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Dielectric response of molecules in empirical tight-binding theory
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In this paper we generalize our previous approach to electromagnetic interactions within empirical tight-
binding theory to encompass molecular solids and isolated molecules. In order to guarantee physically mean-
ingful results, we rederive the expressions for relevant observables using commutation relations appropriate to
the finite tight-binding Hilbert space. In carrying out this generalization, we examine in detail the consequences
of various prescriptions for the position and momentum operators in tight binding. We show that attempting to
fit parameters of the momentum matrix directly generally results in a momentum operator which is incompat-
ible with the underlying tight-binding model, while adding extra position parameters results in numerous
difficulties, including the loss of gauge invariance. We have applied our scheme, which we term the Peierls-
coupling tight-binding method, to the optical dielectric function of the molecular solid PPP, showing that this
approach successfully predicts its known optical properties even in the limit of isolated molecules.
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I. INTRODUCTION

The empirical tight-binding method owes much of its lo
success to the fact that it provides a physically transpar
computationally efficient approach to electronic structu
calculations for crystalline systems.1–3 The method has bee
extended to include electromagnetic fields, permitting
calculation of observables such as the dielectric function
crystalline solids.4–6 The empirical tight-binding method i
not inherently restricted to crystalline solids and, in view
the growing importance of molecular electronics and b
physics applications, extending the method to encomp
electromagnetic interactions in molecules is timely.

Because molecular systems can exhibit characteristic
both periodic solids and isolated molecules, tight-bind
calculations of their optical properties vividly illustrate th
subtleties of the momentum operator, through which the v
tor potential couples into the Hamiltonian. These subtle
arise from the finite dimension of the tight-binding Hilbe
space, which cannot accurately representp̂→2 i\¹, and
whose operators~represented by finite matrices! cannot sat-
isfy the complete-basis commutation relations@ r̂ (a),p̂(b)#

5 i\1̂da,b since in a finite basis Tr(r̂ (a)p̂(b))
5Tr( p̂(b) r̂ (a)). Consequently, the relationship between re
space~complete basis! quantum mechanics and empiric
tight binding is rather analogous to that between a differ
tial equation and its corresponding finite-difference appro
mation, and it is clear that the customary textbook equati
for most important observables~effective mass, dielectric
function, etc.! must be rederived using the appropriate fini
basis commutation relations. Understanding the momen
operator in tight binding is therefore an essential prelimin
to treating electromagnetic interactions in molecular s
tems; it is accordingly the focus of the present paper.

In our previous papers we have taken into account
incompleteness of the tight-binding basis in calculating
effective masses and dielectric functions of crystall
0163-1829/2001/65~3!/035202~10!/$20.00 65 0352
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materials.4–7 The dielectric function is in fact but one appl
cation of a general scheme for incorporating electromagn
fields into the empirical tight binding theory without the in
troduction of additional parameters.4–6 Our method, which
we call Peierls-coupling tight binding, guarantees gauge
variance and charge conservation, and leads to physic
transparent expressions for quantities such as optical
sponse functions and dynamical effective charges.8,9 Most
importantly, it is fully compatible with the underlying~i.e.,
zero external field! tight-binding model in the sense that th
representations of the position and momentum operators
employ in calculating extrinsic properties~e.g, dielectric re-
sponse! give the correct intrinsic properties such as the v
locity ~band slope! and inverse effective mass~band curva-
ture!.

Others have taken a different approach for treating e
tromagnetic interactions, arguing for the introduction of ex
parameters~a posteriori! into tight-binding models to im-
prove agreement with experiment by explicitly providing f
intra-atomic transitions; we shall refer to such schemes
enlarged tight-binding methods. Most recently, Peder
et al.10 have even claimed that our Peierls-coupling tig
binding method is incorrect, does not apply to nonperio
systems such as molecules, and should be augmented t
commodate intra-atomic transitions by adding an expli
k-independent term to the momentum matrix.10 Although
they are able to achieve good agreement with the Kron
Penney model, their approach has fatal flaws. As we shall
below, the resulting momentum operator does not give
correct band slopes and leads to artifacts such as n
Hermitian operators, and violation of gauge invariance.

We therefore focus on the role played by the moment
operator in coupling electromagnetic fields into the empiri
tight-binding Hamiltonian for both crystalline and molecul
systems, with particular emphasis on the consequence
introducing extra parameters. In Sec. II we briefly review o
Peierls-coupling tight-binding method and discuss the im
©2001 The American Physical Society02-1
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TIMOTHY B. BOYKIN AND P. VOGL PHYSICAL REVIEW B 65 035202
cations of adding parameters to a tight-binding model, i
the enlarged tight-binding method. In Sec. III we show th
our earlier results derived for crystalline systems4,6 can be
applied in a straightforward manner to molecular systems
an example we calculate the dielectric susceptibility of
one-dimensional phase of poly~para-phenylene! ~PPP! which
exhibits characteristics of both periodic and isolated syste
Section IV presents our conclusions.

