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Effect of phase breaking on ac transport through a quantum dot dimer
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The ac response of a coupled double quantum dot system involving a phase-breaking effect is studied. We
calculate the ac conductance based on the nonequilibrium Green’s-function formalism. Some parasitic and gate
capacitances are included in our model, thus the displacement current is considered, and the overall charge and
current conservation are fulfilled. In our results the double resonant structure of the conductance is observed.
We find that the electron-phonon interaction has a significant effect on the ac conductance both for low and
high temperatures. Due to the phase-breaking effect of electron-phonon scattering, the resonant conductance
peak is suppressed very seriously, and the second peak of the ac conductance may disappear completely,
However, for the nonresonant situation, the conductance is enhanced for small frequencies. Furthermore, we
study the effect of the capacitances on the ac conductance, and find that, for small frequencies, the capacitances
have a small effect on the real part of the admittance. On the imaginary part of the admittance, all the
capacitances except for the interdot capacitance have a considerable effect. For high frequencies all the
capacitances have a considerable effect on the ac conductance.
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I. INTRODUCTION

ac quantum transport properties of quantum dot syst
have attracted much research attention, b
experimentally1–5 and theoretically.6–17 It has been made
clear that under a time-dependent potential the conduc
electrons flowing through a mesoscopic semiconductor
vice, say a quantum dot, will develop an ac sideba
weighted by a Bessel function of the amplitude and f
quency of the external alternating field. In time-depend
processes, the phase coherent transport of electrons wi
affected by the ac-driven forces differently in different par
In fact, the electrons may absorb external energy to mo
their phases, and some nonlinear effects, such as pho
assisted tunneling8,12 and electron pumps,17 will exhibit.

Anantram and Datta7 studied the effect of phase breakin
on the ac response of a single quantum dot. However, t
results showed that there is hardly any difference in the z
frequency ac conductance of the one-level reson
tunneling device between cases with and without electr
phonon interaction, no matter at high or low the temperatu
They assumed that in a mesoscopic conductor there is n
potential. This leads to the supposition that, in such a tw
probe system, the left ac current flowing from the left cont
into the mesoscopic conductor is not equal to the right c
rent flowing from the conductor into the right contact. R
cently, many experimental and theoretical studies were
voted to analyses of the effects of a time-dependent field
the resonant tunneling through coupled double quan
dots.11–14 While photon-assisted tunneling is intrinsically
coherent phenomenon, the electron-phonon interaction
lead the ac conductance to deviate from the dc value as
0163-1829/2001/65~3!/035306~8!/$20.00 65 0353
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frequency of the ac field exceeds the inverse of the time
average electron spends inside the devices.7 Very recently,
Ma et al. studied quantum ac transport in coupled quant
dots.14 They predicted that there are peaks in the aver
tunneling current which are observable in both the amplitu
and phase shift of the ac current. As far as we know, ho
ever, there has not yet been a discussion of electron-pho
interaction~or the effect of phase breaking! in ac transport
through a tunneling-coupled double-dot system.

In this paper we study the linear ac response of a coup
double quantum dot in the presence of electron-phonon
teraction, based on the nonequilibrium Green’s-function f
malism first proposed by Jauhoet al. for single-quantum dot
systems.6 We calculate the Keldysh Green’s functions for
double dot by the method of the equation of motion~EOM!
and contour integration. The EOM was discussed in deta
Ref. 19 while the contour integration was discussed, for
ample, in Ref. 20. We take the phase-breaking process
account by including the electron-phonon interaction se
energy in the Dyson equations for the nonequilibriu
Green’s functions. In our model some parasitic capacitan
and the internal time-dependent potential in the dots are
cluded, and the internal potential is determined in a s
consistent way. Thus, the displacement current is conside
and the overall charge and current conservations are fulfil
We also demonstrate the gauge invariance of our result,
is, current and charge responses are invariant under an o
all potential shift.

