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Tunability of acoustic spectral gaps and transmission in periodically stubbed waveguides
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A theoretical investigation is made of acoustic wave propagation in a periodically stubbed waveguide. In
general the waveguide segments and stubs are made of different materials. The acoustic wave in such a system
has two independent polarizations: out-of-plane and in-plane modes. The band structure and transmission
spectrum is studied for diverse geometries using a simple and efficient version of the transfer-matrix method.
For thesame materialbetween the waveguide andsymmetricstubs the width of some gaps can change, upon
varying the stub length or width, by more than one order of magnitude. A further modulation can be achieved
for different materialbetween the stubs and the main waveguide or if the stubs areasymmetric. The gaps in the
band structure of an infinitely long system correspond to those in the transmission spectrum of the same system
but with finite numbern of units. Forn finite ~i! there exist pseudogaps that gradually turn into complete gaps
with increasingn and~ii ! the introduction of defects gives rise to states in the gaps and leads to transmission
resonances.

DOI: 10.1103/PhysRevB.65.035107 PACS number~s!: 41.20.Jb, 42.25.Bs, 43.20.1g
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I. INTRODUCTION

The term ‘‘band-gap engineering’’ is well known from
decades of research in semiconductors. The recently dis
ered periodic dielectric structures, which exhibit a photo
band gap~PBG! analogous to the electronic band gap
semiconductors, have attracted considerable attention du
many interesting phenomena and potential applicati
emerging from them, such as the control of spontane
emission of radiation, zero-threshold lasing, and the sh
bending of light.1

It did not take long before the study of PBG materia
involving light waves, led to analogous studies in other s
tems involving elastic/acoustic waves, e.g, the phono
crystals2 or other periodic acoustic composites.3 The
phononic crystals2 have drawn comparatively greater atte
tion, both theoretically4 and experimentally.5,6 In analogy
with PBG crystals, the emphasis in phononic crystals
been on the occurrence of complete acoustic gaps wi
which the sound, vibrations, and phonons are all forbidd
This is of interest for applications such as ultrasonic filte
noise control, and improvement in the design of transduc
as well as for fundamental physics concerned with
Anderson localization of sound and vibrations.7

The purpose of this paper is to study the acoustic b
structure and transmission spectrum in a periodically mo
lated quasi-one-dimensional waveguide, as depicted in
1. The system has a finite~infinite! extension along they(z)
direction and is periodically modulated, along thex direc-
tion, by the addition of double stubs, in general asymmet
with different elastic properties than those of the main wa
guide. The motivation stems from recent studies with int
esting results pertinent to electronic8 and photonic9

waveguides modulated in the same fashion. Using
transfer-matrix technique we demonstrate the tunability
the acoustic band gaps as a function of various paramete
the system, e.g., the length and/or width of the stubs.

The rest of the paper is organized as follows. In Sec. II
0163-1829/2001/65~3!/035107~10!/$20.00 65 0351
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introduce the formalism for studying the wave propagat
in the allowed polarization and present the necessary de
of the transfer-matrix method.10 In Sec. III we present sev
eral illustrative numerical results on the band structure a
transmission spectrum under various material and geom
conditions. The final section contains the concludi
remarks.

II. FORMALISM

This section is divided into two parts. First we embark
the polarization pertinent to wave propagation in a tw
dimensional ~2D! system. Then we present the transfe
matrix method for quite a general geometry of the unit cell
acoustic stub tuners shown in Fig. 2.

A. Polarization of the wave

We start with the general equation of propagation of h
monic acoustic waves in an isotropic three-dimensional~3D!
homogeneous medium

FIG. 1. Schematics of a quasi-one-dimensional periodic wa
guide. The double stubs can be made of the same or different
terial than that of the main waveguide.L5b1 l is the period of the
system.
©2001 The American Physical Society07-1
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~l1m!“~“•u!1m¹2u1rv2u50, ~1!

wherer is the mass density,v the angular frequency, andl
andm the Lame coefficients. The longitudinalv l and trans-
versev t speed of sound are defined in terms of the La
coefficientsv l5A(l12m)/r andv t5Am/r. For a 2D sys-
tem at hand the displacement vectoru is independent of the
z coordinate and one can take]z[]/]z50. Then Eq.~1! can
be written as

~l1m!“p~]xux1]yuy!1m¹p
2~uxî 1uy ĵ 1uzk̂!