II. ELECTROMAGNETIC FIELDS IN TIGHT BINDING

Of central importance to any generalization of the emp
cal tight-binding method to encompass electromagnetic in
actions in molecular systems is the treatment of the posi
and momentum operators. As mentioned in Sec. I, ther
some controversy surrounding their correct representati
with the isolated-atom limit often used as the reason for a
ing extra parameters. In contrast, there has been no dis
sion of how the incompleteness of the tight-binding ba
affects calculations of observables in any method to wh
extra parameters have been added. Thus, prior to deriving
dielectric function of a molecular system, we briefly revie
the incorporation of electromagnetic fields in tight binding
the Peierls-coupling tight-binding method and examine
consequences of adding extra position or momentum par
eters in enlarged tight-binding models.

A. Peierls-coupling tight-binding method

We summarize here our method4,6 which does not intro-
duce additional parameters. For the sake of clarity, we
criminate Hilbert space operators such asĤ from matrix rep-
resentations that we write in the formHI . Système
International~SI! units shall be used throughout. Conside
tight-binding Hamiltonian that is characterized by the on-s
and off-site Hamiltonian matrix elements

«aI
0 5^a,I uĤ0ua,I &,

ta8I 8,aI
0

5^a8,I 8uĤ0ua,I &. ~1!

Here, the orthonormal basis statesua,I & are labeled by a site
index I and a symmetry-related indexa that numbers the
orbitals at a given site. An electromagnetic field specified
the scalar potentialF(r ,t) and the vector potentialA(r ,t)
modifies these matrix elements as follows:

«aI5«aI
0 2F~RI ,t !,

ta8I 8,aI5ta8I 8,aI
0 expH 2

ie

\ ERI

RI 8
A~r ,t !•dlJ , ~2!

where the modification in Eq.~2! is called the Peierls
substitution.4 For a general vector potential there is the qu
tion of which path to use in the integral, the straight li
being generally adopted for nearest-neighbor models.4,6 For a
well-behaved vector potential using the straight-line p
yields matrix elements Eq.~2! identical to those of an ex
plicit ~Hermitian! Hamiltonian operator into whichA(r ,t)
couples.6 Note that when we employ Eq.~2! in Sec. III be-
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low we shall work in the electric dipole approximation
A(r ,t)5A(t), so that the path issue does not arise.

To date the Peierls substitution has been used very
cessfully to study nonperturbative interactions of light a
matter11–13 and magnetic band structures.14–17 So far, it
seems not to have been employed in first-principles tig
binding methods18–21even though nothing in the Peierls su
stitution is inherently restricted to empirical models and
should, in principle, be possible to employ it here as we
This would be particularly advantageous for real-spaceab
initio methods that invoke Wannier functions to study no
perturbative effects of electromagnetic fields.22

B. Enlarging a model with momentum matrix parameters:
A counterexample

In Ref. 10 it is suggested that extra parameters be ad
directly to the momentum matrix in order to augment t
interband momentum matrix elements obtained by
Peierls-coupling tight-binding method. Consider a on
dimensional tight-binding model that has ones and onep
orbital per site, with sites separated by a distancea. In the
localized orbital basis the Hamiltonian matrix elements
(aP$s,p%)

^a;n8auĤua;na&5Eadn8,n1Uaa~dn8,n111dn8,n21!,
~3!

^p;n8auĤus; na&5Usp~dn8,n112dn8,n21!. ~4!

In the Bloch basis,

ua;k&5
1

AN
(
n51

N

eiknaua;na&, ~5!

where againaP$s,p% and the Hamiltonian matrix is

HI5F hss~k! ihsp~k!

2 ihsp~k! hpp~k! G , ~6!

hss~k!5Es12Usscos~ka!,

hpp~k!5Ep12Uppcos~ka!,

hsp~k!52Uspsin~ka!, ~7!

with eigenvalues

E6~k!5
1

2
@hss~k!1hpp~k!

6A@hss~k!2hpp~k!#214hsp
2 ~k!#, ~8!

and eigenvector corresponding toE2(k),

v25
1

A@hss~k!2E2~k!#21hsp
2 ~k!

F 2 ihsp~k!

hss~k!2E2~k!G .

~9!
2-2
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DIELECTRIC RESPONSE OF MOLECULES IN . . . PHYSICAL REVIEW B65 035202
In the Peierls-coupling tight-binding scheme, we have
minimal momentum matrixpIk5(m0 /\)(dHI /dk), whose ex-
pectation value is proportional to the band slope,

v2
† pIkv25

m0

\

dE2

dk
, ~10!

exactly as it must be for a model without the spin-or
interaction.7 ~The calculation is tedious but straightforward!
Pedersenet al.10 now introduce an additional momentu
matrix to accommodate intra-atomic transitions,

PI5F 0 2 iPsp

iPsp 0 G . ~11!