Following the work on a single quantum dot in Ref. 7, w
express the general current formula for a coupled double
in terms of various Keldysh’s Green’s functions, and th
linearize the ac current in the case of a small ac bias. I
©2001 The American Physical Society06-1
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more convenient to use double-energy coordinates in the
culation of various Green’s functions and self-energi
Double-energy coordinates are also useful in the descrip
of scattering processes by a time-dependent potential.
numerically compute the ac conductance in various case
frequency and tunneling coupling. Our results show that
electron-phonon interaction has a significant effect on the
conductance both for low and high temperatures. In our
sults a double-resonant structure of the ac conductanc
observed at low temperature. Due to the phase-breaking
fect, the resonant conductance peak is suppressed very
ously; the second peak of the ac conductance may disap
completely, and nonresonant conductance is enhanced
small frequency. Furthermore, we have studied the effec
parasitic and gate capacitances on ac conductance, and f
that for small frequencies the capacitances have a smal
fect on real part of the admittance. On the other hand,
capacitances, apart from the interdot capacitance, have a
siderable effect on the imaginary part. For high frequenc
all the capacitances have considerable effects on the ac
ductance.

In Sec. II a general formula for the linearized ac curren
the double dot is derived. The numerical results for the
conductance are presented and discussed in Sec. III. Se
IV is devoted to our main conclusions.

II. GENERAL FORMALISM

We consider a tunneling-coupled double dot connecte
two electron reservoirs by tunnel coupling, which is intr
duced as a perturbation. Alternating fields are applied to
electron reservoirs in addition to a dc voltage. The system
described by a Hamiltonian

H5 (
k,aPL,R

eka~ t !cka
† cka1(

i ,n
e i

0~ t !din
† din

1(
n,m

V1m2n~d1m
† d2n1H.c.!1(

k,n
@VL,n~ckL

† d1n1H.c.!

1VR,n~ckR
† d2n1H.c.!#1Hel-ph , ~1!

where cka
† (cka) is the creation~annihilation! operator for

electrons in thea reservoir,din
† (din) is the electron creation

~annihilation! operator for thenth level in the i th dot,
VL (VR) is the tunneling coupling between dot 1 (2) a
the left ~right! reservoir, andV12 is the tunneling coupling
between the two dots. The Hamiltonian for the electro
phonon interaction is of the form

Hel-ph5 (
m,n,q

Mm,n,q
(1) d1m

† d1n~b1q1b1q
† !

1 (
m,n,q

Mm,n,q
(2) d2m

† d2n~b2q1b2q
† !, ~2!

in which b1q (b2q) annihilates a phonon in dot 1~2!. In
writing Eq. ~1! we have neglected the time dependence of
tunnel couplings between dots and reservoirs and betw
the two dots. At a small ac bias this is a val
03530
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approximation.7 We also assume that the tunneling couplin
do not depend on the dot levels.

Applying a sinusoidal potentialVacos(v0t) to thea con-
tact causes the electron energies in the contact to var
eka(t)5eka1eVacos(v0t1fa), wherea51 and 2. This ac
potential results in a time-dependent energy in the two d
e i

0(t)5e i
01D icos(v0t1fi) (i51 and 2). The ac tunneling

current can be calculated based on the Keldysh Green’s f
tions and retarded and lesser self-energies in the two do

JL(R)
Tun ~ t !5

e

\
TrE dt1$G1(2),1(2)

r ~ t,t1!SL(R)
, ~ t1 ,t !

1G1(2),1(2)
, ~ t,t1!SL(R)

a ~ t1 ,t !

2SL(R)
, ~ t,t1!G1(2),1(2)

a ~ t1 ,t !

2SL(R)
r ~ t,t1!G1(2),1(2)

, ~ t1 ,t !%, ~3!

where

Gim,im
, ~ t !5 i ^din

† ~0!dim~ t !&, ~4!

Gim,in
r ~ t !52 iu~ t !^$dim~ t !,din

† ~0!%& ~ i 51,2!. ~5!