1rv2~uxî 1uy ĵ 1uzk̂!50, ~2!

where“p5 î ]x1 ĵ ]y , and î , ĵ , and k̂ are the unit vectors
along the x,y, and z axes, respectively. This equation
equivalent to the independent equations

~¹p
21kt

2!uz50, ~3!

with kt5v/v t , and

~l1m!“p~“p•up!1m¹p
2up1rv2up50. ~4!

Here the subscriptp is assigned to the quantities whic
qualify only in the x-y plane. It is thus quite reasonab
understandable that a 2D system can support two inde
dent modes: theout-of-planemodes and thein-planemodes,
described, respectively, by Eqs.~3! and~4!. Equation~4! can
be further simplified as follows. We write

up5“pf1“p3c ~5!

with c[(0,0,c). Then Eq.~4! further splits into the equa
tions

~¹p
21kl

2!f50, ~6!

with kl5v/v l , and

~¹p
21kt

2!c50. ~7!

Interestingly, Eq.~7!, which describes the transverse in-pla
vibrations, has formally the same structure as the one for
out-of-plane vibrations, Eq.~3!. Also, Eqs.~3!, ~6!, and ~7!
are formally identical to the scalar wave equation for the
polarization in photonic crystals.9

It should be pointed out that the splitting of Eq.~4! into
Eqs. ~6! and ~7!, is valid only for a homogeneous medium
For an inhomogeneous medium, whenl andm are functions

FIG. 2. Schematics of a general unit cell with asymmetric stu
03510
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of position, this is no longer possible.11 If the system is
piecewise homogeneous, as the one we consider in
III B, problems arise in the application of the boundary co
ditions at the interface of different regions12 that make the
separation of the in-plane modes in pure longitudinal a
transverse ones impossible.

B. Transfer-matrix technique

For the sake of generality, we start with a crossbarl
geometry of a single unit cell, as shown in Fig. 2. The orig
of the Cartesian coordinates is at the uniaxial line interse
ing perpendicularly the left arm of the stub of widthb and
length h. The center of the asymmetric stub lies atx
5b/2,d). We denote the width of the left~right! waveguide
segments byc(a) and take thex axis parallel to the direction
of propagation. We are interested in the solution of the wa
equation for the out-of-plane vibrations in the form

¹2f1k2f50, ~8!

wheref[uz , k[kt , and ¹2[¹p
2. It is very important to

note that we consider, for the sake of simplicity, that t
outer medium containing the said acoustic device is made
of some high-density, infinitely rigid material. The resultin
situation is equivalent to that attained in the case of sim
electronic devices surrounded by infinitely repulsive walls8

In order to solve the scalar equation and describe the
tem we use the same transfer-matrix method that was
ployed in the study of electronic10,8 and photonic9 tuners.
The method relates the incoming to the outgoing wave ac
the stub for arbitrary initial conditions. Inside the wavegui
segments, since the solution must vanish on the walls, thy
dependence is sin@np(y1c/2)/c# for the left segment, for ex-
ample. Here the integern defines the number of modes in th
respective waveguide. When the two segments conne
with the stub have different widths and elastic properties,
respective solutions are given by

f15(
m

@c1meibmx1 c̄1me2 ibmx#sin@cm~y1c/2!# ~9!

on the left segment and by

f25(
n

@c2neian~x2b!1 c̄2ne2 ian~x2b!#sin@an~y1a/2!#

~10!

on the right segment. Herean5np/a, cm5mp/c,

an5Ak1
22an

2, k15v/v1 , ~11!

and

bm5Ak2
22cm

2 , k25v/v2 , ~12!

with v1(v2) the transverse speed of sound of the materia
the right ~left! segment. Inside the stub,f must vanish aty
5d2h/2 and y5d1h/2; thus the basicy dependence is
sin(kpy6 /h), wherey65y7h/22d. However, the internal
solution should also vanish at each side of the stub out
the main segments, and smoothly connect to the external

.

