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Spin-density-wave instabilities in the organic conductors„TMTSF …2ClO4:
Role of anion ordering
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We study the spin-density-wave~SDW! instabilities in the quasi-one-dimensional conductor
(TMTSF)2ClO4. The orientational order of the anions ClO4 doubles the unit cell and leads to the presence of
two electronic bands at the Fermi level. From the Ginzburg-Landau expansion of the free energy, we determine
the low-temperature phase diagram as a function of the strength of the Coulomb potential due to the anions.
Upon increasing the anion potential, we first find a SDW phase corresponding to an interband pairing. This
SDW phase is rapidly suppressed, the metallic phase being then stable down to zero temperature. The SDW
instability is restored when the anion potential becomes of the order of the interchain hopping amplitude. The
metal-SDW transition corresponds to an intraband pairing that leaves half of the Fermi surface metallic. At
lower temperature, a second transition, corresponding to the other intraband pairing, takes place and opens a
gap on the whole Fermi surface. We discuss the consequence of our results for the experimental phase diagram
of (TMTSF)2ClO4 at high magnetic field.

DOI: 10.1103/PhysRevB.65.035108 PACS number~s!: 75.30.Fv, 74.70.Kn, 81.30.Dz
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I. INTRODUCTION

The organic conductors of the Bechgaard salt fam
(TMTSF)2X ~where TMTSF stands for tetramethyltetras
enafulvalene andX5PF6,ClO4 . . .! exhibit a very rich phase
diagram when temperature, magnetic field, or pressure
varied.1 One of the most remarkable phenomena is the e
tence of a series of spin-density-wave~SDW! phases in pres
ence of a moderate magnetic field of a few Tesla.2 These
phases are separated by first-order transitions and exhi
quantization of the Hall effect:sxy522Ne2/h per layer of
TMTSF molecules, where the integerN varies at each phas
transition.

According to the so-called quantized-nesting mo
~QNM!,2,3 the formation of the magnetic-field-induced spi
density-wave~FISDW! phases results from an interplay b
tween the nesting properties of the quasi-one-dimensio
~Q1D! Fermi surface and the quantization of the electro
orbits in magnetic field. Although the QNM explains th
quantization of the Hall effect4,5 and most features of th
phase diagram, deviations from the theoretical predicti
have been observed at high magnetic field in the compo
(TMTSF)2ClO4.6–8 In the last FISDW phase, when the ma
netic field exceeds 18 T, the second-order metal-SDW tr
sition that occurs atTc.5.5 K is followed by a SDW-SDW
transition atTc8.3.5 K. It is believed that the existence o
this low-temperature SDW phase is due to the orientatio
ordering of the~noncentrosymmetric! anions ClO4 that oc-
curs at TAO.24 K in slowly cooled ~relaxed! samples.1,6

Nevertheless, to our knowledge, there is no satisfying th
retical description9 of the phase diagram of (TMTSF)2ClO4
at high field in spite of recent progress.10–12

In this paper, we study the effect of anion ordering on
SDW phase in the absence of a magnetic field. In rela
samples, the ground state of (TMTSF)2ClO4 is supercon-
ducting in the absence of a magnetic field. Therefore,
0163-1829/2001/65~3!/035108~11!/$20.00 65 0351
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study of the SDW in presence of anion ordering does
apply directly to the experimental situation. Nevertheless
is the first step towards the understanding of the behavio
(TMTSF)2ClO4 at high field. Our work shows that in previ
ous analysis13–15,10,11~with or without magnetic field!, the
anion ordering was not accounted for properly. Because
the anion potential, the SDW order parameter necessarily
two Fourier components. As a result, the metal-SDW tran
tion temperature is determined by ageneralizedStoner cri-
terion. This point has been systematically overlooked, whi
therefore, calls for a revision of previous works.

The results obtained in this paper are based on a sim
model, where the anion ordering is assumed to create
electrostatic potentialV(2V) on even~odd! chains. More-
over, the crystal structure is taken to be orthorhombic, wh
the actual structure of the Bechgaard salts is triclinic. In
spirit of the QNM, we expect such a simple model~with a
few unknown parameters! to correctly describe the physic
of (TMTSF)2ClO4. The anion potential6V doubles the
crystal periodicity in the transverse direction. This leads t
reduced Brillouin zone with two electronic bands crossi
the Fermi level~Fig. 1! in qualitative agreement with the
actual Fermi surface of (TMTSF)2ClO4 as obtained from
quantum chemistry calculation.16 Instead of a single~best!
nesting vector, there are three possible nesting vectors:Qinter
~interband pairing!, Q1 , and Q2 ~intraband pairing!. The
instability that does occur at low temperature depends on
ratio V/tb between the anion potential and the intercha
hopping amplitudetb . It has recently been shown, both fro
quantum chemistry calculation16 and experiments,17 that V
can be of the order oftb .

