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Boson representation of two-exciton correlations: An exact treatment of composite-particle effect
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We derive a bosonized Hamiltonian describing two-exciton correlation of semiconductor-photon coupled
systems with a bosonization method, which takes into full account an effect of deviation of the excitons from
ideal bosons. This deviation effect stems from the fact that excitons are composite particles, whose character
appears clearly in the case where the excitons overlap each other. We call this effect a composite-particle effect
~CPE!. To our knowledges this effect was not considered completely in previous theoretical works on exciton-
exciton interaction. The Hamiltonian introduced in this paper includes the results of the previous works as
low-order terms of the CPE. After the introduction of a general theory of the bosonization method for arbitrary
dimension and electron-hole mass ratio, we also demonstrate an application to a semiconductor bulk system
coupled with a photon field in the heavy-hole limit. The bosonized Hamiltonian shows that the CPE brings
about an enhancement of the exciton-exciton scattering strength and a qualitative change of the
photo transition amplitude. It is also shown that the Hamiltonian describes two-exciton bound and scattering
states.
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I. INTRODUCTION

Since semiconductors show various phenomena dep
ing on the density of the carriers excited by light, they ha
attracted much notice for many years. In the low-dens
regime, third-order nonlinear optical responses, particula
four-wave-mixing signals near 1s exciton resonance, hav
been intensively investigated because they yield informa
not only on the transverse-relaxation time of excitons
also on two-exciton correlations, which are the most fun
mental correlations in many-exciton correlations.1–8 In the
high-density regime, conversely, the Bose-Einstein cond
sation of the excitons, the electron-hole BCS states, the
citon Mott transition, the electron-hole droplet formatio
etc., have been studied as interesting phenomena.9–13

For an analysis of these phenomena, theoretical meth
are roughly classified into two kinds of frameworks. One
‘‘fermionic methods,’’ which directly treat the semicondu
tors as interacting electron-hole systems, and the othe
‘‘bosonic methods,’’ which describe the systems by intera
ing ideal bosons corresponding to excitons~and the exciton
molecules in some cases!. Fermionic methods are of grea
generality because the electron-hole Hamiltonian descr
the Coulomb interaction among the fermionic carriers a
the carrier-light coupling. These methods have been de
oped in wide range of carrier densities by ma
workers.12–17 Bosonic methods, on the other hand, compr
an effective theory for systems in which the excitons are w
defined. Since these methods represent excitons as bo
they give simple pictures to systems where the bosonic p
erties are useful in understanding the phenomena. For
reason, bosonic methods have often been employed phe
0163-1829/2001/65~3!/035105~17!/$20.00 65 0351
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enologically for both the low-density systems18,19 and the
high-density systems.10,20 Therefore, it is important to
strengthen the microscopic bases of the bosonic meth
i.e., how to obtain the bosonic Hamiltonian by a bosoniz
tion of the excitons. Since two-exciton correlations are
most important many-exciton correlations not only for t
low-density regime but also for the high-density regime, t
bosonic Hamiltonian is required to describe two-exciton c
relations. For this purpose, the Usui transformation21–23 and
the point-boson approximation24,25 have been employed to
estimate two-exciton correlation terms, i.e., the interact
between two bosonized excitons and the nonlinear coup
between two bosonized excitons and light.22 Moreover, the
exciton-exciton interaction described with the same form
ism as the above bosonization methods have also been
tained, though these interactions are not evaluated as th
sult of the bosonization of the excitons.26,27

Although excitons have often been considered as bos
strictly speaking they arenot bosons satisfying typical boso
commutation relations. This is because an exciton is a c
posite particle of an electron and a hole. In general, o
when excitons are spatially separated enough from one
other in comparison to the exciton Bohr radiusa can they be
regarded as bosons, whose internal structures are neglig
Conversely, when excitons come close to and overlap
another, composite characters of the excitons appear,
hence the excitons deviate from the bosons. Since the e
ton correlations are determined by this deviation effect a
the Coulomb interaction among the carriers, the deviat
effect is indispensable for a correct estimation of the exci
correlations. We call the deviation effect a composite-parti
effect ~CPE!. Bosonization methods should include the CP
©2001 The American Physical Society05-1
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SATORU OKUMURA AND TETSUO OGAWA PHYSICAL REVIEW B65 035105
in the boson-boson interaction and the boson-light nonlin
coupling. However, this effect has been less frequently c
sidered thus far. In later sections, we will show that t
boson-boson interaction and the boson-light nonlinear c
pling derived in previous works21–24,26,27do not include the
CPE completely. We classify those works as ‘‘incomple
CPE theories.’’

