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We present a method for obtaining well-localized Wannier-like functidg’s) for energy bands that are
attached to or mixed with other bands. The present scheme removes the limitation of the usual maximally
localized WF's methodN. Marzari and D. Vanderbilt, Phys. Rev. 86, 12 847(1997] that the bands of
interest should form an isolated group, separated by gaps from higher and lower bands everywhere in the
Brillouin zone. An energy window encompassiNgands of interest is specified by the user, and the algorithm
then proceeds to disentangle these from the remaining bands inside the window by filtering out an optimally
connected\-dimensional subspace. This is achieved by minimizing a functional that measures the subspace
dispersion across the Brillouin zone. The maximally localized WF's for the optimal subspace are then obtained
via the algorithm of Marzari and Vanderbilt. The method, which functions as a postprocessing step using the
output of conventional electronic-structure codes, is applied ts #reld bands of copper, and to the valence
and low-lying conduction bands of silicon. For the low-lying nearly-free-electron bands of copper we
find WF’'s which are centered at the tetrahedral-interstitial sites, suggesting an alternative tight-binding
parametrization.

DOI: 10.1103/PhysRevB.65.035109 PACS nuntder71.15.Ap

[. INTRODUCTION WF's (Refs. 10 and 1l and the latter to their quadratic
spread$?¥These developments have also led to generaliza-
When studying electrons in solids, it is often the case thations of the concept of Wannier functions to correlated elec-
only a small subset of the available one-electron states corron systemg3-15
tributes significantly to the properties under consideration. The main obstacles to the construction of WF’s in practi-
Moreover, the states of interest typically lie within a limited cal calculations have been their nonuniqueng@ss‘gauge
energy range. For instance, for modeling electron-transpodependence’ and the difficulties in dealing with degenera-
or magnetic properties, only the partially filled bands close tccies among the Bloch states. These have been overcome by
the Fermi energ¥ are needed. This is the rationale behindthe development by Marzari and Vanderbilt of a general and
the tight-binding and Hubbard models, in which only a few practical method for extracting “maximally localized” WF’s
energy bands are kept. Those models rely on the existence from an isolated group of band®(By “isolated” we mean a
of a minimal set of spatially localized orbitals spanning thegroup of bands that may become degenerate with one an-
manifold of relevant states. other at certain symmetry points or lines in the Brillouin
In recent years there has been growing interest in expliczone, but separated from all other bands by finite gaps
itly constructing such orbitals from first-principles density- throughout the entire Brillouin zone. The set of valence
functional calculations. One potential application consists obands of an insulator constitutes an important examplee
obtaining the parameters in correlated Hamiltonians by conmethod has been successfully used to describe the dielectric
straining the occupation of the orbitals to find the energy cosproperties of several insulating systems, such as crystdlline
of deviating from the mean-field solutiof‘constrained —and amorphodd semiconductors, ferroelectric perovskités,
density-functional theory*#. Another arises in the context liquid water® compressed solid hydrogéhand manganese
of the “dynamical mean-field theory” which, when com- oxide?! It has been implemented for plane-wa¥djnear
bined with density-functional methods, requires the specifiaugmented plane-wavéand tight-binding® basis sets.
cation of localized orbitals describing the narrow bands of However, in many cases the group of bands of interest is
interestt not isolated in the above sense, especially when dealing with
Wannier function® (WF's) are a very natural type of lo- metals or with the empty bands of insulators. For example,
calized orbital for extended systems. They play a central roléhe conductiors band of an alkali metal is attached at points
in formal discussions of the tight-bindihgand Hubbarl  or lines of high symmetry to higher bands; ttiéands of a
models. Traditionally they have often been invoked—noble or transition metal are hybridized with @anband,
although rarely calculated explicitly—as a convenient basisvhich in turn is attached to higher bands; the conduction
for describing local phenomena, such as impurifies, bands of a copper-oxide superconductor emerge from a
excitons! and magnetic properti€sMore recently, WF’s dense group of bands below; and the four low-lying anti-
have found important applications in connection with linear-bonding bands of a tetrahedral semiconductor are connected
scaling algorithms for electronic-structure calculatidns. to higher-conduction bands.
Moreover, they play an important role in the theory of elec- A successful technique that has been applied for con-
tronic polarization and localization in insulators, with the structing localized orbitals that describe such entangled
former quantity being related to the centers of charge of théands is the “downfolding” techniqifé?*that has been de-
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veloped for electronic-structure methods based on muffin-tiphases of the Bloch functiong, =e'*"u,, are at our dis-
orbitals. There have also been previous attempts at construgosal. However, a different choice of phages “gauge”),
ing WF's for nonisolated groups of bands, namely, for noble -

and transition metaf$~?’ and for tetrahedral semi- Un— €' ugy )

conductors®#? These attempts fall into two categorié$l  jges not translate into a simple change of the overall phases

the WF's are obtained directly from a variational principle, 5t e WF's; their shape and spatial extent will in general be

as suggested by Kotifl.or (ii) they are obtained as Fourier affected. If the band is isolated, E€) is the only allowed

transforms of Bloch functions, with the help of a model e of gauge transformation for changing the set of WF’s

Hamiltonian that reproduces the band structure in the desir (r—R) associated with that band. In the case of an iso-

energy range, as suggested by Briss. _ lated group ofN bands, the allowed transformations are of
We will describe an alternative Wannier-based approachye more general form

that is closer in spirit to the Fourier-transform method of

Bross and co-workers, but does not require the construction N

of an auxiliary model Hamiltonian. The method can be re- Upk— E Ug%umk, (3)

garded as an extension to the case of attached bands of the m=1

maximally localized WF method of Marzari and whereU® is a unitary matrix that mixes the bands at wave

Vanderbilt!® It has the desirable features that it can be impleectork. The resulting orbitals are called “generalized Wan-

mented with any basis sét.g., plane wavgsand requires njer functions.™®

minimal user-interventiorithe only “adjustable parameter”  Once a measure of localization has been chosen and an

being a specification of the energy range of intérelske  jsolated group of bands specified, the search for the corre-

the approach of Ref. 16, ours is a “postprocessing” methodsponding set of “maximally localized” WF’s becomes a

taking as its input the Bloch eigenstates and eigenvalues cgbroblem of functional minimization in the space of the ma-

culated by a standard electronic-structure code. trices UK. The strategy of Ref. 16 consists of minimizing

