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Anomalous size dependence of degenerate four-wave mixing due to double resonance
of internal field and third-order susceptibility
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The degenerate four-wave mixing~DFWM! of weakly confined excitons in a mesoscopic thin film is studied
by means of the nonlocal theory of nonlinear response, where the self-consistency between the induced
polarization and the radiation field is considered. As a result, it is elucidated that the DFWM signal is greatly
strengthened due to the double resonance of the internal field and the energy denominators ofx (3), affecting
both the incident and signal beams, and that the enhanced nonlinear response is originated from the transition
associated with the nondipole type polarization pattern. The result clearly shows that the consideration of the
nonlocal and self-consistent description of the response field is essential, which is in a striking contrast to the
nonlinear response described in the long wavelength approximation.
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I. INTRODUCTION

In the last decade, the size dependent nonlinear resp
of confined excitonic systems has been an interesting sub
of study, and a lot of experimental and theoretical wo
have been made on this problem.1–9 Nowadays, it is well
recognized that the size dependent spectral structure o
nonlinear susceptibility is attributed to the size depende
of quantized excitonic levels and their oscillator strengths
the strong confinement regime, for example, a shrinkage
the wave functions of electron-hole relative motion streng
ens the oscillator strength,10,11which causes an enhanceme
of the nonlinear susceptibility. On the other hand, for t
weak confinement regime, the size linear enhancement o
third-order susceptibility x (3) has been theoretically
proposed,1,2,5 where the oscillator strength increases linea
with the size as long as wave functions of center-of-m
~c.m.! motion of excitons are coherently extended to t
whole volume of a sample, and this leads to the same be
ior of x (3) per unit volume. As we see in these exampl
most of considered mechanisms for the enhancement of
linear response are based on the size dependence of th
cillator strength. It is true that this picture is useful, to som
extent, for the understanding of the size dependent nonlin
response. However, we should note that the concept of
oscillator strength is valid under the limited condition
Namely, it can be used only when the long wavelength
proximation ~LWA ! holds, and the LWA is no longer valid
when the sample size approaches the wavelength of the
with relevant transition energy in the medium.12 Such a
wavelength can be much smaller than that in vacuum,
should be determined by the self-consistency conditions w
the induced polarization and the electromagnetic field.
such a situation, the relationship between the induced po
ization P(r ) and internal fieldE(r ) should be described in
nonlocal way. In the linear response, for example, it sho
be written as

P~r !5E x~r ,r 8!E~r 8!dr 8, ~1!
0163-1829/2001/65~3!/035305~9!/$20.00 65 0353
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wherex is the linear susceptibility. It is recently elucidate
that the nonlocality strongly affects the spatial structure
the resonant response field through the self-consistency
tween E(r ) and P(r ) even when the sample size is muc
smaller than the wavelength.13 In other words, the interna
field has nano-scale spatial structure reflecting that of
wavefunctions of the confined c.m. motion of exciton
Therefore, a more general treatment is necessary abou
spatial and spectral structures of the internal field for
comprehensive understanding of the size dependent no
ear response.

Noting the nonlocal nature, we have clarified that t
resonant behavior of the internal field leads to a pecu
~resonant type! size enhancement of the pump-probe ty
nonlinear response.14 This has demonstrated a new mech
nism for the enhancement of nonlinear response. Howe
the pump-probe measurement is comparatively difficult
the experimental check of the proposed effect. Thus, i
desired to examine how the size dependent behavior of
internal field works in other types of resonant nonlinear p
cesses. In this report, we deal with the degenerate four-w
mixing ~DFWM! process, which is one of the most popul
and important nonlinear measurements, and in which a
ther enhancement effect turns out to be possible.

A key point in the present theory is the nonlocal and se
consistent description of the response field, which inclu
the size dependent radiative correction in the optical
sponse and the nanoscale spatial variation of the inte
field. Following the nonlocal nonlinear response theory15,16

based on the perturbation expansion of density matrix,
incorporate the above effect in our calculations.