In Sec. II, we calculate the electron-hole susceptibil
within the random-phase approximation~RPA! and thus ob-
tain the transition temperature between the metallic ph
and the SDW phase. The complete phase diagram is obta
from the Ginzburg-Landau expansion of the free ene
©2001 The American Physical Society08-1
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K. SENGUPTA AND N. DUPUIS PHYSICAL REVIEW B65 035108
~Sec. III!. For a weak anion potential (V!tb), we find that
the SDW phase corresponds to the interband pairing (Qinter).
The transition temperature is strongly suppressed by the
ion potential and in general vanishes above a critical valu
V. The SDW instability is restored whenV becomes of the
order of the interchain hopping amplitude (V;tb). The
metal-SDW transition corresponds to the intraband pair
Q1 ~or Q2). Half of the Fermi surface remains gapless,
that the SDW phase is metallic. At lower temperature, a s
ond SDW instability occurs at the~intraband! nesting vector
Q2 ~or Q1), thus opening a gap on the whole Fermi surfa

Some of our conclusions agree with the results of Kish
and co-workers.10–12 In particular, these authors have show
that the anion potential may stabilize SDW phases with w
vectorsQinter, Q2 ,Q1 ~or Q2 andQ1).18

II. INSTABILITY OF THE METALLIC PHASE

In Q1D materials, the Fermi surface consists of tw
slightly warped open sheets. As a result, in the vicinity of
Fermi level, the electron dispersion is well approximated

ea~kx ,ky!5vF~akx2kF!1t'~kyb!, ~2.1!

wherekx andky are the electron momenta along and acr
the conducting chains, andb is the interchain spacing. Her
and in the rest of the paper, we neglect the third directionz
axis! that does not play an important role for our purpo
and use natural units\5kB5c51. In Eq. ~2.1!, the longi-
tudinal electron dispersion is linearized inkx in the vicinity
of the two 1D Fermi points6kF , andvF52ata sin(kFa) is
the corresponding Fermi velocity.ta is the transfer integra
along the chain anda the lattice spacing.a52,1 corre-
sponds to the left and the right Fermi sheets. The transv
dispersiont'(kyb) is given by

t'~kyb!5t'
odd~kyb!1t'

even~kyb!, ~2.2!

t'
even~kyb!522t2b cos~2kyb!, ~2.3!

t'
odd~kyb!522tb cos~kyb!22t3b cos~3kyb!, ~2.4!

wheretnb is the transfer integral for electron hopping to t
nth neighboring chain.t'

odd and t'
even correspond to odd and

evenn, respectively. For a simple model with only neare

FIG. 1. Possible nesting vectors in presence of the anion po
tial. Qinter(Q6) corresponds to interband~intraband! pairing. The
magnitude of the band splitting atky56p/2b equals 2V, whereV
is the strength of the anion potential~see text!.
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neighbor hopping, i.e., whent2b5t3b50, the linearized dis-
persion ~2.1! satisfies the propertye2(k)52e1(k1Q0),
which corresponds to a perfect nesting of the Fermi surf
at wave vectorQ05(2kF ,p/b). For t2b ,t3bÞ0, the nesting
becomes imperfect. Consequently, the nesting vector shif
Q5(2kF1dqx ,p/b1dqy) and the SDW phase occurs wit
lower transition temperature. Generally,t3b is neglected
since it is very small, i.e.,t3b /tb!1. However, as we shal
see, t3b plays an important role in the SDW phases w
intraband nesting vectorsQ1 andQ2 , and should, therefore
be retained.

The anion potential in Q1D systems can be most sim
modeled asVanion5V(21)n, wheren is the chain index. In
the presence of the anion potential, the Hamiltonian of
system in the absence of electron-electron interaction ca
written as

H05E d2r(
a,s

ĉas
† ~r !@vF~a k̂x2kF!1t'~ k̂yb!

1V~21!n#ĉas~r !, ~2.5!

where theĉas’s are fermionic operators for right (a51)
and left (a52) moving particles, ands5↑,↓ is the spin
index. r5(x,nb), andk̂x ,k̂y are momentum operators alon
x andy.

The Hamiltonian~2.5! can be diagonalized to obtain th
eigenfunctions and energy eigenvalues,

ca,k
j ~r !5

1

AA
exp@ i ~k1K /2!•r # (

p56
g ky

jpeipK•r /2,

~2.6!

ea,k
j 5vF~akx2kF!1eky

j , ~2.7!

where j 56, A5LxLy is the area of the system,K
5(0,p/b), and kyP@2p/2b,p/2b# reflecting period dou-
bling alongy due to the presence of the anion potential. T
transverse momentum dependent part of the energyeky

j is

given by

eky

j 5 jAV21@ t'
odd~kyb!#21t'

even~kyb!. ~2.8!

The presence of the anion potential splits the energy dis
sions into two bands with energiesea,k

1 andea,k
2 as shown in

Fig. 1. The factorsgky

jp are given by

gky

115gky

225
1

A2
S 12

t'
odd~kyb!

A@ t'
odd~kyb!#21V2D 1/2

,

gky

1252gky

215
1

A2
S 11

t'
odd~kyb!

A@ t'
odd~kyb!#21V2D 1/2

.

~2.9!

The amplitude of the wave function atr5(x,nb) depends on
the factorsg ky

jp and is given by

n-
8-2
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uc a,k
j ~r !u5ug ky

j 11~21!ng ky

j 2u. ~2.10!

Electronic states in the1(2) band have a higher probabilit
amplitude on even~odd! chains. This localization become
very important whenV*A2tb ~assumingt3b!tb , which is
obviously the case for a realistic dispersion law!. In this re-
gime, even and odd chains tend to decouple, and the dis
sion law reduces toea,k

j .vF(akx2kF)1 jV1t'
even(kyb).

Using Eqs.~2.6! and~2.7!, we obtain the Green function
in the absence of electron-electron interaction,

Gas~r ,r 8;vn!5(
j ,k

c a,k
j ~r !c a,k

j * ~r 8!

ivn2ea,k
j

, ~2.11!

wherevn is a fermionic Matsubara frequency.

