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Effect of phase breaking on ac transport through a quantum dot dimer
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The ac response of a coupled double quantum dot system involving a phase-breaking effect is studied. We
calculate the ac conductance based on the nonequilibrium Green’s-function formalism. Some parasitic and gate
capacitances are included in our model, thus the displacement current is considered, and the overall charge and
current conservation are fulfilled. In our results the double resonant structure of the conductance is observed.
We find that the electron-phonon interaction has a significant effect on the ac conductance both for low and
high temperatures. Due to the phase-breaking effect of electron-phonon scattering, the resonant conductance
peak is suppressed very seriously, and the second peak of the ac conductance may disappear completely,
However, for the nonresonant situation, the conductance is enhanced for small frequencies. Furthermore, we
study the effect of the capacitances on the ac conductance, and find that, for small frequencies, the capacitances
have a small effect on the real part of the admittance. On the imaginary part of the admittance, all the
capacitances except for the interdot capacitance have a considerable effect. For high frequencies all the
capacitances have a considerable effect on the ac conductance.
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[. INTRODUCTION frequency of the ac field exceeds the inverse of the time an
average electron spends inside the deviceery recently,
ac quantum transport properties of quantum dot systemila et al. studied quantum ac transport in coupled quantum
have attracted much research attention, bottdots!* They predicted that there are peaks in the average
experimentally® and theoreticallj=!” It has been made tunneling current which are observable in both the amplitude
clear that under a time-dependent potential the conductioand phase shift of the ac current. As far as we know, how-
electrons flowing through a mesoscopic semiconductor deever, there has not yet been a discussion of electron-phonon
vice, say a quantum dot, will develop an ac sidebandnteraction(or the effect of phase breakingh ac transport
weighted by a Bessel function of the amplitude and fre-through a tunneling-coupled double-dot system.
guency of the external alternating field. In time-dependent In this paper we study the linear ac response of a coupled
processes, the phase coherent transport of electrons will liouble quantum dot in the presence of electron-phonon in-
affected by the ac-driven forces differently in different parts.teraction, based on the nonequilibrium Green’s-function for-
In fact, the electrons may absorb external energy to modifymalism first proposed by Jaules al. for single-quantum dot
their phases, and some nonlinear effects, such as photosystem$ We calculate the Keldysh Green’s functions for a
assisted tunnelifg® and electron pump¥, will exhibit. double dot by the method of the equation of mot{@OM)
Anantram and Datfastudied the effect of phase breaking and contour integration. The EOM was discussed in detail in
on the ac response of a single quantum dot. However, theRef. 19 while the contour integration was discussed, for ex-
results showed that there is hardly any difference in the zercample, in Ref. 20. We take the phase-breaking process into
frequency ac conductance of the one-level resonantaccount by including the electron-phonon interaction self-
tunneling device between cases with and without electronenergy in the Dyson equations for the nonequilibrium
phonon interaction, no matter at high or low the temperatureGreen'’s functions. In our model some parasitic capacitances
They assumed that in a mesoscopic conductor there is no and the internal time-dependent potential in the dots are in-
potential. This leads to the supposition that, in such a twoe¢luded, and the internal potential is determined in a self-
probe system, the left ac current flowing from the left contactconsistent way. Thus, the displacement current is considered,
into the mesoscopic conductor is not equal to the right curand the overall charge and current conservations are fulfilled.
rent flowing from the conductor into the right contact. Re-We also demonstrate the gauge invariance of our result, that
cently, many experimental and theoretical studies were dds, current and charge responses are invariant under an over-
voted to analyses of the effects of a time-dependent field oall potential shift.
the resonant tunneling through coupled double quantum Following the work on a single quantum dot in Ref. 7, we
dots!~1* While photon-assisted tunneling is intrinsically a express the general current formula for a coupled double dot
coherent phenomenon, the electron-phonon interaction wilin terms of various Keldysh’'s Green’s functions, and then
lead the ac conductance to deviate from the dc value as tHmearize the ac current in the case of a small ac bias. It is
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more convenient to use double-energy coordinates in the cakpproximatior’. We also assume that the tunneling couplings
culation of various Green’s functions and self-energiesdo not depend on the dot levels.

