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Tunability of acoustic spectral gaps and transmission in periodically stubbed waveguides
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A theoretical investigation is made of acoustic wave propagation in a periodically stubbed waveguide. In
general the waveguide segments and stubs are made of different materials. The acoustic wave in such a system
has two independent polarizations: out-of-plane and in-plane modes. The band structure and transmission
spectrum is studied for diverse geometries using a simple and efficient version of the transfer-matrix method.
For thesame materiabetween the waveguide asgmmetricstubs the width of some gaps can change, upon
varying the stub length or width, by more than one order of magnitude. A further modulation can be achieved
for different materiabetween the stubs and the main waveguide or if the stubssgrametricThe gaps in the
band structure of an infinitely long system correspond to those in the transmission spectrum of the same system
but with finite numbern of units. Forn finite (i) there exist pseudogaps that gradually turn into complete gaps
with increasingn and(ii) the introduction of defects gives rise to states in the gaps and leads to transmission

resonances.
DOI: 10.1103/PhysRevB.65.035107 PACS nunifer41.20.Jb, 42.25.Bs, 43.20g
[. INTRODUCTION introduce the formalism for studying the wave propagation

in the allowed polarization and present the necessary details
The term “band-gap engineering” is well known from of the transfer-matrix methold.In Sec. Ill we present sev-
decades of research in semiconductors. The recently discogral illustrative numerical results on the band structure and
ered periodic dielectric structures, which exhibit a photonictransmission spectrum under various material and geometric
band gap(PBG) ana]ogous to the electronic band gap in conditions. The final section contains the Concluding
semiconductors, have attracted considerable attention due tgmarks.
many interesting phenomena and potential applications

emerging from them, such as the control of spontaneous Il. EORMALISM
emission of radiation, zero-threshold lasing, and the sharp
bending of light! This section is divided into two parts. First we embark on

It did not take long before the study of PBG materials,the polarization pertinent to wave propagation in a two-
involving light waves, led to analogous studies in other sysdimensional (2D) system. Then we present the transfer-
tems involving elastic/acoustic waves, e.g, the phononignatrix method for quite a general geometry of the unit cell of
crystalé or other periodic acoustic compositesThe  acoustic stub tuners shown in Fig. 2.
phononic crystafshave drawn comparatively greater atten-
tion, both theoreticallfy and experimentally’® In analogy
with PBG crystals, the emphasis in phononic crystals has ) . )
been on the occurrence of complete acoustic gaps within We start with the general equation of propagation of har-
which the sound, vibrations, and phonons are all forbiddenMonic acoustic waves in an isotropic three-dimensi¢ag)
This is of interest for applications such as ultrasonic filters homogeneous medium
noise control, and improvement in the design of transducers,
as well as for fundamental physics concerned with the
Anderson localization of sound and vibratiohs.

The purpose of this paper is to study the acoustic band
structure and transmission spectrum in a periodically modu-
lated quasi-one-dimensional waveguide, as depicted in Fig.
1. The system has a finifenfinite) extension along thg(z)
direction and is periodically modulated, along thelirec-
tion, by the addition of double stubs, in general asymmetric,
with different elastic properties than those of the main wave-
guide. The motivation stems from recent studies with inter-
esting results pertinent to electroficand photoni2
waveguides modulated in the same fashion. Using the
transfer-matrix technique we demonstrate the tunability of FIG. 1. Schematics of a quasi-one-dimensional periodic wave-
the acoustic band gaps as a function of various parameters gfiide. The double stubs can be made of the same or different ma-
the system, e.g., the length and/or width of the stubs. terial than that of the main waveguide=b+1 is the period of the

The rest of the paper is organized as follows. In Sec. Il wesystem.

A. Polarization of the wave
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of position, this is no longer possibtt.If the system is
piecewise homogeneous, as the one we consider in Sec.
11l B, problems arise in the application of the boundary con-
ditions at the interface of different regidishat make the
separation of the in-plane modes in pure longitudinal and
transverse ones impossible.

