PHYSICAL REVIEW B, VOLUME 65, 035305

Anomalous size dependence of degenerate four-wave mixing due to double resonance
of internal field and third-order susceptibility
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The degenerate four-wave mixif@FWM) of weakly confined excitons in a mesoscopic thin film is studied
by means of the nonlocal theory of nonlinear response, where the self-consistency between the induced
polarization and the radiation field is considered. As a result, it is elucidated that the DFWM signal is greatly
strengthened due to the double resonance of the internal field and the energy denomingfdrsaffecting
both the incident and signal beams, and that the enhanced nonlinear response is originated from the transition
associated with the nondipole type polarization pattern. The result clearly shows that the consideration of the
nonlocal and self-consistent description of the response field is essential, which is in a striking contrast to the
nonlinear response described in the long wavelength approximation.
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[. INTRODUCTION wherey is the linear susceptibility. It is recently elucidated
B%at the nonlocality strongly affects the spatial structure of

In the last decade, the size dependent nonlinear respon i field th h th i ist b
of confined excitonic systems has been an interesting subje € resonant response ne rough the sefl-consistency be-
tweenE(r) and P(r) even when the sample size is much

of study, and a lot of experimental and theoretical works i
have been made on this problénd. Nowadays, it is well smaller than the wavelengtfi.In other words, the internal

recognized that the size dependent spectral structure of tHi¢!ld has nano-scale spatial structure reflecting that of the
nonlinear susceptibility is attributed to the size dependenc#avefunctions of the confined c.m. motion of excitons.
of quantized excitonic levels and their oscillator strengths. InTherefore, a more general treatment is necessary about the
the strong confinement regime, for example, a shrinkage ofpatial and spectral structures of the internal field for the
the wave functions of electron-hole relative motion strength-comprehensive understanding of the size dependent nonlin-
ens the oscillator strengtfi;! which causes an enhancement ear response.

of the nonlinear susceptibility. On the other hand, for the Noting the nonlocal nature, we have clarified that the
weak confinement regime, the size linear enhancement of thesonant behavior of the internal field leads to a peculiar
third-order _susceptibility x® has been theoretically (resonant typesize enhancement of the pump-probe type
proposed;?® where the oscillator strength increases linearlynonlinear respons¥. This has demonstrated a new mecha-
with the size as long as wave functions of center-of-massism for the enhancement of nonlinear response. However,
(c.m) motion of excitons are coherently extended to thethe pump-probe measurement is comparatively difficult for
whole volume of a sample, and this leads to the same behayhe experimental check of the proposed effect. Thus, it is
ior of x(® per unit volume. As we see in these examplesgesired to examine how the size dependent behavior of the
most of considered mechanisms for the enhancement of NOftermg field works in other types of resonant nonlinear pro-
Il_near response are based on the Size dependence of the @8zses. In this report, we deal with the degenerate four-wave-
cillator strength. It is true that this picture is useful, to SOMEixing (DFWM) process, which is one of the most popular

extent, for the understanding of the size dependent nonline%rnd important nonlinear measurements, and in which a fur-
response. However, we should note that the concept of tht%er enhancement effect turns out to be’ possible

oscillator strength is valid under the limited conditions. A kev point in the present theorv is the nonlocal and self-
Namely, it can be used only when the long wavelength ap- yp P y

proximation (LWA) holds, and the LWA is no longer valid consistent description of the response field, which includes

when the sample size approaches the wavelength of the IigF'llile size dependent radiative cqrrectlop n the optlgal re-
with relevant transition energy in the medidfSuch a sponse and. the nanoscale Spatlf’:l| variation of the internal
wavelength can be much smaller than that in vacuum, anfi€!d- Following the nonlocal nonlinear response thé%&
should be determined by the self-consistency conditions witff@sed on the perturbation expansion of density matrix, we
the induced polarization and the electromagnetic field. Irincorporate the above effect in our calculations.
such a situation, the relationship between the induced polar-
ization P(r) and internal fieldE(r) should be described in a
nonlocal way. In the linear response, for example, it should Il. MODEL AND THEORY
be written as