Double-energy coordinates are also useful in the description Applying a sinusoidal potential ,cos(t) to the a con-

of scattering processes by a time-dependent potential. Weact causes the electron energies in the contact to vary as
numerically compute the ac conductance in various cases @f(t) = €., +eV,cost+¢,), wherea=1 and 2. This ac
frequency and tunneling coupling. Our results show that theotential results in a time-dependent energy in the two dots:
electron-phonon interaction has a significant effect on the ae’(t) =+ A;cosqt+¢) (i=1 and 2). The ac tunneling
conductance both for low and high temperatures. In our recurrent can be calculated based on the Keldysh Green'’s func-
sults a double-resonant structure of the ac conductance ifns and retarded and lesser self-energies in the two dots,
observed at low temperature. Due to the phase-breaking ef-

fect, the resonant conductance peak is suppressed very seri- e

ously; the second peak of the ac?conductaﬁge may disa)é)pear ‘JIFF?)(U: ﬁTrJ dtl{Grl(Z),l(Z)(t'tl)zf(R)(tl't)
completely, and nonresonant conductance is enhanced for

small frequency. Furthermore, we have studied the effect of +GI2) 1 bt 2R (t1:t)

parasitic and gate capacitances on ac conductance, and found v < G

that for small frequencies the capacitances have a small ef- ~2(®r (LG et

fect on real part of the admittance. On the other hand, the _EL(R)(t!tl)Gf(Z),l(z)(tlit)}i 3)

capacitances, apart from the interdot capacitance, have a con-

siderable effect on the imaginary part. For high frequenciesvhere

all the capacitances have considerable effects on the ac con- _ -

ductance. Gim,im(D)=1(dj,(0)din(1)), 4
In Sec. Il a general formula for the linearized ac current in

the double dot is derived. The numerical results for the ac  Gimin(t)= =1 8(D){{din(1),d[,(O)})  (i=1,2. (5)

conductance are presented and discussed in Sec. lll. Secti

e tunneling self-energies are related to the free-particle
IV is devoted to our main conclusions. 9 9 P

Green’s functions in the electron reservoirs and the tunnel

couplings between the contacts and dots:
Il. GENERAL FORMALISM

We consider a tunneling-coupled double dot connected to  3™&=(t t')=V* vV > gi®<(t,t') (a=L,R). (6)
two electron reservoirs by tunnel coupling, which is intro- ’ k
duced as a perturbation. Alternating fields are applied to th_%quation (3) is valid in general, even in the presence of

electron reservoirs in addition to a dc voltage. The system i§ong electron-electron and electron-phonon  interactions,
described by a Hamiltonian and it is applicable to quantum dots with multiple energy

levels. As a solvable example, in the following we shall re-
H= D, fka(t)ClaCka+Z (t)d! di, strict ourselves to the case in which each dot contains only
in one energy level, i,em=n=1 in the above equations.
By the method of the equation of motion and Keldysh’'s

+ 2 Vimon(dl dpn+H.c)+ > [V n(cl din+H.c) contour integration, the retarded and “lesser” Green’s func-
nm kon tions in the two dots can be calculat€d,

yael,

+ VR,n(CERdZn'i_ HC)] + He|_ph y (1) G:'I — G;'io_'_ G:'iOV]-ZG%VlZG!’ (7)

I
where cla (Ckn) is the creation(annihilation operator for
electrons in ther reservoird!. (di,) is the electron creation Gﬁ=GﬂEi<Gﬁ+GirivlgG%ElfG?—,OVuGﬁ : )
(annihilatior) operator for thenth level in theith dot, _
VL (VR) is the tunne"ng Coup"ng between dot 1 (2) and Wherei =1 and 2 and :3_| (We Sha” use th|S preSCI’iptiOI’l
the left (right) reservoir, andVy, is the tunneling coupling below in this paper andG[ is defined by
between the two dots. The Hamiltonian for the electron-

phonon interaction is of the form Gi'=gP+gl’2GP (i=1,2), 9
In the above equatio{ ™ ~=3]"~+X[;"~ [i=1 (2
Herph= > M) 4dindin(big+bly) corresponds tar=L(R), and we shall follow this prescrip-
mn.q tion below], whereX' , the retarded self-energy due to the
, tunneling, is given by Eq(6), while 3"~ the self-energy
+m2nq M&), qd2mdan(bagt by, (2 due to the electron-phonon interaction in thie dot, is given
. by