B. Transfer-matrix technique

For the sake of generality, we start with a crossbarlike
geometry of a single unit cell, as shown in Fig. 2. The origin

FIG. 2. Schematics of a general unit cell with asymmetric stubsof the Cartesian coordinates is at the uniaxial line intersect-

ing perpendicularly the left arm of the stub of widthand

AN+ w)V(V-u)+ uV?u+pw?u=0, (1) length h. The center of the asymmetric stub lies at (

wherep is the mass densityy the angular frequency, and
and u the Lame coefficients. The longitudina and trans-
versev,; speed of sound are defined in terms of the Lame

coefficientsv;= V(A +2u)/p andv,=Julp. For a 2D sys-

=h/2,d). We denote the width of the leftight) waveguide
segments byg(a) and take thex axis parallel to the direction

of propagation. We are interested in the solution of the wave
equation for the out-of-plane vibrations in the form

tem at hand the displacement vectois independent of the V2¢h+k24=0, (8)
z coordinate and one can takg=d/9z=0. Then Eq(1) can

be written as

(M )V (@t + dyly) + V3 (Ul + uyj + k)

where ¢=u,, k=k;, and VZEVE. It is very important to
note that we consider, for the sake of simplicity, that the
outer medium containing the said acoustic device is made up

of some high-density, infinitely rigid material. The resulting

+pw2(uxf+uy]+uzk)=o, (2)  situation is equivalent to that attained in the case of similar

electronic devices surrounded by infinitely repulsive wéills.

where V,=id,+]d,, andi, |, andf_< are the unit vectors In order to solve the scalar equation and describe the sys-
along thex,y, and z axes, respectively. This equation is tem we use the same transfer-matrix method that was em-

equivalent to the independent equations

ployed in the study of electroni2® and photonit tuners.
The method relates the incoming to the outgoing wave across

(VgJ“ kf)u,=0, () the stub for arbitrary initial conditions. Inside the waveguide

with k.= w/v,, and segments, since the solution must vanish on the wallsy the
dependence is dinm(y+c/2)/c] for the left segment, for ex-

N+ )V (V- up)+,uV§up+pw2up=0. (4) ample. Here the integerdefines the number of modes in the

respective waveguide. When the two segments connected

Here the subscripp is assigned to the quantities which with the stub have different widths and elastic properties, the
qualify only in thex-y plane. It is thus quite reasonably respective solutions are given by
understandable that a 2D system can support two indepen-

dent modes: theut-of-planemodes and tha-planemodes, - — .
described, respectively, by Eq8) and(4). Equation(4) can ‘1’1:% [Cime' P+ Cime Prsinlcn(y +c/2)] (9)

be further simplified as follows. We write

on the left segment and by

Up=V b+ VX o (5)
with =(0,04). Then Eq.(4) further splits into the equa-  $2= > [Con€ ** P+ Cype ' Dsinfay(y+a/2)]
tions "
(10
(V2+k?) =0, (6)  on the right segment. Hei®,=nw/a, c,=mm/c,
p
with k| = w/v,, and an= ki—aﬁ, ki=owlvq, (11)
(Vo+k{)p=0. (7)  and
Interestingly, Eq(7), which describes the transverse in-plane Bm=Vks—c2, k,=owlv,, (12

vibrations, has formally the same structure as the one for the
out-of-plane vibrations, Eq.3). Also, Egs.(3), (6), and(7)  with v,(v,) the transverse speed of sound of the material in
are formally identical to the scalar wave equation for the TEthe right (left) segment. Inside the stul, must vanish ay

polarization in photonic crystafs.

=d—h/2 andy=d+h/2; thus the basiyy dependence is

It should be pointed out that the splitting of E@) into  sinkmy.. /h), wherey.=y¥h/2—d. However, the internal
Egs.(6) and(7), is valid only for a homogeneous medium. solution should also vanish at each side of the stub outside
For an inhomogeneous medium, wheand x are functions  the main segments, and smoothly connect to the external one
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across the contact boundaries between the stub and the seg- a

ments(at x=0 andx=bh). We first construct two auxiliary

1
=5 m[sin(kw— hms) +sin(hys_)]

sets of solutions to the wave equation, one of which matches

the waveguide on the left and one on the right, with each
vanishing elsewhere on the boundary. The appropriate

boundary conditions are

xkL(x=b,y)=0, (13
0, y>c/2,
Xk (x=0y)=1 sinc(y+c/2)], —cl2<y<cl2,
0, y<—c/2
(14
and
Xkr(X=0y)=0, (15
0, y>al2,
xkr(x=b,y)=1 sina(y+a2)], —al2<y<al2,
01 y<_a/2,
(16)

where the subscripk(j=L,R) refers to the number of
modes(left/right segments The solutionsy,r are expanded
as