While they are indeed able to fit the tight-binding interba
matrix element to that of the Kronig-Penney model with E
~11! they have thereby rendered the total momentum op

tor pIk1PI useless for any calculations that depend on
electron velocity, such as tunneling or transport. This gr
defect of the total momentum operator is obvious, since

v2
† ~pIk1PI!v25

m0

\

dE2

dk

12Psp

hsp~k!@hss~k!2E2~k!#

@hss~k!2E2~k!#21hsp
2 ~k!

,

~12!

where the second term doesnot vanish for allk. The total
momentum operator now fails to yield the correct carr
velocity and hence has lost its physical meaning.

C. Enlarging a model with position parameters:
Errors due to incompleteness

Another suggestion that has been made by sev
authors10,23 is to enlarge the interband momentum matrix
ements of the Peierls-coupling tight-binding scheme with
same-atoms-p matrix element of position. While this
method, that we will also call an enlarged tight-bindin
method, does seem attractive on first inspection, it suf
from errors due to the incomplete tight-binding basis aris
from products of position operators. This problem cannot
dismissed by considering only the linear response, for,
shown in Sec. III below, even the linear response invol
double commutators such as†r̂ (x),@ r̂ (y),Ĥ0#‡. First, however,
we briefly describe the method and its initial attraction.

In the model of Sec. II B above one would write the p
sition operator as a sum of two operatorsr̂ c1 r̂ inter, wherer̂ c
is the same-atom, same-orbital position operator from ti
binding without additional parameters andr̂ inter is the new
~purely interband! same-atoms-p interaction. The unique
nonvanishing matrix elements of these operators are

^a;nau r̂ cua;na&5na,

^s;nau r̂ interup;na&5r, ~13!
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wherer is real. In the Bloch basis,r̂ c has no matrix repre-
sentation because it includes intraband effects~its matrix
thus diverges!; its commutator with the Hamiltonian is, how
ever, well-defined,

p̂k5
m0

i\
@ r̂ c ,Ĥ#, ~14!

so that the matrix for this commutator is justpIk

5(m0 /\)dHI /dk. On the other hand,r̂ inter is a purely inter-
band operator and hence has a well-defined Bloch basis
trix, and corresponding additional momentum matrix,

rIinter5F 0 r

r 0G , ~15!

so that

pIinter5
m0

i\
@ rIinter,HI #. ~16!

We see immediately that because this matrix is well defin
the added momentum does not affect expectation values.
example,

m0

i\
v2

† @ rIinter,HI #v25
m0

i\
@E2~k!2E2~k!#v2

† rIinterv250,

~17!

since the expectation value ofrIinter is finite. Thus it would
seem that this prescription could be employed to adjust
interband momentum matrix element to the desired value
the real parameterr. Unfortunately, this prescription to
gether with incompleteness leads to conclusions sharpl
variance with atomic physics. This problem is especially
rious in three dimensions so we shall also examine the
emental semiconductorsp3 nearest-neighbor model havin
an extra same-atoms-p parameter satisfying relations anal
gous to

^s;Rj u r̂ inter
(x) ux;Rj&5^s;Rj u r̂ inter

(y) uy;Rj&5^s;Rj u r̂ inter
(z) uz;Rj&5r,

~18!

where we label the threep orbitalsx,y,z.
As mentioned above, the errors are associated with p

ucts of position operators so we first consider matrix e
ments of the operatorr̂ inter

2 , which cannot be treated as sep
rate fitting parameters if we are to have a useful formalis
That is, if the matricesrIinter

2 and rIinter• rIinter are not identical
then in the formalism we can never be certain how to int
pret higher powers of position. In Appendix A we show, f
example, that the relation used in deriving the Bak
Hausdorff identity,

†r̂ ,@ r̂ ,Ĥ#‡5 r̂ 2Ĥ22r̂ Ĥ r̂ 1Ĥ r̂ 2 ~19!

~wherer̂ 5 r̂ c1 r̂ inter and for simplicity the model is the linea
chain above!, must hold if the model is to give the correc
band curvatures. Calculating matrix elements ofr̂ inter

2 with
2-3
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TIMOTHY B. BOYKIN AND P. VOGL PHYSICAL REVIEW B 65 035202
the enlarged tight-binding model Eq.~13! then leads to some
rather startling conclusions, for both the linear chain,

^s;n8au r̂ inter
2 us;na&5(

a,l
^s;n8au r̂ interua; la&

3^a; lau r̂ interus;na&

5r2dn8,n , ~20!

^p;n8au r̂ inter
2 up;na&5(

a,l
^p;n8au r̂ interua; la&

3^a; lau r̂ interup;na&

5r2dn8,n , ~21!

and thesp3 nearest-neighbor models,

^s;Rj u r̂ inter
(z)2us;Rj&5^z;Rj u r̂ inter

(z)2uz;Rj&5r2, ~22!

^x;Rj u r̂ inter
(z)2ux;Rj&50. ~23!