II. MODEL AND THEORY

Since we focus our interest on the weak confinement
gime, we consider the c.m. motion of excitons explicit
keeping the relative motion fixed.@The relative motion of
©2001 The American Physical Society05-1
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excitons is reflected in the parameter of bare excito
radiation coupling~e.g., LT splitting!.# Thus, we suppose a
thin film consisting ofN discrete layers that confines th
component of the c.m. motion along the surface norm
direction. The excitation on each layer is specified by
layer numberj and the two-dimensional~2D! vector k in
the lateral direction. If we restrict ourselves to the norm
incidence, the contribution to the optical response ari
only from the k50 one-exciton states, and theK50
two-exciton states consisting of1k1 and 2k1 one-exciton
states. In the following treatment, we consider only the c
tribution fromk150 subspace as the two-exciton states. T
assumption corresponds to the neglect of~i! the lateral trans-
fer of excitons and~ii ! the lateral interaction between tw
excitons.

The Hamiltonian of this model is

H05(
j 51

N

«0aj
†aj2b(

j 51

N

~aj 21
† aj1aj

†aj 21!

2 d̄(
j 51

N

aj
†aj 11

† ajaj 11 , ~2!

whereaj
† andaj are the creation and annihilation operato

of an exciton on thej th site,«0 the excitation energy of eac
site,b the transfer energy, and we introduce the virtual si
j 50 andN11 on which the amplitude of excitons is su
posed to be zero. The lattice constant is taken to be the
of length. The third term, exciton-exciton interaction, is i
troduced to allow biexciton states. Though this model of
teraction is considerably simplified, some effects of biex
tons in DFWM can be examined qualitatively. As for on
exciton states, the eigenfunctions and eigenvalues can
written as

uKn&5A 2

N11(j
sin~Knj !aj

†u0& ~3!

and

E1~n!5«022b cosKn , ~4!

respectively, where the allowed values ofKn are

Kn5
np

N11
, $n51,2, . . . ,N%. ~5!

As for the two-exciton states, we expand them as

um&5(
i , j

Ci , j
(m)aj

†ai
†u0&, ~6!

and calculate their eigenvalues$Em% and the coefficients
$Ci , j

(m)% numerically, where we consider the Pauli exclusi
principle that prohibits double excitations on one site. T
Pauli effect and the third term of right-hand side of Eq.~2!
are the sources of nonlinearity of this model.
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When we limit ourselves to the normal incidence, a
when the excitonic Bohr radius is very small like that
CuCl, we can very well reproduce the linear optical spec
even for the Wannier excitonic systems by this model cho
ing an appropriate parameter value of the LT splitting18

Furthermore, the simplicity of this model enables us to e
plicitly treat the whole functional space up to the two-excit
states, which is enough for the evaluation of the nonlinea
arising from the state-filling and the biexciton effect.19 On
the other hand, neglecting the lateral energy transfer m
change the absolute value ofx (3) near one-exciton resonanc
from that of three dimensional materials because the
hancement effect ofx (3) due to the finite transfer20 is
changed.~How x (3) changes with the value of the transf
energy is discussed in detail in Ref. 20.! And also the con-
tribution from the induced absorption by two-exciton sta
becomes particular one reflecting the one-dimensional
ture. However, these changes of the quantitative value
nonlinear signals never spoil our discussion on the esse
trend of the size dependence ruled by the resonant enha
ment of the internal field.