XKR=§ [Up, SIN(yX) + v, €O yoX) Isin(hpy ), (17)
where
y_=y+h/2—d, h,=nz/h,
and

Ya=Vki—hZ,  ke=owlvs,

(18)

1
- m[sm(kﬂ'f' hpsy)—sin(hy,s )] (22

ands.. =h/2*xa/2—d; then from Eq.(15 we have

2 Sin( ymx)
XkR:H% Sin(yb)

Following the same procedure, we find that

2 o siym(b—x)]
XkL:_E T aim oy Ry

h ‘5 sin(yy,b)
wherel,, is defined just asl, with a replaced byc. The

e Sin(hmy ). (23)

lkmsinthny ), (24)

actual wave function in the stub region can be expanded in

terms of these auxiliary solutiong.g and y.

bs= ; (Fxit Fxir) - (25)

The continuity of the wave function at=0 andb requires
fy=Cqix+C1x andf,=c,+Cy . Thus one can write
2 — _sin(ypX)
== +Co) =——— IR
bs h %:n (Cok+Cak) Sin( y,b) kM

Sin ym(b—x)]
sin( ymb)
Similarly, matching the derivative at=0 gives

+(Cy+ Cop) lkm|SiN(hmy-). (26)

2 (C1n—C1n)i B Sincy(y+c/2)]

2o (Catey)l km— (C1ct C11) €O ymb) iy
h & Sin( Vmb)

X Ymsin(hmy-), (27

with v¢ the transverse speed of sound of the material in the

stub. The boundary condition at=0 requiresv,=0,
whereas the condition at=b yields

> upsin(y,b)sin(h,y )

0, y>al2,
=¢ siMa(y+a/2)], —al2<y<al2, (19
0, y<-—al2.

This is a Fourier expansion with the coefficientsgiven by

_ R _
um_—hsin(ymb)lkm’ m=1,2,..., (20
where
+al2
o= f dysinlag(y+a/2)]sin(amy-) (21)
—al2

and atx=b,

> (Con—Can)ia,sinay(y+a/2)]

25 (CactCa)cos yub)! em— (C1t €10l
h ™ sin( ymb)

X ymsSin(hpy_). (28

Multiplying Eq. (27) by sif¢(y+c/2)] on both sides and
integrating from—c/2 to c/2 gives

(cu—cu)ip
_ 4 o (Cactcy)l km— (C1it €110 COK Ymb) i
Ch km SIrK ')/mb)
X Yl ILm . (29

Similarly, multiplying Eq. (28) by sifa (y+a/2)] on both
sides and integrating froma/2 to a/2 yields
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(Ca—Ca)ia
_4 (Cait T2 €0 Ymb) iy (C11cHC1i) e
ah Sil"l( '}’mb)
X Yool fin (30)
We define
Ci =Ck* Cx (31)
to cast Egs(29) and(30) in the form
. — 4 '}’ml:-m + R + L
1BiCy —E% m[czkl km— C1k CO YmbP) ]
(32
and
. _ 4 Y |
'a|02|:_hk2 sm(n;, rrt;)[CZkCOS(?’mb)lkm Ciikml-
(33

We now define matrice8, B, D, E, and& whose elements
are

4 cog ymb)
__h% |n(’ymb) '}’ml Ikm' (34)
4 1
_h% S|n( b) ')’ml Ikm* (35)
R 4 R L
Dk :ﬁg m?’mhm'km' (36)
4 OS{Ym )
B = 2R 2 Sin(y.p) ?mimlkm: (37
a=ia|8y, Bik=1pBd- (39

We also define the column vecto®&" andC; whose ele-

ments areg;, andc;, , respectively. In this notation, we have

BC;=—-AC; +BC;, (39)

aC,=-DC/ +EC;, (40)

whereA, B, D, andE are real-valued matrices. These two

equations determin€;” andC; in terms ofC; andC, .