The tunneling self-energies are related to the free-part
Green’s functions in the electron reservoirs and the tun
couplings between the contacts and dots:

Sa,mn
r ,a,,~ t,t8!5Vam* Van(

k
gka

r ,a,,~ t,t8! ~a5L,R!. ~6!

Equation ~3! is valid in general, even in the presence
strong electron-electron and electron-phonon interactio
and it is applicable to quantum dots with multiple ener
levels. As a solvable example, in the following we shall r
strict ourselves to the case in which each dot contains o
one energy level, i.e.,m5n51 in the above equations.

By the method of the equation of motion and Keldysh
contour integration, the retarded and ‘‘lesser’’ Green’s fun
tions in the two dots can be calculated,18

Gii
r 5Gii

r01Gii
r0V12Gı̄ ı̄

r0
V12Gii

r , ~7!

Gii
,5Gii

r S i
,Gii

a 1Gii
r V12Gı̄ ı̄

r0
S ı̄

,
Gı̄ ı̄

a0
V12Gii

a , ~8!

wherei 51 and 2 andı̄ 532 i ~we shall use this prescription
below in this paper!, andGii

r0 is defined by

Gii
r05gii

r01gii
r0S i

rGii
r0 ~ i 51,2!. ~9!

In the above equationS i
r ,.,,5Sa

r ,.,,1S if
r ,.,, @i 51 ~2!

corresponds toa5L(R), and we shall follow this prescrip
tion below#, whereSa

r , the retarded self-energy due to th
tunneling, is given by Eq.~6!, while S if

r ,.,, , the self-energy
due to the electron-phonon interaction in thei th dot, is given
by

S if
.,,~ t,t8!52(

q
~Mq

( i )!2Diq
.,,~ t,t8!Gii

.,,~ t,t8!,

~10!
6-2
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S if
r ~ t,t8!52(

q
~Mq

( i )!2@Gii
,~ t,t8!Diq

r ~ t,t8!

1Gii
r ~ t,t8!Diq

,~ t,t8!1Gii
r ~ t,t8!Diq

r ~ t,t8!#

~ i 51,2!, ~11!

whereDiq
r ,.,,(t,t8) is the phonon Green’s function in the d

i and Mq
( i ) is the phonon coupling. Finally,gii

r0 are the free
particle Green’s functions in the absence of tunneling a
electron-phonon interaction. Unlike the case of dc bias wh
the Green’s functionsGii

r ,a,, have simple expressions in en
ergy representations,18 in the case of ac bias they are mu
more complicated but can be calculated in principle by ite
tion from Eqs.~7! and ~8!.

In discussing the linear response to a sinusoidal driv
signal, it is convenient to transform the double-time coor
nates to double-energy coordinates. The Fourier transf
from double-time coordinates to double-energy coordina
follows the prescription

F~v1 ,v2!5E E dt1dt2f ~ t1 ,t2!e2 i (\v1t12\v2t2).

For small ac voltages, we can linearize the left~right! current
flowing from the left~right! reservoir into dot 1~2!, obtained
from Eq. ~3! about the steady state, to be

dJa
Tun~v!5

e

\E dv1

2p
dSa

,~2v12v,2v1!@Gii
r ~v11v!

2Gii
a ~v1!#1dGii

r ~2v12v,2v1!Sa
,~v1!

2dGii
a ~2v12v,2v1!Sa

,~v11v!

1 iGadGii
,~v12v,v1! ~a5L,R!. ~12!

In Eq. ~12! Green’s functions and self-energies that ha
only one energy coordinate are the steady-state funct
corresponding to the dc bias. We shall follow this prescr
tion in the following. The steady-state retarded self-ene
Sa

r (v) is assumed to be of the form2( i /2)Ga @whereGa

52pr(0)uVau#, this is valid in the wide-band limit. The fou
terms on the right-hand side of Eq.~12! have different physi-
cal meanings. The effect of oscillating an electron reserv
at a frequencyv leads to sidebandsE6\v for each energy
E in the contact. The first term here represents the correl
injection into the device due to electrons at energiesE and
E6\v. The second and third terms represent injections fr
the contact at one energy to a changing density of state
the device. Finally, the fourth term represents an inject
into the contact due to changing charge in the device.
will use the notationd to denote the first-order change~due
to the small ac potentialVa) of all important quantities. For
example,dGii

r , dGii
, , . . . , and so on. Weassume that the

phonon Green’s function are dispersionless.
To calculate the current response, we expand the Gre

functions in the formula of current to first-order term of th
external ac voltageVa and internal potentialVi(5D i /e),
and then we have
03530
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dJL(R)
Tun ~v!5 (

