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Dielectric response of molecules in empirical tight-binding theory
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In this paper we generalize our previous approach to electromagnetic interactions within empirical tight-
binding theory to encompass molecular solids and isolated molecules. In order to guarantee physically mean-
ingful results, we rederive the expressions for relevant observables using commutation relations appropriate to
the finite tight-binding Hilbert space. In carrying out this generalization, we examine in detail the consequences
of various prescriptions for the position and momentum operators in tight binding. We show that attempting to
fit parameters of the momentum matrix directly generally results in a momentum operator which is incompat-
ible with the underlying tight-binding model, while adding extra position parameters results in numerous
difficulties, including the loss of gauge invariance. We have applied our scheme, which we term the Peierls-
coupling tight-binding method, to the optical dielectric function of the molecular solid PPP, showing that this
approach successfully predicts its known optical properties even in the limit of isolated molecules.
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[. INTRODUCTION materialst~’ The dielectric function is in fact but one appli-

The empirical tight-binding method owes much of its long cation of a general scheme for incorporating electromagnetic
success to the fact that it provides a physically transparenfields into the empirical tight binding theory without the in-
computationally efficient approach to electronic structuretroduction of additional parametets® Our method, which
calculations for crystalline systemis® The method has been we call Peierls-coupling tight binding, guarantees gauge in-
extended to include electromagnetic fields, permitting thevariance and charge conservation, and leads to physically
calculation of observables such as the dielectric function fotransparent expressions for quantities such as optical re-
crystalline solid$'~® The empirical tight-binding method is sponse functions and dynamical effective chafgesost
not inherently restricted to crystalline solids and, in view ofimportantly, it is fully compatible with the underlyin@.e.,
the growing importance of molecular electronics and bio-zero external fieldtight-binding model in the sense that the
physics applications, extending the method to encompagdé&presentations of the position and momentum operators we
electromagnetic interactions in molecules is timely. employ in calculating extrinsic properti¢s.g, dielectric re-

Because molecular systems can exhibit characteristics GPonsg give the correct intrinsic properties such as the ve-
both periodic solids and isolated molecules, tight-bindinglocity (band slopgand inverse effective magband curva-
calculations of their optical properties vividly illustrate the ture).
subtleties of the momentum operator, through which the vec- Others have taken a different approach for treating elec-
tor potential couples into the Hamiltonian. These subtletie§romagnetic interactions, arguing for the introduction of extra
arise from the finite dimension of the tight-binding Hilbert Parametersa posterior) into tight-binding models to im-
space, which cannot accurately represpat —i4V, and  Prove agreement \_/\(lth experiment by explicitly providing for
whose operator&epresented by finite matridesannot sat- intra-atomic transitions; we shall refer to such schemes as

. th lete-basi tati latiofis®, p#) enlarged tight-binding methods. Most recently, Pedersen
isfy the complete-basis commutation relatio P] et all® have even claimed that our Peierls-coupling tight-

=18, since in a finite basis Tr{®p®)  pinding method is incorrect, does not apply to nonperiodic
=Tr(p®r(®). Consequently, the relationship between real-systems such as molecules, and should be augmented to ac-
space(complete basjsquantum mechanics and empirical commodate intra-atomic transitions by adding an explicit,
tight binding is rather analogous to that between a differenk-independent term to the momentum matfixAlthough
tial equation and its corresponding finite-difference approxithey are able to achieve good agreement with the Kronig-
mation, and it is clear that the customary textbook equation®enney model, their approach has fatal flaws. As we shall see
for most important observable@ffective mass, dielectric below, the resulting momentum operator does not give the
function, etc) must be rederived using the appropriate finite-correct band slopes and leads to artifacts such as non-
basis commutation relations. Understanding the momenturdlermitian operators, and violation of gauge invariance.
operator in tight binding is therefore an essential preliminary We therefore focus on the role played by the momentum
to treating electromagnetic interactions in molecular sys-operator in coupling electromagnetic fields into the empirical
tems; it is accordingly the focus of the present paper. tight-binding Hamiltonian for both crystalline and molecular
In our previous papers we have taken into account thaystems, with particular emphasis on the consequences of
incompleteness of the tight-binding basis in calculating thantroducing extra parameters. In Sec. Il we briefly review our
effective masses and dielectric functions of crystallinePeierls-coupling tight-binding method and discuss the impli-
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cations of adding parameters to a tight-binding model, i.e.low we shall work in the electric dipole approximation,
the enlarged tight-binding method. In Sec. Il we show thatA(r,t) =A(t), so that the path issue does not arise.