Supposing the normal incidence of the pump and pro
beams, we calculate the self-consistent internal fields
them with the standard expression of the exciton-radiat
interaction Hamiltonian

H852(
l

(
p

P̂lEl~p!exp~2 ivpt !, ~7!

whereEl(p) is the amplitude of internal field on thel th site
with the frequencyvp , P̂l is the polarization operator on th
same site, namely,

P̂l5Mal1M* al
† , ~8!

andM is the transition dipole matrix per site. We assume
pump intensity is limited within thex (3) regime and the
probe beam is much weaker than that. Under this condit
the third order polarization can be described, as a good
proximation, in terms of the amplitudes of these beams c
culated within the linear response. Thus, we solve the M
well’s equation including the linear nonlocal polarizatio
whose explicit form is

Pj
(1)~vp!5

M2

v0
S 2

N11D 1/2

(
n

sin~Knj !Fn
(p)

E1~n!2vs2 iG
e2 ivpt,

~9!

where p51 and 2 representing the probe and pump be
frequencies, respectively,v0 is the unit cell volume. The
definition of Fn

(p) is
5-2



th
on

x
ar

b
e
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Fn
(p)5S 2

N11D 1/2

(
j

sin~Knj !Ej~p!, ~10!

andG is the phenomenologically introduced constant for
transverse damping. We can rewrite the Maxwell equati
to the linear simultaneous equations for$Fn%,

15 which can be
analytically solved for the present model. The explicit e
pressions of the Maxwell’s equations and their solutions
given in the Appendix.

In terms of the internal amplitudes of the pump and pro
beam, the third order nonlinear polarization with the fr
quencyvs(52v22v1) is written as
n

ce
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Pj
~3!~vs!5

M4

v0
S 2

N11D 1/2

(
n

sinKnj

3F(m A~Kn ,Km ;v1 ,v2!Fn
(2)Fm

(2)Fm
(1)*

1(
m

(
n8,m8

B~Kn ,Km ,Kn8 ,Km8 ;v1 ,v2!

3Fn8
(2)Fm8

(2)Fm
(1)* Gexp~2 ivst !, ~11!

where we pick up the contributions of the most~triply! reso-
nant terms. The explicit expressions ofA andB in Eq. ~11!
are
A~Kn ,Km ;v1 ,v2!5
1

~E1~n!2~2v22v1!2 iG!~v22v11 ig! F 1

E1~m!2v11 iG
2

1

E1~m!2v22 iGG
1

1

~E1~n!2~2v22v1!2 iG!~Enm2~v22v1!2 iGnm! F 1

E1~n!2v22 iG
2

1

E1~m!2v11 iGG
~12!

and

B~Kn ,Km ,Kn8 ,Km8 ;v1 ,v2!5(
m

4C̄n8m8
(m) C̄nm

(m)F 1

Emm2~2v22v1!2 iG H 1

Emm81~v22v1!1 iGmm8

3S 1

E1~m8!2v22 iG
2

1

E1~m!2v11 iG D 2
1

~Em22v222iG!~E1~m8!2v22 iG!
J

1
1

~E1~n!2~2v22v1!2 iG!~Em22v222iG!~E1~n8!2v22 iG!
G , ~13!
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Emn5Em2E1~n!, ~14!

Enm5E1~n!2E1~m!, ~15!

Gnm5g~n5m!, ~16!

5G~nÞm!, ~17!

and

C̄ n,m
(m) 5

1

N11 (
l 8, l

Cl ,l 8
(m)

~sinKnlsinKml 81sinKnl 8sinKml !.

~18!

In this calculation, we introduce the phenomenological lo
gitudinal damping constantg, in addition toG. However, the
nonlinear damping effects such as the excitation-indu
-

d

dephasing17 are excluded because they do not have a qu
tatively essential role in our considered mechanism for
weak excitation limit. The Maxwell’s equation including th
nonlinear polarization~11! and the linear polarization for the
signal frequency can also be rewritten into the linear eq
tion for $Fn

(p)% if $Fn
(2)% and $Fn

(1)% are treated as given
values. We solve this equation, and then obtain the sig
field outside the film by using the Maxwell’s boundary co
ditions. The details of these calculations are also given in
Appendix.