Strictly speaking, the resulting orbitals are not WES  the sum of the quadratic spreads of the Wannier probability
even “generalized WF's™) in the usual sense. They are distributions|w,(r)|?,

nevertheless Wannier-like in the fundamental sense that they

are obtained via an integral over the Brillouin zone of Bloch- N

like functions. As such they form an orthonormal, localized 0= Z (r?a=(1)R), (4)
basis of the same Bloch subspace from which they were =t

constructed. where the sum is over the chosen group of bands(aj

The power of the present approach is illustrated by one= [r|w,(r)|?dr, etc. Interestingly, the resulting “maximally
particularly striking result that emerged from the work. Inlocalized” (or “maxloc”) WF's turn out to be real, apart
Sec. IV B 3 we find that a rather natural representation of thérom an arbitrary overall phase factor.
low-lying bands of an fcc metal like copper can be made in  In numerical calculations the Bloch stateés, are com-
terms of a set of five Cu-like WF's and two additional puted on a regular mesh kfpoints in the Brillouin zone; the
WF's centered at the tetrahedral-interstitial locations. Thidntegral in Eq.(1) is then replaced by a sum over the points
provides a basis for a novel and concise tight-binding reprein the mesh. In Ref. 16 an expression was derived for the
sentation for copper. gradient of the spread function@l with respect to an infini-

The paper is organized as follows. In Sec. Il we reviewtesimal rotationsU®) of the set of Bloch orbitals. The only
the method of Marzari and Vanderbilt for obtaining well- information needed for calculating the gradient are the over-
localized WF's for an isolated group of bands. In Sec. Il welaps
describe our procedure for dealing with entangled energy
bands, and in Sec. IV we illustrate it with a set of applica- MG = (Ui Un k) 5

tions. Finally, in Sec. V we present a summary and ConCIUK/\/here b are vectors connecting a mesh point to its near

sions. neighbors. Once the gradient is computed, the minimization
can proceed via a steepest-descent or conjugate-gradients al-
Il. MAXIMALLY LOCALIZED WANNIER FUNCTIONS gorithm.

FOR AN ISOLATED GROUP OF BANDS In Ref. 16 the spreaf) was decomposed into two terms,

A set of WF'sw,g(r)=w,(r —R) labeled by Bravais lat- 0=0+8 ©)
tice vectorsk can be constructed from the Bloch eigenstates o '
Yk Of bandn using the unitary transformation both of them non-negative. The first measures kfspace
dispersion of the band-projection operator, while the second
v iR reflects the extent to which the Wannier functions fail to be
Wnr(F)= Ffsze Padk, (1) eigenfunctions of the band-projected position operatfys.

m will play a central role in the present work. For an isolated
whereu is the volume of the unit cell of the crystal and the group of bands it is invariant under any gauge transformation
integral is over the Brillouin zone. Except for the constraint(3), so that minimizingQ) amounts to minimizind). When
¥nk+c= tnk for all reciprocal-lattice vector§, the overall  using a regular mesh & points, (), is given by
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to do there; ifN,>N our aim is to find theN-dimensional
T (@) R \ subspace S(k)CF(k) that, among all possible
N-dimensional subspaces @ik), leads to the smalle€®,
ol N [Eq. (7)]. [Recall that for an isolated group of banfls is
gauge invariant, since it is an intrinsic property of the mani-
fold of states. Thud), can be regarded as a functional of
S(k).] In the second step we work within the optimal
N-dimensional subspace&Xk) selected in the first step, and

7 ~ minimize O using the algorithm of Marzari and Vanderbflt

summarized in the previous section. The end result is a set of

. | N maximally localized WF’s and the correspondiNgnergy
S ‘ bands. We emphasize that it is the first sfepnimization of

/ Q)) that is new with respect to Ref. 16.

Energy (eV)

)
Window

B. Physical interpretation of Q,

Energy (eV)
Window

Why is minimizing (), a sensible strategy for picking out
, . thed bands? This can be understood by noting that heuristi-
e cally ), measures the “change of character” of the states
across the Brillouin zon¥ Indeed, Eqs(5) and (7) show
that (), is small whenevef(u|un«+b)|% the square of the
FIG. 1. Solid line: Calculated band structure of copper. Dottedmagnitude of the overlap between states at nelagmjints, is
line: Interpolated bands obtained from the foldike Wannier func- large. Thus by minimizingQ), we are choosing self-
tions. (a) and (b) differ in the choice of the energy window used to consistently at ever the subspacé(k) that has minimum
compute the Wannier function§ —9.59,-0.29] eV in (a) and  «gpjllage” or mismatch (see below ask is varied. In the
[—9.59,7.23 eV in (b)}. The zero of the energy scale is at the present example this optimal “global smoothness of connec-
Fermi energy. tion” will be achieved by keeping the five well-localized
N d-like states and excluding the more delocalizdike state.
We will gain more intuition about the meaning of minimiz-
' @) ing Q, while discussing specific examples in Sec. IV.

1- 2 [MGPD?

n=1
_ . _ What is meant by “spillage®®3? becomes clear once we
whereNy;, is the total number ok points,N is the number of  yewrite Eq.(7) as

bands in the group, and,, is a weight that arises from the
discretization procedure by which derivatives with respect to 1
k are approximated by finite differencEsThe correspond- QI:N_I(p > WTkp 8

~ kb
ing expression fof) can be found in Ref. 16.