our earlier results derived for crystalline systéfthsan be To date the Peierls substitution has been used very suc-
applied in a straightforward manner to molecular systems. Asessfully to study nonperturbative interactions of light and
an example we calculate the dielectric susceptibility of themattef!=* and magnetic band structurés!’ So far, it
one-dimensional phase of pgbara-phenyleng(PPB which ~ seems not to have been employed in first-principles tight-
exhibits characteristics of both periodic and isolated systemsinding method®$?*even though nothing in the Peierls sub-

Section IV presents our conclusions. stitution is inherently restricted to empirical models and it
should, in principle, be possible to employ it here as well.
Il. ELECTROMAGNETIC FIELDS IN TIGHT BINDING This would be particularly advantageous for real-spabe

] o __initio methods that invoke Wannier functions to study non-
Of central importance to any generalization of the empiri-perturbative effects of electromagnetic fiefds.
cal tight-binding method to encompass electromagnetic inter-

actions in molecular systems is the treatment of the positio%
and momentum operators. As mentioned in Sec. |, there is’
some controversy surrounding their correct representations,
with the isolated-atom limit often used as the reason for add- In Ref. 10 it is suggested that extra parameters be added
ing extra parameters. In contrast, there has been no discudirectly to the momentum matrix in order to augment the
sion of how the incompleteness of the tight-binding basignterband momentum matrix elements obtained by the
affects calculations of observables in any method to whictPeierls-coupling tight-binding method. Consider a one-
extra parameters have been added. Thus, prior to deriving triimensional tight-binding model that has osend onep
dielectric function of a molecular system, we briefly review orbital per site, with sites separated by a distaacén the

the incorporation of electromagnetic fields in tight binding in localized orbital basis the Hamiltonian matrix elements are
the Peierls-coupling tight-binding method and examine thda e{s,p})

consequences of adding extra position or momentum param- .

eters in enlarged tight-binding models. (e;n'alH|a;na)=E 8y 0T U oS0/ nsr1t Snrn-1),

)

Enlarging a model with momentum matrix parameters:
A counterexample

A. Peierls-coupling tight-binding method R
We summarize here our metHdtwhich does not intro- (p;in"alH[s; na)=Usy(8n n+1— dnrn-1)- (4)
duce additional parameters. For the sake of clarity, we dism the Bloch basis,
criminate Hilbert space operators such-arom matrix rep-

< N N

resentations that we write in the fornH. Systene N iknal .
International(Sl) units shall be used throughout. Consider a |ask)= \/_N Z’l e""a;na), ®)
tight-binding Hamiltonian that is characterized by the on-site
and off-site Hamiltonian matrix elements where againy e {s,p} and the Hamiltonian matrix is

o =(a,1|A%a,1), [ hedk)ihgy(k)

. H=1 —ihgy(k) hyu(k) |’ (6)
2, w=(a' 1"[A%al). (1) o) Dol
Here, the orthonormal basis statesl) are labeled by a site hed k)= Eq+ 2U cogka)
index | and a symmetry-related index that numbers the s s s ’
orbitals at a given site. An electromagnetic field specified by h- (K)=E.+2U K
the scalar potentiad(r,t) and the vector potentiah(r,t) pelK)=Ep ppcoska),
ifies th trix el t follows: .
modifies these matrix elements as follows hyy(k) = 2U, sin(ka), )
_ .0
ea=8q~P(R,1), with eigenvalues
.0 ie (R 1
Lot =tarr P~ 3 | ATD-dL () E--(k)=5[hsd(k) +hpp(k)

where the maodification in Eq(2) is called the Peierls + Thd K — h (K 1+ 2h2 (K 8
substitution! For a general vector potential there is the ques- [ k)— (k)] oK) @
tion of which path to use in the integral, the straight lineand eigenvector corresponding Ea (k),
being generally adopted for nearest-neighbor moti&kor a
well-behaved vector potential using the straight-line path 1 —ihgy(k)
yields matrix elements Eq2) identical to those of an ex- V.= 5 hedK)—E_(K) |-
plicit (Hermitian Hamiltonian operator into whickA(r,t) VIhsd k) —E_(K)12+hZ k) | ' B
couples® Note that when we employ E@2) in Sec. IIl be- 9
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In the Peierls-coupling tight-binding scheme, we have theyherep is real. In the Bloch basis,. has no matrix repre-
minimal momentum matrij,= (my /%) (dH/dk), whose ex-  sentation because it includes intraband effg@s matrix
pectation value is proportional to the band slope, thus divergep its commutator with the Hamiltonian is, how-
ever, well-defined,
i MydE- 10
VIBwv-_= 2 5 (10
exactly as it must be for a model without the spin-orbit
interaction’ (The calculation is tedious but straightforward. so that the matrix for this commutator is jusgby
10 ; g P ~
Pederseret al® now introduce an additional momentum _ (m /7)dii/dk. On the other hand;, is a purely inter-

matrix to accommodate intra-atomic transitions, band operator and hence has a well-defined Bloch basis ma-
trix, and corresponding additional momentum matrix,