in which b, (by,) annihilates a phonon in dot @). In

writing Eg. (1) we have neglected the time dependence of the > <t )= — MDD > <(t 1G> <(t.t'
tunnel couplings between dots and reservoirs and between g (L) 2q (Mg)Dig (LEG (L),

the two dots. At a small ac bias this is a valid (10
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. FL
Siatt)= —% (MD)2[Gj (1,t)Dy(t,t") 53[(“5(@):':12L ] Glry(@)Vi(@) = 7= Quz)(@)
13
+Gii(tLt)Di(t,t") + G (t,t")Dig(t,t")] (13
and
(i=1,2), (11) —
o do _ — _
whereD[;”<(t,t') is the phonon Green’s function in the dot Qi(w)= —|eJ 27 9Ci (0~ 0,0) (14
i and Mgﬁ is the phonon coupling. Finall;gi’io are the free
particle Green’s functions in the absence of tunneling and B 2
electron-phonon interaction. Unlike the case of dc bias where _I=1,22L,R eNii(@)Vi(w), (19
the Green’s function&;*~ have simple expressions in en-

ergy representatiort€,in the case of ac bias they are much Where Vl(w):VI[”5(‘”+wo)e'¢'+775(“’_0“’0)e '] s
more complicated but can be calculated in principle by iterathe Fourier transform o¥,(t). In Eq. (13), G| (g); are given
tion from Egs.(7) and (8). below:

In discussing the linear response to a sinusoidal driving e ( do
signal, it is convenient to transform the double-time coordi- GEl(w)=FLgf _l[ifL(wl)Grll(wl+ w)Ghy(w7)
nates to double-energy coordinates. The Fourier transform 2m
from double-time coordinates to double-energy coordinates tecloo— )] (16)
follows the prescription ' '

2

0 N el r ro
F(wlvw2):f fdtldtzf(tl’tz)e—i(hmltl—ﬁwztz)_ Glo(w)=T gvlz ﬁ['fL(wl)Gn(lerw)Gn(wl

ro r _
For small ac voltages, we can linearize the (gifiht) current +wo)Gyy(@1)Gyy(wy) +C.C(0——w)], (17)

flowing from the left(right) reservoir into dot 12), obtained € [ dwy fL(w1+0)—F,(wy)

from Eq. (3) about the steady state, to be GEL(w):FLg 5 {Gl(w1+ o)
e(d
5Jzun(w)=7lf%52;(—wl—w,—wl)[G{i(wl-f-w) ~[Ghy(w)]*}, (18)
a r < and
—Gi(0w) ]+ 8Gji(— 01— w,— w1)2 (01) 60 (@)=0 19
w)=VU.
~ 3G (~ w1 w,~ 03 (w1 + ) - ,
The symbol c.co— — ) in Egs.(16) and (17) is used for
+il*8G; (01— w,01) (a=L,R). (12 convenience, and it means that we chaag&® — w in the

) _ first term and then take the complex conjugate. Similarly,
In Eqg. (12) Green’s functions and self-energies that haveGo

. . “Gp(w) can be written.

only one energy coordinate are the steady-state functions In the above equations
corresponding to the dc bias. We shall follow this prescrip- '
tion in the following. The steady-state retarded self-energy 1
3" (w) is assumed to be of the form (i/2)I"* [whereT'® Glo(w)= . : (20
=27p(0)|V,]], this is valid in the wide-band limit. The four w— o+ I—(F“+ T,
terms on the right-hand side of Ed.2) have different physi- b2 "¢
cal meanings. The effect of oscillating an electron reservoir
at a frequencyw leads to sidebands+7% w for each energy ; 1
E in the contact. The first term here represents the correlated u(w)= i ’
injection into the device due to electrons at enerdiesnd w;— €+ E(F"+F1¢)—V§26rzg(w)
E+7%w. The second and third terms represent injections from
the contact at one energy to a changing density of states iand
the device. Finally, the fourth term represents an injection
into the contact due to changing charge in the device. We ; 1
will use the notations to denote the first-order changeue Calw)= : (22
to the small ac potential,) of all important quantities. For 01— €9+ E(FR+ F2¢)—ViZG’1‘{(w)
example,6Gj;, 8G;, ..., and so on. Wassume that the
phonon Green’s function are dispersionless. are steady-state Green’s functions. Al€, () are the ac