In this paper, we report a bosonized Hamiltonian desc
ing correct two-exciton correlations in which the CPE
completely taken into account. To clarify the difference b
tween the previous incomplete CPE theories and our ‘‘co
plete CPE theory,’’ we define the ‘‘order’’ of the CPE, an
then derive a bosonized Hamiltonian including the full ord
of the CPE completely with the use of a bosonizati
technique.28 This Hamiltonian includes the results of the i
complete CPE theory as low-order terms of the CPE. To k
generality, we assume that the material under considera
has two bands with arbitrary effective mass, spin degree
freedom, and spatial dimension. Moreover, we generalize
quantum statistics of the particles in these bands. Altho
we implicitly suppose these particles as conduction electr
and valence holes in semiconductors, such an assignme
not necessarily required in our theory. We need to assu
only that they are interacting particles with the same sta
tics and make energy eigenstates corresponding to bo
states of the two-particle composite, e.g., a Wannier exci
Its relative motion is assumed to be extended in the regio
a characteristic lengtha ~e.g., an exciton Bohr radius!.29

In this paper, we confine ourselves to a process in wh
up to two two-particle composites are created by an exte
field. This corresponds to third-order nonlinear optical p
cesses in semiconductors.30 Here we should note that thi
restriction doesnot mean that our theory is not applicable
many-exciton systems, because the Hamiltonian descr
complete two-exciton correlation terms in the ideal-bos
space, e.g.,B̂†B̂†B̂B̂, whereB̂ is a boson annihilation opera
tor, irrespective of the constraint for the boson space. E
when we extend the system to a many-exciton system,
two-exciton correlations are unchanged and we obtain s
ply the correction of more than two-exciton correlation
e.g.,B̂†B̂†B̂†B̂B̂B̂. The reason for this is that our bosoniz
tion technique gives anormal-orderingexpansion of the bo-
son operators. Therefore, the obtained Hamiltonian is a
useful for many-exciton systems where more than tw
exciton correlations are negligible. Only if we consider int
actions between excitonic molecules, up to four-exciton c
relation terms become necessary at least. This is a fu
problem, and we do not consider it in this paper.

This paper is organized as follows. In Sec. II, we intr
duce the starting Hamiltonian and the definition of the ex
ton, and then discuss the properties of the excitons includ
the CPE. The bosonization method we employ in this pa
is formulated with the Tamm-Dancoff~TD! representation,28

which represents a model space with exciton operators.
though, in general, bosonization methods need some res
tions to the ideal-boson space to obtain a one-to-one co
spondence between the starting fermion space and the i
boson space, we need no restriction to the wave numbe
03510
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the component particles; this was a nuisance in the U
transformation, but can put constraints on the energy of
relative motion of an exciton by using a TD representatio
Moreover, we explicitly take into full account the excito
center-of-mass motion and the spin degrees of freedom
the component particles. In Sec. III, our bosonization meth
is elucidated, and an orthonormalized two-exciton state
introduced. Section IV is devoted to a calculation of mat
elements of the model Hamiltonian. In Sec. IV A, we exa
ine the ‘‘loose matrix elements,’’ which stand for the matr
elements represented with the two-exciton states which
nonorthonormal basis. These loose matrix elements have
ten been interpreted as interactions among excitons.21–24,26,27

Since the CPE is, however, not completely included in th
elements, they lead to incorrect interactions among excit
and photons in the region that two excitons overlap e
other. In Sec. IV B, we showexactmatrix elements, which
include the CPE completely. We also discuss a relation
tween the CPE and the phase-space filling. A general form
the bosonized Hamiltonian is given in Sec. IV C. The Ham
tonian contains four nontrivial interaction terms: two kin
of scattering among the bosonized excitons, and two kind
nonlinear coupling between the bosonized excitons and
external photon field. In Sec. V we apply the general resul
a semiconductor bulk system. In the limit of heavy holes,
can obtain exact, analytical forms of, e.g., boson-boson
boson-photon interactions. We find that the CPE enhan
the scattering strength between the bosonized excitons,
the CPE results in a qualitative change of the nonlinear c
pling between bosonized excitons and photons. We a
show that our bosonization theory can explain both
bound and unbound states of two bosonized excitons.

II. STARTING HAMILTONIAN AND NONBOSON
CHARACTERS OF EXCITONS

We start with a Hamiltonian consisting of three parts:

Ĥ5Ĥcd1Ĥa1Ĥcd-a , ~2.1!

where

Ĥcd5(
mk

S E01
\2k2

2mc
D ĉmk

† ĉmk1(
nk

\2k2

2md
d̂nk

† d̂nk

2(
mn

(
qkk8

Vcd~q!ĉmk1q
† d̂nk82q

† d̂nk8ĉmk

1
1

2 (
mm8

(
qkk8

Vcc~q!ĉmk1q
† ĉm8k82q

† ĉm8k8ĉmk

1
1

2 (
nn8

(
qkk8

Vdd~q!d̂nk1q
† d̂n8k82q

† d̂n8k8d̂nk ,

~2.2!