~ _mo A A
pk_m[rC!H]i (14)

_ |0 —iPg,
=|iPsp O (11 0 p
?interz p Of (15
While they are indeed able to fit the tight-binding interband

matrix element to that of the Kronig-Penney model with Eq'so that
(12) they have thereby rendered the total momentum opera-

tor ‘ﬁk+5 useless for any calculations that depend on the . my . -
electron velocity, such as tunneling or transport. This gross Pinter= 77 [Tinter,H]- (16)
defect of the total momentum operator is obvious, since

We see immediately that because this matrix is well defined

tow = Mo dE_ the added momentum does not affect expectation values. For
V(B Pvo= — ——
i dk example,
hsp(k)[hss(k)_E—(k)] Mo tro ] Mo t oo
, —V_ [Tinter,HIV_=—[E_(K)—E_(K)]JV_Tiev_=0,
Sp[hss(k)_E_(k)]z'thp(k) i% [ inter ] Iﬁ[ ( ) ( )] inter
17)
(12)

) since the expectation value fy,, is finite. Thus it would
where the second term doest vanish for allk. The total  geem that this prescription could be employed to adjust the
momentum operator now fails to yield the correct carrierinierhand momentum matrix element to the desired value via
velocity and hence has lost its physical meaning. the real parametep. Unfortunately, this prescription to-
gether with incompleteness leads to conclusions sharply at
C. Enlarging a model with position parameters: variance with atomic physics. This problem is especially se-
Errors due to incompleteness rious in three dimensions so we shall also examine the el-

Another suggestion that has been made by severgmental semiconductap? nearest-ngigr_]bor model having
authord®?3is to enlarge the interband momentum matrix el-an extra same-atostp parameter satisfying relations analo-
ements of the Peierls-coupling tight-binding scheme with théJOUs to
same-atoms-p matrix element of position. While this . . .
method, that we will also call an enlarged tight-binding (S:Rj|F el X: R) = (SiRj [ 0l yiR)) = (si Ry |1 (el z:R)) = p,
method, does seem attractive on first inspection, it suffers (18)
from errors due to th_e_ incomplete tight-_binding basis arising, here we label the thre orbitals x,y, 2.
from products of position operators. This problem cannot be As mentioned above, the errors are associated with prod-

d|sm|ss§d by considering only thellmear response, for, Acts of position operators so we first consider matrix ele-
shown in Sec. lll below, even the linear response mvolvesments of the operatd which cannot be treated as sepa
double commutators such fg®,[r ™ H°]]. First, however, P inter» P

brieflv d be th thod and its initial attracti rate fitting parameters if we are to have a useful formalism.
we briefly describe the method and Its inftial attraction. That is, if the matrice§2,,, and ¥, Finter @re Not identical
In the model of Sec. Il B above one would write the po- : . ) :

- PO - then in the formalism we can never be certain how to inter-
sition operator as a sum of two operatogs-riner, Whererc  nret higher powers of position. In Appendix A we show, for
is the same-atom, same-orbital p05|t|0nAoperator from tigh xample, that the relation used in deriving the Baker-
binding without additional parameters ang, is the new  Hausdorff identity,

(purely interbangl same-atoms-p interaction. The unique

nonvanishing matrix elements of these operators are [r.[r,H]]l=r?A—2rAr +HAr?2 (19
(a;nalr¢|a;na)=na, (Wherer =t .+, and for simplicity the model is the linear
chain abovg must hold if the model is to give the correct

(s;nalr el p;na)=p, (13)  band curvatures. Calculating matrix elementsr f,, with
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the enlarged tight-binding model E(.3) then leads to some

: . . . [F(x),[f(y)’ﬂo]]qﬁ[’r‘(y)’[F(x)’ﬁo]].
rather startling conclusions, for both the linear chain,

(26)
This noncommutativityi) implies a loss of gauge invariance

(s;n’a|Fﬁ“e,Js;na)=2l (s:n'a|f el a;1a) for this formulation since now
a,

X(a;1a|F el S;nA)

exp[ (;) [AX(t)r™ +A(y)(t)f(y)]}

#exp[ (;)A(X)(t)ﬂx)] exp[ (;) A<V>(t)?<y>] , (27
(pn'alrZelpina)y= "2, (p;n’alf el a;la)

@l and (i) renders the matrice§™¥™ and FOFY) non-
Hermitian. Finally, as seen above for intra-atomic matrix el-
ements, the noncommutativity appears to remain evenh if
orbitals are added.