I 51,2,L,R
GL(R)I

0 ~v!VI~v!2
GL

\
Q1(2)~v!

~13!

and

Qi~v!52 ieE dv̄

2p
dGii

,~v̄2v,v̄ ! ~14!

5 (
I 51,2,L,R

e2Ni I ~v!VI~v!, ~15!

where VI(v)5VI@pd(v1v0)eif I1pd(v2v0)e2 if I# is
the Fourier transform ofVI(t). In Eq. ~13!, GL(R) i

0 are given
below:

GL1
0 ~v!5GL

e2

\ E dv1

2p
@ i f L~v1!G11

r ~v11v!G11
r ~v1!

1c.c.~v→2v!#, ~16!

GL2
0 ~v!5GL

e2

\
V12

2 E dv1

2p
@ i f L~v1!G11

r ~v11v!G11
r0~v1

1v0!G11
r0~v1!G11

r ~v1!1c.c.~v→2v!#, ~17!

GLL
0 ~v!5GL

e2

\ E dv1

2p

f L~v11v!2 f L~v1!

v
$G11

r ~v11v!

2@G11
r ~v1!#* %, ~18!

and

GLR
0 ~v!50. ~19!

The symbol c.c.(v→2v) in Eqs.~16! and ~17! is used for
convenience, and it means that we changev to 2v in the
first term and then take the complex conjugate. Simila
GRI

0 (v) can be written.
In the above equations,

Gii
r0~v!5

1

v2e i
01

i

2
~Ga1G if!

, ~20!

G11
r ~v!5

1

v12e1
01

i

2
~GL1G1f!2V12

2 G22
r0~v!

, ~21!

and

G22
r ~v!5

1

v12e2
01

i

2
~GR1G2f!2V12

2 G11
r0~v!

~22!

are steady-state Green’s functions. Also,Q1,2(v) are the ac
charges in the two dots, andNi J(v) can be obtained by
linearizing Eq.~8! and then substituting into Eq.~14!. The
equations of calculatingNi J(v) are given in the Appendix.
One more quantity needs to be determined before we
6-3
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proceed to obtainNi J(v). It is the steady state~due to the dc
bias! less the self-energyS if

, (v). By assuming that the pho
non Green’s functions are dispersionless, this quantity
given by

S if
, 5DE dv̄

2p
Gii

,~v̄ ! ~ i 51,2!. ~23!

Equation~23! consists of two equations (i 51 and 2), and
both G11

, and G22
, involve S1f

, and S2f
, . The steady-state

Green’s functionsGii
,(v) were given in Ref. 18. Equation

~23! can be expressed as a system of two linear equation
S if

, . In the case of high temperature, where the Fermi fu
tions can be set to1

2 , it is found from Eq.~23! that S if
,

5 iD /2. For general temperatures, for simplicity we consid
the case where the left Fermi level is equal to the right, a
the tunnel coupling between the left quantum dot and the
electron reservoir is equal to the right one. Thus Eq.~23! is
reduced to

2 iS1f
, 5

D

2 E dv̄

2p
@ f L~v̄ !GL2 iS1f

, #

3F 1

~v̄2e1
01V12!

21
1

4
~GL1G1f!2

1
1

~v̄2e1
02V12!

21
1

4
~GL1G1f!2G .