7-2
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across the contact boundaries between the stub and the
ments~at x50 andx5b!. We first construct two auxiliary
sets of solutions to the wave equation, one of which matc
the waveguide on the left and one on the right, with ea
vanishing elsewhere on the boundary. The appropr
boundary conditions are

xkL~x5b,y!50, ~13!

xkL~x50,y!5H 0, y.c/2,

sin@ck~y1c/2!#, 2c/2,y,c/2,

0, y,2c/2
~14!

and

xkR~x50,y!50, ~15!

xkR~x5b,y!5H 0, y.a/2,

sin@ak~y1a/2!#, 2a/2,y,a/2,

0, y,2a/2,
~16!

where the subscriptk( j [L,R) refers to the number o
modes~left/right segments!. The solutionsxkR are expanded
as

xkR5(
n

@un sin~gnx!1vn cos~gnx!#sin~hny2!, ~17!

where

y25y1h/22d, hn5np/h,

and

gn5Aks
22hn

2, ks5v/vs , ~18!

with vs the transverse speed of sound of the material in
stub. The boundary condition atx50 requires vn50,
whereas the condition atx5b yields

(
n

un sin~gnb!sin~hny2!

5H 0, y.a/2,

sin@ak~y1a/2!#, 2a/2,y,a/2,

0, y,2a/2.

~19!

This is a Fourier expansion with the coefficientsun given by

um5
2

h sin~gmb!
I km

R , m51,2,... , ~20!

where

I km
R 5E

2a/2

1a/2

dy sin@ak~y1a/2!#sin~amy2! ~21!
03510
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~k2ma/h!
@sin~kp2hms1!1sin~hms2!#

2
1

~k1ma/h!
@sin~kp1hms1!2sin~hms2!#J ~22!

ands65h/26a/22d; then from Eq.~15! we have

xkR5
2

h (
m

sin~gmx!

sin~gmb!
I km

R sin~hmy2!. ~23!

Following the same procedure, we find that

xkL5
2

h (
m

sin@gm~b2x!#

sin~gmb!
I km

L sin~hmy2!, ~24!

where I km
L is defined just asI km

R with a replaced byc. The
actual wave function in the stub region can be expanded
terms of these auxiliary solutionsxkR andxkL

fs5(
k

~ f kxkL1 f̄ kxkR!. ~25!

The continuity of the wave function atx50 andb requires
f k5c1k1 c̄1k and f̄ k5c2k1 c̄2k . Thus one can write

fs5
2

h (
km

F ~c2k1 c̄2k!
sin~gmx!

sin~gmb!
I km

R

1~c1k1 c̄1k!
sin@gm~b2x!#

sin~gmb!
I km

L Gsin~hmy2!. ~26!

Similarly, matching the derivative atx50 gives

(
n

~c1n2 c̄1n!ibn sin@cn~y1c/2!#

5
2

h (
km

~c2k1 c̄2k!I km
R 2~c1k1 c̄1k!cos~gmb!I km

L

sin~gmb!

3gm sin~hmy2!, ~27!

and atx5b,

(
n

~c2n2 c̄2n!ian sin@an~y1a/2!#

5
2

h (
km

~c2k1 c̄2k!cos~gmb!I km
R 2~c1k1 c̄1k!I km

L

sin~gmb!

3gm sin~hmy2!. ~28!

Multiplying Eq. ~27! by sin@cl(y1c/2)# on both sides and
integrating from2c/2 to c/2 gives

~c1l2 c̄1l !ib l

5
4

ch(
km

~c2k1 c̄2k!I km
R 2~c1k1 c̄1k!cos~gmb!I km

L

sin~gmb!

3gmI lm
L . ~29!

Similarly, multiplying Eq. ~28! by sin@al (y1a/2)# on both
sides and integrating from2a/2 to a/2 yields
7-3
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~c2l2 c̄2l !ia l

5
4

ah(
km

~c2k1 c̄2k!cos~gmb!I km
R 2~c1k1 c̄1k!I km

L

sin~gmb!

3gmI lm
R . ~30!

We define

ck
65ck6 c̄k ~31!

to cast Eqs.~29! and ~30! in the form

ib lc1l
25

4

ch(
km

gmI lm
L

sin~gmb!
@c2k

1 I km
R 2c1k

1 cos~gmb!I km
L #

~32!

and

ia lc2l
25

4

ah(
km

gmI lm
R

sin~gmb!
@c2k

1 cos~gmb!I km
R 2c1k

1 I km
L #.

~33!