Since we focus our interest on the weak confinement re-

gime, we consider the c.m. motion of excitons explicitly,

P(r):f x(r,r')E(rt)dr’, (1) keeping the relative motion fixedThe relative motion of
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excitons is reflected in the parameter of bare exciton— When we limit ourselves to the normal incidence, and
radiation coupling(e.g., LT splitting.] Thus, we suppose a when the excitonic Bohr radius is very small like that of
thin film consisting ofN discrete layers that confines the CuCl, we can very well reproduce the linear optical spectra
component of the c.m. motion along the surface normakven for the Wannier excitonic systems by this model choos-
direction. The excitation on each layer is specified by theing an appropriate parameter value of the LT splittifig.
layer numberj and the two-dimensional2D) vectork in  Furthermore, the simplicity of this model enables us to ex-
the lateral direction. If we restrict ourselves to the normalplicitly treat the whole functional space up to the two-exciton
incidence, the contribution to the optical response arisestates, which is enough for the evaluation of the nonlinearity
only from the k=0 one-exciton states, and th&€=0  arising from the state-filling and the biexciton efféttOn
two-exciton states consisting afk; and —k; one-exciton the other hand, neglecting the lateral energy transfer may
states. In the following treatment, we consider only the conchange the absolute value pf) near one-exciton resonance
tribution fromk, =0 subspace as the two-exciton states. Thifrom that of three dimensional materials because the en-
assumption corresponds to the neglectipthe lateral trans-  hancement effect ofy(® due to the finite transfé? is

fer of excitons andii) the lateral interaction between two changed(How x(® changes with the value of the transfer

excitons. energy is discussed in detail in Ref. And also the con-
The Hamiltonian of this model is tribution from the induced absorption by two-exciton states
becomes particular one reflecting the one-dimensional na-
N N ture. However, these changes of the quantitative value of
Ho= E soajTaj—bE (ajT_ 1aj+aJTaj—1) nonlinear signals never spoil our discussion on the essential
j=1 j=1 trend of the size dependence ruled by the resonant enhance-

ment of the internal field.
3> alal 2 Supposing the normal incidence of the pump and probe
B = 4j8j+1318)+1, ) beams, we calculate the self-consistent internal fields for

: _ o them with the standard expression of the exciton-radiation
wherea; anda; are the creation and annihilation operatorsinteraction Hamiltonian

of an exciton on thgth site,e, the excitation energy of each

site, b the transfer energy, and we introduce the virtual sites

j=0 andN+1 on which the amplitude of excitons is sup-

posed to be zero. The lattice constant is taken to be the unit , - .

of length. The third term, exciton-exciton interaction, is in- = _Z zp: Pi&i(p)exp—iwpt), @)
troduced to allow biexciton states. Though this model of in-

teraction is considerably simplified, some effects of biexci-

tons in DFWM can be examined qualitatively. As for one- whereé&(p) is the amplitude of internal field on tHéh site

exciton states, the eigenfunctions and eigenvalues can Rgith the frequencyw,,, P, is the polarization operator on the
written as same site, namely,

N

K ¥Lmem%> (3)
n) = | n))a; A
N+1% ! P=Ma+M*a/, 8

and

andM is the transition dipole matrix per site. We assume the
Ei(n)=go—2bcosK,, (4 pump intensity is limited within they® regime and the
probe beam is much weaker than that. Under this condition,
the third order polarization can be described, as a good ap-
proximation, in terms of the amplitudes of these beams cal-
culated within the linear response. Thus, we solve the Max-
Kn:m’ {n=12,...Nj. ®  wells equation including the linear nonlocal polarization

whose explicit form is

respectively, where the allowed valueskf are

As for the two-exciton states, we expand them as

M2
=2 Cifafallo), (6) P wp)= =

2\ sinKpp)FP
= E,(M—we—ilC

(€)

and calculate their eigenvalug&,} and the coefficients

{Ci(fj‘)} numerically, where we consider the Pauli exclusion

principle that prohibits double excitations on one site. Thewherep=1 and 2 representing the probe and pump beam
Pauli effect and the third term of right-hand side of E2).  frequencies, respectively,, is the unit cell volume. The
are the sources of nonlinearity of this model. definition of F,(P is
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1/2 M4 2 1/2
(=), i iE: (3) = | — i i
FP=| ) 2 sinKaDE(P), 10 PP(wg=T-|G5g) 2 sinKa
X| 2 A(Kp Ky o1, 0p)F @R R, (O
m

andI" is the phenomenologically introduced constant for the
transverse damping. We can rewrite the Maxwell equations )
to the linear simultaneous equations {ér,},%° which can be +§m: n,zm, B(Kn,Km,Knr Ky 01, 02)
analytically solved for the present model. The explicit ex- '
pressions of the Maxwell’'s equations and their solutions are XFp @F, OF O% lexg —iwd), (11)

given in the Appendix.