1 N
Q':N_E Wme:1

kp k,b

with
I1l. MAXIMALLY LOCALIZED WANNIER FUNCTIONS
FOR ATTACHED BANDS Tep=N— % IMED 2= BB, ], 9)
A. Description of the method '

For definiteness let us suppose we want to “disentangleWhere Py=X|un)(Uny| is the projector ontas(k), Qx=1
the five d bands of copper from the band which crosses —Py, and the band indices\,n run over 1... N. Ty is
them(see Fig. 1 and construct a set of well-localized WF's called the “spillage” between the spacé&gk) and S(k+ b)
associated with the resulting bands. Heuristically thel  because it measures the degree of mismatch between them,
bands are the five narrow bands and $heand is the wide vanishing when they are identical.
band. The difficulty arises because there are regionk of  Further discussion of the geometrical and physical inter-
space where all six bands are close together, so that aspaetation of(), can be found in Refs. 13 and 16. In particular,
result of hybridization “the distinction betweestband and it has been shown that the value @f associated with the
s-band levels is not meaningfulRef. 1, p. 288. valence bands of an insulator is the experimentally measur-

Let us now outline our strategy, which can be divided inable mean-square quantum fluctuation of the ground-state
two steps. First we cut out an energy window that encommacroscopic polarizatiol’. This can be interpreted as the
passes th&l bands of interestN=5 in our examplg Fig- quadratic spread of an appropriately defined collective
ures 1a) and Xb) correspond to different choices for this center-of-mass distribution for the electrons, and can be re-
energy window. At eack point the numbeN, of bands that cast as an electronic localization length squared. Hence our
fall inside the window is equal to or larger than the targetprocedure of minimizing, selects theN-dimensional sub-
number of bands N. This procedure defines an spacesS(k) where the electrons are most localized in the
Ny-dimensional Hilbert spacé(k) spanned by the states above senséssuming for the purpose of this argument that
U, Within the window. If at somé& N,= N, there is nothing all the electron states in those subspaces are ocgupied
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ky A where, according to Ed8),
(-1
S (k+by) of’(k)=3 wyT{),
® [ o |
S w3 13 (e e
(-1 ® (-1 The first term in Eq(10) now becomes
S (k+b) S &) S (k+b,) | |
° ® ° > 50 1 | so{)(k) . Sw(k+b) (3
K, A M|l Al |
From Eq.(12) we find
& s0{’(k)
w
S (kb)) 5IT E wpP U, (14)
[ ) f ) Unmi

whereP{_ V) is the projector ontas(~Y(k+b). Likewise,
one easily obtains

So{)(k+b) 600
FIG. 2. Schematic representation of the subspaces of Bloch-like W = _Wbpk+b | Uik (15
states on a grid ok points. Our procedure consists of iteratively
minimizing the “spillage,” or degree of mismatctsee tex, be-  Combining the previous equations, the stationarity condition
tween the subspaces at neighboringoints. (10) becomes

N

U= 2, Afnduid, (18

Finally we note in passing that our two-step procedure of

A(i—1
minimizing firstQ, and then() is in principle different from [% Wbp(k+b)
directly minimizing their sun(}. In view of the discussion
presented above, we believe that the procedure adopted hetdiereAl) = (Ny/2)A () . By choosing a unitary transfor-
is conceptually the more natural of the two, although wemation that d|agonal|zeA(k'), this can be recast as an eigen-
would expect them to yield similar results in practice. Also,value equation:
as we will now show, the separate minimization(®f turns
out to be a particularly simple and robust procedure.

S wbld

The eigenvalues of the above equation obeﬁ)\(ﬁiﬁ(
Since the functional7) that we wish to minimize couples <3 ,w,; in particular,\{), <=, w, whenever the eigenstate
states at differenk points, the problem has to be solved u®) does not lie completely within all of the nearby sub-

self-consistently throughout the Brillouin zone. Our strategyspacesg(l D(k+b). Combining Eqs(12) and(17), we find
is to proceed iteratively until the optimal “global smoothness

of connection” is achieved. On theth iteration we go ) N _

through all thek points in the grid, and for each of them we o(K)=N wp— 2 ). (18
find N orthonormal statesu(), defining a subspace b m=t

SW(k)C F(k) such that the “spillage” over the neighboring It is clear from Egs.(11) and (18) that when constructing
subspacesS(~Y(k+b) from the previous iteration is as S (k) one should pick th&\l eigenvectors of Eq(17) with

|ufel) = Mok uf)- (17)

C. Iterative minimization of Q,

small as possiblé€Fig. 2). largest eigenvalues, so as to ensure that the stationary point
Using Lagrange multipliers to enforce orthonormality, the corresponds to the absolute minimum@f" .
stationarity condition at théeth iteration reads Self-consistency is achieved wheit(k)=S0-1(k) at
all the grid points. We have encountered cases where the
s N _ iterative procedure outlined above was not stable. In those

Z Anmk (.)* [(Uﬁr'] |U§1'|2>— Smnl=0, (10) cases, the problem was solved by using as the input for the
B present step a linear mixing of the input and output sub-
spaces from the previous step. More precisely, the eigenvalue
Eq. (17) was replaced by

5u(|)~k
whereA{) is anNXx N matrix. Let

Nkp

. 1 .
Q|<'>=W > o(k), (11) (% wy[ P{ m]|u(')> INATTIONS (19)
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where where A n={¥me|dn) is an N, X N matrix. The resulting\
orbitals are then orthonormalized via'wdin's symmetric
[P lin=aP{ P+ (11— a) [PV 00 (200  orthogonalization proceduréi.e.,
with 0<a=<1 3 A typical value isa=0.5. N Ny
In practice we solve Eq.19) in the basis of the original | {9y = > (s o) = > (AS 12| Ymi)s
Ny Bloch eigenstatesi,, inside the energy window. Each m=1 m=1
iteration then amounts to diagonalizing the followimg, (23)

XNy Hermitian matrix at ever: whereS,n={ ¢l k) = (ATA) mn. Finally these Bloch-like