We now define matricesÂ, B̂, D̂, Ê, andâ whose elements
are

Alk
LL5

4

ch(
m

cos~gmb!

sin~gmb!
gmI lm

L I km
L , ~34!

Blk
LR5

4

ch(
m

1

sin~gmb!
gmI lm

L I km
R , ~35!

Dlk
RL5

4

ah(
m

1

sin~gmb!
gmI lm

R I km
L , ~36!

Elk
RR5

4

ah(
m

cos~gmb!

sin~gmb!
gmI lm

R I km
R , ~37!

a lk5 ia ld lk , b lk5 ib ld lk . ~38!

We also define the column vectorsCi
1 and Ci

2 whose ele-
ments arecik

1 andcik
2 , respectively. In this notation, we hav

b̂C1
252ÂC1

11B̂C2
1 , ~39!

âC2
252D̂C1

11ÊC2
1 , ~40!

whereÂ, B̂, D̂, and Ê are real-valued matrices. These tw
equations determineC1

1 and C1
2 in terms ofC2

1 and C2
2 .

The result is

S C1
1

C1
2D 5M̂baS C2

1

C2
2D , ~41!

whereM̂ba is the resulting transfer matrix with matrix ele
ments

M11
ba5D̂21Ê, M12

ba52D̂21â, ~42!
03510
M21
ba52b̂21ÂD̂21Ê1b̂21B̂, M22

ba5b̂21ÂD̂21â.
~43!

This transfer matrix relates the incoming to the outgoi
wave across the stub for arbitrary initial conditions.

The other building block of a multiple-stub system is
stubless waveguide segment. The transfer matrix induce
the segment of lengthl i j connecting thei th and j th stub is a
special case of the matrixM̂ba in Eq. ~41!. This is obtained
by considering the special casec5a5h, d50, an5bn , and
k25k15ks . The result is

P̂~ i j !5F cos~a l i j ! 2 i sin~a l i j !

2 i sin~a l i j ! cos~a l i j !
G , ~44!

where j 5 i 61. Given M̂ba and P̂, the total transfer matrix
for an n-stub system is

M̂T5 )
i 51

n21

@M̂ba~ i !P̂~ i ,i 11!#M̂ba~n!. ~45!

Suppose the incident wave, at the entrance of the first stu
represented by$Cin

1 ,Cin
2% and the outgoing one, at the exit o

the last stub, by$Cout
1 ,Cout

2 %. Then

S Cin
1

Cin
2D 5M̂TS Cout

1

Cout
2 D . ~46!

We now discuss the physical conditions imposed on the
coming and outgoing wave components. Depending on
frequency,an and bn could be real or pure imaginary. W
choose them to be positive for an open channel and lying
the positive imaginary axis for a closed channel, so a co
plete set of eigenfunctions of Eq.~8! is obtained. With this
choice,C̄out,n represents either a leftward moving wave or
exponentially divergent wave at positive infinity. Now, fo
the sake of the argument, we will take the incident wave
come from the left; in this situation, we must setC̄out50 and
thusCout

1 5Cout
2 5Cout. Physicallycout,n represents the trans

mitted wave components in thenth mode. In the entrance
region the componentsc̄in,n are allowed. Herec̄in,n repre-
sents the amplitude of the reflected wave in thenth mode in
the open channel. For a closed channel the reflected wa
a transient and decays exponentially. Explicitly,

Cin
15Cin1C̄in5M̂11

T Cout1M̂12
T Cout, ~47!

Cin
25Cin2C̄in5M̂21

T Cout1M̂22
T Cout, ~48!

whereM̂ i j
T are blockwise submatrices ofM̂T. Adding these

two equations we can determine the transmitted amplitu
Cout by solving

2Cin5S (
i j

M̂ i j
T DCout. ~49!

Following this, the reflection coefficients are given by
7-4



he

th
o

ow
c
ith
u

us
e

w

u
el
0

i
uid

t

th
t

in
e
ba
c
s

e
iv
la
D

a
pa-

e
gaps,
n.