In terms of the internal amplitudes of the pump and probayhere we pick up the contributions of the mastply) reso-
beam, the third order nonlinear polarization with the fre-nant terms. The explicit expressions AfandB in Eq. (11)

guencywy(=2w,— wq) is written as are
AK. K" _ 1 1 1
(Kn K 01,02) = e 5 0 i) (@ @y 7 1) | Ex(M) — @y +1T  Ey(m)—w,—iT
N 1 1 1
(E1(nN) = (2wy— 1) = IT)(Epm— (02— @1) =T ) [E1(N) —wo—il" Ey(M) = +iT
(12)
and
B(Kpy Km Kn K s @1, 05)= >, 4CH clw) ! . !
. m : me M n'm nm Eﬂm_(zwz_wl)_lr Emm/+(a)2_(l)l)+irmm/
1 1 1
>< - - H - . -
Es(m)—w,—il' Ea(M—w+il') (E,—2w,—2iT)(Ey(M')—w,—il)
1
+ - - - —, (13
(BE1(N) = (2wy—wq) —IT)(E,=2w,;—2IT)(Ey(n") —w,—iT)
|
respectively, where dephasind are excluded because they do not have a quali-

tatively essential role in our considered mechanism for the

Eun=E,—Ei(n), (14 \eak excitation limit. The Maxwell’'s equation including the
B nonlinear polarizatior§ll) and the linear polarization for the
Enm=E1(n) =Ey(m), (19 signal frequency can also be rewritten into the linear equa-
o tion for {F,P} if {F, @} and{F,®)} are treated as given
I'm=7y(n=m), (16) " . . .
values. We solve this equation, and then obtain the signal
=T'(n#m), (17) fig!d outside the film by using the M.axwell’s boundary con-
ditions. The details of these calculations are also given in the
and Appendix.
— 1
cg{tgn:m >, CH(sinKIsinK I +sinK | ’sinK ).
MRS lll. RESULTS

(18

In this calculation, we introduce the phenomenological lon- The following numerical calculations are performed for
gitudinal damping constany, in addition tol'. However, the the Z3 exciton of CuCl that is a typical single component
nonlinear damping effects such as the excitation-induce@xciton. The present model is well applicable to this system
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FIG. 1. Intensity of the DFWM signal as a function of beam  FIG- 2. (@) Peak value of the DFWM signal intensity % The
energy and thicknessN). The lattice constant is 0.54 nm. The €M '”dUd'”gA(KZZ'KZz?“"“i) alone is consuzjeredb)_The peak
amplitudes of the pump and probe beams arexa@ V/m and valuzes 2°f 1“22( R )FZ_( 'A(K2,Kzi0,0))| (SO"dz line),
1.2¢10F Vim. (8 T (y)=0.06 (0.02) meV. (b T (y) |F2@FPFMI (broken ling, and|A(K K2 Q;,0,)[? (dotted
=0.12 (0.04) meV. line). The unit of the first quantity is arbitrary. The second quantity

is normalized by(pump intensity?x (probe intensity. The third

. . . . one is in unit of|[M|*/v,. (c) The DWFM spectra for the several
because the Bohr radius &§ exciton is considerably small | 4,5 ofN. The value ofF ,F,@F ,MA(K, K, 0,0) is taken

(about 0.6 nm We use the following parameters representasg pe constant in this calculation.
tive of CuCl: wr=3202.2 meV,b=57.0 meV, 4r|M|?/v,

=5.7 meV,e,=5.6, andé=195 meV, wheraw is the en-  the square bracket in E¢L1). The cause of the large DFWM

ergy of the bottom of exciton band fdf—cc, namely,wt signal at a particular size is the size-resonant enhancement of

=gg—2b. the internal field with a nondipole type spatial pattern as we
will discuss below.