Ĥa5(
sK

\vKâsK
† âsK , ~2.3!
5-2



r-

po

le
se
ho
p

of

o
pa
u

th
ti

a
e

le
d

-

-

f
a-

s

f

cle
la-

d

an
two

the
ect
xci-
the
the
n

ion.
only

BOSON REPRESENTATION OF TWO-EXCITON . . . PHYSICAL REVIEW B65 035105
Ĥcd-a5g̃(
s

(
K

p̂sK
† âsK1~H.c.!. ~2.4!

The first term,Ĥcd , describes two kinds of interacting pa
ticles, whose annihilation operators areĉmk andd̂nk . We call
these particles ac particle and ad particle, respectively. To
investigate effects of the quantum statistics of the com
nents, we shall not assume their statistics~fermionic or
bosonic! for the moment, but assume only that both partic
have identical statistics. Although we implicitly suppo
these particles as a conduction electron and a valence
such an assignment is not necessarily required in this pa
The subscriptsm andn are the indices of internal degrees
freedom of each particle, e.g., spins, andk is a
D-dimensional wave vector defined ask52p/L(n1e1
1n2e21•••1nDeD), whereL is the system size,ei is a unit
vector of the directioni, and ni is an integer. At least an
energyE0 is needed for ac particle to be created. We als
assume that the interactions between different kinds of
ticles is attractive, while that among the same kinds is rep
sive. The latter condition means that two particles of
same kind are not bound to one another. Here the summa
on q excludesq50 andmc (md) is the effective mass of the
c ~d! particle. The second termĤa is a free Hamiltonian for
ana particle, corresponding to a photon, whose operators
âsK and âsK

† . The subscripts stands for an internal degre

of freedom, e.g., the polarization. The third termĤcd-a ex-
presses the interaction between thea particle and a pair of
the c andd particles, wherep̂sK

† is defined as

p̂sK
† [(

mn
ds

m1n(
k

ĉmaK1k
† d̂nbK2k

† . ~2.5!

Hereds
m1n is the Kronecker delta describing a selection ru

of the internal degrees of freedom of these particles, ana
and b are mc /M and md /M , respectively, withM5mc

1md . Thus the total HamiltonianĤ can describe semicon
ductors with a radiation field in an arbitrary dimension.

Here we introduce a composite ofc andd particles. The
creation operator of the composite particle is defined as

b̂mnR
† 5E dDr w~r !ĉmR1br

† d̂nR2ar
† , ~2.6!

where ĉmr
† and d̂nr

† are the field operators of thec and d

particles related toĉmk
† and d̂nk

† via the Fourier transforma
tion. We assume only thatw(r ) damps rapidly forur u@a to
describe a bound state, wherea is a characteristic length o
the spatial extent ofw(r ). This satisfies the eigenvalue equ
tion

F2
\2¹2

2m
2Vcd~r !Gw~r !5Ew~r !, ~2.7!

with *dDr uw(r )u251, wherem5mcmd /M , and Vcd(r ) is
the Fourier transform ofVcd(q). Thus the operatorb̂mnR

† ex-
presses the creation of a composite particle atR, whose bind-
ing energy isE. According to convention, let us call thi
03510
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composite particle an ‘‘exciton.’’ The Fourier transform o
the exciton creation operatorb̂mnR

† , defined as

b̂mnK
† 5

1

LD/2E dDRb̂mnR
† exp~ iK•R!

5(
k

f~k!ĉmaK1k
† d̂nbK2k

† , ~2.8!

satisfies the eigenvalue-equation ofĤcd :

Ĥcdb̂mnK
† u0&5S E01E1

\2K2

2M D b̂mnK
† u0&. ~2.9!

Here

f~k!5
1

LD/2E dDrw~r !exp~2 ik•r !, ~2.10!

and u0& means the vacuum state ofĤcd . Thus the one-
exciton stateb̂mnK

† u0& is an eigenstate ofĤcd .
To investigate effects coming from the composite-parti

nature of the excitons, we calculate the commutation re
tions of the exciton operators, i.e.,

@ b̂mnR ,b̂m8n8R8#50, ~2.11!

@ b̂mnR ,b̂m8n8R8
†

#5dm8
m dn8

n dD~R2R8!