Equations~20!–~23! are, from an atomic physics perspectiv
unphysical, and are purely a consequence of the incomp
basis. Note the uneven treatment of thep orbitals: Equation
~23! vanishes whereas properties of the spherical harmo
require ^x;Rj u r̂ inter

(z)2ux;Rj&5(1/3)^z;Rj u r̂ inter
(z)2uz;Rj& for true

atomic orbitals. These sorts of problems appear to pe
even if d orbitals are added: Although the inaccuracy in t
s- andp-matrix elements is partially repaired, false-zero m
trix elements like Eq.~23! now occur betweend orbitals.

In addition, the enlarged tight-binding method in thr
dimensions leads to unphysical matrices for higher power
position. In the localized-orbital basis the position operat
for such a model are block diagonal in the atom locati
Denoting by the subscriptj , j the (s,x,y,z) block for the j th
atom, the elemental semiconductorsp3 nearest-neighbo
model with a same-atoms-p parameter, Eq.~18!, has matrix
products

@ rI(x) rI(y)# j , j5F Rj
(x)Rj

(y) rRj
(y) rRj

(x) 0

rRj
(y) Rj

(x)Rj
(y) r2 0

rRj
(x) 0 Rj

(x)Rj
(y) 0

0 0 0 Rj
(x)Rj

(y)

G ,

~24!

@ rI(y) rI(x)# j , j5F Rj
(x)Rj

(y) rRj
(y) rRj

(x) 0

rRj
(y) Rj

(x)Rj
(y) 0 0

rRj
(x) r2 Rj

(x)Rj
(y) 0

0 0 0 Rj
(x)Rj

(y)

G .

~25!

Immediately we see thatrI(x) and rI(y) no longer commute,
which affects even the linear response~see Sec. III below!
since as a result
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†r̂ (x),@ r̂ (y),Ĥ0#‡Þ†r̂ (y),@ r̂ (x),Ĥ0#‡. ~26!

This noncommutativity~i! implies a loss of gauge invarianc
for this formulation since now

expH S ie

\ D @A(x)~ t ! r̂ (x)1A(y)~ t ! r̂ (y)#J
ÞexpH S ie

\ DA(x)~ t ! r̂ (x)J expH S ie

\ DA(y)~ t ! r̂ (y)J , ~27!

and ~ii ! renders the matricesrI(y) rI(x) and rI(x) rI(y) non-
Hermitian. Finally, as seen above for intra-atomic matrix
ements, the noncommutativity appears to remain evend
orbitals are added.

Enforcing the isolated atom limit for any finite tight
binding model is thus quite costly. By enlarging the mome
tum matrix with extra parameters, an inconsistent mom
tum matrix results. When extra position parameters
added intra-atomic matrix elements of higher powers of
sition become increasingly incorrect, and the position ma
ces no longer commute. As a corollary, gauge invarianc
lost, errors occur in the linear response, and most of
commonly employed expressions must be rederived to el
nate all hidden assumptions of commutativity and hermi
ity. The Peierls-coupling tight-binding method avoids all
these problems and inconsistencies and can be applied
wide variety of molecules and solids so long as there is
actual spatial separation between the atoms. In the next
tion we show that this formulation can reproduce bona fi
intramolecular transitions.

III. DIELECTRIC SUSCEPTIBILITY
OF POLY „PARA-PHENYLENE …

As an illustrative example of the Peierls-coupling tigh
binding method, we calculate the optical dielectric respo
for crystalline poly~para-phenylene! ~PPP!. By varying a
single structural parameter, this system allows one to st
optical absorption both in the limit of isolated molecul
~phenyl rings, that is! as well as in the case of periodic state
To keep things as simple as possible, we neglect the w
interaction between chains and use the structural param
for single PPP chains as obtained byab initio calculations24

and employ only a singlep state per carbon site. In addition
only interactionsVi , j5gi , j (u)\h/(m0l i , j

2 ) between neares
neighbors~distancel i , j ) and with24 h520.81 are included
in the calculation. The angular functiongi , j (u) reflects the
nonplanar configuration of PPP where two adjacent rings
tilted with respect to each other by a torsion angleu. Thus
we take gi , j (u)51 and gi , j (u)5cos(u) for atoms on the
same and adjacent phenyl rings, respectively. The struc
of a PPP chain that is embedded in a crystal is shown s
matically in Fig. 1 and is drawn with the correct setting ang
of f562.1° with respect to the crystal axesâ,b̂,ĉ.24 The
chain axis is taken alongz and the length of a two-ring
primitive cell is c. The carbon atoms are numberedj
50, . . . ,11with displacements from the cell origin denote
by dj . Atom 0 lies at the cell origin (d050) and atom 11 at
2-4
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DIELECTRIC RESPONSE OF MOLECULES IN . . . PHYSICAL REVIEW B65 035202
the opposite end of the cell so that atom 0 of cellL couples
to atom 11 of cell (L21). The torsion angleu between
adjacent benzene rings determines the spatial localizatio
the eigenstates in the infinitely extended chain: foru50°,
the highest occupied~HOMO! and lowest occupied~LUMO!
molecular orbital states are extended Bloch states along
chain axis, whereas foru590°, the orthogonal orientation
betweenp states on adjacent rings causes the eigenstate
be strictly intramolecular.