_ » functions are converted to cell-periodic functiong}
Z0 (k)= (Uil > Wl P Tinl Unie)- (21)  =e "y The matrixAS * can easily be computed by
b performing the singular-value decompositigk=ZDV,*®
Since these are small matrices, each step of the iterative prithereZ andV are N xX N, andNX N unitary matrices, re-
cedure is computationally inexpensive. The most timespectively, andD is NyXN and diagonal. This leads to
consuming part of the algorithm is the computation of theAS Y?=Z1V, wherel is theN,x N identity matrix.
overlap matrice/ “P) of Eq. (5). The number of these ma-
trices is equal to the number &fpointsN,, times the num- E. Minimization of &
ber of b vectors(between 6 and 12the cost of calculating . L
eachM (k) is proportional to the number of basis elements At the end of the first step of.our procedumlplmlzqt|on
(e.g., plane wavésimes the square of the number of bands®f (1) we are left at eactk point with an N-dimensional
considered. Overall, this is a comparable cost to calculating gUPspaces(k), and for definiteness we diagonalize the
few (6 to 12 times the orthonormality constraints during the Hamiltonian inside this subspace to obta Bloch-like
original self-consistent procedure, and amounts to only ®igenfunctionsj,,=e'* "u, and eigenvalues, . The sec-
small fraction of the time used to converge to the electronicond step is to find th&dx N unitary matricedd ¥ [Eq. (3)]

ground statgeven more so if the number of bands consid-that, applied to the/, , produce the rotated set of Bloch-like
ered is smaller than the total number of bands in the Selfstates that is transformed via Hq_) into the maxima”y lo-

consistent calculation We stress that alM®" are com-  calized WF'sw,. This is done using the method of Marzari

puted once.and fqr all at the. beginning .Of the Wannic_arand Vanderhift® for minimizing Q, briefly discussed in Sec.
postprocessing, using the original Bloch eigenstates insid

th irdow: all sub X tions in the iterat fi. An initial guess for the unitary matriced® is obtained
€ energy window, ail subsequent operations In the itera 'V%y projecting a set oN localized orbitals onto the states
minimization of ), involve only dense linear algebra on ~ Tvpically th f orbitals i d in th
smallN, X N, matrices[An analogous situation occurs when lljnili(| y?ca 3{ t ? s:azne set o ci_r 't?fi IS Iuse as in the
updating the matrices ) in Eq. (3) during the minimization ~'M'ti&lzation Step for thé minimization ot . (In our expe-
£ 01 to obtain the “maxioc” WF's!®] For example, in the rience, when a particularly bad choice of trial orbitals is
0 ’ ; Pe, made, the minimization of}, is less likely to become
case of thed bands of copper reported in Sec. IV B 1 below d in local minima than the minimization &
each iteration takes only 0.9 s on an Alpha 21264 600 mHZrapped in local minima than the minimization )
workstation, and the initial computation of the overlap ma-
trices takes about 250 s. For comparison, the self-consistent F. Interpolated band structure
electronic-strucuture calculation of the ten lowest bands us- Starting from the “maxloc” WF's, the corresponding en-

ing an iterative diagonalization scheme takes around 1000 rgy bands can be computed at arbitrary points in the Bril-

- louin zone using a Slater-Koster interpolation schéfié:*
D. Initial guess for the subspaces Of course, the interpolation could proceed directly from the

In order to start the iterative minimization 6¥,, the user nonrotated states,,, however, use of the optimally rotated
should provide an initial guess for the subspasS¢s). We  ones ensures that the interpolated band structure is as smooth
have found that the minimization procedure is quite robustas possiblé’
in the sense that it is able to arrive at the global minimum The interpolation procedure involves first calculating the
starting from a very rough initial guess. In practice we usu-Hamiltonian matrix for the rotated states,
ally select the initial subspaces following a strategy very
similar to the one outlined in Ref. 16 for starting the mini- H (k)= (U®)TR(K)U®, (24)
mization of ).

A set of N localized trial orbitalsg,(r) is chosen corre- where ﬁmn(k)zzmkém,n. Next we Fourier transform
sponding to some rough initial guess at the WF's, and thesgi (k) into a set ofN,, Bravais lattice vector® within a
are then projected onto thé, Bloch eigenstates inside the Wigner-Seitz supercell centered arouRe:0:
energy window,

Ny HS.:;?P(R): 2 e—ik-RHsrr]’ir)]t)(k))/Nkp=<Wmo||:||WnR>,
| ¢nk> = mE:l Amn| ’pmk>v (22 K 25)
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where H is the effective one-particle Hamiltonian. Finally vectors with the largest eigenvalues we guarantee that their
we Fourier transform back to an arbitrakypoint, overlap with the spac€(k) is as large as possible, while
satisfying the constrair).

Other kinds of constraints on the minimization@f may
also be useful. For instance, one might want to “pin down”
the desired bands at high-symmetkrypoints to ensure that
and diagonalize the resulting matrix to find the interpolatecthe interpolated bands coincide with them at those points.
energy eigenvalues.

HO(k") =2, e RH(R), (26)
R

. IV. RESULTS
G. Inner energy window

In some situations one wants to construct orbitals that A. Computational details

describe the original bandsxactlyonly in a limited energy The calculations were performed within the local-density
range. This can occur when studying transport properties foapproximation to density-functional theory, using a plane-
which only the states within some small energy range of thavave basis set and Troullier-Martins norm-conserving
Fermi level(say, =1 eV) are relevant. The challenge is to pseudopotentiaf8 in the Kleinman-Bylander representation.
construct orbitals that achieve that goal while remaining ag he energy cutoff was set to 75 Ry for copper and 35 Ry for
localized as possible. What the resulting interpolated bandsilicon, and the lattice constants were 6.822 bohr and 10.260
look like outside the energy range of interest is largely im-bohr, respectively. The computed self-consistent Bloch
material, since it will not affect the low-energy physics. eigenfunctions and eigenvalues that fell inside the prescribed
(Typically they will tend to remain close in energy to the energy window were stored to disk. They were used as the
target range of intere$?) input for the minimization of),, which was carried out as a