=p2%80 s (20

X<a;|a|Finter|p;na>

_ 2
=P Onns 2Y) Enforcing the isolated atom limit for any finite tight-
and thesp® nearest-neighbor models, binding model is thus quite costly. By enlarging the momen-
R R tum matrix with extra parameters, an inconsistent momen-
(siRj|r22Is;R)=(z;R)|rA3|z;R)=p? ~ (220  tum matrix results. When extra position parameters are
added intra-atomic matrix elements of higher powers of po-
<X?R1|Fi(rft)e2r|X?Rj>:0- (23 sition become increasingly incorrect, and the position matri-

ces no longer commute. As a corollary, gauge invariance is

Equations(20)—(23) are, from an atomic physics perspective, |ost, errors occur in the linear response, and most of the
unphysical, and are purely a consequence of the incomplei&mmonly employed expressions must be rederived to elimi-
basis. Note the uneven treatment of therbitals: Equation npate all hidden assumptions of commutativity and hermitic-
(23) vanishes whereas properties of the spherical harmoniggy, The Peierls-coupling tight-binding method avoids all of
require (x;R;|r{221x;R;)=(1/3)zR;|r{32z;R;) for true  these problems and inconsistencies and can be applied to a
atomic orbitals. These sorts of problems appear to persistide variety of molecules and solids so long as there is an
even ifd orbitals are added: Although the inaccuracy in theactual spatial separation between the atoms. In the next sec-
s andp-matrix elements is partially repaired, false-zero ma-tion we show that this formulation can reproduce bona fide
trix elements like Eq(23) now occur between orbitals. intramolecular transitions.

In addition, the enlarged tight-binding method in three
dimensions leads to unphysical matrices for higher powers of
position. In the localized-orbital basis the position operators

lll. DIELECTRIC SUSCEPTIBILITY

OF POLY (PARA-PHENYLENE)

for such a model are block diagonal in the atom location.

Denoting by the subscrigtj the (s,X,y,z) block for thejth

As an illustrative example of the Peierls-coupling tight-

atom, the elemental semiconductsp® nearest-neighbor binding method, we calculate the optical dielectric response

model with a same-ators-p parameter, Eq18), has matrix
products

for crystalline polypara-phenylene (PPB. By varying a
single structural parameter, this system allows one to study
optical absorption both in the limit of isolated molecules

[ RJ(X) RJ(V) pRJ(y) pRJ(X) 0 7 (phenyl rings, that isas well as in the case of periodic states.
pR(y) RORM) p? 0 To keep things as S|mp!e as possible, we neglect the weak
[FOFW]. .= ! b , interaction between chains and use the structural parameters
b pRM 0 RMR(Y) 0 for single PPP chains as obtained dly initio calculation$*
0 0 0 RORWY) and employ only a singler state per carbon site. In addition,
- o only interactionsV; ;=g; ;()%5/(mel?;) between nearest
(24) neighbors(distancel; ;) and wit* 7= —0.81 are included
in the calculation. The angular functiap ;(6) reflects the
- RJ(X’ Rj(y) pR}y) pRJ(X) 0 nonplanar configuration of PPP where two adjacent rings are
") Do) tilted with respect to each other by a torsion ang@leThus
[FOFC] = PR Ri™R 0 0 we takeg;;(#)=1 andg;;(#)=cos(@) for atoms on the
1) pRJ(X) p? R](")Rfy) 0 same and adjacent phenyl rings, respectively. The structure
0 o(y) of a PPP chain that is embedded in a crystal is shown sche-
. 0 0 0 RI7R;™ matically in Fig. 1 and is drawn with the correct setting angle
(25 Of $=62.1° with respect to the crystal axesb,c.?* The

Immediately we see that™ and ¥Y) no longer commute,
which affects even the linear responsee Sec. Il beloyv
since as a result

chain axis is taken along and the length of a two-ring
primitive cell is c. The carbon atoms are numbergd
=0, ...,11with displacements from the cell origin denoted
by d;. Atom O lies at the cell origind,=0) and atom 11 at
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In the presence of the vector potent@(t) the matrix
elements of the Hamiltonian in the localized-orbital basis are
given by Eg.(2). Transforming to the Bloch basis yields,
after some algebra,

A ie
(a’;k|H|a;k):exp[ — A (o —dyt+ Ao ,€9)

X(a';k|HO a;k), (3D

wheree®? denotes the unit vector along the chain axis. We
note that the Bloch-basis matrix elementsfbfdo not gen-
erally take such a simple form; this is especially the case if
the system is periodic in more than one dimension. The Car-
tesian components of the current opergté?(t) may now

be found in one of two entirely equivalent ways. In the first
we apply the defining relation®)(t) = — sSH/SAM(t) di-
rectly to the matrix elements Eq31), finding to first
order inA,