A. Bare susceptibilities

Due to the presence of two electronic bands, there
three possible SDW instabilities with wave vectorsQ1 ,Q2 ,
and Qinter as shown in Fig. 1.Q1 and Q2 are intraband
nesting vectors that satisfy (Qy)6'p/2b. Qinter is the inter-
band nesting vector@with (Qy) inter'p/b#. In the absence o
the anion potential, the SDW instability occurs withQ
5Qinter. To obtain a quantitative description of these po
sible instabilities and the phase diagram for the system,
calculate the susceptibilityx(q,q8) in the particle-hole chan
nel within the RPA. First, let us consider the susceptibilit
in the absence of electron-electron interaction,

xas
0 ~r ,r 8;t2t8!5^TtD̂as~r ,t!D̂as

† ~r 8,t8!&0 ,
~2.12!

whereD̂as(r ,t)5ĉ ās̄
† (r ,t)ĉas(r ,t),t is an imaginary time,

andTt is the time-ordering operator. The mean value in E
~2.12! has to be taken with the HamiltonianH0. We use the
notationā52a, ands̄5↓,↑ for s5↑,↓. In frequency do-
main, x0 can be expressed in terms of the Green funct
~2.11! as

xas
0 ~r ,r 8;pn!52T(

vn

Gas~r ,r 8;vn!Gās̄~r 8,r ;vn2pn!,

~2.13!

wherepn is a bosonic Matsubara frequency. For studying
instabilities of the metallic phase, it is sufficient to compu
the static susceptibilitiesxas

0 (r ,r 8;pn50)[xas
0 (r ,r 8). Us-

ing Eqs.~2.6!, ~2.7!, ~2.9!, and~2.11!, we find

xas
0 ~q,q!5

1

A (
k

$@ x̄as
11~k,q!1x̄as

22~k,q!#

3~gky

11gky2qy

11 1gky

12gky2qy

12 !2

1@ x̄as
12~k,q!1x̄as

21~k,q!#

3~gky

11gky2qy

12 2gky2qy

11 gky

12!2%, ~2.14!
03510
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0 ~q,q1K !5

1

A (
k

$@ x̄as
11~k,q!2x̄as

22~k,q!#

3~gky

11gky

121gky2qy

11 gky2qy

12 !

1@ x̄as
12~k,q!2x̄as

21~k,q!#

3~gky

11gky

122gky2qy

11 gky2qy

12 !%, ~2.15!

where

x̄as
j j 8~k,q!52T(

vn

~ ivn2ea,k
j !21~ ivn2e ā,k2q

j 8 !21.

~2.16!

Notice that due to the presence of the anion potential,
static susceptibilities have a nonzero off-diagonal compon
x0(q,q1K ). The sum overkx in Eqs.~2.14! and~2.15! can
be analytically calculated using

1

bLx
(
kx

x̄as
j j 8~k,q!

5
N~0!

2
H lnS 2gE0

pT D1CS 1

2D
2ReCF1

2
2

vF~aqx22kF!1eky

j 1eky2qy

j 8

4p iT
G J ,

~2.17!

but the ky sum needs to be evaluated numerically. In E
~2.17!, N(0)51/pvFb is the density of states per spin
Fermi energy,E0;ta an ultraviolet cutoff energy,g.1.783
the exponential of the Euler constant,C the digamma func-
tion, and ReC means real part ofC. Note that whenV
50,xas

0 (q, q1Q)50 and the susceptibility becomes diag
nal in momentum space.

To find the effect of the anion potentialV on the bare
susceptibilities, we plotx0(q,q) andx0(q,q1K ) for differ-
ent values ofV/tb in Figs. 2–4. Herex0[x1↑

0 5x1↓
0 , andq

FIG. 2. Susceptibilityx0(q,q) in the absence of anion orderin
(V50). Herex0[x1↑

0 5x1↓
0 , andqx is measured from 2kF .The

maximum is located at the interband nesting vectorQinter with
(Qinter)y'p/b. The susceptibilities shown in Figs. 2–4 are o
tained forT50.02tb , t2b50.1tb and t3b50.02tb .
8-3
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K. SENGUPTA AND N. DUPUIS PHYSICAL REVIEW B65 035108
is chosen such thatqx;2kF . For V/tb50, x0 is diagonal in
momentum space and the peak ofx0(q,q) is located atQinter
with (Qinter)y'p/b ~Fig. 2!. The position of the peak move
away fromp/b when deviations from perfect nesting due
t2b and t3b become important. As we increaseV/tb ,
x0(q,q1K ) becomes nonzero and develops peaks atqy'
6p/2b as shown, forV/tb51, in Fig. 3. The maximum of
x0(q,q) @i.e., x0(Qinter,Qinter)# reduces in height and two
additional peaks develop atQ1 and Q2 @with (Q6)y
5p/2b#. The development of these additional peaks
x0(q,q) can be seen by comparing Figs. 2 and 4. WhenV is
strong enough, the maximum ofx0 moves fromQinter to Q1

or Q2 . We, therefore, expect the SDW wave vector to sh
from Qinter to Q1 and/orQ2 as V exceeds a critical value
~assuming that the anion potentialV does not suppress th
SDW instability!. Our results for the diagonal susceptibili
x0(q,q) are similar to those of Ref. 12.

B. RPA calculation

To find the critical value of the anion potential and
obtain the phase diagram, we now compute the suscept
ties for the interacting system within RPA. We model t
interaction using the g-ology model keeping onlyg2 to be
nonzero,19

H int5
g2

2 (
a,s,s8

E d2r ĉas
† ~r !ĉ ās8

†
~r !ĉ ās8~r !ĉas~r !.

~2.18!

Using the interaction Hamiltonian given by Eq.~2.18!, we
obtain the susceptibilities by summing the RPA diagra
shown in Fig. 5,

xas~q,q8!5xas
0 ~q,q8!1g2(

q9
xas

0 ~q,q9!xas~q9,q8!.

~2.19!