1sdn8
n E dDr

a2D
w* S r1R

a DwS r1R8

a D
3 ĉm8(R81br8)/a

† ĉm(R1br )/a

1sdm8
m E dDr

b2D
w* S r2R

b DwS r2R8

b D
3d̂n8(R82ar8)/b

† d̂n(R2ar )/b , ~2.12!

wheres511 when both thec andd particles are bosons an
s521 when both are fermions. Equation~2.11! is a simple
commutation relation of the bosonlike statistics, because
exciton consists of components of an even number, i.e.,
in this case. On the other hand, Eq.~2.12! shows that the
exciton cannot be regarded as one ideal boson due to
existence of the second and third terms, which are dir
consequences of the composite-particle nature of the e
tons. Since the inner structures of the exciton appear in
second and third terms, these terms are influenced by
statistics of thec and d particles. When a distance betwee
two excitons, whose center-of-mass positions areR andR8,
is sufficiently larger thana, i.e., uR2R8u@a, Eq. ~2.12! be-
comes

@ b̂mnR ,b̂m8n8R8
†

#.dm8
m dn8

n dD~R2R8!, ~2.13!

which is a consequence of the point-boson approximat
This means that the exciton can be regarded as a boson
if they are sufficiently separated from each other.
5-3
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The effects arising from the composite-particle nature
the excitons appear in various physical values in the reg
that inner structures of the excitons can be recognized. Th
are the CPE’s. The deviation from the ideal bosonic comm
tation relation in Eq.~2.12! is an example of the CPE. Th
CPE also appears in the inner product between the t
exciton states. We first show the inner product between
one-exciton states,b̂mnK

† u0&. Abbreviating the set$m i ,n i ,K i%
to i, the inner product between the one-exciton states

^0ub̂mb̂i
†u0&5d i

m , where d i
m[dm i

mmdn i

nmdK i

Km. Since the one-

exciton states are eigenstates ofĤcd , this orthogonality is a
natural result. On the other hand, the inner product betw
the two-exciton statesb̂i

†b̂ j
†u0& is evaluated as

^0ub̂nb̂mb̂i
†b̂ j

†u0&52F 0~n,mu i , j !12sF 1~n,mu i , j !,
~2.14!

where

F 0~n,mu i , j !5 1
2 @A0~n,mu i , j ! f 0~n,mu i , j !

1~ i↔ j or m↔n!#5 1
2 ~d i

md j
n1d j

md i
n!,

~2.15!

F 1~n,mu i , j !5 1
2 @A1~n,mu i , j ! f 1~n,mu i , j !

1~ i↔ j or m↔n!#. ~2.16!

Here we use the following definitions:

A0~n,mu i , j !5dm i

mmdn i

nmdm j

mndn j

nn, ~2.17!

A1~n,mu i , j !5dm j

mmdn i

nmdm i

mndn j

nn, ~2.18!

f 0~n,mu i , j !5dK i

KmdK j

Kn, ~2.19!

f 1~n,mu i , j !5dK i1K j

Km1Kn(
k

„f* a~Km2K j !1k…

3f* „b~Km2K i !1k…

3f~k!f„a~Km2K j !1b~Km2K i !1k….

~2.20!

In the above formulas, (i↔ j or m↔n) means a term
obtained by exchanging the indicesi and j or m andn. Note
that A0(n,mu i , j ) f 0(n,mu i , j )5A0(m,nu j ,i ) f 0(m,nu j ,i )
and A1(n,mu i , j ) f 1(n,mu i , j )5A1(m,nu j ,i ) f 1(m,nu j ,i )
but A0(n,mu i , j ) f 0(n,mu i , j )ÞA0(n,mu j ,i ) f 0(n,mu j ,i )
ÞA0(m,nu i , j ) f 0(m,nu i , j ), and so on. The Kronecker delta
of A1(n,mu i , j ) in the second term have an exchanged fo
of m i and m j . This term expresses how much the tw
exciton state contains another two-exciton state with
changed components. We shall take the limit ofuRi2Rj u
@a after the Fourier transformation to change the variab
from K i to Ri . When this procedure, called the point-bos
limit, is applied to Eq.~2.14!, f 1(n,mu i , j ) disappears, and
then the inner product is reduced to
03510
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^0ub̂nb̂mb̂i
†b̂ j

†u0&.2F 0~n,mu i , j !5d i
md j

n1d j
md i

n ,
~2.21!

which is a result of the point-boson approximation. Additio
ally, the second term of Eq.~2.14! depends ons, i.e., the
statistics of the components of an exciton. Thus the te
2F 1(n,mu i , j ) results from the CPE. To describe the CP
systematically, the order of the CPE is introduced here;
regard the first termF 0(n,mu i , j ) and the second term
F 1(n,mu i , j ) of Eq. ~2.14! as CPE’s of zeroth and of firs
orders, respectively. Similarly, the CPE of thenth order,
F n(n,mu i , j ), is defined for any positive integern, whose
definition will be shown in AppendixA.