A simple extension of the formalism described in the pre-separate, postprocessing operation. This produced an optimal
vious sections can produce such orbitals. The idea is to insubspace characterized by a new seNdBloch eigenfunc-
troduce a second‘inner”) energy window—contained tions and eigenvalues pé&rpoint, which were taken as the
within our original (“outer”) window—inside which the input for constructing the “maxloc” WF’s and the interpo-
original bands are to be described exactly. Mt be the lated bands. In all the cases we have found the “maxloc”
number of bands that fall within the inner windowlatso ~ WF'’s to be real(apart from an overall phase factpas was
that M <N=<N,. Then we have to minimiz€), under the already the case when dealing with isolated groups of
constraint that théVl, original Bloch states inside the inner bands'® The self-consistent calculations were performed on
window must be included in the subspa&ék). We are a 10<10X10 Monkhorst-Pack mesh & points for copper,
therefore only free to choose the remainiNg-M, states and a 6<6Xx6 one for silicon. During the minimization of
when constructingS(k). Those will have to be extracted (), and O a 10x10x 10 uniform grid was used for both
from the subspace spanned by tNg— M original Bloch  copper and silicon. This grid was shifted in order to include
eigenstates that are inside the outer window but outside thgye I" point (k=0), so as to ensure that the “maxloc” WF's
inner window. That can be achieved by a straightforwarchave the desired symmetry properties among themselves.
modification of the iterative procedure described in Sec(For instance, if a grid is used for silicon that does not in-
1 C: The matrix Z"(k) in Eq. (21) becomes an Ny  cludeT, the four antibonding WF’s in a unit cell do not all
— M) X (Ni—My) matrix, and we pick th&N—M, leading  have the same spreadihe mixing parametew in Eq. (20)
eigenvectors. was set to 0.5.

The only remaining issue is how to modify the initializa-
tion procedure of Sec. lll D in order to accommodate the
inner window. Since the firsM, basis vectors of the trial
subspacesS(k) are predetermined, we want the modified Wannier functions for noble and transition metals have
procedure to provide the remainihg— M, vectors. LetG(k) previously been computed using various approalhies.
be anN-dimensional space obtained by projecting khaial Below, taking copper as an example, we show how the
orbitals onto theN, states inside the outer window, as de- present scheme can be used to “disentangle” the nadow
scribed in Sec. Il D. LePg(k) be theN, X Ny matrix thatis  bands from the nearly-free-electron bands, allowing us to
the projection operator ontg(k) as expressed in the space treat each group of WF's separately. Alternatively, one can
F(k). Similarly, defineP;,ne(k) as theN, XN, projection also treat the narrow and the nearly-free-electron bands as a
matrix onto the inner window states, an@.(k)=1  single group.
—Pinned K). Then choose the remainimg— M, basis vectors
to be the eigenvectors corresponding to Me M, largest 1. Narrow d bands
eigenvalues of

B. Copper

First, an energy window was chosen such that at dach
KPP AK)IO (K =\lv). 2 point in the grid it contained six or seven energy eigenvalues.
Qinned K)Pg(k) QunnerK)|u) =Afv) @0 As indicated in Fig. 1, the precise range of the window is
Such vectors have the desired propertigs:They are or- largely at our disposal; unless explicitly stated otherwise, the
thogonal to the states inside the inner window, &ndbe-  numbers given below pertain to Fighl. In order to extract
cause\ =(v|Pg(k)|v), it is clear that by choosing the eigen- the fived bands, we sell=5 and initialized the minimiza-
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TABLE |. Variation of the optimal Wannier spread and its
gauge-invariant par€), (in bohf) with the choice of energy win-
dow range(in eV), for thed bands of copper.

Window range Total spread
Min Max Q, Q
-9.59 -0.29 15.373 16.489
—9.59 2.21 10.404 10.621
-9.59 7.21 8.483 8.556
—9.59 12.21 7.634 7.667

orbitaly have a spread of 1.700 bdheach, whereas the
remaining three to, orbitals each have a spread of
1.718 boht. These numbers are only slightly larger than the
ones reported in Table Il of Ref. 27, obtained using a dif-
ferent method and a sparser sampling of the Brillouin zone.

In our procedure there is one adjustable parameter,
namely, the range of the energy window. This range should
be wide enough that it encompasses the bands of interest, but
not be so wide that it also includes other bands of similar
character(e.g., higherd bands. In the limit of a very wide
window the spaces(k) would contain a complete set of
states, so that by mixing in states far away from the energy
range of interest but of similar character, the spread of the
WF's could be made arbitrarily smaknd the corresponding
bands would become flatTable | shows how the optimal

FIG. 3. Contour-surface plots of the tvey Wannier functions Wannier spreads are affected by varying the window range
associated with the “disentangled’bands of copper shown in Fig. within reasonable bounds. As anticipated, the spread de-
1(b). The amplitudes are-0.54/v (light gray) and —0.5A/v (dark  creases with increasing energy rafig&he change in the
gray), wherev is the volume of the primitive cell. interpolated energy bands is less pronounced, although they
do become somewhat narrowgtompare Figs. (B) and
1(b)]. In particular, the upward shift of the lowest interpo-
lated band at. is caused by mixing with the seventh band,
which has the same symmetry labélJ.*°

tion of both€), andQ} from five trial Gaussians of rms width
1 bohr, each modulated by a differeint 2 angular eigen-
function. After ~50 iterative steps), was fully converged,
having decreased from an initial value of 9.957 Boto
8.483 boht. During the subsequent minimization 6f the 2. Nearly-free-electron band
total Wannier spread() decreased only slightly, from The unconstrained minimization &, usually produces
8.563 bohf to 8.556 bohf. In agreement with previous ex- narrow bands, since the character of the Bloch states in such
perience on isolated groups of bartfisye found for thed  bands tends to have only a small variation across the Bril-
bands that at the minimur@,> Q. louin zone, corresponding to well-localized electrditisis