Substituting Eqs.~2.14! and~2.15! in Eq. ~2.19!, we find that
xas(q,q8) is nonzero only whenq85q or q1K and is given
by

xas~q,q!5$xas
0 ~q,q!@12g2xas

0 ~q1K ,q1K !#

1g2@xas
0 ~q,q1K !#2%/D, ~2.20!

FIG. 3. Off-diagonal componentx0(q,q1K ) of the susceptibil-
ity for V/tb51. The notations are the same as in Fig. 2.
03510
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xas~q,q1K !5xas
0 ~q,q1K !/D, ~2.21!

D5@12g2xas
0 ~q,q!#@12g2xas

0 ~q1K ,q1K !#

2g2
2@xas

0 ~q,q1K !#2. ~2.22!

A SDW instability occurs when the susceptibilitiesxas
0 (q,q)

and xas
0 (q,q1K ) diverge, i.e., when the denominatorD in

Eqs. ~2.20! and ~2.21! vanishes. This yields a generalize
Stoner criterion for a SDW instability at wave vectorQ,

@12g2x0~Q,Q!#@12g2x0~Q1K ,Q1K !#

2g2
2@x0~Q,Q1K !#250, ~2.23!

whereQ is chosen such thatQx;2kF . This equation is the
same forQ and Q1K ~reflecting the fact that the SDW
contains Fourier components atQ andQ1K ). We choose to
label the SDW phase by the wave vectorQ such that
x0(Q,Q).x0(Q1K ,Q1K ). Note that the off-diagona
component of the susceptibility, i.e.,x0(Q,Q1K ), has been
systematically overlooked in previous works on the effect
anion ordering in (TMTSF)2ClO4. As a result, the simple
~but wrong! criterion 12g2x0(Q,Q)50 has been used to
determine the SDW transition temperature instead of
generalized Stoner criterion given in Eq.~2.23!.

Eq. ~2.23! has to be numerically solved to obtain the tra
sition temperatureTc(V) as a function of the anion potentia
V. The qualitative nature of the phase diagram, however,
be understood qualitatively from Eq.~2.23! without numeri-
cal computation. ForV50, the off-diagonal susceptibility
x0(Q,Q1K )50 and Eq.~2.23! reduces to 12g2x0(Q,Q)
50. The SDW instability occurs with the nesting wave ve
tor Qinter corresponding to the maximum of the bare susc
tibility x0. When V increases, the wave functions becom
more and more localized on even or odd chains. SinceQinter
corresponds to pairing of electron and hole on chains of

FIG. 4. Diagonal componentx0(q,q) of the susceptibility for
V/tb51. Besides the maximum atQinter , there are two peaks a
qy5p/2b corresponding to the intraband nesting vectorsQ1 and
Q2 . The notations are the same as in Fig. 2.

FIG. 5. Feynman diagrams forx within RPA.
8-4
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SPIN-DENSITY-WAVE INSTABILITIES IN THE . . . PHYSICAL REVIEW B 65 035108
posite parity,Tc drops, until at some critical value of th
anion potential,Vc1, there is no SDW instability withQ
5Qinter. @Note that the anion potential does not affect t
nesting atQinter, which is limited byt2b in our model.# Si-
multaneously, the pairing withQ5Q1 and/orQ2 becomes
increasingly favorable, due to both the wave-function loc
ization and an improved nesting, and eventually at a valu
the anion potential,Vc2;tb , the SDW phase withQ5Q1

and/or Q2 wins over the metallic phase. Indeed, whenV
@tb , the even and the odd chains tend to decouple.
dispersion law of the two electronic bands (1 and 2) be-
comes ea,k

j .vF(akx2kF)1 jV1t'
even(kyb), and Tc(V)

→Tc
(0)5(2gE0 /p)exp@22/N(0)g2#, whereTc

(0) is the tran-
sition temperature for a system with perfect nesting. High
order harmonics in the transverse dispersion law, such at4b
~not considered in this paper!, would introduce deviations
from perfect nesting that survive whenV→`. They are,
however, expected to be very small and can be safely
carded. IfVc2.Vc1, there will be a metallic region in the
phase diagram with no SDW instability forVc1,V,Vc2;
otherwise, there will be a transition from the SDW pha
with Q5Qinter to the SDW phase withQ5Q1 and/orQ2 .

Our numerical calculations show that both the scena
are possible. The phase diagram witht2b5t3b50 is shown
in Fig. 6. In this case, there is a transition between SD
phases withQ5Qinter andQ5Q6 without any intermediate
metallic phase. Moreover, the SDW’s withQ5Q6 have the
same transition temperature. The transition between
SDW phases withQinter andQ6 occurs atV5Vc'1.1tb , as
indicated by the thick vertical line in Fig. 6.

The phase diagram with more realistic parameters, sh
in Fig. 7, is quite different. Witht2b50.1tb and t3b50, the
SDW phase withQinter persists up toVc1'0.4tb . For V
.Vc1, we find a metallic phase tillV5Vc2'tb . For V
.Vc2, the SDW phase withQ6 is stabilized. Whent2b is
strong enough, the SDW atQinter is suppressed~i.e., Vc1
50), but the transition temperature of the intraband SDW
is not affected. In this case, the metallic phase is stabl
T50 up toVc2 where the SDW with wave vectorQ1 or Q2

sets in.