In this paper, we concentrate our discussion on proce
where at most two excitons are created, which is suffici
for the third-order nonlinear optical processes in semic
ductors. Therefore, we can consider only the subsp
spanned by the ground stateu0&, the one-exciton state
b̂mnK

† u0&, and the two-exciton statesb̂mnK
† b̂m8n8K8

† u0&. As de-
scribed above, however, the two-exciton states do not fo
an orthonormal set due to the CPE. Hence we need to in
duce orthonormalized two-exciton states in Sec. III.

III. ORTHONORMALIZED TWO-EXCITON STATES
AND BOSON MAPPING

We define an orthonormalized two-exciton stateu i , j & as

u i , j &[(
l 50

`

(
n,m

b̂n
†b̂m

† u0&~2s! lj lF l~m,nu i , j !, ~3.1!

wherej l5(2l )!/(2 l l !) 2 and the coefficientF l(n,mu i , j ) is
defined in Appendix A. This state is a superposition of t
two-exciton states with the infinite order of the CPE, and h
the following desirable properties:

u i , j &5u j ,i &, ~3.2!

^n,mu5(
l 50

`

(
m8,n8

~2s! lj lF l~n,mum8,n8!^0ub̂n8b̂m8 ,

~3.3!

^n,mu i , j &52F 0~n,mu i , j !5d i
md j

n1d j
md i

n. ~3.4!

The orthonormalized two-exciton state has an exchange s
metry with repect to the indices, as shown in Eq.~3.2!. Equa-
tion ~3.3! can be proved with the use of Eq.~A8! in Appen-
dix A. The third relation@Eq. ~3.4!#, means that these state
form an orthonormal set. It is obvious that the orthonorm
ized two-exciton states are also orthogonal to the vacu
and to any one-exciton states. Thus the ground stateu0&, the
one-exciton statesb̂mnK

† u0&, and the orthonormalized two
exciton statesu i , j & are the orthonormal bases spanning t
subspace under consideration.

The bosonization procedure28 is introduced here as a ma
from the fermion subspace to an ideal boson space as
lows.

u0&↔u0), ~3.5!
5-4
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BOSON REPRESENTATION OF TWO-EXCITON . . . PHYSICAL REVIEW B65 035105
b̂i
†u0&↔B̂i

†u0), ~3.6!

u i , j &↔B̂i
†B̂j

†u0). ~3.7!

Here u0) is the vacuum state of the ideal boson space.
boson operatorsB̂i andB̂i

† with an indexi 5$m i ,n i ,K i% sat-

isfy the boson commutation relations:@B̂i ,B̂j #50 and

@B̂i ,B̂j
†#5d j

i . The exchange symmetry for the bosons
guaranteed by Eq.~3.2!. Hereafter, we call a boson describe
by B̂mnK a ‘‘bosonized exciton.’’

It is more useful to define a mapping operatorÛ as

Û5u0&(0u1(
i

b̂i
†u0&(0uB̂i1

1

2! (
i , j

u i , j &~0uB̂j B̂i .

~3.8!

With this operator, we can describe an arbitrary stateuc) and
an operatorÔB in the boson space in terms of the corr
sponding stateuc& and the operatorÔ in the fermion sub-
space as

uc)5Û†uc&, ~3.9!

ÔB5Û†ÔÛ. ~3.10!

This method belongs to the Holstein-Primakoff~HP! type
bosonization.31 Hence the bosonized operatorÔB is Hermit-
ian if the fermion operatorÔ is Hermitian. Moreover, it is
obvious that the bosonized operator has anormal-ordering
expansion form due to the mapping method@Eq. ~3.10!#, and
an iteration method of the completeness relationu0)(0u51
2( i B̂i

†B̂i1•••. In general, the HP-type bosonization tran
forms Hermitian operators to Hermitian bosonized opera
with infinite boson expansion terms. In the case under c
sideration, however, the bosonized operator in Eq.~3.10! has
simply finite terms. The reason for this is as follows. Sin
we consider only optical processes in which up to two ex
tons are created from a vacuum, it is a necessary and s
cient condition for such processes that only the ground st
one-exciton states, and two-exciton states are taken into
count. Moreover, a subspace spanned by two-exciton s
is mapped to a subspace spanned by two-bosonized-ex
states. Therefore, two-bosonized-exciton states are also
ated from vacuum in the boson space for the processes u
consideration. Thus we can safely neglect more than t
body scattering terms in the bosonized operator. An exam
of such processes is the third-order nonlinear optical proc
near 1s-exciton resonance in semiconductors. The bosoni
Hamiltonian for this case will be derived in Sec. V. Howev
we should note that irrespective of the constraint for the
son space, this restriction doesnot mean that our theory is
not applicable to many-exciton systems. This is because
normal-ordering expansion form of the bosonization meth
enables the Hamiltonian to describe complete two-exc
correlation terms in ideal-boson space. Even when we ex
the system to a many-exciton system, the two-exciton co
03510
e

-
rs
n-

i-
ffi-
te,
c-

tes
ton
re-
der
o-
le
ss
d

,
-

he
d
n
nd
e-

lations are unchanged and we obtain simply the correctio
more than two-exciton correlations, e.g.,B̂†B̂†B̂†B̂B̂B̂.