To calculate the current response, we expand the Green&harges in the two dots, and; ;(w) can be obtained by
functions in the formula of current to first-order term of the linearizing Eq.(8) and then substituting into Eq14). The
external ac voltage/, and internal potentiaV,(=A;/e),  equations of calculatindy; ;(w) are given in the Appendix.
and then we have One more quantity needs to be determined before we can

(21)
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proceed to obtailN; ;(w). It is the steady stat@ue to the dc  teraction are not included. Next we consider the contribution
biag less the self-energ§; (). By assuming that the pho- of capacitive currents and the long-range Coulomb interac-
non Green’s functions are dispersionless, this quantity igion by introducing capacitances between the quantum dots
given by and between the dots and the contacts and the gate electrode;
hence we determine the internal potentia|(w) self-

do — . consistently. Using a nearest-neighbor capacitance approxi-
Eﬁp:DJ ZGE(‘U) (i=1,2). (23)  mation, we have
Equation(23) consists of two equations£1 and 2), and Qu(w)=C[Vi(w)—V (w)]+CyVi(w)—Vy(w)]

both GT; and G5, involve 27, and X5,. The steady-state B

Green’s functionsG;; (w) were given in Ref. 18. Equation +ColVi(w)=Ve(w)],

(23) can be expresse_d as a system of two linear equa_t|ons in Qu(@)=Cr[Va( @) — Va(®)]+ Co[ Vol @) — Vi(@)]

3, In the case of high temperature, where the Fermi func-

tions can be set td, it is found from Eq.(23) that 3;; +Cg[Va(w)—Vg(w)], (26)

;'DIZ' Forhgene;:]al 'lnefrpplieratg:es, lf(_)r S|mpl;ct|tyt\r/]ve gorr]1t5|der hereC, (Cg) is the capacitance between the lgfght) dot

the tcase \IN erell ebet ermt|h e\I/eftls eqL:a % te “gth’ eTn%/nd the left(right) leads,C, is the capacitance between the
Ie tunne coupling be We?? tﬁ el ﬂ?an urq_ho and e €l ts and a common gate electrode, &hds the capacitance

electron reservoir is equal to the right one. Thus &3 is between the two dots. Combining Eq&6), (13), and (14),

reduced to we obtain the total current response
D(do T .
_i21<¢:§f g_:[fL(w)rL_igf¢] 8L (r)(@) =8I (R)(@) —iwCl (R VL(r) (@)~ Vi) ®)]
1 =2 GLR).o(@)[Va(®) = V()] (27)
X [e3
(0—€3+Vyp)%+ %(FL+1~1¢)2 therefore, we obtain the frequency-dependent admittance
e’ e’
1 GLa(@)=GL(0) 84~ 7 TNy o(@) =i - wey
+ . h h

_ 1
(0= €=Vi)?+ Z(T+T )2
X

5afL_; (Ml)lj(w)[FLNja(w)_Cja]}
Equations(13)—(15) give the current and charge response

to the applied ac voltag¥ ,(w) and the internal potential +2
V;(w). When the ac perturbatioaV,(t) and the induced 7
internal potentialA;(t) are transformed to energy coordi- L
nates, they must satisfy the relationA () X[INjo(@) = Cjal, (28
=[A(—)]*,Ai(w)=[Ai{(—w)]*. Itis easy to see that the whereM (w) is the matrix

positive and negative frequency parts are complex conjugate

eZ

Gli() hI*NMwﬁ(M—Hﬂw>

to each other: M;j(@)=C;;—T"Njj(w), (29
Goi(w)=[Gy(—w)]* 1=12L,R. with
This is expected, as the ac current is a real-time function. Cqi1=(c +cgtcg), Cio=—cCy, (30
Furthermore, it is easy to show thﬁlﬂl(w) and Q; | (w)
fulfill the invariance of current and charge responses under C21=—Cq, Cp=(CrtCyt+Cq), (32)
an overall potential shift; that is
and
> GY%(w)=0 (24) Cia=—CL8i1010 CROI20Ra - (32)
1=12L,R . . .
Herec,=C,/(e*T") (I1=L, R, d, andG) is capacitance in
and unit of e/T't. Gg,(w) can be written similarly. Our result
fulfills the overall current conservation, that i$J, ()
Qil(w):O- (25) +5JR(w)+5JG(w)=O.
1=12L,R