Equations~13!–~15! give the current and charge respon
to the applied ac voltageVa(v) and the internal potentia
Vi(v). When the ac perturbationeVa(t) and the induced
internal potentialD i(t) are transformed to energy coord
nates, they must satisfy the relationDa(v)
5@Da(2v)#* ,D i(v)5@D i(2v)#* . It is easy to see that th
positive and negative frequency parts are complex conju
to each other:

Ga I
0 ~v!5@Ga I

0 ~2v!#* I 51,2,L,R.

This is expected, as the ac current is a real-time funct
Furthermore, it is easy to show thatGaI

0 (v) and Qi I (v)
fulfill the invariance of current and charge responses un
an overall potential shift; that is

(
I 51,2,L,R

Ga I
0 ~v!50 ~24!

and

(
I 51,2,L,R

Qi I ~v!50. ~25!

Büttiker et al.9 indicated that such a time-dependent tu
neling response should ensure the overall charge and cu
conservation. In our above calculation, the piled-up char
on the tunneling junctions and the long-range Coulomb
03530
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teraction are not included. Next we consider the contribut
of capacitive currents and the long-range Coulomb inter
tion by introducing capacitances between the quantum d
and between the dots and the contacts and the gate elect
hence we determine the internal potentialD i(v) self-
consistently. Using a nearest-neighbor capacitance appr
mation, we have

Q1~v!5CL@V1~v!2VL~v!#1Cd@V1~v!2V2~v!#

1CG@V1~v!2VG~v!#,

Q2~v!5CR@V2~v!2VR~v!#1Cd@V2~v!2V1~v!#

1CG@V2~v!2VG~v!#, ~26!

whereCL (CR) is the capacitance between the left~right! dot
and the left~right! leads,Cg is the capacitance between th
dots and a common gate electrode, andCd is the capacitance
between the two dots. Combining Eqs.~26!, ~13!, and ~14!,
we obtain the total current response

dJL(R)~v!5dJL(R)
Tun ~v!2 ivCL(R)@VL(R)~v!2V1(2)~v!#

5(
a

GL(R),a~v!@Va~v!2VG~v!#, ~27!

therefore, we obtain the frequency-dependent admittance

GLa~v!5GLL
0 ~v!dLa2

e2

\
GLN1a~v!2 i

e2

\
vcL

3FdaL2(
j

~M 21!1 j~v!@GLNj a~v!2Cj a#G
1(

i j
S GLi

0 ~v!2
e2

\
GLN1i~v! D ~M 21! i j ~v!

3@GLNj a~v!2Cj a#, ~28!

whereM (v) is the matrix

Mi j ~v!5Ci j 2GLNi j ~v!, ~29!

with

C115~cL1cd1cG!, C1252cd , ~30!

C2152cd , C225~cR1cd1cG!, ~31!

and

Cia52cLd i1dLa2cRd i2dRa . ~32!

HerecI5CI /(e2/GL) (I 5L, R, d, andG) is capacitance in
unit of e2/GL. GRa(v) can be written similarly. Our resul
fulfills the overall current conservation, that is,dJL(v)
1dJR(v)1dJG(v)50.

III. NUMERICAL RESULTS

In this section we present some numerical results for
ac conductance at equilibrium (mL5mR) based on Eqs.~13!-
~23! and ~28!. In the wide-band limit, the tunnel coupling
6-4
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Ga (aPL,R) are energy-independent constants, and we
sume thatGL5GR5G for the double quantum dot in ou
numerical calculations. We also assume that the energy
els of the two dots are equal, i.e.,e1

05e2
05e0.