A. DFWM spectra
Figure 1 shows the DFWM signal intensity as a function

of the beam energy anil for the two different dampin ; A ; i
gy ping of main contributions in the enhanced signal comes from the

values.(The smaller value of” is chosen from the fitting ) . ) - :
parameter in Ref. 21In both cases, there are several peakl®M INCIUdINGA(K2, Kz @y, ;) whose explicit expression

structures due to the excitonic transitions. Among thesd®’ @2=®1=® IS
structures, we should note a particular one around the lowest

B. Analysis of spectra

Evaluating individual terms in Eq11), we find that one

one-exciton resonance that is strongly enhanced at a particu- AK2, Kz 0,0)

lar size in the case of the smaller dampjiig. 1(a)]. For the AT 1

larger dampindFig. 1(b)], such an enhancement cannot be = )
seen. These peak structures are attributed to the transitions Y {E1(2)—0—iTYH{E1(2)— 0}?+T?]
between the ground and one-exciton states and between the (19)

one- and two-exciton states, whose resonance poles are in-
cluded in the nonlinear susceptibility. The former poles aren Fig. 2(a@), we show the size dependence of the peak value
included inA andB, and the latter are included only B in ~ in DFWM spectrum in case that we consider the contribution
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from this term alone. The cause of the large contribution of 3.204

this term is the enhancement®f component in the internal TN — o
field. (Note that{F} are nothing but the components of the
internal field when we expand it with the bases of quantized & | n=18
one-exciton states.This component is associated with the 2 ~ .
second one-exciton sta&,), and is enhanced at its reso- o s (O S : — 26 \
nance energy{Q,) including the radiative shift. The peak 5§ T N
value of|F,|? increases with the size, which is favorable for g T
the size enhancement of the DFWM signal. On the other & 25
hand, the radiative shift also increases with the size, which =24
decreases the value gf> at (), due to off resonance. As a =23
consequence of the balance of these two effects, the spectra ) =22

-

peak of the DFWM signal has a maximum value at a par- 3.201
ticular size. This situation is explained in Figb?, where we 40
show the size dependence of the peak values of Thickness (V)
|F,AF,F,M)|2 (internal field and|A(K,,K5;0Q5,0Q5)|%,
and a product of them. In this figure, the fitsecondl quan-
tity increasegdecreaseswith the size, and their product has
a maximum value at a certain size.

The enhancement dfF,|? can also be understood as a 1
result of nanoscale Fabry-R¢ interference of excitonic ]
polaritons'® Since this interference becomes dim if the exci- (Euo—0—iT){[Ey(2)— 0]*+T?

tonic coherence is not sufficient, the remarkable enhance,:Or the DFWM process, the contributions from the deeply
ment of DFWM signal does not appear when the damping,,ng two-exciton state®.g., excitonic molecules in CuCl

constant is larggFig. 1(b)]. _ ~are very small because of the large off-resonance. On the
The noteworthy point in the above effect is that the maingther hand, the contributions of the scattering two-exciton
contribution to the signal enhancement comes from the nonstates appears remarkably, which is resonantly strengthened
dipole type transition(Note that the wave function dK;)  when the[one-excitof-[two-excitor] transition energy coin-
state has a node in the surface normal direclidhis means  cides with the energy for the resonant enhancement of a par-
that the self-consistent field has no longer the long+icular component of the internal field4 component in the
wavelength when the size is approachhhg 50 and exhibits  present cage Figure 3 shows such a condition is realized
a large spatial distribution. In contrast to the large contribunearN=50 for the present model. The latter contributions
tion of F, componentf; (dipole type component is very eijther enlarge or reduce the signal intensity shown in Fig.
small around the lowest one-exciton stalté{)) because of  2(a) according to the relative phase between the first and
its large radiative shift(For the film geometry, the radiative second terms in the square bracket in Bd).
shift of the lowest one-exciton state is generally positive and

larger than that of the second offe Namely, the large cou-
pling between the radiation field arjé,) state suppresses

42 44 46 48 50 52 54

FIG. 3. The size dependence of the transition energy between
the second one-exciton state amth two-exciton state. The thick
solid line shows the energy whef€,|? takes a maximum value.