Since periodicity exists only in thez direction, we drop
the index on the wave vector, denoting it simply ask, writing
the Bloch basis for the PPP chain as

ua;k&5
1

AN
(
L

eikLcua;L&, ~28!

whereua;L& is a p orbital located on atoma50, . . . ,11 in
the Lth cell. In the Bloch basis, the matrix elements of t
zero-field Hamiltonian are

^a8;kuĤ0ua;k&5Va8,aexp~2 ikLa8,a!,

La8,a5c@da8,0da,112da8,11da,0#. ~29!

Diagonalizing Ĥ0 yields the eigenenergies and eigensta
~the band basis!

Ĥ0un;k&5En~k!un;k&,

un;k&5(
a

Cn,a~k!ua;k&. ~30!

FIG. 1. Unit cell of one-dimensional PPP oriented in its cryst
line setting relative to the directions a, b, c of the three-dimensio
crystal. The two phenyl rings per unit cell are tilted with respect
each other. Gray~white! spheres represent C atoms~H atoms!.
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In the presence of the vector potentialA(t) the matrix
elements of the Hamiltonian in the localized-orbital basis
given by Eq.~2!. Transforming to the Bloch basis yields
after some algebra,

^a8;kuĤua;k&5expH 2
ie

\
A~ t !•~da82da1La8,ae(z)!J

3^a8;kuĤ0ua;k&, ~31!

wheree(z) denotes the unit vector along the chain axis. W
note that the Bloch-basis matrix elements ofĤ do not gen-
erally take such a simple form; this is especially the cas
the system is periodic in more than one dimension. The C
tesian components of the current operatorĵ (m)(t) may now
be found in one of two entirely equivalent ways. In the fir
we apply the defining relationĵ (m)(t)52dĤ/dA(m)(t) di-
rectly to the matrix elements Eq.~31!, finding to first
order inA,

^a8;ku ĵ (m)~ t !ua;k&52
e

m0
^a8;ku p̂(m)ua;k&

2
e2

m0
(

n
^a8;kuT̂(m),(n)ua;k&A(n)~ t !,

~32!

where

^a8;ku p̂(m)ua;k&

5
m0

i\
~da8

(m)
2da

(m)1La8,adm,z!^a8;kuĤ0ua;k&,

~33!

^a8;kuT̂(m),(n)ua;k&

52
m0

\2
~da8

(m)
2da

(m)1La8,adm,z!

3~da8
(n)

2da
(n)1La8,adn,z!^a8;kuĤ0ua;k&.

~34!

Before continuing, we emphasize that theda
(m) appearing in

Eqs.~31!–~34! are not additional fitting parameters: They a
displacements, fixed by the molecular structure. We reite
that we encounter none of the problems found in Sec. I
above because the position operator is diagonal in
localized-orbital basis.

The second method computesĵ (m)(t)5(2e/ i\)@ r̂ (m),Ĥ#

using the explicit operator expression forĤ, expanded to
first order inA in the electric dipole approximation:6

Ĥ'Ĥ01
e

m0
(

n
A(n)~ t ! p̂(n), ~35!

so that the current is

-
al
2-5
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ĵ (m)~ t !52
e

m0
p̂(m)2

e2

m0
(

n
T̂(m),(n)A(n)~ t !, ~36!

where

p̂(m)5
m0

i\
@ r̂ (m)Ĥ0#, ~37!

T̂(m),(n)52
m0

\2
†r̂ (m),@ r̂ (n),Ĥ0#‡, ~38!

are the operators whose matrix elements are given in E
~33! and ~34!. We emphasize that these two methods
entirely equivalent. In fact, the Bloch-basis matrix eleme
of Ĥ ~which has terms to all orders inA) are identical to Eq.
~31!, whereby the position operator is diagonal in t
localized-orbital basis,6

^a8;L8u r̂ (m)ua;L&5~da
(m)1cLdm,z!da8,adL8,L . ~39!

The dielectric susceptibility tensor follows from standa
linear-response theory using the current operator Eq.~32! or
Eq. ~36!. The diagonal components of the imaginary part

Im@x (n),(n)#5
e2p

«0m0
2v2abLc

3 (
n,n8,k

@ f n~k!2 f n8~k!#u^n8;ku p̂(n)un;k&u2

3d@\v2En8~k!1En~k!#, ~40!

where f n(k) is the Fermi-Dirac function for thenth band at
wave vectork, a andb are the primitive PPP cell dimension
in the x-y plane, andLc5cNz is the length of a chain con
taining Nz primitive cells. In Appendix B, we show that th
following f-sum rule, similar to that for solids with three
dimensional periodicity,4 may be derived for Eq.~40!. For all
directionsn, we find

FIG. 2. Calculated components of the imaginary part of
dielectric function of one-dimensional PPP parallel to and perp
dicular to the chain axis as a function of photon energy~in eV!, for
an artificial torsion angle of 0° between the two phenyl rings.
03520
s.
e
s

e

E
0

`

v Im@x (n),(n)#dv

5
e2p

2«0m0abLc
(
n51

Nv

(
k

^n;kuT̂(n),(n)un;k&, ~41!

where the valence bands are numbered 1, . . . ,Nv and the
sum overk runs covers the one-dimensional Brillouin zon
This relation provides an important consistency check in a
numerical implementation.