The bands obtained by interpolation using the five “max-may not be the case in the presence of avoided crogsings
loc” WF’s are shown as dotted lines in Fig. 1, together with The method is therefore ideally suited for directly extracting
the original band structure. As expected, whenever the dighe narrowd bands from thes-d complex. If instead one is
persives-like band is far from the narrow bands, so that interested in isolating the wider, nearly-free-electedrand,
they retain their separate identities, the interpolated bands aférect minimization of¢}, for one-dimensional subspaces is
very close to the narrow bands. However, whenever the sixot the appropriate strategy. Instead one can proceed as fol-
bands are close together, and thus strongly hybridized, thews. First choose an energy window that includes sk
interpolated bands remain narrow, which suggests that thegand complexfwe used the one indicated in Figbl]. Then
are mainly d-like in character.(Heuristically they can be minimize Q; with N=6; this produces a six-dimensional
viewed as the bands obtained by artificially “switching off” subspaceSg(k) throughout the Brillouin zone that consists
the Hamiltonian matrix elements betweeandd WF's, i.e.,  of the s-d band complex. Next extract the fiebands by
by removing the hybridizationThe d character is confirmed minimizing €}, within Sg(k) choosingN=5; this yields a
by inspection of the contour-surface plots of the “maxloc” spaceSs(k) CSg(k). The difference between the two is a
WF’s, two of which are shown in Fig. 3. The quadratic one-dimensional spac§;(k) containing the desired band.
spreads of the five WF’s are not exactly equal, because of theigure 4a) shows the bands associated wif(k), and Fig.
eg—tyg splitting of thed states; those shown in Fig. 8(  4(b) shows the bands correspondingdg(k) andS; (k).
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FIG. 4. (a) Dotted lines: thes-d bands of copper obtained by
extracting the optimal six-dimensional subspatgk) inside the
window. (b) Dotted lines:d bands associated with optimal five-
dimensional subspacss(k) C Sg(k). Dashed line:s band S; (k)
isolated by taking the complement §§(k).

In Table Il are presented the optimal Wannier spreads for
the different subspaces. We find that the spread obil® g5 (a) t-like WF associated with the subspasg(k) of Fig. 4
WF is considerably smaller than the45 bohf reported N and Table II;(b) WF associated with the band in Fig. 6, atw
Table Il of Ref. 27. Moreover, contrary to what one might t.jike WF associated with the subspaggk) in Fig. 7(a) and Table
have expected, that WF is centered not on an atom, but on|g. The amplitudes are+0.5A/v (light gray) and —0.17AD,

tetrahedral-interstitial site, as shown in Figap Since there  —0.3,/, and —0.25Au (dark gray in (a), (b), and (c), respec-
are two such sites per atom, a breaking of symmetry musively.

have occurred when selecting the subsp&ggk). Indeed

there are two degenerate minima@f with N=6, one for tetrahedral-interstitial sites, the minimization starts inside the
each of the interstitial sites. If the minimization is initialized basin of attraction of the corresponding minimum.

by projecting fived-like orbitals plus ones-like orbital, all Finally, as a simple illustration of the “inner window”
atom-centered, the breaking of symmetry occurs spontanédea of Sec. Ill G, we show in Fig. 6 the single band (
ously during the iterative proceduf#he minimization of(}, =1) that results when an inner window is selected in the
reaches a plateau, presumably a saddle point, and eventuadiyergy range below thé bands. As expected, the interpo-
the algorithm finds its way towards one of the two minjma lated band is identical to the original one inside that window.
If instead thes trial orbital is centered around one of the Moreover, it remains quite narrow outside, where it acquires

FIG. 5. Contour-surface plots of interstitial-centered “maxloc”

TABLE II. Spreads of the “maxloc” WF's for the separateband ands-band subspacesS{ andS;), and

for the combineds-d subspaceSs. The numbers in parentheses are fhevalues, and stands for the
tetrahedral-interstitial-centered orbital. The corresponding bands are displayed in Fig. 4.

Two separate subspaces

One combined subspace

Oey 1.710 de, 1.731
e, 1.710 de, 1731
dy,, 1.808 d,, 2928
T 1.808 dq 2.328
29 2
tag 1.808 tg 2.254
Qinl Ss] 8.844 (8.745
t 12.929 t 10.263
Qi 1] 12.929 (10.826 Qi Se] 20.634 (16.508
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FIG. 6. Dashed line: Band obtained using both an inner and an (b)
outer energy window.

a pronouncedl character(This means that the cost in, of
changing from ars to d character is more than compensated
by the smaller dispersion—and hence smallgr—of the
more localizedd-like states. Accordingly, the “maxloc”
WF, shown in Fig. ), is again centered at a tetrahedral-
interstitial site, like the WF of Fig. ®), but now it has a
substantial admixture ofd-like satellites and a smaller r X W L r K
spread{)=7.323 t.)Oh% (9'2.7'3.06 bOh%)' FIG. 7. (a) Dotted lines: Interpolated bands associated with the
The results of this section indicate that the occurrence of Bptimal subspaces,(k) containing five d-ike WF's and two
symmetry breaking in the minimization 6I, with a “max-  teyranedral-interstitial-centered WF{&) Dark dotted linesd bands
loc” WF centered at a tetrahedral-interstitial site appears tQgggciated with optimal five-dimensional subsp&cgk)C.S;(K).
be a rather robust result. Interestingly, these findings are r&+ght dotted lines: dispersive ban@(k) isolated by taking the
lated to earlier work'~*3*where bonding in metallic clusters complement ofS (k).
and in fcc bulk metals was described in termssdike or-
bitals localized on tetrahedral interstitials.

Energy (eV)