FIG. 1. Unit cell of one-dimensional PPP oriented in its crystal- . e “
line setting relative to the directions a, b, ¢ of the three-dimensional<a’ik|l (“)(t)|a;k>= - m_<0/ik| p(“)|a;k)
crystal. The two phenyl rings per unit cell are tilted with respect to 20
each other. Graywhite) spheres represent C atoitk$ atoms. B I”en_ Z <a’;k|'T'(“)'(V)|a;k)A(V)(t),
the opposite end of the cell so that atom 0 of ¢ettouples o
to atom 11 of cell (—1). The torsion angled between (32
adjacent benzene rings determines the spatial localization Qfj,qre
the eigenstates in the infinitely extended chain: éer0°,
the highest occupie(HOMO) and lowest occupied.UMO)
molecular orbital states are extended Bloch states along the
chain axis, whereas fof#=90°, the orthogonal orientation Mo ) (o e
betweens states on adjacent rings causes the eigenstates to =17 (A =7+ Ay 48,2 (e’ iKHY k),
be strictly intramolecular.

Since periodicity exists only in the direction, we drop (33
the index on the wave vector, denoting it simplykasriting
the Bloch basis for the PPP chain as (a";K|TE 0| q;k)

(a’;klp"lask)

Mo (w
Ia;k>=—1N > etasLy, (28) =2 —d% A, 46,
L

N

where|a;L) is a orbital located on atona=0, . ..,11 in
the Lth cell. In the Bloch basis, the matrix elements of the (39
zero-field Hamiltonian are

X (A= dP 4 A 08, 2)(a’ KA aik).

Before continuing, we emphasize that ¢ appearing in
Eqgs.(31)—(34) are not additional fitting parameters: They are

(a';kIH @i k) =V o eXH —iKA 4 o), displacements, fixed by the molecular structure. We reiterate
that we encounter none of the problems found in Sec. Il C
Aot a=CL84r 080011~ Sur 11840)- (29 above because the position operator is diagonal in the

localized-orbital basis.

Diagonalizing H® yields the eigenenergies and eigenstates The second method comput}af#)(t)z(te/ih)[F(f‘),H]
(the band basjs using the explicit operator expression fbr, expanded to
first order inA in the electric dipole approximatich:

HOn; k) =En(k)|n;k), .
H~Ho+ — > AO(tp™, (35
0O v

|n:k>:§ Cp.a(K)| @;K). (30

so that the current is

035202-5



TIMOTHY B. BOYKIN AND P. VOGL PHYSICAL REVIEW B 65 035202

. e . e? . 30, PPP (single chain)
jB(t)=——pW—— > TW0ALNY), (36 Torsion angle 27.4°
My Mo *7
e €, |
where 20 _g::
w
m E
~ 0 N ~
pl) = [rIHO], (37) 101
A ) (v Mo ~ ) O 0
T, () = — ﬁ[r(u),[r( ) HOT], (38) 0 1 2 3 4 5 6 7
Energy [eV]

are the operators whose matrix elements are given in Eds. fi5 3 calculated components of the imaginary part of the
(33) and (34). We emphasize that these two methods argjjg|ectric function of one-dimensional PPP parallel to and perpen-
entirely equivalent. In fact, the Bloch-basis matrix elementSyicular to the chain axis as a function of ener@y eV), for the

of H (which has terms to all orders in) are identical to Eq. realistic torsion angle of 27.4° between the two phenyl rings.

(31), whereby the position operator is diagonal in the
localized-orbital basi8,

J 0} Im[)((”)’(”)]dw
0

(a';L'|[r®a;Ly=(d%+cLb, ) 80 o0 L. (39 |
2 v
e N
R — - (). |n-
The dielectric susceptibility tensor follows from standard 2gompabl, n; Ek (nKIT nik),
linear-response theory using the current operator(&2).or
Eq. (36). The diagonal components of the imaginary part arevhere the valence bands are numbered.1,N, and the

sum overk runs covers the one-dimensional Brillouin zone.