FIG. 6. Phase diagram witht2b5t3b50. The thick vertical line
is a guide to the eye for estimating the critical potential at which
transition fromQinter to Q6 takes place. ForV.Vc.1.1tb , there is
coexistence of two SDW’s~with wave vectorsQ1 andQ2) below
the transition line~see Sec. III C!.
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The degeneracy betweenQ1 andQ2 is lifted by the pres-
ence of a nonszerot3b ~Fig. 7!. For t3b.0, the SDW with
wave vectorQ2 has a higher transition temperature, i.
Tc

2.Tc
1 . The opposite is true whent3b,0. It is clear that

whenV@tb , the two SDW’s will coexist at low temperature
In this regime, even and odd chains are essentially dec
pled, and the two~intraband! instabilities take place almos
independently at transition temperaturesTc

1 and Tc
2 . This

leads to a phase with two coexisting SDW’s belowTc
coex

.Tc
1,Tc

2 ~assumingt3b.0).
Figure 8 shows the ratiod5@11tan(u)#/@12tan(u)# of

the SDW amplitudes on even and odd chains~see Sec. III D!.

III. GINZBURG-LANDAU EXPANSION

In the preceding section, we have shown that two SD
instabilities~at wave vectorsQ1 andQ2) may occur whenV
is strong enough. In order to study in more detail the pos
bility of coexisting SDW’s, we derive the Ginzburg-Landa
expansion of the free energy and then deduce the phase
gram.

In the presence of two SDW’s, the order parame
Das(r )5^D̂as(r )& takes the general form

e

FIG. 7. Phase diagram with nonzerot2b and t3b showing the
intermediate metallic region. The solid line indicates the transit
temperature whent3b50. Below Tc

coex.Tc
1 , the two intraband

SDW’s coexist~see Sec. III C!.

FIG. 8. Ratiod5@11tan(u)#/@12tan(u)# of the SDW ampli-
tudes on even and odd chains~see Sec. III D!. The figure showsd if
d,1 andd21 if d.1. The parameters of the plot are the same a
Fig. 7 ~with t3b50.02tb).
8-5
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Das~r !5 (
j 56,p56

Das
jp expF iaS Qj1~p21!

K

2 D •r G .
~3.1!

Note that the SDW with wave vectorQj corresponds to a
spin modulation with Fourier componentsQj and Qj1K .
The order parameter~3.1!, which corresponds to electron
03510
hole pairs with opposite spins, assumes the SDW’s to
polarized in the (x,y) plane, i.e., ^Sz(r )&50. The spin
modulation^S(r )& is discussed in more detail below~Sec.
III D !. The relationDās̄(r )5Das* (r ) implies that the com-
plex order parametersDas

jp satisfyDās̄
jp

5Das
jp * .

Up to quartic order in the order parameter, the free ene
~per unit surface! is given by
F5g2(
a

E d2r

A
uDa~r !u21g2

2 T

A (
a,v

E d2r 1d2r 2Da* ~r1!Da~r2!Ga↑~r1 ,r2 ,v!Gā↓~r2 ,r1 ,v!1g2
4 T

2A

3(
a,v

E d2r 1d2r 2d2r 3d2r 4Da* ~r1!Da~r2!Da* ~r3!Da~r4!Ga↑~r1 ,r2 ,v!Gā↓~r2 ,r3 ,v!Ga↑~r3 ,r4 ,v!Gā↓~r4 ,r1 ,v!,

~3.2!
l-
ion

pin

-

ils

-

whereDa(r )[Da↑(r ).

A. Quadratic contribution F 2

Let us first consider the quadratic contributionF2 to the
free energy. One easily obtains

F25g2(
a, j

~Da
j 1* ,Da

j 2* !

3S 12g2x0~Qj ,Qj ! 2g2x0~Qj ,Qj1K !

2g2x0~Qj1K ,Qj ! 12g2x0~Qj1K ,Qj1K !
D

3S Da
j 1

Da
j 2D . ~3.3!

Introducing the new order parametersuj a ,v j a defined by

S Da
j 1

Da
j 2D 5S cos~u j ! 2sin~u j !

sin~u j ! cos~u j !
D S uj a

v j a
D , ~3.4!

with u jP] 2p/4,p/4] and

tan~2u j !5
2x0~Qj ,Qj1K !

x0~Qj1K ,Qj1K !2x0~Qj ,Qj !
, ~3.5!

we obtain the diagonal form

F25(
a, j

~l j
1uuj au21l j

2uv j au2! ~3.6!

where

l j
65

g2

2
@22g2x0~Qj ,Qj !2g2x0~Qj1K ,Qj1K !#

6
g2

2

2
sgn@x0~Qj1K ,Qj1K !2x0~Qj ,Qj !#

3$@x0~Qj ,Qj !2x0~Qj1K ,Qj1K !#2

14@x0~Qj ,Qj1K !#2%1/2. ~3.7!
The transition temperatureTc
j is determined by

minl j
6~Tc

j !50. ~3.8!

From Eqs.~3.7! and ~3.8!, one easily recovers the genera
ized Stoner criterion obtained in the preceding sect
@Eq. ~2.23!#. Since we have assumedx0(Qj ,Qj ).x0(Qj

1K ,Qj1K ) ~see Sec. II B!, minl j
65l j

1 and the order pa-
rameter of the transition isuj a . For T,Tc

j , we then have
v j a50, i.e.,

Da
j 25tan~u j !Da

j 1 . ~3.9!

This equation determines the relative amplitude of the s
modulation on even and odd chains~see Sec. III D!. If Tc

2

.Tc
1 ~i.e., t3b.0), thenu2aÞ0 when T,Tc

2 . To deter-
mine whether we can have alsou1aÞ0 at lower temperature
~i.e., coexistence of two SDW’s!, we must analyze the quar
tic contribution to the free energy.

B. Quartic contribution F 4

The calculation of the quartic contributionF4 is some-
what lengthy, and we only give the main results. More deta
can be found in Appendix A. Using Eqs.~2.6!, ~2.11!, and
~3.1!, we rewrite the quartic part of the free energy@Eq.
~3.2!# as

F45(
a

(
j 1••• j 4 ,p1•••p4

dQj 1
1Qj 3

,Qj 2
1Qj 4

3B̃a~ j 1 , j 2 , j 3 , j 4 ;p1 ,p2 ,p3 ,p4!