- . . I1l. NUMERICAL RESULTS
Buittiker et al® indicated that such a time-dependent tun-

neling response should ensure the overall charge and current In this section we present some numerical results for the
conservation. In our above calculation, the piled-up chargeac conductance at equilibriuni( = wg) based on Eqg13)-
on the tunneling junctions and the long-range Coulomb in{23) and (28). In the wide-band limit, the tunnel couplings
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I'* (e eL,R) are energy-independent constants, and we as- In Fig. 2, we plot the admittanc&,, againstw for a
sume thatl'*=TR=T for the double quantum dot in our double quantum dot with electron-phonon interactidf, (
numerical calculations. We also assume that the energy lev=1 and 3 and also in the perfect screening case, where
els of the two dots are equal, i.e'g:e'gzeo_ Vi,=5 and u=2. In comparison with the case of free
First we consider the perfect screening casg=(cq electron—phonop interaction, in Fig. 2 we also plot the curves
=cy=ce=0)1% In Fig. 1 we plot the low-temperature for I';=0. In Fig. 2a) we present the results for low tem-
(kgT=0.01) ac conductance of a double dot withoutPerature T=0.01). From this figure, we find that for a
phonon-electron interaction against the frequeadgpr vari-  double quantum dot with electron-phonon interaction both
ous interdot tunnel couplingg,,. The energy levels of the real an(_d imaginary parts &, («) display pehawors S'm"af
two dotse, are set to Qall energies are measured in units of to that in the case df ,=0. However, their resonant "’.lmp“'
T'), while the identical left and right Fermi levelss(= tudes are seriously _suppre;sed by_ the phase-breaking gﬁect
. R of electron-phonon interaction, while for small frequencies
=K are taken to be_ 2. In Fig.(8) we present thg real part the nonresonant conductance@e(w) increase ad’,, in-
of the diagonal admittance R&, (w)] as a function ofw

creases. Qualitatively, this phenomenon is in agreement with
for Vi,=1, 2, and 3. The ac conductanceuat 0 should be  he results of Ref. 7, and our result is more prominent than

equal to the dc conductance. We see thatgs=1 and 3 tnejrs. We believe that this is because we have taken the
RE G, (w)] increases a® increases. It displays a peak at internal potential of the dots into account. It seems that the
w~2 for V=1, and two peaks with a distance of about 4 suppression to the second resonant peak is more serious, and
for V,=3, but forV,,=2 it decreases monotonically. This for I' ;=2 both the second peak of Bg () and the sec-

is not surprising, because the so-called photon-assisted tugnd valley of InG,,(w) almost disappear. On the other
neling tends the conductance toward a resonant value wheand, it is noted that the phase-breaking effect causes the
the Fermi level deviates from the resonant energy ( effective capacitance, i~ —d[ImG, (0)]/dw to be re-
+V1p); however forV;,=2 the Fermi level is right at the duced; whenl" ;=2, the capacitive behavior of the admit-
resonant energy. According to the Fermi golden rule, the tw@ance almost changes completely to inductive.