(41)

o2 This relation provides an important consistency check in any
Im{x(" ] =————— numerical implementation.
goMyow-abl, In Figs. 2—4 we plot, as a function of photon energy, the

imaginary part of the dielectric function for three different
% 2 [fn(k)_fn,(k)]|<n’;k|E)(V)|n;k>|2 torsion angles#=0, 27.4, and 90°; we have introduced a
n,n’ k small Landau damping of 0.02 eV in the dielectric tensor to
better show the relative strength of the absorption peaks. The
X o= En (k) +Eq(k)], (40 calculations for the experimental torsion angle of 27.4° agree
fairly well with electron-energy-loss spectroscofgELS)
(Ref. 25 and optical absorption experimefftfor the dielec-
tric function component .. with polarization along the chain
as can be deduced from Fig. 5, given the extreme simplicity
of the model. In particular, the position of both the main

wheref (k) is the Fermi-Dirac function for thath band at

wave vectokk, a andb are the primitive PPP cell dimensions
in the x-y plane, and_.=cN, is the length of a chain con-
taining N, primitive cells. In Appendix B, we show that the
following f-sum rule, similar to that for solids with three-

dimensional periodicit§,may be derived for Eq40). For all . .
directionsv, we find 50 PPP (single chain)

JTorsion angle 90°
30- PPP (single chain) 01 =
Torsion angle 0° —en
— w 307
J === &y E
. 20 —_F,, - 20
E
101
10
0 T
4 5 6 7 8
o - 4} N Energy [eV]
01 2 3 4 5 6 7 8
Energy [eV] FIG. 4. Calculated components of the imaginary part of the

dielectric function of one-dimensional PPP parallel to and perpen-
FIG. 2. Calculated components of the imaginary part of thedicular to the chain axis as a function of ener@y eV), for an
dielectric function of one-dimensional PPP parallel to and perpenartificial torsion angle of 90° which leads to effectively decoupled
dicular to the chain axis as a function of photon engigyeV), for benzene molecules. Note the change in scale compared to the pre-
an artificial torsion angle of 0° between the two phenyl rings. vious figures.
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30 ‘ - incompatible with the underlying tight-binding model, while
Experiment adding extra position parameters results in numerous diffi-
20k culties, including the loss of gauge invariance. We have ap-
¥ plied our generalized results to the molecular solid PPP,
E showing that even in the limit of isolated molecules, the

10 | Peierls approach to tight-binding still reproduces intramo-
lecular transitions.
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absorption peak at 3 eV and the secondary maximum at 6 eV

agree well with experiment, the latter peak being much too

narrow since it is strictly intramolecular in the present APPENDIX A: EFFECTIVE MASS FOR THE LINEAR
model. Adsorbance data on oriented PPP suggest a ratio of CHAIN MODEL

gccleaa~5 near the absorption ed§ewhich also agrees
qualitatively with the present model. Figure(tbrsion angle
90°) represents the limit of isolated benzene molecules. Al ) .
lines represent intraphenyk—m* transitions. The eigen- Including a same-ators-p parameter in order to show that

£ 2 < . .
states within a phenyl ring can be classified as on-axis statel{]é Matrix elements dfiy e aNdTiner Finer Must be identical
i.e., states that are localized mainly on the two chain-axidO" the model to give the correct curvature. First, we calcu-

atoms, and off-axis states that are localized on the remaininGt€ the curvature directly from the eigenvalue, Eg):
four off-axis atoms. Fok.., one gets two dipole allowed

FIG. 5. Experimental imaginary part of the dielectric function of
crystalline PPP parallel to the chain axis as a function of engrgy
eV) (Ref. 25.

Here we calculate the band curvatuiaverse effective
[nas$ atk=0 in the linear chain model of Secs. [IBand Il C

transitions, one on-axisr(on)— 7*(on) and one off-axis d2E., (k) 8a2U§p
7(off) — 7 (off) which have slightly different energies. For — =—2a%Ugst E—E)12(U.—U.)"
€aa=€pp, ON the other hand, only the transitiom(on) d k=0 s ~p ss ~pp

— a* (off) and its degenerate counterpartoff) — 7* (on) (A1)

is dipole allowed as one can easily deduce from the geom-
etry of the phenyl rings. This explains the results shown inThe curvature may also be calculated directly from the
Fig. 4. The present simple model neglects excitons which areigenvectors of the Hamiltonian E(),

known to modify the absorption significantly close to the
band gap’ but their effect is probably small on the energy

T ey 2
scale shown in the figures. d’E, (k) L[ +2|v0,+[r,H]v0,,|
We emphasize that the limiting case of isolated molecules (k2 - oFLiL T O+ E.(0)—E_(0)’
(Fig. 4 shows that the Peierls-coupling tight-binding easily k=0 (A2)

models true, intramolecular transitions, since there are no
extended states in this case. So long as there is a true se
ration between the atoms and it is treated as in B§)

above we recover the isolated molecule case without any of

Réfere the eigenvalues and eigenvectors=a0 are given by

the inconsistencies associated with enlarging the model with 1
extra, off-diagonal position parameters. E (0)=Est2Ug, Vo= ol’
IV. CONCLUSIONS 0
We have generalized our previous Peierls-coupling tight- E_(0)=Ep+2Upy, VO"ZL}' (A3)