First we consider the perfect screening case (cL5cR

5cd5cG50).10 In Fig. 1 we plot the low-temperatur
(kBT50.01) ac conductance of a double dot witho
phonon-electron interaction against the frequencyv for vari-
ous interdot tunnel couplingsV12. The energy levels of the
two dotse0 are set to 0~all energies are measured in units
G), while the identical left and right Fermi levels (mL5mR

5m) are taken to be 2. In Fig. 1~a! we present the real par
of the diagonal admittance Re@GLL(v)# as a function ofv
for V1251, 2, and 3. The ac conductance atv50 should be
equal to the dc conductance. We see that forV1251 and 3
Re@GLL(v)# increases asv increases. It displays a peak
v;2 for V1251, and two peaks with a distance of about
for V1253, but for V1252 it decreases monotonically. Th
is not surprising, because the so-called photon-assisted
neling tends the conductance toward a resonant value w
the Fermi level deviates from the resonant energye0
6V12); however forV1252 the Fermi level is right at the
resonant energy. According to the Fermi golden rule, the
peaks of Re@GLL(v)# should appear at the frequencyv
5uV126mu ~heree050). However, as we pointed out in Re
16, the Fermi golden rule alone cannot explain the curr
behavior here, because the time-dependent voltages mak
effective density of states dependent on the frequency
other words, in Eq.~12! the terms includingdSa

, can be
explained by the Fermi golden rule, but the other terms c
not; this reflects the change of the effective density of sta
in dots. Thus the position of peaks would deviate fromuV12
6mu, and delay to a somewhat higher frequency. ForV12
51 only one peak appears, and forV1252 the second peak
also cannot be observed and becomes a ‘‘shoulder’’ struc
aroundv;4. In general whenm>V12 the second peak is
difficult to observe. In this case the Fermi level is outside
two peaks of the density of states~DOS! in the dots. Then
the frequency needs to cross over one of the DOS peak
approach the position of the second peak; thus the heigh
the second peak is much smaller than that of the first pe
This phenomenon can be seen from Fig. 1~c!. We also
present the imaginary parts of the diagonal admitta
Im@GLL(v)#. As expected, all curves show Im@GLL(0)#50,
except that the curve ofV1252, Im@GLL(v)#, goes to a
negative value from zero when the frequency increases f
zero; this shows a resistive-capacitive behavior. For the c
of Fermi levels at the resonant energy (V1252),
Im@GLL(0)# is always positive; this shows a kinetic
inductive behavior. However, our calculation shows that
a sufficiently large gate capacitance (CG) and/or lead contac
capacitance (CL/R), Im@GLL(v)# can be negative for sma
frequencies even ifm56V12. This is in agreement with the
results of Ref. 10 for a single quantum dot system. Simila
Re@GLL(v)#, for Im@GLL(v)# there are also two resonan
frequencies, which is slightly less thanuV126mu; in contrast,
the curves of Im@GLL(0)# show valleys at the resonant fre
quency.
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In Fig. 2, we plot the admittanceGLL againstv for a
double quantum dot with electron-phonon interaction (Gf
51 and 2! and also in the perfect screening case, wh
V1255 and m52. In comparison with the case of fre
electron-phonon interaction, in Fig. 2 we also plot the curv
for Gf50. In Fig. 2~a! we present the results for low tem
perature (T50.01). From this figure, we find that for
double quantum dot with electron-phonon interaction b
real and imaginary parts ofGLL(v) display behaviors similar
to that in the case ofGf50. However, their resonant ampl
tudes are seriously suppressed by the phase-breaking e
of electron-phonon interaction, while for small frequenci
the nonresonant conductance ReGLL(v) increase asGf in-
creases. Qualitatively, this phenomenon is in agreement
the results of Ref. 7, and our result is more prominent th
theirs. We believe that this is because we have taken
internal potential of the dots into account. It seems that
suppression to the second resonant peak is more serious
for Gf52 both the second peak of ReGLL(v) and the sec-
ond valley of ImGLL(v) almost disappear. On the othe
hand, it is noted that the phase-breaking effect causes
effective capacitancece f f;2d@ ImGLL(0)#/dv to be re-
duced; whenGf52, the capacitive behavior of the admi
tance almost changes completely to inductive.

In Fig. 2~b! we present the results for the case of hi
temperature (T550@G). One can see that, no matte
whether we include electron-phonon interaction, the pe
structure disappears, and with increasing freque
ReGLL(v) decreases and ImGLL(v) increases monotoni
cally. Furthermore, ImGLL(v) is positive for all frequencies
So for high temperature the admittance always shows an
ductive behavior for the perfect screening case. Although
frequency dependence of the admittance is qualitativ
similar for Gf50 and GfÞ0, the influence of the phase
breaking effect on the admittance is still significant. Th
point is different from the results of Ref. 7.