The result is
ci\ .. (cs
— M B
(cl) M (cz’ 4y

where MA¢ is the resulting transfer matrix with matrix ele-

ments

M{f=D"'E, M{s=-D"a, (42)
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(43

This transfer matrix relates the incoming to the outgoing
wave across the stub for arbitrary initial conditions.

The other building block of a multiple-stub system is a
stubless waveguide segment. The transfer matrix induced by
the segment of length; connecting theth andjth stub is a

special case of the matrid?® in Eq. (41). This is obtained

by considering the special casea=h, d=0, a,= B,,, and
k,=k;=kg. The result is
~ Coialij) _|S|n(a|”)
P.i= 44
W= —isin(aly)  cogal) 49

wherej=i*1. Given M2« and P, the total transfer matrix
for ann-stub system is

:II MA2(i)P(i,i+1)]MP(n). (45)
Suppose the incident wave, at the entrance of the first stub, is
represented byC;" ,C..} and the outgoing one, at the exit of

the last stub, byfC_,,Cous. Then

o1
Cin Cout
We now discuss the physical conditions imposed on the in-
coming and outgoing wave components. Depending on the
frequency,«,, and B, could be real or pure imaginary. We
choose them to be positive for an open channel and lying on

the positive imaginary axis for a closed channel, so a com-
plete set of eigenfunctions of E(B) is obtained. With this
choice,C, represents either a leftward moving wave or an
exponentially divergent wave at positive infinity. Now, for
the sake of the argument, we will take the incident wave to
come from the left; in this situation, we must €&},=0 and
thus C = Cou= Cout- Physicallyc,,, represents the trans-
mitted wave components in theth mode. In the entrance
region the components;, , are allowed. Here, , repre-
sents the amplitude of the reflected wave in iitle mode in

the open channel. For a closed channel the reflected wave is
a transient and decays exponentially. Explicitly,

(46)

Ci; =Cin+ Ein= M Ilcout+ M Izcoutv (47)

Cin=Cin— Cin=M3;,Court M3,Cou, (48)
where M are blockwise submatrices 817. Adding these

two equations we can determine the transmitted amplitudes
Cout by solving

(49

2Cm:(;; Mg)com.

Following this, the reflection coefficients are given by
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— 1 . . . . 6 ; ' —_—
Cir=5 (MM WS- WIE)Cou. (50 > D
5 [ ] [
The total transmission and reflection coefficients are then & T~ ]
iven b 2 4]
g y % /\
* = — ] [ e —
T Ene{oper}Cout,ncout,nan (51) g 3‘\/“
= Lo
Ene{oper}Cin,nCi’FLnan 'g | T
2_
and § —
e
_ 14
R— 2ne{oper}cin,n?ia,nan (52)
2:ne{oper}Cin,nCi’:l,na'n .

0 05 00 05 1000 02 04 06 08 10
For the sake of completeness, it is noteworthy that for the
bound-state calculation, one must solve the homogeneous
version of Eq.(49). FIG. 3. Band structurdleft pane) and transmission spectrum
We also stress that in this formalism, once we know how(right pane] for a system with the same material, epoxy, in the
to handle the single stub case, the multiple-stub problem cawaveguide and the stubs. The reduced wave vector and frequency
be dealt with little additional labor. This is not the case with are defined b,L/7 andQ=LQ/mv4, wherev, is the transverse
either the recursive Green-function method or the usuaspeed of sound in the waveguide. Notice the lowest acoustic gap
mode-matching approach. below the cutoff frequency§).~=1.6. For the plot of the transmis-
Finally, the band structure for a periodic system of acousSion a system of fifty {=50) stubs was considered.
tic stub tuners is computed by solving the standard eigen-

