touched by
curve to the left and right: The requirement for a path to
the correct trajectory is that all the hexagons to the right
above the particle energy. The probability that a path is
particle trajectory is a function of the number of differe
hexagons visited by the path. The requirement is that all
hexagons to the immediate left have energies larger than
particle energy, while those to the immediate right have
ergies smaller than the particle energy. TheHL hexagons on
the left must have higher energies than theHR on the right,
which is true for

S HL1HR

HL
D 21

of potentials. Furthermore, the particle energy must lie in
window of width ;(HL1HR)21 between the lowest poten
tial on the left and the highest potential on the right. So
weight of an allowed pathPAB is

W~PAB!}
1

~HL1HR!S HL1HR

HL
D '

HL!HR!

~HL1HR11!!
.

~3.1!

The same result is obtained by integrating the probability

S 11E

2 D HLS 12E

2 D HR

over particle energyE to obtain a beta function.
Now we can again connect the expression~1.8! and the

weight ~3.1!, to known properties of polymers. For fixedH
5HL1HR , the weight is minimized ifHL5HR , and using
Stirling’s approximation is thenW(H)'A2p/2HH1/2. The
probability to get froma to b after N steps thus satisfies
03530
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e

P~a,b,N!> (
SAP’s througha andb,

l 5 length of SAP,
q5steps froma to b

dN mod l ,q

2HH1/2

1 (
SAW’s of lengthN

from a to b
noiself-contacts

1

2HH1/2, ~3.2!

up to a possible numerical constant. The typical numbe
hexagonsH scales linearly inN to sufficient accuracy tha
H1/2 can be replaced byN1/2 ~this is verified numerically by
Monte Carlo simulations, and if false would require an u
expected multifractality at theu point!. Summing over final
positionsb to find the mean squared displacement then gi

^^R2~N!&&>Ng2112nu21/2. ~3.3!

Then from Eq.~1.7! we obtain an inequality connecting th
localization exponentn for the plateau transition to polyme
exponentsnu andg:

12
1

2n
>g12nu2

3

2
. ~3.4!

For the chiral polymer model, the resulting prediction
n>1, which is satisfied by the actual valuen54

3. The usual
nonchiral polymer exponents atu would predictn>7

3 ~cf.
Sec. IV!, so again it is seen that the chirality constraint
essential. The fact that the lower bound is not reached sh
that even in the limit of long paths, the number of hexago
to the left and right of the path cannot be assumed equa
calculating the weight~3.1!. At the critical energy~Sec. II!,
hexagons to the left and right contribute equally and t
difference is irrelevant, but away from the critical energy t
difference affects the scaling.

The exact valuen54
3 is derived in the percolation picture4

from the equivalence of closed trajectories at energyE to
percolation hulls withp2pc}E2E0 , wherepc is the criti-
cal probability for percolation andE0 is the critical energy.
Such percolation hulls28 have average sizej;(p2pc)

24/3.
We remark in passing that the valuen54

3 can be understood
in the polymer context from the fact the crossover expon
of the tricriticalu point isf53

7 ~this value was first obtained
using the connection to percolation14!: then N2f;(p2pc)
andj;(p2pc)

nu/f5(p2pc)
24/3. The reasons for stressin

the inequality~3.4! here rather than the exact result are th
the inequality follows immediately from the classical pa
weight on polymers and can be used to gain information
higher moments~Sec. IV!.

The main result of this section is that the exact pa
weight induced by averaging over disorder and particle
ergy can be calculated for the classical lattice model. T
weight yields the inequality~3.4! connecting statistics of chi
ral polymers to the critical exponentn of the classical plateau
transition. The focus of the next section will be whether
similar relationship to polymers exists for the quantum p
teau transition.
7-6
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IV. HIGHER MOMENTS AND THE QUANTUM
TRANSITION

The quantum Hall plateau transition shows several qu
tative similarities with the semiclassical limit studied in th
preceding sections of this paper. Both the quantum transi
and the semiclassical limit have power-law delocalization
the critical energy and a finite critical conductivity. Howeve
the quantum transition has proved much more difficult
describe theoretically, and remains a major open problem
natural question is whether any generalization of the polym
mapping developed for the classical limit would serve a
useful approach for the quantum case. The goal of this
tion is to show that the diffusive behavior usually assumed
exist up to the localization length in the quantum case wo
be inconsistent with almost any such generalization,
present a numerical method and preliminary results to ve
this assumption. We focus on one generalization in partic
~to nonchiralpolymers atu, for reasons described below! for
conciseness.