In general, an ideal boson space includingN bosons is
wider than the corresponding fermion space because ofN!
kinds of permutations ofN pairs of fermions, that is, a one
to-N! correspondence. Therefore, we need a restriction
the ideal boson space to create a one-to-one correspond
This restricted space is called a physical subspace. Since
Usui transformation32 realizes the physical subspace by
restriction to the momenta of components of excitons, sc
terings among excitons are hard to describe exactly.
bosonization method used here, on the other hand, can
to a physical subspace by a restriction to the energy of
exciton relative motion~no restriction to the center-of-mas
motion of the excitons!. Moreover, we will see that interac
tion terms in our bosonized Hamiltonian haveno boson-
number dependence, which is in striking contrast to
Marumori mapping.33 These properties, therefore, enable
to describe the physical picture that bosons with a defin
internal energy are created, annihilated, and scattered via
teractions. In this paper, we adopt the only one relative m
tion with energyE.

IV. MATRIX ELEMENTS AND BOSONIZED
HAMILTONIAN

In this section, we derive a bosonized Hamiltonian w
our bosonization method described in Sec. III. With the u
of the mapping operatorÛ defined in Eq.~3.8!, the starting
HamiltonianĤ is transformed to

ĤB5Û†ĤÛ5(
i

S E01E1
\2K i

2

2M D B̂i
†B̂i

1S 1

2! D
2

(
n,m,i , j

@^n,muĤcdu i , j &24~E01E!

3F 0~n,mu i , j !2T (0)~n,mu i , j !#B̂m
† B̂n

†B̂j B̂i

1g̃ALDw* ~0!(
i

ds i

m i1n i B̂i
†âi1~H.c.!

1
1

2! (
n,m,i , j

@ g̃^n,mu p̂i
†b̂ j

†u0&

2P (0)~n,mu i , j !#B̂m
† B̂n

†B̂j âi1~H.c.!, ~4.1!

where we use the definition

T (0)~n,mu i , j ![
\2

2M
~Kn

21Km
2 1K i

21K j
2!F 0~n,mu i , j !,

~4.2!

and the matrix elements

^0uĤcdu0&50, ~4.3!

^0ub̂mĤcdb̂i
†u0&5d i

mS E01E1
\2K i

2

2M D , ~4.4!
5-5
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g̃^0ub̂mp̂i
†u0&5ds i

mm1nmdK i

Kmg̃LD/2w* ~0!. ~4.5!

The coefficientP (0)(n,mu i , j ) in Eq. ~4.1! is defined by Eq.
~B11! in AppendixB. An iteration method of the complete
ness relationu0)(0u512( i B̂i

†B̂i1••• is also used. In Eq
~4.1!, an index i of the a-particle operator stands fori
5$s i ,K i%, and that of the bosonized exciton operators
i 5$m i ,n i ,K i%. In the following, we shall calculate the ma
trix elements such aŝn,muĤcdu i , j & and g̃^n,mu p̂i

†b̂ j
†u0& to

clarify contribution of the original Coulomb interactions an
the CPE.

A. Loose matrix elements

Before evaluating the matrix elements^n,muĤcdu i , j & and
g̃^n,mu p̂i

†b̂ j
†u0&, we first consider̂ 0ub̂nb̂mĤcdb̂i

†b̂ j
†u0& and

g̃^0ub̂nb̂mp̂i
†b̂ j

†u0&. We call these ‘‘loose matrix elements’’ in
this paper because these are not elements of the matrix
resentation of operators, i.e.,b̂i

†b̂ j
†u0& is not orthonormalized.

These loose matrix elements have often been interpr
as exciton-exciton scattering amplitudes or int
actions.21–24,26,27However, when the loose matrix elemen
are used as interactions, qualitative problems appear in
region that two excitons overlap with each other. We w
show examples of such problems in Sec. V.

We first evaluate the loose matrix element ofĤcd :

^0ub̂nb̂mĤcdb̂i
†b̂ j

†u0&

54~E01E!@F 0~n,mu i , j !1sF 1~n,mu i , j !#

1T (0)~n,mu i , j !1s
\2

2M
~Kn

21Km
2 1K i

21K j
2!