-
nce

en-

he
the
ect
nth
r it

ect

ree
tub

ly

nts
-

he
ency

gap
-

TUNABILITY OF ACOUSTIC SPECTRAL GAPS AND . . . PHYSICAL REVIEW B65 035107
C̄in5
1

2
~M̂11

T 1M̂12
T 2M̂21

T 2M̂22
T !Cout. ~50!

The total transmission and reflection coefficients are t
given by

T5
(ne$open%cout,ncout,n* an

(nP$open%cin,ncin,n* an
~51!

and

R5
(nP$open%c̄in,nc̄in,n* an

(nP$open%cin,ncin,n* an
. ~52!

For the sake of completeness, it is noteworthy that for
bound-state calculation, one must solve the homogene
version of Eq.~49!.

We also stress that in this formalism, once we know h
to handle the single stub case, the multiple-stub problem
be dealt with little additional labor. This is not the case w
either the recursive Green-function method or the us
mode-matching approach.

Finally, the band structure for a periodic system of aco
tic stub tuners is computed by solving the standard eig
value equation

M̂BF5eikxLÎF, ~53!

wherekx is the Bloch vector andL5b1 l is the period of the
1D superlattice of acoustic stub tuners. The matrixM̂B is the
same asM̂T for the unit cell but withc5a andbn5an , Î is
the unit matrix of the same order asM̂B, andF is the column
eigenvector. So the strategy of the computation is that
input the dimensionless frequencyV5vL/pvwg and calcu-
late w5exp(ikxL), yielding kx52( i /L)ln(w). For uwu51
~Þ1! one obtains bands~gaps! in the band structure for a
given set of material and geometrical parameters. It sho
be pointed out that in order to make this paper as s
consistent as possible we have heavily relied on Ref. 1
this section.

III. ILLUSTRATIVE EXAMPLES

For the sake of clarity we discuss the numerical results
two parts. First, we consider the case when the waveg
and the stubs are made up of the same material. Clearly
band structure and/or transmission spectrum in this case
veals the influence of the various parameters involved in
problem. Then we take up the case when the materials in
waveguide and the stubs are different. Practically speak
this case is more complex but richer than the previous on
the sense that one has more options to modulate the
structure and/or transmission spectrum. We have chosen
bon and epoxy resin as the suitable materials the acou
system considered is made of. This is because these ar
materials whose combination was first demonstrated to g
rise to a complete band gaps, i.e., independent of the po
ization of the wave and of the direction of propagation, in 2
periodic phononic crystals.13 The parameters used arer
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51.75 ~1.2! g/cm3 and v t5711,095 ~115,830! cm/sec for
carbon~epoxy!.

A. Same material in waveguide and stubs

The left part of Fig. 3 shows the first nine bands for
symmetrically stubbed system made up of epoxy, with
rameters aL5a/L50.5114, bL5b/L50.4886, hL5h/L
51.125, anddL5d/L50.0. As one can see, all the nin
bands are separated from each other by stop bands, or
within which the acoustic wave propagation is forbidde
Unlike the other 2D and 3D periodic systems,2,4 there is a
complete gap below a cutoff frequencyVc.1.6 down to
V50. It is found that this~the lowest! gap persists indepen
dent of the values of the variable parameters. The existe
of all nine gaps is well corroborated by the energy dep
dence of the transmission coefficient fornstub550 on the
right part of Fig. 3. The numerical results clearly reveal t
zeros and ones in the transmission. It is noteworthy that
band structure in this figure contains both direct and indir
gaps. For instance, the second, third, fifth, sixth, and ni
gaps are direct, while the rest are indirect. We conside
more appropriate to include the lowest~and also the widest!
gap in the category of direct gaps. The most important asp
of these results is the cutoff frequencyVc below which no
propagation at all is allowed.