The scaling laws of moments of the particle distributi
function

^R2n~ t !&;ta~n! ~4.1!

demonstrate an essential difference between the clas
limit and the conventional picture of the quantum case.
this section^ & indicates averaging over particle energy a
random potentials, whilê &E indicates averaging over ran
dom potentials at fixed particle energyE. If particle motion
is essentially diffusive on short length scales in the quan
case, then higher scaling laws beyondn51 in Eq. ~4.1! do
not contain additional information. As discussed in the p
vious section, the mean squared displacement^R2n(t)&
;t121/2n contains the localization exponentn. This formula
was obtained from the assumption that^R2(t)&E increases
linearly in time at each energy until the localization length
reached„R2'j(E)2

…, then saturates.
If the particle motion is truly diffusive up to the localiza

tion length, then̂R2n(t)&E;tn until the localization length is
reached, and

^R2n~ t !&;tn21/2n, ~4.2!

with the localization length exponentn'2.3560.05.6 So if
motion in the quantum case is diffusive up to the localizat
length, there are no nontrivial exponents to be found
higher moments of the particle displacement.

Higher moments in theclassical case show nontrivia
scaling, and consequently highly extended trajectories
much more common in the classical case than in the qu
tum case, even though the localization length diverges m
rapidly nearEc for the quantum case. For walks at the cri
cal energy, it follows from the results of Sec. II that

^R2n~ t !&Ec
;t2nnu1g215t ~8n21!/7. ~4.3!

Hence, although the mean square displacement does inc
linearly with time, higher moments have nontrivial pow
laws because the particle trajectories are not random w
but instead have ‘‘memory,’’ as required for the absence
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self-intersections. The higher moments are more exten
than they would be for simple diffusive motion~random
walks!.

A similar result holds for the classical case even when
average is extended to include the particle energy. The
equality~3.4! derived in Sec. III between polymer exponen
at the chiralu point and the scaling of the second mome
a~1!5121/2n from Eq. ~4.1!:

12
1

2n
>2nu1g2

3

2
5

1

2
. ~4.4!

For the classical transition withn54
3, the left-hand side is58

and the inequality is satisfied. Similarly for higher momen
^R2n(t)&;tac(n)

ac~n!>2nnu1g2
3

2
5

1

2
1

8~n21!

7
. ~4.5!

Hence for sufficiently largen the classical scaling exponen
ac(n) are larger than the quantum exponentsa(n)5n
21/2n, if the motion in the quantum case is indeed diff
sive.

In the remainder of this section, we consider the quest
of how quantum interference keeps the quantum case f
being related to a polymer ensemble in the same way as
classical case. One polymer ensemble in particular is att
tive for the quantum case because the ensemble is simila
the classical one and the valuen57

3 appears in this ensemble
but this connection predicts nondiffusive motion up to t
localization length. Monte Carlo numerics are used to t
the assumption of diffusive motion in the quantum case
verified this assumption would rule out a simple connect
to polymers.

The approach of the previous section was to genera
positive weight on electron paths by averaging over disor
with the electron path held constant. In lattice models for
quantum transition, it should be possible to attribute a po
tive weight to each path on the lattice, and then these weig
may be connected to some polymer problem, presuma
different from the chiral ensemble discussed above for
classical limit. The first statement~that there is an assign
ment of weights! is somewhat trivial from a mathematica
point of view: There are many paths on the lattice betwe
any pair of points, and hence given any positive probabilit
to reach different points on the lattice afterN steps, there is
some assignment of positive path weights which results
the given probabilities. The difficult question is wheth
there is an assignment of weights which is physically me
ingful and related to some local two-dimensional theory,
in the classical case. The next paragraphs define a real~not
necessarily positive! path weight; this weight is positive in
the absence of interference, and the leading interference
tribution to this path weight from ‘‘cooperons’’ vanishe
though higher contributions do not.

For fixed disorder, different pathsWAB
i from A to B con-

tribute to the amplitude, and the probabilityPAB to get from
A to B includes both diagonal termsuWAB

i u2 and cross terms
Here and in the following we assume a discretized model
the quantum case, similar to the lattice model introduc
7-7
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JOEL E. MOORE PHYSICAL REVIEW B 65 035307
previously for the classical limit. We start by considering tw
paths which do not cross: Then the disorder average ge
ates a random phase which cancels the cross terms, lea
only the~positive! diagonal terms. The remaining question
what occurs for intersecting paths; this is known to be
case of interest for the quantum effects causing weak lo
ization.

If the cross terms did vanish, then in the discretized mo
wherelD is effectively zero,PAB would be a sum over~not
necessarily self-avoiding! paths with some positive weigh
the ‘‘quantum path weight’’~QPW!. A real weight can be
defined even if cross terms are present by adding to the d
contribution of each path half of all its disorder-averag
cross terms with other paths. The QPW picture can br
down if, for energies near the critical energy, the cross te
become large enough to drive the weight negative for lo
paths. However, the leading interference corrections va
upon disorder averaging, and a finite strength of interfere
is required to drive the path weight negative, so it is see
ingly possible that a positive QPW exists for the paths n
the critical energy which determinen. This motivates the
conjecture, tested in the remainder of this section, that
universal large-length-scale properties of the plateau tra
tion may be related to those of some classical general
polymer model~i.e., a sum over paths with positive weights!,
in similar fashion to the relationships found in Secs. II a
III between the classical percolation limit and the chi
polymer model.