binding model ofs orbitals on the sites of a simple cubic
lattice. Indeed we have checked that the main qualitative
Remarkably, we find that the symmetry can be restoredieatures of the interpolated bands associated with the two
and a more faithful overall description of the bands can benterstitial-centered WF'glight dotted lines in Fig. @)] are
achieved, by bringing in just one more dispersive band an@aptured by such a tight-binding model, but folded back into
working with aset of seven WE'Vlore precisely, we choose the fcc Brillouin zone to give two bands instead of one.
an energy window such as the one indicated in Fi@),7 The quality of the interpolated bands in Figaysuggests
containing seven or more bands, and minimzewith N that the two tetrahedral-interstitial-centered orbitaighich
=7.(To ensure that the low-energy part of the band complexve denote a$ orbital§ complement the five atom-based
is well described, we freeze it inside an inner windofter  orbitals nicely to form a basigt{d®) for a tight-binding pa-
applying the localization procedure, we obtain, besides theametrization of the copper bands. This requires only one
five d orbitals,two equivalent WF's, each centered at one ofmore basis function than the traditional “minimal bagi$”
the two tetrahedral-interstitial sitesOne of the latter is sd® (five d plus ones atomic orbitalg, while still remaining
shown in Fig. %c). The optimal Wannier spreads are given in more economical than thepd® basis?® The three bases are
Table III; it can be seen that the spread of each of the tw@ompared in Table IV. At each high-symmetkypoint we
interstitial WF’s is considerably smaller than that of thelist, in order of increasing energy, the symmetry labels of the
single interstitial WF in Table Il and Fig.(8). states that occur in a detailed band-structure calculééan,
Figure 1b) shows thed-like bands associated with the Ref. 40, and then whether or not they are captured by each
optimal five-dimensional subspa&(k) C S;(k), as well as  of the tight-binding bases. Inspection of the table clarifies
the dispersive bands associated wiiitk), the complement that thet?d® basis has some very attractive features. Whereas
of Si(k) insideS;(k). There is an upward shift in energy of the sd® basis misses thi,; staté* (an unoccupied-like
the statexX3, W3, andL; in the narrow bands, due to mixing state not far abov&g) and, even more importantly, the,,
with the states of the same symmetry in the dispersive bandstate(an occupiedp-like state just belowEg), t2d® gets the
which suffer a downward shift of the same magnitude. symmetries right up to at least the first state abByeat each
The fact that our procedure naturally generates a pair ofiigh-symmetryk point. Evenspd® does not do this, failing
WF's centered at the tetrahedral-interstitial sites can be raticat thel” point, since the stat€,, hasf character. A conse-
nalized in terms of a tight-binding description of the nearly-quence of this analysis is that therbitals cannot be con-
free-electron states. The tetrahedral-interstitial sites form atructed solely frons and p orbitals. This can also be seen
simple cubic lattice, so that in view of Fig(& one might from Fig. 5c): The positive-amplitude central portion of the
imagine that the electronic states of these WF’s would b&VF can be interpreted in terms of a superposition of fpir
roughly analogous to those of a nearest-neighbor tighthybrids coming from each of the four surrounding copper

3. Symmetric two-WF description of dispersive bands
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TABLE lll. Spreads of the “maxloc” WF’s for the separatband and low-lying dispersive bands
subspaces§s andS,), and for the combined subspaSg. The numbers in parentheses are €hevalues,
andt stands for the tetrahedral-interstitial-centered orbital. The corresponding bands are displayed in Fig. 7.

Two separate subspaces One combined subspace
deg 1.687 deg 1.687
deg 1.686 deg 1.687
dtzg 1.472 dtzg 1.737
tog 1.472 tog 1.737
di,, 1.472 tog 1.737
Qi SE] 7.788 (7.751)
t 8.568 t 7.812
t 8.568 t 7.812
Qi S2] 17.136 (16.822 Qi S71 24.209 (22.039

atoms and pointing towards the interstitial; however this pic-=9 within a window containing 11 or more bang@sg., with
ture cannot account for the six negative lobes. the upper bound at 32.2 ¢VThe “maxloc” WF's are then

To conclude, we note that trep>d® description can also five atom-centeredd-like orbitals plus four equivalent
be obtained from our procedure, by minimizify with N sp’-like hybrids centered near the atom.

TABLE IV. Alist, in order of increasing energy, of the symme- C. Silicon

try labels of selected states in the band structure of cofipken s | h h . v di d and d
from Ref. 40, and whether or not they are captured by each of the everal authors have previously discussed and compute

tight-binding bases discussed in the text. An asterfskifdicates WF's for silicon and other tetrahedral semiconductors. Some
that the state is occupied. works have focused on the WF’s associated with the valence
bands'®2846-49yhile others have also dealt with the lowest

Degeneracy s {245 SpidS four conduction band®-*°

Iy 1* yes yes yes 1. Bond orbitals
*

lr-iz g* ));22 ﬁz 522 A set (_)f eight bond-centered WF's, four bonding and fou_r
T, 1 yes antibonding, can be obtained by using separate energy win-
Iis 3 yes
X1 1* yes yes yes @ =
X3 1* yes yes yes £ g
X, 1* yes yes yes 5 EE
Xs 2* yes yes yes %, g g
Xy 1 yes yes %D _
X1 1 yes yes = é _5“
Xsr 2 yes =5
X3 1 yes -10
L, 1* yes yes yes (b)
Ly 2* yes yes yes
Ly 2* yes yes yes
Ly 1* yes yes x
L, 1 yes yes yes "§ z
Lo 1 z 5 Z
L 2 yes E S
Wo, 1* yes yes yes ié’ _10
W, 2* yes yes yes
W, 1* yes yes yes L r X UK r
Wy 1* yes yes yes FIG. 8. Solid lines: Original band structure of silicon. Dotted
W, 2 yes yes lines: Wannier-interpolated bands. (& the valence and low-lying
W, 1 yes conduction bands are treated separately, which produces four bond-
W, 1 yes yes ing and four antibonding Wannier functions; (i) they are treated

as a single group, which yields eighp®-type Wannier functions.
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dows for each of the two groups, as indicated in Fi@).8
Since the valence bands form an isolated group, inside the
corresponding windowN,=N=4 throughout the Brillouin
zone. Hence there is no freedom for minimiziflg, and one

can proceed directly with the minimization &f to compute
the “maxloc” WF's, as done in Ref. 16. The resulting bands
are essentially indistinguishable from the original ones, since
for such a densk mesh the interpolation error is very small.
The trial orbitals used to start the minimization were bond-
centered Gaussians with a root-mean-squares) width of
1.89 bohr. The value of the optimal spread wéks
=30.13 boht, of which 28.39 bohr came from(, .