3F 1~n,mu i , j !1U (0)~n,mu i , j !2sV (1)~n,mu i , j !,

~4.6!

whereU (0)(n,mu i , j ) andV (1)(n,mu i , j ) are defined by Eqs
~B1! and ~B6! in Appendix B. The superscripts o
U (0)(n,mu i , j ) and V (1)(n,mu i , j ) represent the order of th
CPE. In the above equation, the fourth termU (0)(n,mu i , j )
and the fifth term2sV (1)(n,mu i , j ) result from the interac-
tion terms ofĤcd . The fourth term expresses the interacti
energy among the density distributions of thec and d par-
ticles, while the fifth term is one of the CPE’s expressing
interaction with exchange of the components.27 If we take
the point-boson limit, Eq.~4.6! is reduced to

^0ub̂nb̂mĤcdb̂i
†b̂ j

†u0&.4~E01E!F 0~n,mu i , j !

1T (0)~n,mu i , j !1U (0)~n,mu i , j !,

~4.7!

where the first-order CPE terms,F 1(n,mu i , j ) and
V (1)(n,mu i , j ), disappear.

Next the loose matrix elementg̃^0ub̂nb̂mp̂i
†b̂ j

†u0& is evalu-
ated as
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g̃^0ub̂nb̂mp̂i
†b̂ j

†u0&5P (0)~n,mu i , j !2sQ (1)~n,mu i , j !.
~4.8!

HereP (0)(n,mu i , j ) is given in Eq.~B11! andQ (1)(n,mu i , j )
is defined by Eq.~B12! in Appendix B. An indexi of pi

†

denotes $s i ,K i%. In Eq. ~4.8!, P (0)(n,mu i , j ) and
2sQ (1)(n,mu i , j ) result from zeroth-order and first-orde
CPE’s, respectively. In the point-boson limit,Q (1)(n,mu i , j )
disappears, to lead to

g̃^0ub̂nb̂mp̂i
†b̂ j

†u0&.P (0)~n,mu i , j !. ~4.9!

When components of an exciton are fermionic, i.e.,s
521, 2sQ (1)(n,mu i , j ) has been interpreted as the PS
which expresses the reduction of transition amplitudes
tween the one- and two-exciton states by Pauli blocki
However, we should recall that the two-exciton stateb̂i

†b̂ j
†u0&

is not orthonormalized, as shown in Eq.~2.14!. In fact, the
norms of some two-exciton states become less than uni
the components are fermions. The reduction of the transi
amplitude, therefore, also comes from the norm reduction
well as the Pauli blocking. Thus we should discuss PSF w
exact transition amplitudes~or the exact matrix elements!
from a one-exciton state to anorthonormalizedtwo-exciton
state. In this sense, our bosonization method leads to
correct transition amplitudes.

B. Matrix elements

With the use of the loose matrix elements in Sec. IV
we can obtain matrix elementŝ n,muĤcdu i , j & and
g̃^n,mu p̂i

†b̂ j
†u0& in Eq. ~4.1!. These matrix elements give a

exact matrix representation of the operator. In the followin
we show analytical formulas of the matrix elements, a
discuss the contribution of the CPE.

The matrix element ofĤcd between the orthonormalize
two-exciton states is obtained as

^n,muĤcdu i , j &54~E01E!F 0~n,mu i , j !

1(
l 50

`

~2s! lT ( l )~n,mu i , j !

1(
l 50

`

~2s! lU ( l )~n,mu i , j !

1(
l 51

`

~2s! lV ( l )~n,mu i , j !. ~4.10!

Here the second term results from the free part of the mo
Hamiltonian,34 and T ( l )(n,mu i , j ) expresses thel th-order
CPE. Its definition is given by Eq.~C1! in Appendix C. Ac-
cording to the definition,T (1)(n,mu i , j ) vanishes. Therefore
there is no first-order term of the CPE in the second term
Eq. ~4.10!. In the above,U ( l )(n,mu i , j ) in the third term and
V ( l )(n,mu i , j ) in the fourth term are extensions o
U (0)(n,mu i , j ) and V (1)(n,mu i , j ) in Eq. ~4.6!, respectively.
Their definitions are also given as Eqs.~C4! and~C5! in Ap-
pendix C. Note thatU ( l )(n,mu i , j ) is defined forl>0, while
5-6
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V ( l )(n,mu i , j ) is for l>1. In the point-boson limit, the matrix
elements@Eq. ~4.10!#, becomes

^n,muĤcdu i , j &.4~E01E!F 0~n,mu i , j !1T (0)~n,mu i , j !

1U (0)~n,mu i , j !, ~4.11!

which is the same form as Eq.~4.7!. This results from the
fact that the orthonormalized two-exciton stateu i , j & is re-
duced to the two-exciton stateb̂i b̂ j u0& in the point-boson
approximation.

Next, we show the matrix element ofg̃p̂i
† between the

one-exciton and orthonormalized two-exciton states,

g̃^n,mu p̂i
†b̂ j

†u0&5(
l 50

`

~2s! lP ( l )~n,mu i , j !