III. RESULTS

The following numerical calculations are performed f
the Z3 exciton of CuCl that is a typical single compone
exciton. The present model is well applicable to this syst
5-3
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because the Bohr radius ofZ3 exciton is considerably sma
~about 0.6 nm!. We use the following parameters represen
tive of CuCl: vT53202.2 meV,b557.0 meV, 4puM u2/v0

55.7 meV,«b55.6, andd̄5195 meV, wherevT is the en-
ergy of the bottom of exciton band forN→`, namely,vT
5«022b.

A. DFWM spectra

Figure 1 shows the DFWM signal intensity as a functi
of the beam energy andN for the two different damping
values.~The smaller value ofG is chosen from the fitting
parameter in Ref. 21.! In both cases, there are several pe
structures due to the excitonic transitions. Among th
structures, we should note a particular one around the low
one-exciton resonance that is strongly enhanced at a par
lar size in the case of the smaller damping@Fig. 1~a!#. For the
larger damping@Fig. 1~b!#, such an enhancement cannot
seen. These peak structures are attributed to the transi
between the ground and one-exciton states and betwee
one- and two-exciton states, whose resonance poles ar
cluded in the nonlinear susceptibility. The former poles
included inA andB, and the latter are included only inB, in

FIG. 1. Intensity of the DFWM signal as a function of bea
energy and thickness (N). The lattice constant is 0.54 nm. Th
amplitudes of the pump and probe beams are 2.43105 V/m and
1.23103 V/m. ~a! G (g)50.06 (0.02) meV. ~b! G (g)
50.12 (0.04) meV.
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the square bracket in Eq.~11!. The cause of the large DFWM
signal at a particular size is the size-resonant enhanceme
the internal field with a nondipole type spatial pattern as
will discuss below.

B. Analysis of spectra

Evaluating individual terms in Eq.~11!, we find that one
of main contributions in the enhanced signal comes from
term includingA(K2 ,K2 ;v1 ,v2) whose explicit expression
for v25v15v is

A~K2 ,K2 ;v,v!

52
4G

g

1

$E1~2!2v2 iG%@$E1~2!2v%21G2#
.

~19!

In Fig. 2~a!, we show the size dependence of the peak va
in DFWM spectrum in case that we consider the contribut

FIG. 2. ~a! Peak value of the DFWM signal intensity vsN. The
term includingA(K2 ,K2 ;v,v) alone is considered.~b! The peak
values of uF2

(2)F2
(2)F2

(1)A(K2 ,K2 ;v,v)u2 ~solid line!,
uF2

(2)F2
(2)F2

(1)u2 ~broken line!, and uA(K2 ,K2 ;V2 ,V2)u2 ~dotted
line!. The unit of the first quantity is arbitrary. The second quant
is normalized by~pump intensity!23 ~probe intensity!. The third
one is in unit ofuM u4/v0. ~c! The DWFM spectra for the severa
values ofN. The value ofF2

(2)F2
(2)F2

(1)A(K2 ,K2 ;v,v) is taken
to be constant in this calculation.
5-4
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ANOMALOUS SIZE DEPENDENCE OF DEGENERATE . . . PHYSICAL REVIEW B65 035305
from this term alone. The cause of the large contribution
this term is the enhancement ofF2 component in the interna
field. ~Note that$F% are nothing but the components of th
internal field when we expand it with the bases of quantiz
one-exciton states.! This component is associated with th
second one-exciton stateuK2&, and is enhanced at its reso
nance energy (V2) including the radiative shift. The pea
value ofuF2u2 increases with the size, which is favorable f
the size enhancement of the DFWM signal. On the ot
hand, the radiative shift also increases with the size, wh
decreases the value ofx (3) at V2 due to off resonance. As
consequence of the balance of these two effects, the spe
peak of the DFWM signal has a maximum value at a p
ticular size. This situation is explained in Fig. 2~b!, where we
show the size dependence of the peak values
uF2

(2)F2
(2)F2

(1)u2 ~internal field! and uA(K2 ,K2 ;V2 ,V2)u2,
and a product of them. In this figure, the first~second! quan-
tity increases~decreases! with the size, and their product ha
a maximum value at a certain size.