The use of an energy window becomes necessary for the
four low-lying empty bands, which are attached to higher
bands. As trial orbitals we used an antibonding combination
of Gaussians with a rms width of 1 bohr. Each Gaussian was
sitting halfway between one of the two atoms and the center
of their common bond. During the minimizatiof}, de-
creased from 106.76 bdhto 87.47 boht, having reached (c)
the minimum in less than 30 step§An alternative is to
choose the initial subspace at edclas the lowest four en-
ergy eigenstates inside the energy window. This yields an
initial ,=98.10 boht, and again the absolute minimum is
reached after- 30 steps. The total spread of the four “max-
loc” WF's was Q) =97.49 boht; as expecteé® this is con-

siderably larger than for the bonding WF’s. Note also fiat

accounts for more than 10% of the total spread, whereas for FIG. 9. Contour-surface plots of Wannier functions in silicon.
the bonding “maxloc” WF'’s that number was less than 6%. (8 Antibonding, (b) bonding, andc) sp® type. In(a) and (c) the
This is related to the fact that the antibonding WF’s are moreamplitudes arer0.5A/v (light gray) and —0.5A/v (dark gray; in
spread out, causing matrix elements of the tiweg|r|w,g) (0 they are+1.4A4/u (light gray) and —0.44/u (dark gray.

with R#0 to have larger values. Equatida5) of Ref. 16

shows that this results in a largér. The very small contri- . _
bution of { to the total spread of the highly localizedike taking from 76.04 boHrin the former case and 84.08 bdhr

WEF’s in Copper(|ess tharﬂ_%), aswell as the Comparative|y in the latter to 6350 bOFlr As for the minimization O@,
larger contribution in the interstitial-centered WF’s are thusthe absolute minimum(=85.41 bohf) was reached only
easily understood. with (i); with (ii) the algorithm became trapped in a local

In Fig. %a) we present the contour-surface plot of oneMinimum (=101.97 bohf) having the same symmetry as
“maxloc” antibonding WF in silicon. The other three are the trial orbitals, with four bondingantibonding WF’s with
identical (related to the first by the tetrahedral symmetry op-a spread of 6.37 bohi(19.12 bohf) each.

eration3. Figure 9b) shows one of the four identical bond- ~ We end this section with the following observation. Sup-
ing WF's. pose we take the four-dimensional valeribending space

Sgb)(k) together with the optimal four-dimensional anti-
2. sp’ hybrids bonding subspaces (k) [Fig. 8a)] to form an eight-

As discussed in Ref. 30, one may instead treat the foufimensional spacsy(k) =S4 (k) U S (k). This space has
valence and four low-lying conduction bands as a singlé2;=63.64 bohf, which is slightly higher than the value
group, which leads to “maxloc” WF’s o6p® charactefFig.  63.50 bohf associated with the optimal subspaggk) for
9(c)]. Using our method this may be done as indicated in Figthe eight-band problem with an inner winddig. 8b)].

8(b). An outer energy window is chosen which spans theThus, if we takeSg(k) as an initial guess for the minimiza-
eight bands of interest, and the valence bands are “frozention of (), in the eight-band problem with an inner window,
inside an inner window; this ensures that they are not afwe will be starting slightly above the absolute minimum. The
fected by the minimization of),, whose only aim is to extra reduction in(}; comes about because the functional
extract the four low-lying antibonding bands from the that is minimized to obtaifg(k) contains terms involving
conduction-band complex. We have started the minimizatioroverlap between low-lying conduction stateskatind va-

of Q, in two different ways:(i) by projecting eight “atom- lence states at neighborilkgt b. The wave functions relax in
centered”sp>-type combinations of Gaussians, afid by  response to these extra terms, and consequently the two an-
projecting four bond-centered Gaussians plus four antibondibonding subspaces are not exactly the same. However, they
ing combinations of Gaussians, as done in the previous seare almost identical, and therefore the same is true for the
tion. In both cases the minimization took about 20 stepsinterpolated bandgcompare Figs. @ and &b)].
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V. CONCLUSIONS to obtain WF’s for the low-lying empty or partially filled

We have discussed and imolemented a oractical methob nds. For instance, it has been suggested that these could be
P p seful for accurate calculations of the optical properties of

for extracting maximally Iocallged Wannier functlor)s from semiconducting nanocrystai$Another potential use of the
entangled energy bands, starting from the Bloch eigenfunc-

tions obtained in a standard electronic-structure calculatior{3 resent method could arise in the description of surface

Our method is based on a prescription for “disentanalin »States[e.g., Ref. 5], in particular when the surface bands

the bands of interest from thgrest ol?the band com Iexgin:sgi‘dgecome resonant with the bulk bands. The striking result that
. o Ompie We have obtained for the low-lying broad bands of copper,

an energy window specified by the user. The idea is to ex-

tract a subspace of Bloch-like states whose character vari with the WF’s being centered at the tetrahedral-interstitial

as little and as smoothly as possible across the Brillouir%?tes’ suggests that the method may provide insight into the

zone. This is achieved by minimizing a functional which chemistry of transi_tion-metal com_pounds. _Also, since the
meas:ures the “spillage,” or change of character, of the subﬁmaXIOC” WF's provide a compact interpolation scheme .fqr
space across the BriIIo’uin zone. The present séheme can ne band structure, t.h<.ay could be gsed as part of an efﬂment
viewed as an extension of the rﬁaximally localized Wannier, ?gprlthm f(_)r determining the Fermi §urface. Finally, it mlght
function method of Marzari and Vanderbtftwhich was de- be interesting to app_ly_ the present ideas to the construction
signed to deal with isolated groups of banas only. More re-Of lattice WF's describing the part of the phonon spectrum
igned to group Y- Pr€ elevant for studying structural phase transitioh®
cisely, it introduces an extra step—the construction of the
optimal subspace—which is followed by the determination
of the “maxloc” WF’s by applying the localization algorithm
of Marzari and Vanderbilt to that subspace. The procedure
for determining this optimal subspace is both stable and This work was supported by the NSF Grant No. DMR-
computationally very fast. 9981193. We would like to thank Dr. Peter Reinhardt for
Some possible applications of such WF's have been merbringing to our attention Refs. 41-43, and Dr. Noam Bern-

tioned in the Introduction. Of particular interest is the ability stein for providing us with his visualization softwapan.
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