Next we investigate the capacitance effect on the adm
tance of a double quantum dot for low temperature. In Fig
we present the results for the different capacitances con
ered. Figure 3~a! shows that none of the capacitances has
effect on the real part of the admittance for small freque
cies; this is expected. For intermediate frequencies the
capacitance has the largest effect compared to other ca
tances, and the effect of the capacitances between the l
and dots is also quite large. However, the interdot cap
tance has almost no effect for small frequencies. For hig
frequencies it has a small effect. It is interesting to note t
the effects of different capacitances on the value
ReGLL(v) cancel each other partially for intermediate fr
quencies, but give rise to an additional peak at higher
quencies. Our calculation shows that for sufficiently hi
frequencies, such an additional peak will appear in all cur
in Fig. 3~a! except for the one without capacitance.

In Fig. 3~b!, we show the effect of the capacitance on t
imaginary part of the admittance. We see that with the
pacitancescG and cL and cR , added, respectively, the low
frequency part of the curves of ImGLL(v), move downward,
keeping ImGLL(0)50. Similar to ReGLL(v), there is no
effect ofcd on ImGLL(v) for low frequencies. Furthermore
6-5
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FIG. 1. Plot of the real~a! and imaginary~b! parts of the admit-
tance for a double dot against the frequency.e050, mL5mR5m
52, Gf50, kT50.01, andV1251 ~solid line!, 2 ~dashed line!, 3
~dotted line!, and 5 ~dot-dashed line!. The admittance is measure
in units of e2/\, and all energies in units ofG5GL5GR. ~b! Real
part of the admittance form55.5 andV1255; the other parameter
are the same as in~a! and~b!. Here all capacitances are taken to
zero.
03530
when the capacitances are added one by one, we find tha
low frequencies ImGLL(v) moves down monotonically. In
addition, if we use capacitance values different from 0.
our calculation shows that with an increasing value of
capacitance the curve of ImGLL(v) move down monotoni-
cally for low frequencies. Therefore, we conclude that
adding capacitancescG and cL and cR into the system, or
increasing the values of the capacitances, the effective
pacitancece f f;2dImGLL(0)/dv increases, but the interdo
capacitancecd has almost no effect on low-frequency adm
tance. In Fig. 3~c! we compare the admittances betwe
cases with and without electron-phonon interaction, in

FIG. 2. Plot of the admittance against the frequency of a dou
dot with and without electron-phonon interaction for low tempe
ture @T50.01 ~a!# and high temperature@T550 ~b!#. e050, mL

5mR5m52, and V1255; and Gf50 ~open circles!, 1 ~solid
circles!, and 3 ~solid squares!. The admittance is in units ofe2/\,
and all energies are in units ofG5GL5GR. Here all capacitances
are taken to be zero.
6-6
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EFFECT OF PHASE BREAKING ON AC TRANSPORT . . . PHYSICAL REVIEW B 65 035306
FIG. 3. Plot of the real~a! and imaginary~b! parts of the admit-
tance against the frequency in the presence of capacitances fcd

5cL5cR5cG50 ~solid line!, cd50.01, and cL5cR5cG50
~dashed line!, cG50.01 andcL5cR5cd50 ~dotted line!, cL5cR

50.01 andcd 5cG50 ~dot-dashed line!, and cd5cL5cR5cG

50.01 ~double solid line!. The other parameters aree050, mL

5mR5m52, Gf50, T50.01, andV1255. The admittance is in
units ofe2/\, all energies in units ofG, and capacitances in units o
e2/G. ~c! A comparison of admittances between cases with
without electron-phonon interaction.
03530
presence of capacitance. One finds that the effect of
electron-phonon interaction is similar to the case without
pacitances.