In Figs. 2–4 we plot, as a function of photon energy, t
imaginary part of the dielectric function for three differe
torsion anglesu50, 27.4, and 90°; we have introduced
small Landau damping of 0.02 eV in the dielectric tensor
better show the relative strength of the absorption peaks.
calculations for the experimental torsion angle of 27.4° ag
fairly well with electron-energy-loss spectroscopy~EELS!
~Ref. 25! and optical absorption experiments26 for the dielec-
tric function component«cc with polarization along the chain
as can be deduced from Fig. 5, given the extreme simpli
of the model. In particular, the position of both the ma

e
-

FIG. 3. Calculated components of the imaginary part of
dielectric function of one-dimensional PPP parallel to and perp
dicular to the chain axis as a function of energy~in eV!, for the
realistic torsion angle of 27.4° between the two phenyl rings.

FIG. 4. Calculated components of the imaginary part of
dielectric function of one-dimensional PPP parallel to and perp
dicular to the chain axis as a function of energy~in eV!, for an
artificial torsion angle of 90° which leads to effectively decoupl
benzene molecules. Note the change in scale compared to the
vious figures.
2-6
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absorption peak at 3 eV and the secondary maximum at 6
agree well with experiment, the latter peak being much
narrow since it is strictly intramolecular in the prese
model. Adsorbance data on oriented PPP suggest a rat
«cc /«aa;5 near the absorption edge26 which also agrees
qualitatively with the present model. Figure 4~torsion angle
90°) represents the limit of isolated benzene molecules.
lines represent intraphenylp –p* transitions. The eigen
states within a phenyl ring can be classified as on-axis sta
i.e., states that are localized mainly on the two chain-a
atoms, and off-axis states that are localized on the remai
four off-axis atoms. For«cc , one gets two dipole allowed
transitions, one on-axisp(on)→p* (on) and one off-axis
p(off)→p* (off) which have slightly different energies. Fo
«aa5«bb , on the other hand, only the transitionp(on)
→p* (off) and its degenerate counterpartp(off)→p* (on)
is dipole allowed as one can easily deduce from the ge
etry of the phenyl rings. This explains the results shown
Fig. 4. The present simple model neglects excitons which
known to modify the absorption significantly close to t
band gap27 but their effect is probably small on the energ
scale shown in the figures.

We emphasize that the limiting case of isolated molecu
~Fig. 4! shows that the Peierls-coupling tight-binding eas
models true, intramolecular transitions, since there are
extended states in this case. So long as there is a true s
ration between the atoms and it is treated as in Eq.~39!
above we recover the isolated molecule case without an
the inconsistencies associated with enlarging the model
extra, off-diagonal position parameters.

IV. CONCLUSIONS

We have generalized our previous Peierls-coupling tig
binding approach to electromagnetic interactions to enc
pass molecular solids and isolated molecules. In doing so
have examined in detail consequences of various pres
tions for the position and momentum operators in tight bin
ing. We have shown that the only specification of the po
tion operator which does not suffer from incompletene
related problems is as a same-atom, same-orbital o
interaction giving the atom location. We have also sho
that attempting to fit parameters of the momentum ma
directly generally results in a momentum operator which

FIG. 5. Experimental imaginary part of the dielectric function
crystalline PPP parallel to the chain axis as a function of energy~in
eV! ~Ref. 25!.
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incompatible with the underlying tight-binding model, whi
adding extra position parameters results in numerous d
culties, including the loss of gauge invariance. We have
plied our generalized results to the molecular solid P
showing that even in the limit of isolated molecules, t
Peierls approach to tight-binding still reproduces intram
lecular transitions.
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APPENDIX A: EFFECTIVE MASS FOR THE LINEAR
CHAIN MODEL

Here we calculate the band curvature~inverse effective
mass! at k50 in the linear chain model of Secs. II B and II
including a same-atoms-p parameter in order to show tha
the matrix elements ofrIinter

2 and rIinter• rIinter must be identical
for the model to give the correct curvature. First, we calc
late the curvature directly from the eigenvalue, Eq.~8!:

d2E1~k!

dk2 U
k50

522a2Uss1
8a2Usp

2

~Es2Ep!12~Uss2Upp!
.

~A1!