binding approach to electromagnetic interactions to encom-

pass molecular solids and isolated molecules. In doing so Wg,j the matrix representations of the commutators are like-
have examined in detail consequences of various prescrigise eyaluated a=0. In this model the total position op-
tions for the position and momentum operators in tight bind- . Al A A A
ing. We have shown that the only specification of the posi-erator ISa _Sum of two par.ts,=rc+.rimer, wherer . glye§ the
tion operator which does not suffer from incompletenessatom location and thus diverges in the Bloch basis el
related prob'ems is as a Same_atom, same-orbital 0n|&$ the well behaved Same'at(Bm interactio’\n whose matrix
interaction giving the atom location. We have also shownis given in Eq.(15). Recall that althouglr. diverges its
that attempting to fit parameters of the momentum matrixxommutator with the Hamiltonian is well-defined so that we

directly generally results in a momentum operator which isget
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o dH
[rch]_Iﬂr
- d?H
[rC![rC!H]]:_w (A4)
Thus, atk=0,
|
0

[ Finters ﬁ]kzoz

p[Es—Ep+2(Ugs—U

PHYSICAL REVIEW B 65 035202

dH [ 0 i2aUs,
dk |, _, [—i2aUg, 0o |
d2H —2a%Ug 0 8
di® |, _, 0 —2a%U,,)
Using Eqgs.(6) and(15) it is easy to calculate
—p[Es— Ep+2(Uss_ Upp)]
op)] 0 : (A6)

so that we have for the squared interband matrix element iand employing the prescriptions Eq&10), (15), (16) then

Eq. (A2),

VoL [F,HIVo_[2={2aUg,+ p[ Es— Ep+2<uss—upp>](}2-)
A7

The first step in evaluating the double commutator in Egs.

(A1) and(A2) is expanding it:
[F,[F =17 [ o, HIT+ [ [ Finers HI1H [Finer. [ Te . 1]

+ [?intera[?intera ﬁ]] (A8)

The first term in Eq.(A8) is given in Eq.(A4). For the

second and third, we observe that commutators .ofvith
cell-periodic operators corresponding kespace differentia-
tion as in Eq.(A4), and that the matriX;,,, in Eq. (15) is k
independent. The sum then simplifies to

[?c a[?intervH]]|k=O+ [?interv[?c rH]:”k:O
dﬁ}

1. 8apUSp 0
=2i rintervﬁ

0 —8apUgp|
(A9)

k=0

leads to

Dsp O

[Finters[ TintersH1J=0= 0 Dps

Dep=273(Es+2Us) —2p%(E,+2U,,),  (Al2)

Dps=275(Ep+2Upp) —2p%(Eg+2Usy),

wherep is the same-orbitad-p parameter in Eq(13). Com-
bining Egs.(A5), (A9), and(Al12) gives

—V§+[F.[T,H]Ivo + = —2a%U s~ 8apUsp,— 272

X (Es+2Uge) +2p%(Ep+2Up)),

All that remains is the final double commutator, involving so that

only the same-atons-p interaction. Evaluating this double

commutator shows that the matrix elementsFif,, cannot

be chosen independently. This is established by observing

that in atomic physics the expectation valuesF@f,, for s

andp orbitals need not be the same. Hence it ought to be the

case that
<S;n,a|Fﬁner|S;na>: 7/§5n’,nv
<p;n’a|i:ﬁ1ter|p;na>= 77;5n’,nv (A10)

with 72# 2. Expanding the double commutator
s7 p

[(Finter ’ [?inter ’ ﬁ ] ] = ‘Fﬁnerﬁ - 2<I7)int(-:‘rﬁ (Finter"' ﬁ('?ﬁlter!
(A11)

(A13)
_ Ve [T HIvo |2
ot SN s e
VO’+[r,[r.H]]VO,++2E+(0)—E,(0)
8a2U?
a2y 4 sp +2(p%— 72
B Ept2Us Upy 2P 7
X (Eg+2Usy). (AL

It is obvious that Eq(A14) can only give the correct curva-
ture EqQ.(A1) if »2=p?. Hence the matrix elements &f e,

cannot be treated as independent fitting parameters, contrary

to what is suggested by atomic physics.
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DIELECTRIC RESPONSE OF MOLECULES IN ...

APPENDIX B: f-SUM RULE FOR THE PPP CHAIN

We begin with the susceptibility for the PPP chain,

2

e~
Im[ (88 = —
gogMpw“abl,

X 2 [Fa(k)—for(K)[(n"; K| p®|n;k)|2

n,n’ .k

X 8 hw—En (K)+Eq(K)]. (B1)

At T=0 all of the Fermi factors become 0 or 1, and the
double sums S|mpI|fy since the difference of Fermi factors isC
zero forn and n’ both valence or both conduction bands.