(20

IV. DISCUSSIONS

the amplitude ofF; component around bargK;) level, In condensed matter, an excitation energy given to a par-
which leads to its very small contribution to the DFWM ticular site (atom or moleculg generally propagates to the
signal. other sites through an electronic intersite interaction, which

Another important factor in this large nonlinear responsemeans the wave functions of excited states are coherently
is the enhancement of the internal field of nonlinear signakxtended. Since this effect is the origin of nonlocality, the
itself. To show this effect, we calculate the same quantity amonlocal response is general for the solids. The nonlocal ef-
in Fig. 2(a) without the effect of resonance Aand the size fect is highly important especially in the “weak confinement
dependence of the incident fields. Namely, we takeregime” where the c.m. motion of excitons is confined. In
A(K,, Ky 0,0)F,DF,2F,(1) as a constant value. How- this regime, each quantized level exhibits a particular spatial
ever, the DFWM signal still has size dependefieig. 2(c)]. pattern according to the boundary conditions of the system.
This indicates that the internal field of DFWM signal is also The induced polarizations reflect these patterns of the reso-
enhanced in the film due to the nanoscale FabmptFater-  nant levels due to the transfer effect even if the radiation
ference. This multiple enhancement of the internal fieldfield of the incident light has long wavelength without any
makes the DFWM signal much more prominent than that instructure in the medium. Since such polarizations radiate
the pump-probe spectroscdfly light again and it contributes to the response field, the self-

The contributions from the second term in the squareconsistent internal fieldVlaxwell’s field) also has nanoscale
bracket in Eq.(11) are mainly attributed to the transitions spatial structure similar to those of the induced polarizations.
between[one-exciton staflg two-exciton state The domi-  Thus, in the nonlocal media, the radiation-matter coupling is
nant contribution is from the term including in Eq. (11 dominated by the spatial structures of the matter excited
that contains the factor states, where the electronic intersite interaction plays an es-
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sential role. It is interesting to compare this situation with 5.0
that of the recently discussed regular array of semiconductor , :(a)
quantum well’'s(RAQW'’s) (Refs. 23,24 by which one can £ 404
control the radiation-matter coupling through the interwell E ]
distance and the number of wells. In the RAQW'’s, individual § 3.0
wells are so thin that they can be described in LWA, and they £ 50
couple with each other only via radiation because the inter- s =
well distance is comparable to the light wavelength. Thus, in % 10] /l}
this system, electronic interwell interaction does not play an <
important role in principle, while the arrangement structure 0.0 — ‘ A ‘ ‘
of the quantum wells dominates the radiation-matter cou- 3.200 3.205 3.210
pling. For example, one can realize the Bragg or anti-Bragg  100.0 Beam Energy (eV)
condition controlling the interwell coupling via radiation “ (b)
field. g
In the previous sections, we clearly show that an “unusual =
situation” arises if the spatial extension of the matter excited 2
state is comparable with or larger than the wavelength of the éso.o-
resonant light in the medium, namely, the higher multipole &
transition makes a large contribution to some nonlinear pro- %
cesses. As we see in the previous section, the main contribu- &
tion to the enhanced DFWM signal does not come from an lJ
electric dipole transition, but from a quadrupole-type transi- 0.0 e pu e —
3.200 3.205 3210

tion, where the induced polarization of the relevant transition

is polarized laterally and has a node in the surface normal

direction. Generally, the radiative shift of the higher exci- FIG. 4. The comparison between the DFWM spectra calculated

tonic level with a nondipole type spatial structure is smallerwith the nonlocal(thin line) and LWA method(thick line). (a) N

than that of the lowest one. This situation leads to a double=20, (b) N=50.

resonance of the internal field and the third-order suscepti-

bility because the response field becomes strong very neavith the more general and realistic model would reveal the

the matter(bare excitonig level in some condition. For the similar mechanism for this material.