Reduced wave vector Transmission T

value equation =1.75 (1.2) g/cn? and v,=711,095(115,830 cm/sec for
R o carbon(epoxy).
MBD =g/, (53
wherek, is the Bloch vector anl=b+1 is the period of the A. Same material in waveguide and stubs
1D superlattice of acoustic stub tuners. The mali% is the The left part of Fig. 3 shows the first nine bands for a

same ad " for the unit cell but withc=a andB,=a,, 1 is  symmetrically stubbed system made up of epoxy, with pa-

the unit matrix of the same order &>, and® is the column ~ rameters a, =a/L=0.5114, b =b/L=0.4886, h =h/L
eigenvector. So the strategy of the computation is that we=1.125, andd, =d/L=0.0. As one can see, all the nine
input the dimensionless frequenfy=wL/mv,4 and calcu- bands are separated from each other by stop bands, or gaps,
late w=exp(k,L), yielding k.= —(i/L)In(w). For |w|=1 Wlthln which the acoustic wave propagation is forb_ldden.
(+1) one obtains bandégaps in the band structure for a Unlike the other 2D and 3D periodic systefifsthere is a
given set of material and geometrical parameters. It shoul§omplete gap below a cutoff frequendy.~1.6 down to

be pointed out that in order to make this paper as self1=0. Itis found that thigthe lowes} gap persists indepen-

consistent as possib|e we have hea\/”y relied on Ref. 10 iﬁent of.the vaIue§ of the variable parameters. The existence
this section. of all nine gaps is well corroborated by the energy depen-

dence of the transmission coefficient fog,,,=50 on the
right part of Fig. 3. The numerical results clearly reveal the
zeros and ones in the transmission. It is noteworthy that the
For the sake of clarity we discuss the numerical results iband structure in this figure contains both direct and indirect
two parts. First, we consider the case when the waveguidgaps. For instance, the second, third, fifth, sixth, and ninth
and the stubs are made up of the same material. Clearly trgaps are direct, while the rest are indirect. We consider it
band structure and/or transmission spectrum in this case renore appropriate to include the lowdsind also the widejst
veals the influence of the various parameters involved in thgap in the category of direct gaps. The most important aspect
problem. Then we take up the case when the materials in thef these results is the cutoff frequen€l, below which no
waveguide and the stubs are different. Practically speakingyropagation at all is allowed.
this case is more complex but richer than the previous one in Figure 4 depicts the dimensionless gap widths of the three
the sense that one has more options to modulate the bamewest gaps of Fig. 3 as a function of the dimensionless stub
structure and/or transmission spectrum. We have chosen camridth b, and the stubs are symmetric, i.d= 0. The width
bon and epoxy resin as the suitable materials the acoustiaf the lowest gap\; decreases gradually, by approximately
system considered is made of. This is because these are thB%, with increasindp, but still remains finite fob—L. We
materials whose combination was first demonstrated to giveotice that the maximum ok, is near the cutoff frequency
rise to a complete band gaps, i.e., independent of the polaof the waveguide segments,=1/a, =1.96 and the mini-
ization of the wave and of the direction of propagation, in 2Dmum of A, is near the cutoff frequency of the stub segments
periodic phononic crystalS. The parameters used age A =1/, =0.89. In general, the cutoff frequency of the com-

IIl. ILLUSTRATIVE EXAMPLES
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FIG. 4. The widths of the three lowest gaps as a function of the FIG. 6. The widths of the three lowest gaps as a function of the
stub widthb, =b/L. The solid, dashed, and dotted curves refer toStub lengthh, =h/L. The curves are marked as in Fig. 4.

the lowest (A;), second lowestA,), and third lowest 43) gaps.

The material and the rest of the parameters are the same as thoseiP-25- The rest of the parameters are the same as in Fig. 3.
Fig. 3. We observe that the asymmetry has introduced two important

effects. First, the number of bands accommodated within the

bined system is between the one of the waveguide segment@Me frequency range has increased, from 9 to 14. Second,
and that for the stub segments. The second lowestAgap the band width of most of the bands has reduced. Overall, the

reaches a maximum fds, =0.7 and decreases slightly be- effect of the asymmetry seems to result in 9aps larger in

fore approaching the final minimum &t—L. As can be number but shorter in width. This is true despite some ex-

seen, this gap increases enormously relative to its value f&epnons% for mitance;the case of thfe Iowesi gap, which now

zero stub width. Similarly, the third lowest gayp; reaches extends ro_nﬂ—o to=1.7, instead of up mfl'el in Fig.