Integrating wIm[ x?)®)(»)] over the intervalwe[0%)

picks out positive frequencies, so that the only terms to sur=

vive are those for which the sum overcovers the valence
bands and that over’ covers the conduction bands. Using

—En (K],
(B2

mq -
—m<n’;k|r(“)|n;k>[En(k)

and symmetrizing the surfhence the factor of 2 in the de-
nominatoy we have

j olm[x#B)dw
0

e

in

_ mﬂ
2gomiabl
N, Ny

XE > E[<n KIr®n’;k)(n";k[p"[n;k)

=ln=N,+1

—(n;k|p®|n";k)(n’;k|rP|n;k)], (B3)

where there areN, bands in the model and the bands
1,... N, are valence bands. We next add and subtract a

term that is obtained from E@B3) by changing the summa-
tion index of the middle sum ta’=1,... N,. The added
term is absorbed into EcﬁB3) so that the sum over’ now
covers all the bands,’ = . Np . The sum over the states

PHYSICAL REVIEW &5 035202

e

)Z 2—31 Ek: {(n;k[r®|n";k)

2gomaabl
x(n’;k[p@|n;k) = (n;k[p®P[n";k)(n’ ;KT P|n;k)}

e’JT

)E S (mkFEniK)

ZSOmOabL

X (n;k[p{Rtaln; k) — (nik p{Rlns k)i Kl n k)3,
(B4)

since (n;k|r?|n;k)=(n;k|r{8) |n:k), etc. For the PPP
chain we must distinguish two case8=x,y, for which
there is no translational periodicity ang=z, for which
there is translational periodicity: The only potential difficulty
surrounds the matrix elements of position which are diver-
gent for directions in which periodicity exists. For the case
B=X,y, the band-basis matrix elements of position are
bounded since using E(9) gives bounded Bloch-basis ma-
trix elements

“ 1 : , “
(a';k|l‘(ﬁ)|a;k)=N— 2 ; gike(L-L )<a';L’|r(B)|a;L>
AN

= 5ar’adgﬁ) , (BS)
and the band-basis states are simply well-behaved linear
combinations of the Bloch-basis states. Because the intra-
band momentum matrix elements are well behaved for khoth
andy, the term in curly braces on the right-hand side of Eq.
(B4) vanishes for alh and Eq.(B4) gives zero.

For 8=z, we must treat the matrix elements of position in
Eq. (B4) ask-space operator

|_+'ﬂ(ﬁ)

<n k|rl(r'ﬁl)'aln k> (B) =nn:

(B6)

where 2 is the expectation value a#/dk®) taken with

respect to the periodic part ¢f;k). Since

Mo 9E,(K)

[n";k) is now nothing more than the finite-basis closure re-

lation and may be removed, leaving a sum over the diagonal

matrix elementsn;k| T ®)|n:k). The term that we sub-
tracted is readily simplified as well. Because batandn’
are summed over all valence bands, for each pajn’()
=(j,]") there is anotherr,;n’)=(j’,j) which gives an

equal but opposite contribution; hence no interband matrix
elements survive. What remains is a sum over the matrix

elements of operators which are purely intraband in the band

basis,

(nikIpidnik) = 2= — (B7)
we have
(niKIr{d ;i) (n;k pin; k)
— (K| pl i k) (n;K|r R n; k)
_[i zm| Mo EaK) Mo En(K) L 9
kB Rl B TR ) i gk® | gk®
m, %E.(k
+5® :i_oﬁ, (B8)
: o gk(B) gk (B)
so that

035202-9



TIMOTHY B. BOYKIN AND P. VOGL PHYSICAL REVIEW B 65 035202

2 tributes nothing and we arrive at tliesum rule for the PPP
P )2 2 E [(n;K|r®)|n";k) chain as
ZsomoabL n=1p/—1
x(n’:klp®WIn;k) = (n:klp®@In":k)(n" k[T n;k)] rwlm[x(ﬁ)‘(m]dw
N > 0
e*r imo ?En(K)
PO I —_—. B9 2 N,
ZsomoabL )( )nEl ; KB gk (B) (B9) e

1 ~
= KIFB.B) -
2ggmgabc N, Z‘ % (kT In;k),
For a large system we convert the sum over tbee-

dimensional Brillouin zone into an integral, and sinég,(k) (B10)
is periodic over the zone the integral of its second derivative

vanishe€? In all three directions, then, the term added to Eq.wherec is the dimension along thedirection(not the speed
(B3) with the sum oven’ running fromn’=1, ... N, con-  of light).
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