3Da
j 1p1* Da

j 2p2Da
j 3p3* Da

j 4p4 . ~3.10!

The coefficientsB̃a are defined in Appendix A. We now ex
pressF4 as a function of the order parametersuj a andv j a .
Since the formation of the SDW at wave vectorQj corre-
sponds to the order parameteruj a , we takev j a50 in the
following. We then obtain a free energy of the form
8-6
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F45(
a

H(
j

Bj uuj au41Cuu1au2au2J . ~3.11!

The expression of the coefficientsBj andC is given in Ap-
pendix A. The important point here is that the interacti
term in Eq.~3.11! is weak, i.e.,

C

Bj
5OS T2

V2D . ~3.12!

This result is easily obtained by considering the diagra
that contribute toBj or C. The main contribution toBj comes
from the type of diagrams shown in Fig. 9~a!. Qj being the
best nesting vector for the pairing in the bandj, the value of
this diagram is essentially determined by the nesting pro
ties. Since the quadratic termF2 predicts an instability of the
metallic phase against the formation of a SDW at wave v
tor Qj , the nesting is good~and becomes better with increa
ing V). Diagrams contributing toC mix the bands1 and
2. A typical diagram is shown in Fig. 9~b!. Contrary to
diagrams of Fig. 9~a!, it is not possible to have all electroni
states near the Fermi surface and at least one of them ha
energy of orderV with respect to the Fermi level. For in
stance, in the diagram of Fig. 9~b!, the state (k2Qj
1Q2 j , j 8) has an energy of orderV with respect to the
Fermi level when the states (k, j ) and (k2Qj , j ) lie near the
Fermi surface. As a result, these diagrams turn out to b
order (T/V)2 with respect to those contributing toBj ~see
Appendix A!. As shown in the next section, this ensures t
at low temperature the two order parametersu1a and u2a
coexist.

C. Phase diagram

Collecting the results from the preceding sections, we
tain the following free energy:

F5(
a

H(
j

@Aj uuj au21Bj uuj au4#1Cuu1au2au2J ,

~3.13!

FIG. 9. ~a! Main contribution toBj . ~b! A typical diagram con-
tributing to C.
03510
s
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whereAj5l j
1 .

The free energyF is analyzed in Appendix B. Assuming
that Tc

2.Tc
1 ~i.e., t3b.0), we find a second-order meta

SDW transition at temperatureTc
2 , below which u2aÞ0

and u1a50. This transition opens a gap on the2 band,
while the 1 band remains gapless. This SDW phase
metallic. Note that the minimum ofF corresponds to
uuj 1u5uuj 2u. This implies that the SDW is linearly polarize
~see Sec. III D!.

If 4B1B22C2>0, a second transition takes place at

Tc
coex.Tc

11g~Tc
12Tc

2!, ~3.14!

whereg is a constant of orderT2/V2. BelowTc
coex, bothu2a

andu1a are finite.u1a opens a gap on the1 band, making
the whole Fermi surface gapped, so that this low-tempera
SDW is truly insulating. The transition is also of secon
order, since the order parametersu2a andu1a vary continu-
ously at the transition.

SinceC/Bj5O(T2/V2), the condition 4B1B22C2>0 is
satisfied. Therefore, there is always coexistence of
SDW’s at low temperature when the pairing is intraband. E
~3.14! shows thatTc

coex is well approximated byTc
1 .

SDW phases with wave vectorQ2 ,Q1 , or Q2 andQ1 ,
have been previously obtained by Kishigi and c
workers.10–12,18However, the overall phase diagram~and in
particular the existence of a SDW-metal-SDW transition! as
a function ofV has not been derived before.

D. Spin modulation ŠS„r …‹

In this section, we determine the spin modulation^S(r )&
in the different SDW phases of the phase diagram.S(r )
5(1/2)(a,s,s8ĉ ās

† (r )tss8ĉas8(r ) is the spin-density opera
tor andt5(tx ,ty ,tz) stands for the Pauli matrices. Notin
that S25Sx2 iSy5(aD̂a↑ , we obtain

^S2~r !&5 (
a, j ,p

Da
jpexpF iaFQj1~p21!

K

2 G•r G
5(

a, j
Da

j 1eiaQj •r@11~21!n tan~u j !#, ~3.15!

where we have usedv j a50 to obtain the second line of Eq
~3.15!. We consider the more general case where two SDW
can be present. We writeDa

j 1 as

Da
j 15uDa

j 1ueiwa
j 1

, ~3.16!

and introduce the phasesQ j andf j defined by

wa
j 15aQ j2f j . ~3.17!

According to the analysis of the free energy@Sec. III C and
Appendix B#, uuj au5uDa

j 1/cos(uj)u is independent ofa. We,
therefore, obtain
8-7
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^S2~r !&5(
j

2uD1
j 1ucos~Qj•r1Q j !e

2 if j

3@11~21!n tan~u j !#. ~3.18!

From Eq.~3.18!, we deduce

^Sx~r !&5(
j

2uD1
j 1ucos~f j !cos~Qj•r1Q j !

3@11~21!n tan~u j !#,

^Sy~r !&5(
j

2uD1
j 1usin~f j !cos~Qj•r1Q j !

3@11~21!n tan~u j !#. ~3.19!

The phasef j determines the polarization of the SDW’
while Q j gives their positions with respect to the underlyi
crystal lattice. The free energy is independent off j andQ j .