one maximum ab, =0.44, it then vanishes & =0.68, and 3. All gaps in the ba_nd structuxéeft part of Fig. 9 are seen

finally reaches a maximum &t — 1. Note that all three gaps to be \_Ne" substant!ated by those in the transmission spec-

start opening up at a vanishingly small but finite valuépf trux (ngk]zt part of Fflg-h5 for n=50. @rihe th

and that the lowest gap remains the widest one over thle S @ function of the asymmetry parame Ort e three

whole range of the stub width. owest gaps vary very little, _by .at_ most 10%, foﬁ@ln
Figure 5 represents the band structure and the corresponﬁ-o'& Their deper_1dence dn_is similar to th?‘t showr_1 n

ing transmission spectrum for asymmetric stubs, wdth Fig. 4. ,AS a fun_ct|op f)f the St“t? Ier)gﬂh\_ their behavior,

shown in Fig. 6, is similar to that in Fig. 4 fdx; andA, but

6

'/ \ " 1.0 -
L N (
S-Q 7- E 0.8
O‘] 4_—/;_ ] = 0.6 §'1
B / _\ g g
3 g H
=] -4 H
3 g 04 !
g 3 > ] g :
2= = !
@ 2 — | T 024 |
= <] r r g
8 o —— e [ ——— |
& A .
1 0~0 T — T L L} - T T
] . i 2.0 25 3.0 35 4.0 45 5.0
Reduced frequency Q
0 T T T T T T - .
-0 05 00 05 10 00 02 04 06 08 10 FIG. 7. Transmission spectrum for a system with eleven sym-
Reduced wave vector Transmission T metric double stubsn=11). The centra(sixth) symmetric stub is

a defect withh, =1.395 andb, =0.6305. The rest of the parameters
FIG. 5. Same as in Fig. 3, but for asymmetric stubs with asym-are the same as in the previous figures. Notice that the defect cre-
metry parameted; =0.25. Notice the lowest acoustic gap below ates new modes or states in the gaps in an otherwise defect-free
the cutoff frequency) =1.7. system. The peaks of these modes are marked with arrows.
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20 '\/ E- 6 T R T T T

0] T~ — | D———

Gap width A

Reduced frequency Q

00 02 04 06 08 10
Stub width bL

T —— ] e———————

0 T T T T T T
-0 05 00 05 10 00 02 04 06 08 10

e FIG. 9. The widths of the three lowest gaps versus the stub
Reduced wave vector Transmission T width b, for the system studied in Fig. 8. The solid, dashed, and
dotted lines refer, respectively, to the lowedt; |, second lowest

_ FIG. 8. Band structure_éleft pane) z_:md transmission spectrum (A,), and third lowest 45) gaps. Notice especially the strong
(right pane] for system with symmetric stubs with the waveguide \ g iation of A, andAs.

segmentgstubs made of epoxycarbon. The parameters used are

a, =0.9,b =0.9, andh  =1.5. Notice the lowest acoustic gap be- ) o

low the cutoff frequency,=2.3 and extending down ©=0.0.  Pane) correspond well to those in the transmission spectrum
for n=50 on the right panel. A prompt comparison of Figs. 8
and 3 reveals that one can achieve wider gaps in the band

somewhat different fors. structure if the segments and stubs are made up of different
Figure 7 shows the transmission spectrum versus reduceréaterials 9 P

frequency for a system made up of eleven symmetric stubs Figure 9 shows the three lowest gaps as a function of the

with the central(sixth) stub longer b =1.395) and wider stub widthb, for the system specified in Fig. 8. There are

(b, =0.6305) than the rest of the identical, in width and | h ; Fi he | s the wid
height, stubs. When not identical to the other stubs, this cerzovera noteworthy points. First, the lowest gap Is the widest

tral stub constitutes a defect. The solibtted curves cor- one and the th'rﬂ gap is wider than the ;econd one bptil
respond to the presencabsencgof this defect. One can see =0.49, where;=A,. Atb, ~0.64, the W'd_th of the lowest
that there are five complete gaps in the spectrum within thgl_nd second lowest gaps are equal, ,=A,. Also A.z
given frequency range. In addition, there is also a pseudoga*,.A3 at bL:.O'78 and 0.94. T*_“? second lowest gap is the
centered aK)=4.35, that corresponds to the low transmis- dest one In the range specified by 078, <0.94. The