response of the lowest level, on the other hand, the internal Finally, we add the results of comparison between the

field near the bare excitonic level is usually much suppressedonlocal and the LWA calculation to see how the nonlocal

because of the large ladiative shift. This is why the contribu-effect is essential to enhance the DFWM signal. Since we

tion from |K,) state is much larger than that froid,) state  concentrate on the nonlinear part in this comparison, we treat

in the present case. Since the condition of the double resdhe linear polarization in nonlocal way, and the third order

nance heavily depends on the system size, the size depepelarization is treated either nonlocally or in the LW&he

dence of the nonlinear response can be quite different fromstudy of nonlocal vs LWA for the linear response has already

that proposed in the former works based on #% discus- been given in Ref. 13In the LWA treatment, we neglect the

sion alone-?®° Especially in the DFWM process, we wish to site dependence of the pump and probe fieldi® as

emphasize the fact that the enhancement of the internal field

occurs not only on the incideipump and probebeams but E (S)_(
n

Beam Energy (eV)

1/2

2 Sin(Knj ) €(8)—&(S)

also on the signal beam itself, which makes the enhancement N+ 1

of the DFWM signal much more remarkable than that in the

pump-probe spectroscop¥This effect has a good analogy w2 .

with the mechanism of the surface enhanced Raman scatter- X N+1 Z sin(Kl), (22)

ing where the double enhancement of both the incident and
scattered lights plays an important role to enhance the signaind attribute£(s) to the amplitude averaged over the sites.
intensity?® The comparison for the thinner casK=20) is shown in
Since the calculations in this paper are performed on &ig. 4@). Although two results are almost the same, a small
particular one-dimensional model, the quantitative resultslifference is found near the second one-exciton resonance
may be peculiar to this model. However, the essential mechdindicated with an arrow in Fig.(4)], namely, a small peak
nism of the above enhancement should be general for th&fructure appears in the nonlocal calculation, whereas no
nonlocal systems, and the similar effect is expected to appeatructure is found for the LWA calculation. This peak is due
in any kinds of materials to a greater or less extent. Actuallyto the F, component of the internal field. For sm&l| the
the recent experimental results for the GaAs thin films in thecontribution from this component is not conspicuous. For the
weak confinement regim® and the analysis for theth thicker case Nl=50), on the other hand, this component is
clearly shows that our proposed effect works if the sampleenhanced and greatly strengthens the DFWM signal, which
has good quality. Though the present model can not be simeads to a significant difference between the spectrum by
ply applied to GaAs for the quantitative discussion, the studynonlocal method and that by LWA meth¢Big. 4(b)]. This
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demonstration clearly indicates that the nanoscale spati@nd p=1,2 represent for the probe and pump frequencies,

structure of the internal field is essential for the enhancemenespectively,j the site index,a, the lattice constantg the

of the nonlinear signal. light velocity, ande}, the background dielectric constant. The
Although we focus our attention on the enhancement efformal solution of Eq(A1) can be written as

fect of DFWM in this paper, the nonlocality affects any as-

pect of the optical response in principle. For example, the Ei(wp) = &'l + eltp(NF171)

spatial structure of the c.m. wave function of excitons also i i

causes a peculiar size dependence of the radiative width. If _z sinKy "A(K ) (A6)
the sample size approaches the wavelength of resonant light n 2cosK,—2cosg, "’

which is determined by the background dielectric constant here
alone, the radiative coupling of the relevant state should b&

described with the proper consideration of the spatial struc- 1/2 E(P)

tures of both the excitons and radiation. Recently, the very A(K,)=BW 4 — (A7)
L n PIN+1) Ei(n)—w,—ill

fast radiative decay of thé,) state has been observed for a 1 @p

110-nm-thick GaAs filnf? which is beyond the effect due to \ith Eq. (A6) and the definition(10), we can obtain the
so-called size-linear enhancement of the oscillator Stréngtrbquation to determingc (P} as
based on LWA. We are now studying this novel type of ra- "

diative decay by means of the nonlocal theory and will dis- | N+ 1)1/ B 1
cuss it in detail in the next publication —— |1+ = —|FP
: 2 2 cosK,—2 cosq, Ey(n)—wp—il'] "
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APPENDIX: MAXWELL'S EQUATION AND BOUNDARY and
CONDITIONS