The ratio of the SDW amplitudes on even and odd cha
is given by the factord j5@11tan(u j )#/@12tan(u j )# shown
in Fig. 8. d remains close to one whenV is weak (V
<Vc1). d!1 or d@1 whenV is strong@ tan(u)→61 for
V→`] showing that the SDW’s become mostly localized
even or odd chains~depending on the sign ofu). As ex-
pected,u1 andu2 have opposite signs so thatd1.d2

21.
Consider first the SDW phase occuring for a weak an

potentialV ~interband pairing!. There is a single SDW with a
wave vectorQ5(2kF ,Qy5p/b). The spin modulations on
two neighboring chains are out of phase and the ratiod of
their amplitudes is close to one@Fig. 10~a!#.

The SDW’s corresponding to intraband pairing are a
commensurate in the transverse direction, but with (Qy) j
5p/2b; the spin modulations on two neighboring chains a
in phase quadrature. Fig. 10~b! shows the spin modulation in
the phase with a single SDW at wave vectorQ2 . The spin
modulations belowTc

coex when two SDW’s coexist is shown
in Fig. 10c. The beating phenomenon is due to the fact
(Qx)2Þ(Qx)1 .

IV. CONCLUSION

Anion ordering in the organic conductor (TMTSF)2ClO4
is expected to strongly influence the SDW instability. Wh
a weak anion potential (V&tb) suppresses the SDW insta
bility, a strong anion potential leads to a rich phase diagr
WhenV becomes of the order of the interchain hopping a
plitude (V;tb), the effective hopping between even and o
chains is reduced. This opens up the possibility to have
successive instabilities when the temperature decreases
first one primarily occurs on even~or odd! chains and de-
stroys the Fermi surface of one of the two electronic ban
The other electronic band remains metallic in this phase
lower temperature, a second transition occurs, primarily
odd ~or even! chains, making the whole Fermi surfac
gapped.

According to Ref. 16, the gap due to the anion potentia
the electronic dispersion is of the order of the transve
bandwidth, and the intraband nesting is almost perfect. In
03510
s

n

o

e

at

.
-

o
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s.
t
n

n
e
ur

model, this corresponds to a large value ofV, i.e.,V*tb . In
this situation, one expects the ground state to be a SD
Experimentally, the ground state is found to be a superc
ductor. There is no contradiction with our model thoug
since we did not consider the possibility of a supercondu
ing transition. However, the observation of FISDW phases
(TMTSF)2ClO4 does require deviations from perfect nesti
~otherwise, only the phaseN50 would be observed!. This
suggests that even when the anion potential is strong~largeV
in our model!, important deviations form perfect nesting pe
sist. The latter can be taken into account by consideringt4b
in our model. Alternatively, the observation of the FISD
phases could indicate that the anion potential is weaker t
what is predicted by quantum chemistry calculation. In o
model, this would correspond to the regionVc1,V,Vc2,
where the ground state is metallic.@Note thatVc150 if t2b is
large enough.#

Two successive transitions have been observed
(TMTSF)2ClO4 at high magnetic field.6–8 The possibility
that each of these transitions corresponds to an intrab
pairing, thus partially destroying the Fermi surface, has b
suggested early on.6 Although our conclusions do not appl
stricto sensusto the experimental situation, since they a
restricted to the zero-field case, they indicate that this s
nario could indeed take place in (TMTSF)2ClO4 at high
field, in agreement with the conclusions of Refs. 10–12,1

Beside the existence of two successive transitions at
temperature whenV is strong enough, an important resu
obtained in this paper is the overall phase diagram as a fu

FIG. 10. Schematic representation of the spin modulation in
SDW phases (n denotes the chain index!. ~a! SDW phase for a
weak anion potentialV ~interband pairing!. ~b! SDW phase for a
strong anion potential~intraband pairing!. ~c! Low-temperature
SDW phase (T,Tc

coex) where two SDW’s coexist.
8-8
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tion of V. In particular, we have obtained a SDW-metal-SD
transition at low temperature~Figs. 6 and 7!.

Finally, we note that our results seriously call into que
tion the validity of most of the previous works on the SD
transition at high magnetic field in (TMTSF)2ClO4. In the
presence of anion ordering, the SDW order parameter ne
sarily has two Fourier components, and the standard St
criterion cannot be used anymore. Instead, one should
sider the generalized Stoner criterion obtained in Sec.
@Eq. ~2.23!#.

Note added.After completion of this work, we becam
aware of a related work by Zanchi and Bjelisˇ.20 These au-
thors have considered the effect of anion ordering on
SDW instability in (TMTSF)2ClO4 and obtained the transi
tion temperature within RPA. Their results are similar
03510
-

s-
er
n-
B

e

ours. However, they did not take into account a finitet3b and
did not study the coexistence of the two SDW’s with wa
vectorsQ1 andQ2 at low temperature.
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APPENDIX A: QUARTIC CONTRIBUTION F 4 TO THE
FREE ENERGY

Using Eqs.~2.6!, ~2.11!, and~3.1!, the quartic part of the
free energy@Eq. ~3.2!# can be written as in Eq.~3.10! with
B̃a~ j 1 , j 2 , j 3 , j 4 ;p1 ,p2 ,p3 ,p4!5
g2

4

2N'
(
ky

(
j 5••• j 8

(
p5•••p8

(
p58•••p88

Fa~ j 1••• j 8 ,p1•••p8 ,p58•••p88 ;ky!

3Ka~ j 1••• j 8 ;ky! (
n52`

`

da(p12p21p31p4) K/2 1(2p52p62p72p81p
581p

681p
781p

88) K/2 ,n 2p/b ,

~A1!