sion or density of states. The defect introduces sharp trans-

mission peaks, marked by arrows, within the first four gaps 20 : : E
in plane analogy with the electrofiiand photoni case or ~—1
with that of surface modes of a truncated superlattfotn-
other interesting consequence of introducing a defect in the —
system is the appearance of antiresonafcesh as the one 151 . -
appearing in the fourth band &=3.92. We have noted a — |
similar effects in the case of an asymmetrit#0) defect 2
introduced in the system. T T ] T—
32; ot+— "1 L
B. Different materials in waveguide and stubs @ I B I B———— |
We now present numerical results for a system in which '§
the waveguide is made of epoxy and the stubs of carbon. % 37 M I
Figure 8 shows the band structure and transmission spectrum
for symmetric stubs; the parameters ae=0.9, b, =0.9, T |
h,=1.5, andd =0.0. We note that there are only seven
bands accommodated in the frequency range X< 20, and 91.0 05 00 05 10 00 02 04 06 08 10

every pair of bands has a full gap in between. Moreover, the
lowest acoustic gap extends from zero to the cutoff fre-
quency().=2.3. Some of the bands, such as the fourth and FIG. 10. Same as in Fig. 8, but for a system with asymmetric
sixth, are seen to be almost flat and hence have vanishinghtubs ¢, =0.25). The lowest acoustic gap occurs below the cutoff
small group velocity. All gaps in the band structufleft  frequencyQ.=2.4 and down td2=0.0.

Reduced wave vector Transmission T
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8 T L} L} T 10
//’/ 0.8
6 A i
——— A2 ’ =~
V4 = 0.6 -
< 1 - A ’ 8
= ’ . 2
5 ,/ g
g ‘ =
O ‘ 02
24 7 ’
- . . 1
/'/ 0.0 vt
//.' .. : 1 5
oz . . Ly Reduced frequency Q
0 2 4 6 8 10
vV FIG. 12. Transmission spectrum for a system with seven sym-
(a) §ove metric (d=0) double stubs {=7). The waveguide segments
6 . . . . (stubg are made of epoxycarbor). The central(fourth) stub is a
\ A defect with hy =3.0 andb, =0.4. The other parameters asg
N ! =0.6, b, =0.2, andh  =1.4. The solid(dotted lines refer to the
31 N Az transmission with(without) the defect. The defect gives rise to
Sl T A3 modes in the gaps in an otherwise defect-free system. The peaks of
L T i these modes are marked with arrows.
<
§ 3] to have brought about a number of interesting effects. A
= larger number of bands is accommodated in the same fre-
g, R quency range but the bandwidth is reduced. Again, the gaps
O] in the band structurdeft pane) correspond well to those in
the transmission spectrum for a system witk 50 stubs
1 (right pane).
. As a function of the stub widtlh, the three lowest gaps
0 e behave qualitatively as those of Fig. 9. More important is
their dependence, shown in Fig.(&l on the velocity con-
h trast between two materials. As can be seen a wide modula-
(b) tion can be achieved in this asymmetric structure by just

_ _ changing the ratio 4/v,,4, more than two orders of magni-

FIG. 11. (a) The widths of the three lowest gaps as a function Oftude forA,. A less pronounced variation of the same gaps is
the velocities’ ratias/v,,4. (b) The three lowest gaps as a function shown in Fig. 11b) as a function of the stub length . As
of the_stub_ lengthh, . Notice the strong variation ok, and A5, can be seen\; remains almost insensitive to changedin
especially in(@. andA, changes by at most 30%; howevAg can change by

a factor of 10 reaching a maximum lat~2.4.

third lowest gap vanishes & =0.87 but reappears fdr, Figure 12 shows the transmission spectrum versus re-
>0.87 and becomes the widest in the range €&Bd  duced frequency for a symmetric defect introduced in an
=<0.98. Also,A;=A; at bj=0.83 and 0.91. Moreover);  otherwise periodic system with seven stubs=(7). The cen-
=A, at by=0.96 andA;=A; at b =0.98. Finally, A; tral (fourth) stub is defect in the sense that its length (

reaches a maximum whereas bath and A3 vanish forb  =3.0) and width b, =0.4) are different than those of the
—L. Similar to Fig. 4, the minimum ol\; here is near the rest of the stubs. The other parameters aje=0.6, b,
cutoff frequency of the waveguide segments,=1/a, =0.2, h,=1.4, andd, =0.0. The solid and dotted curves