The enhancement ofuF2u2 can also be understood as
result of nanoscale Fabry-Pe´rot interference of excitonic
polaritons.13 Since this interference becomes dim if the ex
tonic coherence is not sufficient, the remarkable enhan
ment of DFWM signal does not appear when the damp
constant is large@Fig. 1~b!#.

The noteworthy point in the above effect is that the m
contribution to the signal enhancement comes from the n
dipole type transition.~Note that the wave function ofuK2&
state has a node in the surface normal direction.! This means
that the self-consistent field has no longer the lon
wavelength when the size is approachingN550 and exhibits
a large spatial distribution. In contrast to the large contrib
tion of F2 component,F1 ~dipole type! component is very
small around the lowest one-exciton state (uK1&) because of
its large radiative shift.~For the film geometry, the radiativ
shift of the lowest one-exciton state is generally positive a
larger than that of the second one.22! Namely, the large cou-
pling between the radiation field anduK1& state suppresse
the amplitude ofF1 component around bareuK1& level,
which leads to its very small contribution to the DFW
signal.

Another important factor in this large nonlinear respon
is the enhancement of the internal field of nonlinear sig
itself. To show this effect, we calculate the same quantity
in Fig. 2~a! without the effect of resonance inA and the size
dependence of the incident fields. Namely, we ta
A(K2 ,K2 ;v,v)F2

(2)F2
(2)F2

(1) as a constant value. How
ever, the DFWM signal still has size dependence@Fig. 2~c!#.
This indicates that the internal field of DFWM signal is al
enhanced in the film due to the nanoscale Fabry-Pe´rot inter-
ference. This multiple enhancement of the internal fi
makes the DFWM signal much more prominent than tha
the pump-probe spectroscopy14.

The contributions from the second term in the squ
bracket in Eq.~11! are mainly attributed to the transition
between@one-exciton state#-@two-exciton state#. The domi-
nant contribution is from the term includingB in Eq. ~11!
that contains the factor
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~Em22v2 iG!$@E1~2!2v#21G2%
. ~20!

For the DFWM process, the contributions from the dee
bound two-exciton states~e.g., excitonic molecules in CuCl!
are very small because of the large off-resonance. On
other hand, the contributions of the scattering two-exci
states appears remarkably, which is resonantly strengthe
when the@one-exciton#-@two-exciton# transition energy coin-
cides with the energy for the resonant enhancement of a
ticular component of the internal field (F2 component in the
present case!. Figure 3 shows such a condition is realize
nearN550 for the present model. The latter contributio
either enlarge or reduce the signal intensity shown in F
2~a! according to the relative phase between the first a
second terms in the square bracket in Eq.~11!.

IV. DISCUSSIONS

In condensed matter, an excitation energy given to a p
ticular site ~atom or molecule! generally propagates to th
other sites through an electronic intersite interaction, wh
means the wave functions of excited states are cohere
extended. Since this effect is the origin of nonlocality, t
nonlocal response is general for the solids. The nonlocal
fect is highly important especially in the ‘‘weak confineme
regime’’ where the c.m. motion of excitons is confined.
this regime, each quantized level exhibits a particular spa
pattern according to the boundary conditions of the syst
The induced polarizations reflect these patterns of the re
nant levels due to the transfer effect even if the radiat
field of the incident light has long wavelength without an
structure in the medium. Since such polarizations rad
light again and it contributes to the response field, the s
consistent internal field~Maxwell’s field! also has nanoscal
spatial structure similar to those of the induced polarizatio
Thus, in the nonlocal media, the radiation-matter coupling
dominated by the spatial structures of the matter exc
states, where the electronic intersite interaction plays an