The curvature may also be calculated directly from t
eigenvectors of the Hamiltonian Eq.~6!,

d2E1~k!

dk2 U
k50

52v0,1
†

†rI,@ rI,HI #‡v0,112
uv0,1

† @ rI,HI #v0,2u2

E1~0!2E2~0!
,

~A2!

where the eigenvalues and eigenvectors atk50 are given by

E1~0!5Es12Uss, v0,15F1

0G ,
E2~0!5Ep12Upp , v0,25F0

1G , ~A3!

and the matrix representations of the commutators are l
wise evaluated atk50. In this model the total position op
erator is a sum of two parts,r̂ 5 r̂ c1 r̂ inter, wherer̂ c gives the
atom location and thus diverges in the Bloch basis andr̂ inter
is the well behaved same-atoms-p interaction whose matrix
is given in Eq. ~15!. Recall that althoughr̂ c diverges its
commutator with the Hamiltonian is well-defined so that w
get
2-7
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@ rIc ,HI #5 i
dHI

dk
,

†rIc ,@ rIc ,HI #‡52
d2HI

dk2
. ~A4!

Thus, atk50,
t

qs

g
e

vi

th

03520
dHI

dk
U

k50

5F 0 i2aUsp

2 i2aUsp 0 G ,
d2HI

dk2 U
k50

5F22a2Uss 0

0 22a2Upp
G . ~A5!

Using Eqs.~6! and ~15! it is easy to calculate
@ rIinter,HI #k505F 0 2r@Es2Ep12~Uss2Upp!#

r@Es2Ep12~Uss2Upp!# 0 G , ~A6!
-

trary
so that we have for the squared interband matrix elemen
Eq. ~A2!,

uv0,1
† @ rI,HI #v0,2u25$2aUsp1r@Es2Ep12~Uss2Upp!#%

2.
~A7!

The first step in evaluating the double commutator in E
~A1! and ~A2! is expanding it:

†rI,@ rI,HI #‡5†rIc ,@ rIc ,HI #‡1†rIc ,@ rIinter,HI #‡1†rIinter,@ rIc ,HI #‡

1†rIinter,@ rIinter,HI #‡. ~A8!

The first term in Eq.~A8! is given in Eq. ~A4!. For the
second and third, we observe that commutators ofr̂ c with
cell-periodic operators corresponding tok-space differentia-
tion as in Eq.~A4!, and that the matrixrIinter in Eq. ~15! is k
independent. The sum then simplifies to

†rIc ,@ rIinter,HI #‡uk501†rIinter,@ rIc ,HI #‡uk50

52i F rIinter,
dHI

dk
GU

k50

5F8arUsp 0

0 28arUsp
G .

~A9!

All that remains is the final double commutator, involvin
only the same-atom,s-p interaction. Evaluating this doubl
commutator shows that the matrix elements ofrIinter

2 cannot
be chosen independently. This is established by obser
that in atomic physics the expectation values ofrIinter

2 for s
andp orbitals need not be the same. Hence it ought to be
case that

^s;n8au r̂ inter
2 us;na&5hs

2dn8,n ,

^p;n8au r̂ inter
2 up;na&5hp

2dn8,n , ~A10!

with hs
2Þhp

2 . Expanding the double commutator

†rIinter,@ rIinter,HI #‡5 rIinter
2 HI22rIinterHI rIinter1HI rIinter

2 ,
~A11!
in

.

ng

e

and employing the prescriptions Eqs.~A10!, ~15!, ~16! then
leads to

†rIinter,@ rIinter,HI #‡k505FDsp 0

0 DpsG ,

Dsp52hs
2~Es12Uss!22r2~Ep12Upp!, ~A12!

Dps52hp
2~Ep12Upp!22r2~Es12Uss!,

wherer is the same-orbitals-p parameter in Eq.~13!. Com-
bining Eqs.~A5!, ~A9!, and~A12! gives

2v0,1
† @ rI,@ rI,HI ##v0,1522a2Uss28arUsp22hs

2

3~Es12Uss!12r2~Ep12Upp!,

~A13!

so that

2v0,1
†

†rI,@ rI,HI #‡v0,112
uv0,1

† @ rI,HI #v0,2u2

E1~0!2E2~0!

522a2Uss1
8a2Usp

2

~Es2Ep!12~Uss2Upp!
12~r22hs

2!

3~Es12Uss!. ~A14!

It is obvious that Eq.~A14! can only give the correct curva
ture Eq.~A1! if hs

25r2. Hence the matrix elements ofrIinter
2

cannot be treated as independent fitting parameters, con
to what is suggested by atomic physics.
2-8
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APPENDIX B: f-SUM RULE FOR THE PPP CHAIN

We begin with the susceptibility for the PPP chain,

Im@x (b),(b)#5
e2p

«0m0
2v2abLc

3 (
n,n8,k

@ f n~k!2 f n8~k!#u^n8;ku p̂(b)un;k&u2

3d@\v2En8~k!1En~k!#. ~B1!