Figure 4 depicts the dimensionless gap widths of the th
lowest gaps of Fig. 3 as a function of the dimensionless s
width bL and the stubs are symmetric, i.e.,d50. The width
of the lowest gapD1 decreases gradually, by approximate
45%, with increasingbL but still remains finite forb→L. We
notice that the maximum ofD1 is near the cutoff frequency
of the waveguide segmentsDw51/aL51.96 and the mini-
mum ofD1 is near the cutoff frequency of the stub segme
Ds51/hL50.89. In general, the cutoff frequency of the com

FIG. 3. Band structure~left panel! and transmission spectrum
~right panel! for a system with the same material, epoxy, in t
waveguide and the stubs. The reduced wave vector and frequ
are defined bykxL/p andV5LV/pv1 , wherev1 is the transverse
speed of sound in the waveguide. Notice the lowest acoustic
below the cutoff frequencyVc.1.6. For the plot of the transmis
sion a system of fifty (n550) stubs was considered.
7-5
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bined system is between the one of the waveguide segm
and that for the stub segments. The second lowest gapD2
reaches a maximum forbL.0.7 and decreases slightly be
fore approaching the final minimum atb→L. As can be
seen, this gap increases enormously relative to its value
zero stub width. Similarly, the third lowest gapD3 reaches
one maximum atbL.0.44, it then vanishes atbL.0.68, and
finally reaches a maximum atbL→1. Note that all three gap
start opening up at a vanishingly small but finite value ofbL
and that the lowest gap remains the widest one over
whole range of the stub width.

Figure 5 represents the band structure and the corresp
ing transmission spectrum for asymmetric stubs, withd

FIG. 4. The widths of the three lowest gaps as a function of
stub widthbL5b/L. The solid, dashed, and dotted curves refer
the lowest (D1), second lowest (D2), and third lowest (D3) gaps.
The material and the rest of the parameters are the same as th
Fig. 3.

FIG. 5. Same as in Fig. 3, but for asymmetric stubs with asy
metry parameterdL50.25. Notice the lowest acoustic gap belo
the cutoff frequencyVc.1.7.
03510
nts

or

e

d-

50.25. The rest of the parameters are the same as in Fi
We observe that the asymmetry has introduced two impor
effects. First, the number of bands accommodated within
same frequency range has increased, from 9 to 14. Sec
the band width of most of the bands has reduced. Overall,
effect of the asymmetry seems to result in gaps larger
number but shorter in width. This is true despite some
ceptions, for instance, the case of the lowest gap, which n
extends fromV50 to .1.7, instead of up toV.1.61 in Fig.
3. All gaps in the band structure~left part of Fig. 5! are seen
to be well substantiated by those in the transmission sp
trum ~right part of Fig. 5! for n550.

As a function of the asymmetry parameterd the three
lowest gaps vary very little, by at most 10%, for 0<d
<0.3. Their dependence onbL is similar to that shown in
Fig. 4. As a function of the stub lengthhL their behavior,
shown in Fig. 6, is similar to that in Fig. 4 forD1 andD2 but

FIG. 6. The widths of the three lowest gaps as a function of
stub lengthhL5h/L. The curves are marked as in Fig. 4.

FIG. 7. Transmission spectrum for a system with eleven sy
metric double stubs (n511). The central~sixth! symmetric stub is
a defect withhL51.395 andbL50.6305. The rest of the paramete
are the same as in the previous figures. Notice that the defect
ates new modes or states in the gaps in an otherwise defect
system. The peaks of these modes are marked with arrows.
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somewhat different forD3 .
Figure 7 shows the transmission spectrum versus redu

frequency for a system made up of eleven symmetric st
with the central~sixth! stub longer (hL51.395) and wider
(bL50.6305) than the rest of the identical, in width a
height, stubs. When not identical to the other stubs, this c
tral stub constitutes a defect. The solid~dotted! curves cor-
respond to the presence~absence! of this defect. One can se
that there are five complete gaps in the spectrum within
given frequency range. In addition, there is also a pseudo
centered atV.4.35, that corresponds to the low transm
sion or density of states. The defect introduces sharp tr
mission peaks, marked by arrows, within the first four ga
in plane analogy with the electronic8 and photonic9 case or
with that of surface modes of a truncated superlattice.14 An-
other interesting consequence of introducing a defect in
system is the appearance of antiresonances,9 such as the one
appearing in the fourth band atV.3.92. We have noted
similar effects in the case of an asymmetric (dÞ0) defect
introduced in the system.