FIG. 3. The size dependence of the transition energy betw
the second one-exciton state andnth two-exciton state. The thick
solid line shows the energy whereuF2u2 takes a maximum value.
5-5
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sential role. It is interesting to compare this situation w
that of the recently discussed regular array of semicondu
quantum well’s~RAQW’s! ~Refs. 23,24! by which one can
control the radiation-matter coupling through the interw
distance and the number of wells. In the RAQW’s, individu
wells are so thin that they can be described in LWA, and th
couple with each other only via radiation because the in
well distance is comparable to the light wavelength. Thus
this system, electronic interwell interaction does not play
important role in principle, while the arrangement structu
of the quantum wells dominates the radiation-matter c
pling. For example, one can realize the Bragg or anti-Bra
condition controlling the interwell coupling via radiatio
field.

In the previous sections, we clearly show that an ‘‘unus
situation’’ arises if the spatial extension of the matter exci
state is comparable with or larger than the wavelength of
resonant light in the medium, namely, the higher multip
transition makes a large contribution to some nonlinear p
cesses. As we see in the previous section, the main cont
tion to the enhanced DFWM signal does not come from
electric dipole transition, but from a quadrupole-type tran
tion, where the induced polarization of the relevant transit
is polarized laterally and has a node in the surface nor
direction. Generally, the radiative shift of the higher ex
tonic level with a nondipole type spatial structure is sma
than that of the lowest one. This situation leads to a dou
resonance of the internal field and the third-order susce
bility because the response field becomes strong very
the matter~bare excitonic! level in some condition. For the
response of the lowest level, on the other hand, the inte
field near the bare excitonic level is usually much suppres
because of the large ladiative shift. This is why the contrib
tion from uK2& state is much larger than that fromuK1& state
in the present case. Since the condition of the double re
nance heavily depends on the system size, the size de
dence of the nonlinear response can be quite different f
that proposed in the former works based on thex (3) discus-
sion alone.1,2,5 Especially in the DFWM process, we wish t
emphasize the fact that the enhancement of the internal
occurs not only on the incident~pump and probe! beams but
also on the signal beam itself, which makes the enhancem
of the DFWM signal much more remarkable than that in
pump-probe spectroscopy.14 This effect has a good analog
with the mechanism of the surface enhanced Raman sca
ing where the double enhancement of both the incident
scattered lights plays an important role to enhance the si
intensity.25

Since the calculations in this paper are performed o
particular one-dimensional model, the quantitative res
may be peculiar to this model. However, the essential mec
nism of the above enhancement should be general for
nonlocal systems, and the similar effect is expected to ap
in any kinds of materials to a greater or less extent. Actua
the recent experimental results for the GaAs thin films in
weak confinement regime26 and the analysis for them27

clearly shows that our proposed effect works if the sam
has good quality. Though the present model can not be s
ply applied to GaAs for the quantitative discussion, the stu
03530
or

l
l
y
r-
n
n
e
-
g

l
d
e

-
u-
n
i-
n
al

r
le
ti-
ar

al
d
-

o-
en-
m

ld

nt
e

er-
d
al

a
ts
a-
he
ar

y,
e

e
-

y

with the more general and realistic model would reveal
similar mechanism for this material.

Finally, we add the results of comparison between
nonlocal and the LWA calculation to see how the nonlo
effect is essential to enhance the DFWM signal. Since
concentrate on the nonlinear part in this comparison, we t
the linear polarization in nonlocal way, and the third ord
polarization is treated either nonlocally or in the LWA.~The
study of nonlocal vs LWA for the linear response has alrea
been given in Ref. 13.! In the LWA treatment, we neglect th
site dependence of the pump and probe field inP(3) as

Fn
(s)5S 2

N11D 1/2

(
j

sin~Knj !Ej~s!→E~s!