peaks of REG  (w)] should appear at the frequeney In Fig. 2(b) we present the results for the case of high
=|V1o* u| (hereey=0). However, as we pointed out in Ref. temperature T=50>T). One can see that, no matter
16, the Fermi golden rule alone cannot explain the currenfyhether we include electron-phonon interaction, the peak
behavior here, because the time-dependent voltages make t§@ucture disappears, and with increasing frequency
effective density of states dependent on the frequency. IReG,  (w) decreases and 18], (w) increases monotoni-
other words, in Eq(12) the terms includings%, can be cally. Furthermore, 6, , () is positive for all frequencies.
explained by the Fermi golden rule, but the other terms canSo for high temperature the admittance always shows an in-
not; this reflects the change of the effective density of stateguctive behavior for the perfect screening case. Although the
in dots. Thus the position of peaks would deviate frdf,  frequency dependence of the admittance is qualitatively
*=u|, and delay to a somewhat higher frequency. @5  similar for I',=0 andT',#0, the influence of the phase-
=1 only one peak appears, and fé{,=2 the second peak breaking effect on the admittance is still significant. This
also cannot be observed and becomes a “shoulder” structurgoint is different from the results of Ref. 7.

aroundw~4. In general whenu=V,, the second peak is Next we investigate the capacitance effect on the admit-
difficult to observe. In this case the Fermi level is outside thetance of a double quantum dot for low temperature. In Fig. 3,
two peaks of the density of stat¢®OS) in the dots. Then we present the results for the different capacitances consid-
the frequency needs to cross over one of the DOS peaks tared. Figure @) shows that none of the capacitances has an
approach the position of the second peak; thus the height @fffect on the real part of the admittance for small frequen-
the second peak is much smaller than that of the first peakies; this is expected. For intermediate frequencies the gate
This phenomenon can be seen from Figc)lWe also  capacitance has the largest effect compared to other capaci-
present the imaginary parts of the diagonal admittanceances, and the effect of the capacitances between the leads
Im[ G (w)]. As expected, all curves show [@,  (0)]=0, and dots is also quite large. However, the interdot capaci-
except that the curve o¥/,=2, ImM[G  (w)], goes to a tance has almost no effect for small frequencies. For higher
negative value from zero when the frequency increases frorfrequencies it has a small effect. It is interesting to note that
zero; this shows a resistive-capacitive behavior. For the cashe effects of different capacitances on the value of
of Fermi levels at the resonant energW,(=2), ReG, | (w) cancel each other partially for intermediate fre-
Im[G_.(0)] is always positive; this shows a kinetic- quencies, but give rise to an additional peak at higher fre-
inductive behavior. However, our calculation shows that forquencies. Our calculation shows that for sufficiently high
a sufficiently large gate capacitandgd) and/or lead contact frequencies, such an additional peak will appear in all curves
capacitance € ,gr), Im G, (w)] can be negative for small in Fig. 3(a@) except for the one without capacitance.
frequencies even jfi=*V,,. This is in agreement with the In Fig. 3(b), we show the effect of the capacitance on the
results of Ref. 10 for a single quantum dot system. Similar tdmaginary part of the admittance. We see that with the ca-
RE G, (w)], for IM[G_ (w)] there are also two resonant pacitancexg andc, andcg, added, respectively, the low-
frequencies, which is slightly less thii;,+ u|; in contrast, frequency part of the curves of & | (w), move downward,

the curves of IMG,(0)] show valleys at the resonant fre- keeping InG , (0)=0. Similar to R&, (w), there is no
guency. effect ofcqy on ImG | (w) for low frequencies. Furthermore,
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FIG. 2. Plot of the admittance against the frequency of a double
dot with and without electron-phonon interaction for low tempera-
ture [T=0.01 (a)] and high temperaturET=50 (b)]. €,2=0, wu_
=ur=p=2, and V;,=5; and I'y=0 (open circley 1 (solid
circles, and 3(solid squares The admittance is in units @/#,

and all energies are in units 6f=I'"=TR. Here all capacitances
are taken to be zero.

when the capacitances are added one by one, we find that for
low frequencies I | (w) moves down monotonically. In
addition, if we use capacitance values different from 0.01,
our calculation shows that with an increasing value of the
capacitance the curve of & (w) move down monotoni-
cally for low frequencies. Therefore, we conclude that by
adding capacitancesg and c, and cg into the system, or
increasing the values of the capacitances, the effective ca-
pacitancecy s~ —dImG, | (0)/dw increases, but the interdot

part of the admittance for=5.5 andV;,=5; the other parameters Capacitancey has almost no effect on low-frequency admit-
are the same as i@ and(b). Here all capacitances are taken to be tance. In Fig. &) we compare the admittances between

Zero.

cases with and without electron-phonon interaction, in the
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presence of capacitance. One finds that the effect of the
electron-phonon interaction is similar to the case without ca-
pacitances.