IV. CONCLUSIONS

By calculating nonequilibrium Green’s functions, we d
rived a formula for the linear ac response for a double-
system with electron-phonon interaction, in the presence
small ac bias. We have taken into account the capacitan
between the leads and dots, between gate electrodes
dots, and dots and dots, and included the displacement
rents. The internal time-dependent potentials in the dots
included, and it is determined self-consistently. We theref
reach an overall charge and current conservation. Our res
spontaneously fulfill the invariance of current and charge
sponses under an overall potential shift. We have compu
the ac conductance for bothGfÞ0 ~with electron-phonon
interaction! and Gf50 ~without electron-phonon interac
tion!. The double resonant structure of the ac conductanc
observed at low temperature in our results. We find that
resonant peak forGfÞ0 is much smaller than that forGf
50, which means that the peak is suppressed by elect
phonon scattering. At high temperature the electron-pho
interaction is also found to have an obvious effect on the
conductance. Furthermore, we have studied the effect of
capacitance on the ac conductance, and found that for s
frequencies the capacitances have less effect on the rea
of the admittance; however, except for the dot-dot capa
tance they have an obvious effect on the imaginary part.
adding the gate-dot capacitancecG and the lead-dot capaci
tancescL andcR into the system, and in creasing their va
ues, we find that the effective capacitancece f f5
2dImGLL(0)/dv will increase; however the dot-dot capac
tancecd has almost no effect on low frequency admittanc
For high frequencies all the capacitances have consider
effects on the ac conductance.

APPENDIX: EQUATIONS FOR NIJ „v… AND Ni a„v…

Using the equation Qi(v)52 ie*(dv̄/2p)dGii
,(v̄

2v,v̄), we can obtain the following two coupled equatio
for the ac chargesQi(v):

Qi~v!5 (
J51,2,L,R

e2@FiJ~v!1FiJ* ~2v!#VJ~v!

1 (
j 51,2

F i j ~v!Qj~v!, ~A1!

where

F11~v!5E dv1

2p
G11

r ~v11v0!G11
r ~v1!@ f L~v1!GL

2 iS1f
, #G11

a ~v1!1V12
2 E dv1

2p
G11

r ~v1

1v0!G11
r ~v1!G22

r0~v1!@ i f R~v1!GR

1S2f
, #G22

a0~v1!G11
a ~v1!,

d
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F12~v!51V12
2 E dv1

2p
G11

r ~v11v0!G11
r0~v11v0!G11

r0~v1!

3@ f L~v1!GL2 iS1f
, #uG11

r ~v1!u2

1V12
2 E dv1

2p
G11

r ~v11v0!G11
r0~v11v0!G11

r0~v1!

3@ i f R~v1!GR1S2f
, #G22

a0~v1!G11
a ~v1!

1V12
4 E dv1

2p
G11

r ~v11v0!G11
r0~v1

1v0!G11
r0~v1!G22

r0~v1!@ f R~v1!GR

2 iS2f
, #G22

a0~v1!uG11
a ~v1!u2,

F1L~v!5GLE dv1

p

f L~v11v!2 f L~v1!

v

3G11
r ~v11v!G11

a ~v1!,
ue

tt.

an
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F1R~v!5GLE dv1

p

f L~v11v!2 f L~v1!

v

3G11
r ~v11v!G22

r0~v11v!G22
a0~v1!G11

a ~v1!,

and

F11~v!5DE dv1

2p
G11

r ~v11v!G11
a ~v1!,

F12~v!5DV12
2 E dv1

2p
G11

r ~v11v!

3G22
r0~v11v!G22

a0~v1!G11
a ~v1!.

Analogously,F2 j , F2a (a5L,R), andF2 j can be obtained.
From Eq. ~A1! we therefore obtain Eq.~15!, in which
NiJ(v) reads

NiJ5 (
j 51,2

@ I 2F# i j
21@F jJ~v!1F jJ* ~2v!#, ~A2!

whereJ51, 2, L, andR, andI is a 232 unit matrix.
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