3S 2

N11D 1/2

(
l

sin~Kl !, ~21!

and attributeE(s) to the amplitude averaged over the site
The comparison for the thinner case (N520) is shown in
Fig. 4~a!. Although two results are almost the same, a sm
difference is found near the second one-exciton resona
@indicated with an arrow in Fig. 4~a!#, namely, a small peak
structure appears in the nonlocal calculation, whereas
structure is found for the LWA calculation. This peak is d
to the F2 component of the internal field. For smallN, the
contribution from this component is not conspicuous. For
thicker case (N550), on the other hand, this component
enhanced and greatly strengthens the DFWM signal, wh
leads to a significant difference between the spectrum
nonlocal method and that by LWA method@Fig. 4~b!#. This

FIG. 4. The comparison between the DFWM spectra calcula
with the nonlocal~thin line! and LWA method~thick line!. ~a! N
520, ~b! N550.
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demonstration clearly indicates that the nanoscale sp
structure of the internal field is essential for the enhancem
of the nonlinear signal.

Although we focus our attention on the enhancement
fect of DFWM in this paper, the nonlocality affects any a
pect of the optical response in principle. For example,
spatial structure of the c.m. wave function of excitons a
causes a peculiar size dependence of the radiative widt
the sample size approaches the wavelength of resonant
which is determined by the background dielectric const
alone, the radiative coupling of the relevant state should
described with the proper consideration of the spatial str
tures of both the excitons and radiation. Recently, the v
fast radiative decay of theuK2& state has been observed for
110-nm-thick GaAs film,28 which is beyond the effect due t
so-called size-linear enhancement of the oscillator stren2

based on LWA. We are now studying this novel type of
diative decay by means of the nonlocal theory and will d
cuss it in detail in the next publication.
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APPENDIX: MAXWELL’S EQUATION AND BOUNDARY
CONDITIONS

1. For linear response

The linear Maxwell’s equation~for the discrete lattice
model! including Pj

(1)(vp) is

@D22~2 cosqp22!#Ej~vp!

52Qp
2Pj

(1)~vp!

52Bp
(1)S 2

N11D 1/2

(
n

sinKnj
Fn

(p)

E1~n!2vp2 iG
,

~A1!

where

D2Ej5Ej 1122Ej1Ej 21 , ~A2!

qp5a0

vp

c
A«b, ~A3!

Bp
(1)5Qp

2 M2

v0
, ~A4!

Qp
25a0

2
4pvp

2

c2
, ~A5!
03530
ial
nt

f-
-
e
o
If
ht
t
e

c-
y

h
-
-

b-

r

and p51,2 represent for the probe and pump frequenc
respectively,j the site index,a0 the lattice constant,c the
light velocity, and«b the background dielectric constant. Th
formal solution of Eq.~A1! can be written as

Ej~vp!5Eeiqpj1 Ēeiqp(N112 j )

2(
n

sinKnj

2 cosKn22 cosqp
Ã~Kn!, ~A6!

where

Ã~Kn!5Bp
(1)S 2

N11D 1/2 Fn
(p)

E1~n!2vp2 iG
. ~A7!

With Eq. ~A6! and the definition~10!, we can obtain the
equation to determine$Fn

(p)% as

S N11

2 D 1/2F11
Bp

(1)

2 cosKn22 cosqp

1

E1~n!2vp2 iGGFn
(p)

5E sinKn

2 cosKn22 cosqp
@~21!neiqp(N11)21#

1 Ē sinKn

2 cosKn22 cosqp
@~21!n2eiqp(N11)#. ~A8!

If we write incident, reflected and transmitted fields as

E ie
ik0 j , ~A9!

E re
2 ik0 j , ~A10!

and

E te
ik0( j 2N21), ~A11!

respectively, we obtain the Maxwell’s boundary conditions
the front surface, as

Ei1Er5E1 Ēeiqp(N11) ~A12!

Ei~eik021!1Er~e2 ik021!

5E~eiqp21!1 Ē~e2 iqp21!eiqp(N11)

2(
n

sinKn

2 cosKn22 cosqp
Ã~Kn!, ~A13!

and at the back surface, as

Eeiqp(N11)1 Ē5Et ~A14!