=1.1 and the maximum ok, is near the cutoff frequency of correspond, respectively, to the presefaigsencgof the de-
the stub segmentss=v¢/(v,h )=4.1. Again the cutoff fre- fect. There are five complete gaps in this frequency range in
quency of the combined system is between the one of ththe spectrum before introducing the defect. Inserting this
waveguide segments and that for the stub segments. Thgingle defect in the system gives rise to one peak in the third
relative position though depends bp and the velocity con- gap and another in the fourth gap. These transmission peaks
trast and can be outside the rangg,(As). correspond to defect modes similar to those appearing in Fig.
Figure 10 depicts the band structure and transmission.
spectrum considered in Fig. 8 but with asymmetric stubs. Finally, Fig. 13 illustrates the transmission spectrum ver-
The asymmetry parameter d@ =0.25 and the other param- sus reduced frequendy in a symmetric system made up of
eters the same as those used in Fig. 8. Now there are eigbhe (top pane), two (middle panel, and five(bottom panel
bands and eight gaps in the band structure. The lowest gagtubs. We remind the reader that the waveguide segments
now extends fronf) =0.0 to()=2.4. The asymmetry is seen (stubg are made of epoxycarbon materials. The param-
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T grafted atN equidistant sites. The waveguide segments and
1 the stubs can be made up of same or different materials. The
0.5 - latter case is found to be relatively more interesting since
there one has more and better options to achieve the com-
0.0 e plete gaps. The single symmetric defect is shown to intro-
= T3 duce extra modes in the gaps of an otherwise periodic system
g 1 that result in transmission resonance peaks. While the com-
é 0.5 putation of the band structure requires an infinitely long pe-
Z 1 riodic system, the transmission spectrum is calculated only
. S . for a finite system. As shown though, the gaps in the band
n=5 structure correspond well to those in the transmission spec-
05_' trum. Accordingly, we conclude that the transmission spec-
’ trum in all cases remains consistent for 10.
] The numerical results we presented pertain only to the
5 ] Ty rrr Tt r A out-of-plane modes. However, as mentioned already in Sec.
% ] / IlA, the equations describing the in-plane modes have the
g 05 same structure in a homogeneous medium. Explicitly, the
° transverse in-plane modes have exactly the same band struc-
;ﬁ 00 : A S ' . ture as the out-of_-plane modes. As for the Ion_gitL_JdinaI in-
© 9 s 10 15 20 25 30 35 40 plane modes, their band structure and transmission can be

Reduced frequency © obtained directly from Figs. 3-7 by changing only the fre-
quency scale when the waveguide and the stubs are made of

FIG. 13. Evolution of the transmission spectrum as a function ofthe same material. If this material is different, the separation
the number of stubs for a system with waveguide segments of the in-plane modes in longitudinal and transverse is no
(stubg made of epoxy(carbon. The parameters ar@ =b, =h_.  |onger possible for the structures of Sec. Il{&e Sec. Il A
=0.9. Notice that as increases the pseudogaps gradually turn into  The version of the transfer-matrix method emplo’;s’etd
sharply define_d complete 9aps. Tha_e lowest panel shows the ba’ﬁ’ccomplish the present investigation is simple and
structure. Notice that the first band is very narrow. efficienf 1 for solving scalar equations. Its efficiency has

I ) . already been demonstrated in serially connected
eters area, =b, =h, =0.9. That is, the waveguide has N0 g|ecironicd10 optical® or the present acoustic devices. As

stubs. The_lowest panel shows the corresponding band struggressed already in its presentation, the method offers impor-
ture. Forn=1 (top panel, the transmission coefficient be- (5 advantages in comparison to other mode-matching or

comes very small but it never approaches zero. In this sensgcyrsive Green’s function techniques applied to similar
we have only pseudogaps, not full gaps, in the systemrm As problems.

increases the pseudogaps gradually turn into complete gaps | principle, the systems we studied here have potential
(with transmission equal to zeroentered at almost the same gqpjications in the designing of transducers and ultrasonic

midgap frequency. It has also been observed that the numbgfiars. We hope that the present findings will be tested in
of such complete gaps increases with increasing future experiments.
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