At T50 all of the Fermi factors become 0 or 1, and t
double sums simplify since the difference of Fermi factors
zero for n and n8 both valence or both conduction band
Integrating vIm@x (b),(b)(v)# over the intervalvP@0,̀ )
picks out positive frequencies, so that the only terms to s
vive are those for which the sum overn covers the valence
bands and that overn8 covers the conduction bands. Usin

^n8;ku p̂(m)un;k&5
m0

i\
^n8;ku r̂ (m)un;k&@En~k!2En8~k!#,

~B2!

and symmetrizing the sum~hence the factor of 2 in the de
nominator! we have

E
0

`

vIm@x (b),(b)#dv

5
e2p

2«0m0
2abLc

S m0

i\ D
3 (

n51

Nv

(
n85Nv11

Nb

(
k

@^n;ku r̂ (b)un8;k&^n8;ku p̂(b)un;k&

2^n;ku p̂(b)un8;k&^n8;ku r̂ (b)un;k&], ~B3!

where there areNb bands in the model and the ban
1, . . . ,Nv are valence bands. We next add and subtrac
term that is obtained from Eq.~B3! by changing the summa
tion index of the middle sum ton851, . . . ,Nv . The added
term is absorbed into Eq.~B3! so that the sum overn8 now
covers all the bands,n851, . . . ,Nb . The sum over the state
un8;k& is now nothing more than the finite-basis closure
lation and may be removed, leaving a sum over the diago
matrix elementŝ n;kuT̂(b),(b)un;k&. The term that we sub
tracted is readily simplified as well. Because bothn andn8
are summed over all valence bands, for each pair (n,n8)
5( j , j 8) there is another (n,n8)5( j 8, j ) which gives an
equal but opposite contribution; hence no interband ma
elements survive. What remains is a sum over the ma
elements of operators which are purely intraband in the b
basis,
03520
s
.

r-

a

-
al

ix
ix
d

e2p

2«0m0
2abLc

S m0

i\ D (
n51

Nv

(
n851

Nv

(
k

$^n;ku r̂ (b)un8;k&

3^n8;ku p̂(b)un;k&2^n;ku p̂(b)un8;k&^n8;ku r̂ (b)un;k&%

5
e2p

2«0m0
2abLc

S m0

i\ D (
n51

Nv

(
k

$^n;ku r̂ intra
(b) un;k&

3^n;ku p̂intra
(b) un;k&2^n;ku p̂intra

(b) un;k&^n;ku r̂ intra
(b) un;k&%,

~B4!

since ^n;ku r̂ (b)un;k&5^n;ku r̂ intra
(b) un;k&, etc. For the PPP

chain we must distinguish two cases:b5x,y, for which
there is no translational periodicity andb5z, for which
there is translational periodicity: The only potential difficul
surrounds the matrix elements of position which are div
gent for directions in which periodicity exists. For the ca
b5x,y, the band-basis matrix elements of position a
bounded since using Eq.~39! gives bounded Bloch-basis ma
trix elements

^a8;ku r̂ (b)ua;k&5
1

Nz
(
L8

(
L

eikc(L2L8)^a8;L8u r̂ (b)ua;L&

5da8,ada
(b) , ~B5!

and the band-basis states are simply well-behaved lin
combinations of the Bloch-basis states. Because the in
band momentum matrix elements are well behaved for box
andy, the term in curly braces on the right-hand side of E
~B4! vanishes for alln and Eq.~B4! gives zero.

Forb5z, we must treat the matrix elements of position
Eq. ~B4! ask-space operators:28

^n;ku r̂ intra
(b) un;k&5 i

]

]k(b)
1Jn,n

(b) , ~B6!

whereJn,n
(b) is the expectation value ofi ]/]k(b) taken with

respect to the periodic part ofun;k&. Since

^n;ku p̂intra
(b) un;k&5

m0

\

]En~k!

]k(b)
, ~B7!

we have

^n;ku r̂ intra
(b) un;k&^n;ku p̂intra

(b) un;k&

2^n;ku p̂intra
(b) un;k&^n;ku r̂ intra

(b) un;k&

5S i
]

]k(b)
1Jn,n

(b)D m0

\

]En~k!

]k(b)
2

m0

\

]En~k!

]k(b) S i
]

]k(b)

1Jn,n
(b)D 5 i

m0

\

]2En~k!

]k(b)]k(b)
, ~B8!

so that
2-9
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e2p

2«0m0
2abLc

S m0

i\ D (
n51

Nv

(
n851

Nv

(
k

@^n;ku r̂ (b)un8;k&

3^n8;ku p̂(b)un;k&2^n;ku p̂(b)un8;k&^n8;ku r̂ (b)un;k&#

5
e2p

2«0m0
2abLc

S m0

i\ D S im0

\ D (
n51

Nv

(
k

]2En~k!

]k(b)]k(b)
. ~B9!

For a large system we convert the sum over the~one-
dimensional! Brillouin zone into an integral, and sinceEn(k)
is periodic over the zone the integral of its second deriva
vanishes.29 In all three directions, then, the term added to E
~B3! with the sum overn8 running fromn851, . . . ,Nv con-
s
n-

:
i-

s.

te

r

03520
e
.

tributes nothing and we arrive at thef-sum rule for the PPP
chain as

E
0

`

vIm@x (b),(b)#dv

5
e2p

2«0m0abc

1

Nz
(
n51

Nv

(
k

^n;kuT̂(b),(b)un;k&,

~B10!

wherec is the dimension along thez direction~not the speed
of light!.
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