E~12e2 iqp!eiqp(N11)1 Ē~12eiqp!

2(
n

~21!nsinKn

2 cosKn22 cosqp
Ã~Kn!5Et~12e2 ik0!.

~A15!

With the given incident amplitudeEi , all the amplitudes
E,Ē,Er ,Et and $Fn

(s)% can be determined by using the simu
taneous equations~A8!,~A12!,~A13!,~A14!,~A15!.
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2. For the third order nonlinear response

The third order nonlinear Maxwell’s equation~for the dis-
crete lattice model! is

@D22~2 cosqs22!#Ej~vs!

52Q3
2@Pj

(1)~v3!1Pj
(3)~vs!#

52S 2

N11D 1/2FB3
(1)(

n
sinKnj

Fn
(3)

E1~n!2vs2 iG
1B3

(3)

3(
n

sinKnj H(m A~Kn ,Km ;v1 ,v2!Fn
(2)Fm

(2)Fm
(1)*

1(
m

(
n8,m8

B~Kn ,Km ,Kn8 ,Km8 ;v1 ,v2!

3Fn8
(2)Fm8

(2)Fm
(1)* J G , ~A16!

where

qs5a0

vs

c
A«b, ~A17!

Bs
(1)5Qs

2 M2

v0
, ~A18!

Bs
(3)5Qs

2 M4

v0
, ~A19!

Qs
25a0

2
4pvs

2

c2
, ~A20!

and vs means signal frequency. We substitute$Fn
(1)% and

$Fn
(2)%, which are calculated within the linear response, in

this equation. The solution of the above equation is

Ej~vs!5Eeiqsj1 Ēeiqs(N112 j )

2(
n

sinKsj

2 cosKs22 cosqs
@Ã(1)~Kn!1Ã(3)~Kn!#,

~A21!

where

Ã(1)~Kn!5Bs
(1)S 2

N11D 1/2 Fn
(3)

E1~n!2vs2 iG
~A22!
03530
Ã(3)~Kn!5Bs
(3)S 2

N11D 1/2

3H(m A~Kn ,Km ;v1 ,v2!Fn
(2)Fm

(2)Fm
(1)*

1(
m

(
n8,m8

B~Kn ,Km ,Kn8 ,Km8 ;v1 ,v2!

3Fn8
(2)Fm8

(2)Fm
(1)* J . ~A23!

In the same manner as for the linear response, we obtain
equation to determineFn

(s) as

S N11

2 D 1/2F11
Bs

(1)

2 cosKn22 cosqs

1

E1~n!2vs2 iGGFn
(s)

1S N11

2 D Ã(3)~Kn!

2 cosKn22 cosqs

5E sinKn

2 cosKn22 cosqs
@~21!neiqs(N11)21#

1 Ē sinKn

2 cosKn22 cosqs
@~21!n2eiqs(N11)#. ~A24!

Assuming the outer signal fields from the front and ba
surfaces as

E fe
2 ik0 j ~A25!

and

E beik0( j 2N21), ~A26!

respectively, we obtain the Maxwell’s boundary conditions
the front surface, as

Ef5E1 Ēeiqs(N11), ~A27!

Ef~e2 ik021!5E~eiqs21!1 Ē~e2 iqs21!eiqs(N11)

2(
n

sinKn

2 cosKn22 cosqs
@Ã(1)~Kn!

1Ã(3)~Kn!#, ~A28!

and at the back surface, as

Eeiqs(N11)1 Ē5Eb , ~A29!

E~12e2 iqs!eiqs(N11)1 Ē~12eiqs!

2(
n

~21!nsinKn

2 cosKn22 cosqs
@Ã(1)~Kn!1Ã(3)~Kn!#

5Eb~12e2 ik0!. ~A30!

Solving the simultaneous equations~A24!,~A27!,~A28!,
~A29!,~A30!, we can determineE,Ē,Ef , Eb , andFn

(s) .
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