£,ekoli=N=1). (A11)
1. For linear response

respectively, we obtain the Maxwell's boundary conditions at

The linear Maxwell's equatior(for the discrete lattice
the front surface, as

mode) including P{Y(w,) is

- — £+ £alltp(N+1)
[AZ—(2 cosqp—2)1&(wp) E+E=E+Ee" (A12)
=~ Q2PM(wy) E(eKo—1)+& (e k0—1)
" 12 o FP) =&(e'%—1)+&(e" 19— 1)eidp(N+1)
=-8|\51) 2 SN E (M= wp—iT sinK
-2 ——AKK,), (AL3)
(A1) n 2cosK,—2cosg, "'
where and at the back surface, as
A25j25j+1_25j+5171a (A2) €eiqP(N+l)+g=5t (A14)
w a0 ailp(N+1)  or1 _ Aig
Qp:ao?p Eps (A3) 8(1 € P)e ° +g(1 € p)
(=1)"sinK,, ~ o
M2 _2 2 cosK,,—2 consq Ay =&(1-e7").
BlV=Q2— (A4) " ’
P P oo’ (A15)
With the given incident amplitude;, all the amplitudes
2:a2477‘”p A5 EEE,E and{FP} can be determined by using the simul-
Qp 0 ’ ( ) .
c? taneous equation#\8),(A12),(A13),(A14),(A15).
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2. For the third order nonlinear response

The third order nonlinear Maxwell’s equatid¢for the dis-
crete lattice modelis

[A%—(2 cosgs—2)]&(ws)
=— Qi PM(w3)+ P (wy)]
2 )1/2

P (3)
j————— +B§
VB (M) — @il | B3

N+1

B, sinK
n
x2 sinKnj|§ A(Kp Koy, 0p) FOFIRE

+2 2 B(Ky, Ko Ko K s 01, 05)

m n' m’

X FOFR L= ] 1 , (A16)
where
Ws
Gs=a0 7 Ven (A17)
M 2
B{=Qs——, (A18)
M4
BY=QI—, (A19)
Vo
47 w?
Qi=ai—5—, (A20)
C

and ws means signal frequency. We substit§fe{™)} and

{F{®}, which are calculated within the linear response, into N

this equation. The solution of the above equation is

&(wy) = &ellsi + galds(N+1-))

S SinKgj

Y 5 oK =2 comg A (K FADK,)],
S S

(A21)

where

12 Fl(13)
N+1) Ei(n)—ws—iT

(A22)

ALK, =B

PHYSICAL REVIEW B 65 035305

1/2

AO(Ky=BE)| 57

x{% AKp K o1, 0,)FOFERDL

+Z E B(Kn!Kvan’!Km’;w11w2)
m n' m'

X FOFF M= ] . (A23)

In the same manner as for the linear response, we obtain the
equation to determing(® as

N+1)|%2 B{Y 1
——] |1+ > —|F(®
2 2 cosK,—2 cosgg Ey(n)—ws—il'| "
+(N+1 AGK,)
2 ) 2cosK,—2 cosgq

e sinK,,
~ 72 cosK,,— 2 cosq,

[( _ l)neiqs(N+1)_ 1]

— sinK,,
+&
2 cosK,—2 cosgg

[(—1)"—easN* D] (A24)

Assuming the outer signal fields from the front and back
surfaces as
Ee kal (A25)
and
Epelkoli=N=1) (A26)

respectively, we obtain the Maxwell's boundary conditions at
the front surface, as

E=E+ EeUsNT1), (A27)
E(e Mo—1)=£(el%s— 1)+ E(e 19s— 1)glIs(N+1)
> 2 cosP:Inn—KZn COSQs[hA(l)( Kn)
+AC(K )T, (A28)
and at the back surface, as
gelasN+ )y e—g (A29)

(C/'(l_ e*iQS)eiqs(N+l)+g(1_ eiQS)

(—1)"sinK ~ ~
-2 oo _ZCO“SQ [AM(K ) +AC(K,)]
n S

=& (1—e o), (A30)

Solving the simultaneous eqiatior‘(sA24),(A27),(A28),
(A29),(A30), we can determiné&,&,&, &,, andF(®.
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