B. Different materials in waveguide and stubs

We now present numerical results for a system in wh
the waveguide is made of epoxy and the stubs of carb
Figure 8 shows the band structure and transmission spec
for symmetric stubs; the parameters areaL50.9, bL50.9,
hL51.5, anddL50.0. We note that there are only sev
bands accommodated in the frequency range 0<V<20, and
every pair of bands has a full gap in between. Moreover,
lowest acoustic gap extends from zero to the cutoff f
quencyVc.2.3. Some of the bands, such as the fourth a
sixth, are seen to be almost flat and hence have vanishi
small group velocity. All gaps in the band structure~left

FIG. 8. Band structure~left panel! and transmission spectrum
~right panel! for system with symmetric stubs with the wavegui
segments~stubs! made of epoxy~carbon!. The parameters used ar
aL50.9, bL50.9, andhL51.5. Notice the lowest acoustic gap b
low the cutoff frequencyVc.2.3 and extending down toV50.0.
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panel! correspond well to those in the transmission spectr
for n550 on the right panel. A prompt comparison of Figs
and 3 reveals that one can achieve wider gaps in the b
structure if the segments and stubs are made up of diffe
materials.

Figure 9 shows the three lowest gaps as a function of
stub widthbL for the system specified in Fig. 8. There a
several noteworthy points. First, the lowest gap is the wid
one and the third gap is wider than the second one untilbL
.0.49, whereD15D3 . At bL.0.64, the width of the lowes
and second lowest gaps are equal, i.e.,D15D2 . Also D2
5D3 at bL.0.78 and 0.94. The second lowest gap is t
widest one in the range specified by 0.78<bL<0.94. The

FIG. 9. The widths of the three lowest gaps versus the s
width bL for the system studied in Fig. 8. The solid, dashed, a
dotted lines refer, respectively, to the lowest (D1), second lowest
(D2), and third lowest (D3) gaps. Notice especially the stron
variation ofD2 andD3 .

FIG. 10. Same as in Fig. 8, but for a system with asymme
stubs (dL50.25). The lowest acoustic gap occurs below the cut
frequencyVc.2.4 and down toV50.0.
7-7
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third lowest gap vanishes atbL.0.87 but reappears forbL
.0.87 and becomes the widest in the range 0.94<bL
<0.98. Also,D15D3 at bl.0.83 and 0.91. Moreover,D1
5D2 at bL.0.96 and D15D3 at bL.0.98. Finally, D1
reaches a maximum whereas bothD2 and D3 vanish forb
→L. Similar to Fig. 4, the minimum ofD1 here is near the
cutoff frequency of the waveguide segmentsDw51/aL
51.1 and the maximum ofD1 is near the cutoff frequency o
the stub segmentsDs5vs /(v1hL)54.1. Again the cutoff fre-
quency of the combined system is between the one of
waveguide segments and that for the stub segments.
relative position though depends onbL and the velocity con-
trast and can be outside the range (Dw ,Ds).

Figure 10 depicts the band structure and transmiss
spectrum considered in Fig. 8 but with asymmetric stu
The asymmetry parameter isdL50.25 and the other param
eters the same as those used in Fig. 8. Now there are
bands and eight gaps in the band structure. The lowest
now extends fromV50.0 toV.2.4. The asymmetry is see

FIG. 11. ~a! The widths of the three lowest gaps as a function
the velocities’ ratiovs /vwg . ~b! The three lowest gaps as a functio
of the stub lengthhL . Notice the strong variation ofD2 and D3 ,
especially in~a!.
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to have brought about a number of interesting effects
larger number of bands is accommodated in the same
quency range but the bandwidth is reduced. Again, the g
in the band structure~left panel! correspond well to those in
the transmission spectrum for a system withn550 stubs
~right panel!.

As a function of the stub widthbL the three lowest gaps
behave qualitatively as those of Fig. 9. More important
their dependence, shown in Fig. 11~a!, on the velocity con-
trast between two materials. As can be seen a wide mod
tion can be achieved in this asymmetric structure by j
changing the ratiovg /vwg , more than two orders of magni
tude forD2 . A less pronounced variation of the same gaps
shown in Fig. 11~b! as a function of the stub lengthhL . As
can be seen,D1 remains almost insensitive to changes inhL
andD2 changes by at most 30%; however,D3 can change by
a factor of 10 reaching a maximum athL;2.4.