The remaining step is to determine whether any univ
sality class of classical polymers can reproduce the weig
which follow from disorder averaging in the quantum case
seems worthwhile to identify possibilities, since exact resu
have been obtained for many two-dimensional polymer m
els by Coulomb gas and CFT techniques. The QPW sho
give nearly the classical weight~3.1! to paths which are clas
sically allowed or include a small number of quantum tu
neling events, but should not allow of orderN tunneling
events for anN-step path since then the motion is simp
diffusive even away from the critical energy. A speculati
possibility for the quantum transition is the nonchiral po
mer ensemble atu. The expectation that quantum mechan
should allow some unfavorable steps~but fewer than;N!
matches the fact that a typical polymer in the nonchiral
semble has some parallel self-contacts, but fewer than
orderN. A simple argument that the number of parallel se
contacts is subextensive (,N) is that a ring polymer has no
parallel self-contacts, so that parallel self-contacts are
some sense a boundary property.

A surprise is that the valuen57
3 ~which has attracted at

tention as the simplest rational consistent with numerics! ap-
pears from exponents of the nonchiral ensemble. The
equality ~3.4! connecting the localization exponentn to
nonchiral polymer exponents predicts, sinceg58

7,

12
1

2n
>g12nu2

3

2
5

11

14
, ~4.6!

or n>7
3. Hence the value73 appears in the critical propertie

of a polymer ensemble closely related to the polymer
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semble describing the classical plateau transition. The lo
bound is realized if paths have asymptotically the same n
ber of hexagons to the left as to the right (HR;HL), which
should be a better approximation for the less convolu
paths in the quantum case. As seen below, however,
inequality predicts scaling laws for higher moments whi
appear to be ruled out numerically in the quantum ca
Hence quantum interference seems to be relevant at
quantum transition even beyond the level of changing p
weights.

We note in passing that the desired property of diffus
at the critical energy does not have any simple interpreta
as a statement about the polymer ensemble, since it is
after integrating over particle energy that the polym
weights may appear. This situation is familiar from th
Liouvillian approach to the transition,16,31 where the transi-
tion is mapped onto a different problem which contains
exponentn but not the critical conductivity. Note that th
previous appearance of the value7

3 in a semiclassical averag
over a single percolation trajectory29 does not clearly relate
to a critical point, when the electron is delocalized over m
tiple trajectories. Now we discuss how numerics can t
whether the appearance of this value in this polymer
semble is just a numerical coincidence.

There are numerically testable consequences which
be used to check whether nonchiral polymers atu are indeed
related to the quantum case. The polymer problem pred
various moments of the disorder- and energy-averaged
placement: It was shown in the previous paragraph that
mean squared displacement^R2(N)&;N11/14, so thatn57

3.
Similar predictions follow for higher moments, such
^R4(N)&;N4n1g23/25N27/14, or a~2!527

14. This can be com-
pared to the null hypothesis of diffusion up to the localiz
tion length, which predictŝR4(N)&;N1.78.

We have performed Monte Carlo simulations with up
1800 states in the lowest Landau level to track the evolut
of a localized wave packet in a disordered potential~the
method is similar to that of Ref. 30!. The error bars are large
for the fourth moment than for the second because finite-
effects are more pronounced on the extended paths w
dominate the fourth moment, but it appears thata~2!51.8
60.1, which if correct is sufficient to rule outa~2!527/14
'1.92. With larger system sizes, it should be straightforw
to confirm the assumption of diffusive motion up to the l
calization length. Then a polymer description would have
haven51/2 ~either dense polymers or random walks!, but no
appropriate ensemble is obvious. It seems more likely t
strong quantum interference prevents a physically mean
ful assignment of path weights in the quantum case.

To summarize, this section discussed differences betw
the classical and quantum transitions which become appa
in higher moments of the particle distribution function. N
merics seem to support the picture of diffusion up to t
localization length and rule out the simplest polymer mo
for the quantum case. In closing, we mention briefly conn
tions between the polymer models discussed in this pa
and conformal field theory~CFT! approaches to the trans
tion. The low-temperatureO(n) phase also appears in
large-N expansion of the disorder-averaged Liouvillia
7-8
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theory, which is similar to a partially supersymmetric com
plex O(N) model, with N→1 the physical limit.31 Recent
work32,33on the critical point of Dirac fermions in a nonab
lian random vector potential found ac522 dense polymer
problem hidden in the critical theory for several differe
types of disorder. Since upon adding additional disorder~ran-
dom mass and chemical potential! the Abelian version of this
critical point flows to the plateau transition fixed point,34 the
tt.

n,

03530
- appearance of polymer subalgebras may be generic to
class of random critical points.
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