Ka~ j 1••• j 8 ;ky!5
T

bLx
(
kx ,v

~ iv2e a,k
j 5 !21~ iv2e

ā,k2aQj 2

j 6 !21~ iv2e a,k2aQj 2
1aQj 3

j 7 !21~ iv2e
ā,k2aQj 1

j 8 !21, ~A2!

Fa~ j 1••• j 8 ,p1•••p8 ,p58•••p88 ;ky!5g ky

j 5p5g
ky

j 5p58g
ky2aQj 2y2[a(p221)2p

581p6]K/2

j 6p6

3g
ky2aQj 2y2[a(p221)2p

581p6]K/2

j 6p68 g
ky2aQj 2y1aQj 3y2[a(p21p3)2p

581p62p
681p7]K/2

j 7p7

3g
ky2aQj 2y1aQj 3y2[a(p21p3)2p

581p62p
681p7]K/2

j 7p78 g
ky2aQj 1y2[a(p121)2p51p

88] K/2

j 8p8

3g
ky2aQj 1y2[a(p121)2p51p

88]K/2

j 8p88 , ~A3!
-
y,
where N'5Ly /b is the total number of chains. Sincev j a
50, we have

Da
jp5cjpuj a ,

cj 15cos~u j !, cj 25sin~u j !. ~A4!

Noting that the conditionQj 1
1Qj 3

5Qj 2
1Qj 4

implies j 1

5 j 25 j 35 j 4 or j 15 j 252 j 352 j 4 or j 152 j 252 j 35 j 4,
we obtain Eq.~3.11! with

Bj5 (
p1•••p4

cjp1
cjp2

cjp3
cjp4

B̃a~ j , j , j , j ;p1 ,p2 ,p3 ,p4!,
C5(
j

(
p1•••p4

@cjp1
cjp2

c2 jp3
c2 jp4

3B̃a~ j , j ,2 j ,2 j ;p1 ,p2 ,p3 ,p4!1cjp1
c2 jp2

c2 jp3
cjp4

3B̃a~ j ,2 j ,2 j , j ;p1 ,p2 ,p3 ,p4!#. ~A5!

The main contribution toBj comes from the type of dia
grams shown in Fig. 9. This diagram involves the quantit

Ka~ j 15•••5 j 85 i ;ky!5
T

bLx
(
kx ,v

~ iv2e a,k
j !22

3~ iv2e ā,k2aQj

j
!22. ~A6!
8-9
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To evaluate the order of magnitude of this diagram, we
assume perfect nesting. We then find

Ka~ j 15•••5 j 85 i ;ky!5
T

bLx
(
kx ,v

~v21ea,k
j 2!22;

1

T2
.

~A7!

A typical contribution toC is shown in Fig. 9. The orde
of magnitude of the diagram is given by

Ka~ j , j ,2 j ,2 j , j , j , j 7 , j ;ky!

5
T

bLx
(
kx ,v

~ iv2ea,k
j !21~ iv2eā,k2aQj

j
!22

3~ iv2ea,k2aQj 1aQ2 j

j 7 !21. ~A8!

To evaluate the preceding equation, we can assume pe
nesting in thej band,

Ka~ j , j ,2 j ,2 j , j , j , j 7 , j ;ky!

5
T

bLx
(
kx ,v

~ iv2ea,k
j !21~ iv1ea,k

j !22

3~ iv2ea,k
j 1a!21;

1

V2
~A9!

where uau5ue a,k
j 2e a,k2aQj 1aQ2 j

j 7 u;V. We, therefore, con-

clude thatC/Bj5O(T2/V2).

APPENDIX B: MINIMUM OF THE FREE ENERGY F

The minimum of the free energy is obtained by solvi
the equations]F/]uj a* 50,

u1a@A112B1uu1au21Cuu2au2#50,

u2a@A212B2uu2au21Cuu1au2#50. ~B1!

In the metallic phase,uj a50 andF50. BelowTc
2 , there

is a phase withu2aÞ0 andu1a50. From Eqs.~B1! and
~3.13!, we deduce

uu2au252
A2

2B2
, F252

A2
2

2B2
. ~B2!
B

03510
n

ect

Let us now consider a phase with two coexisting order
rameters:u1a ,u2aÞ0. Eqs.~B1! and ~3.13! yield

uu1au25
22A1B21A2C

4B1B22C2
,

uu2au25
22A2B11A1C

4B1B22C2
,

Fcoex52
2A1

2 B22A2
2 B11A1A2C

4B1B22C2
. ~B3!

This solution is allowed only ifuuj au>0. The phase with two
coexisting order parameters will be observed only if it ha
lower free energy than the phase with a single order par
eter, i.e.,Fcoex<F2 :

2
2A1

2 B22A2
2 B11A1A2C

4B1B22C2
<2

A2
2

2B2
. ~B4!

For 4B1B22C2<0, this condition can be rewritten as
2(2A2B12A1C)2>0, which shows that coexistence
not possible. For 4B1B22C2>0, the conditionFcoex<F2

becomes2(2A2B12A1C)2<0 and is, therefore, alway
satisfied. We thus conclude that coexistence occurs when
condition,

4B1B22C2>0, ~B5!

is fulfilled. The corresponding transition temperatureTc
coex is

then determined fromuuj au>0 @Eqs. ~B3!#. When C/Bj

!1, Tc
coex is obtained fromuu1au>0. Writing Aj5aj (T

2Tc
j ) and neglecting the temperature dependence ofBj and

C, we obtain

Tc
coex5Tc

11
a2C

2a1B2
~Tc

coex2Tc
2!

5Tc
11g~Tc

12Tc
2!1O~T4/V4!, ~B6!

whereg5a2C/(2a1B2) is a constant of orderO(T2/V2).
.
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