Figure 12 shows the transmission spectrum versus
duced frequency for a symmetric defect introduced in
otherwise periodic system with seven stubs (n57). The cen-
tral ~fourth! stub is defect in the sense that its length (hL
53.0) and width (bL50.4) are different than those of th
rest of the stubs. The other parameters areaL50.6, bL
50.2, hL51.4, anddL50.0. The solid and dotted curve
correspond, respectively, to the presence~absence! of the de-
fect. There are five complete gaps in this frequency rang
the spectrum before introducing the defect. Inserting t
single defect in the system gives rise to one peak in the t
gap and another in the fourth gap. These transmission p
correspond to defect modes similar to those appearing in
7.

Finally, Fig. 13 illustrates the transmission spectrum v
sus reduced frequencyV in a symmetric system made up o
one~top panel!, two ~middle panel!, and five~bottom panel!
stubs. We remind the reader that the waveguide segm
~stubs! are made of epoxy~carbon! materials. The param

f

FIG. 12. Transmission spectrum for a system with seven s
metric (d50) double stubs (n57). The waveguide segment
~stubs! are made of epoxy~carbon!. The central~fourth! stub is a
defect with hL53.0 and bL50.4. The other parameters areaL

50.6, bL50.2, andhL51.4. The solid~dotted! lines refer to the
transmission with~without! the defect. The defect gives rise t
modes in the gaps in an otherwise defect-free system. The pea
these modes are marked with arrows.
7-8
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eters areaL5bL5hL50.9. That is, the waveguide has n
stubs. The lowest panel shows the corresponding band s
ture. Forn51 ~top panel!, the transmission coefficient be
comes very small but it never approaches zero. In this se
we have only pseudogaps, not full gaps, in the system. An
increases the pseudogaps gradually turn into complete
~with transmission equal to zero! centered at almost the sam
midgap frequency. It has also been observed that the num
of such complete gaps increases with increasingn.

IV. CONCLUDING REMARKS

We have investigated the existence of tunability of co
plete spectral gaps in the band structure of a quasi-o
dimensional waveguide with double stubs periodica

FIG. 13. Evolution of the transmission spectrum as a function
the number of stubsn for a system with waveguide segmen
~stubs! made of epoxy~carbon!. The parameters areaL5bL5hL

50.9. Notice that asn increases the pseudogaps gradually turn i
sharply defined complete gaps. The lowest panel shows the
structure. Notice that the first band is very narrow.
ri-

un
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grafted atN equidistant sites. The waveguide segments a
the stubs can be made up of same or different materials.
latter case is found to be relatively more interesting sin
there one has more and better options to achieve the c
plete gaps. The single symmetric defect is shown to int
duce extra modes in the gaps of an otherwise periodic sys
that result in transmission resonance peaks. While the c
putation of the band structure requires an infinitely long p
riodic system, the transmission spectrum is calculated o
for a finite system. As shown though, the gaps in the ba
structure correspond well to those in the transmission sp
trum. Accordingly, we conclude that the transmission sp
trum in all cases remains consistent forn>10.

The numerical results we presented pertain only to
out-of-plane modes. However, as mentioned already in S
II A, the equations describing the in-plane modes have
same structure in a homogeneous medium. Explicitly,
transverse in-plane modes have exactly the same band s
ture as the out-of-plane modes. As for the longitudinal
plane modes, their band structure and transmission ca
obtained directly from Figs. 3–7 by changing only the fr
quency scale when the waveguide and the stubs are mad
the same material. If this material is different, the separat
of the in-plane modes in longitudinal and transverse is
longer possible for the structures of Sec. III B~see Sec. II A!.

The version of the transfer-matrix method employed10 to
accomplish the present investigation is simple a
efficient8–10 for solving scalar equations. Its efficiency ha
already been demonstrated in serially connec
electronic,8,10 optical,9 or the present acoustic devices. A
stressed already in its presentation, the method offers im
tant advantages in comparison to other mode-matching
recursive Green’s function techniques applied to sim
problems.

In principle, the systems we studied here have poten
applications in the designing of transducers and ultraso
filters. We hope that the present findings will be tested
future experiments.
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