IV. CONCLUSIONS

By calculating nonequilibrium Green’s functions, we de-
rived a formula for the linear ac response for a double-dot
system with electron-phonon interaction, in the presence of a
small ac bias. We have taken into account the capacitances
between the leads and dots, between gate electrodes and
dots, and dots and dots, and included the displacement cur-
rents. The internal time-dependent potentials in the dots are
included, and it is determined self-consistently. We therefore
reach an overall charge and current conservation. Our results
spontaneously fulfill the invariance of current and charge re-
sponses under an overall potential shift. We have computed
the ac conductance for both,#0 (with electron-phonon
interaction and I' ,=0 (without electron-phonon interac-
tion). The double resonant structure of the ac conductance is
observed at low temperature in our results. We find that the
resonant peak fol",#0 is much smaller than that fdr
=0, which means that the peak is suppressed by electron-
phonon scattering. At high temperature the electron-phonon
interaction is also found to have an obvious effect on the ac
conductance. Furthermore, we have studied the effect of the
capacitance on the ac conductance, and found that for small
frequencies the capacitances have less effect on the real part
of the admittance; however, except for the dot-dot capaci-
tance they have an obvious effect on the imaginary part. By
adding the gate-dot capacitancg and the lead-dot capaci-
tancesc, andcg into the system, and in creasing their val-
ues, we find that the effective capacitanoe ;=
—dImG, | (0)/dw will increase; however the dot-dot capaci-
tancecy has almost no effect on low frequency admittance.
For high frequencies all the capacitances have considerable
effects on the ac conductance.

APPENDIX: EQUATIONS FOR N,;(@) AND N; ()

Using the equation Q;(w)=—ief(dw/27)G; (w
—w,w), we can obtain the following two coupled equations
for the ac charge®;(w):

Qlw)= >

J=12L,R

e’[Fiy(0)+Fi3(— )]V (@)

+ 2 Q@) (A1)

where

FIG. 3. Plot of the reala) and imaginary(b) parts of the admit-
tance against the frequency in the presence of capacitanceg for
=c =Cr=Cg=0 (solid line, c4=0.01, and c,=cr=cg=0
(dashed ling c=0.01 andc, =cg=cy=0 (dotted ling, c_ =cg
=0.01 andcy =cg=0 (dot-dashed ling and cy=c =cr=Cg
=0.01 (double solid ling. The other parameters ak=0, wu_
=pur=p=2, I';=0, T=0.01, andV,=5. The admittance is in
units ofe?/7#, all energies in units of , and capacitances in units of
e’T". (c) A comparison of admittances between cases with and
without electron-phonon interaction.
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2 do, r ro ro
Fiw)=+V1, ﬁGn(wlﬁLwo)Gll(w1+wo)G11(w1)

X[fL(wl)FL_izf¢]|Gr11(w1)|2

2 dwl r ro ro
+V1i, ﬁell(w1+wo)611(w1+wo)Gll(wl)

H R < a0 a
X[|fR(a)1)F +22¢]622(w1)611(w1)

dwl

Vi J 25 Gt @) i,
+0)Gi}(w1)GhY w)[ fr(wy) TR

'22¢]Ggg(w1)|G11(w1 %,

do; fl(o;+w)—f (w)

(O]

Fi(0)=T J

X Gly( w1+ )Gy wy),
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do; fl (ot w)—f (0)

(O]

Fin()=T f
X Gl w1+ 0) G014 ©)Gig(w1) Gy wy),

and
dw,
Dy(w)= DJ oy Giy(w1+ 0)Giy(wy),

1

dw
‘1’1z(w)=DV§2f ey

Grll(a)l-i- )

ha( w1+ ) G5 (w1)Giy(w1).

Analogously,F»;, F,, (a=L,R), and®,; can be obtained.

From Eq. (A1) we therefore obtain Eq(15), in which
N;;(w) reads
Nu=j2212[|—@]al[FjJ<w>+FrJ<—w>], (A2)

whereJ=1, 2,L, andR, andl is a 2X 2 unit matrix.
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