1(
l 51

`

~2s! lQ ( l )~n,mu i , j !, ~4.12!

where P ( l )(n,mu i , j ) and Q ( l )(n,mu i , j ) are given as Eqs
~C8! and ~C9! in Appendix C. It should be noted tha
P ( l )(n,mu i , j ) is defined forl>0 andQ ( l )(n,mu i , j ) is for
l>1. In the point-boson limit for Eq.~4.12!, we obtain the
same result as Eq.~4.9!, i.e.,

g̃^n,mu p̂i
†b̂ j

†u0&.P (0)~n,mu i , j !. ~4.13!

We arrange the forms of the matrix elements@Eqs.~4.10! and
~4.12!# with the use of Eq.~A3! in Appendix A. Classifying
terms of thel th-order CPE into even and odd orders, w
obtain

^n,muĤcdu i , j &54~E01E!F 0~n,mu i , j !1T (0)~n,mu i , j !

1Id~n,mu i , j !2sIx~n,mu i , j !, ~4.14!

g̃^n,mu p̂i
†b̂ j

†u0&5P (0)~n,mu i , j !1Gd~n,mu i , j !

2sGx~n,mu i , j !, ~4.15!

where

Id~n,mu i , j !5A0~n,mu i , j !I d~n,mu i , j !1~ i↔ j or m↔n!,
~4.16!

Ix~n,mu i , j !5A1~n,mu i , j !I x~n,mu i , j !1~ i↔ j or m↔n!,
~4.17!

Gd~n,mu i , j !5B0~n,mu i , j !Gd~n,mu i , j !1~m↔n!,
~4.18!

Gx~n,mu i , j !5B1~n,mu i , j !Gx~n,mu i , j !1~m↔n!.
~4.19!

Here

B0~n,mu i , j !5ds i

mm1nmdm j

mndn j

nn, ~4.20!

B1~n,mu i , j !5ds i

mn1nmdm j

mmdn j

nn, ~4.21!
03510
I d~n,mu i , j !5u(0)~n,mu i , j !1(
l 51

`

@ t (2l )~n,mu i , j !

1u(2l )~n,mu i , j !1v (2l )~n,mu i , j !#,

~4.22!

I x~n,mu i , j !5(
l 51

`

@ t (2l 21)~n,mu i , j !1u(2l 21)~n,mu i , j !

1v (2l 21)~n,mu i , j !#, ~4.23!

Gd~n,mu i , j !5(
l 51

`

@p(2l )~n,mu i , j !1q(2l )~n,mu i , j !#,

~4.24!

Gx~n,mu i , j !5(
l 51

`

@p(2l 21)~n,mu i , j !1q(2l 21)~n,mu i , j !#,

~4.25!

whereu(0)(n,mu i , j ) is given in Eq.~B2! in Appendix B and
t ( l )(n,mu i , j ), u( l )(n,mu i , j ), v ( l )(n,mu i , j ), p( l )(n,mu i , j ),
and q( l )(n,mu i , j ) are defined by Eqs.~C2!, ~C6!, ~C7!,
~C11!, and ~C12! in Appendix C. From these formulas,
turns out thatI d(n,mu i , j ) and I x(n,mu i , j ) include the CPE
and the interactionsVcd , Vcc , andVdd , while Gd(n,mu i , j )
andGx(n,mu i , j ) contain the CPE and the couplingg̃. With
respect to the order of the CPE,I d(n,mu i , j ) contains all the
order, I x(n,mu i , j ) andGx(n,mu i , j ) have more than zeroth
order CPE’s, andGd(n,mu i , j ) results from more than first
order CPE’s. Therefore, onlyI d(n,mu i , j ) remains in the
point-boson limit.

C. Bosonized Hamiltonian

We shall define some functions for the bosonized Ham
tonian. Due to the translational symmetry, a total moment
conserves via the interactions. This momentum conserva
appears in I d(n,mu i , j ), I x(n,mu i , j ), Gd(n,mu i , j ), and
Gx(n,mu i , j ) as dK i1K j

Km1Kn. Therefore, introducingI d(Q,K ),

I x(Q,K ), Gd(Q,K ), and Gx(Q,K ), we rewrite these four
functions as

I d~n,mu i , j !5(
Q

dK i1Q
Km dK j 2Q

Kn I dS Q,
1

2
~K i2K j ! D ,

~4.26!

I x~n,mu i , j !5(
Q

dK i1Q
Km dK j 2Q

Kn I xS Q,
1

2
~K i2K j ! D ,

~4.27!

Gd~n,mu i , j !5(
Q

dK i1Q
Km dK j 2Q

Kn GdS Q,
1

2
~K i2K j ! D ,

~4.28!

Gx~n,mu i , j !5(
Q

dK i1Q
Km dK j 2Q

Kn GxS Q,
1

2
~K i2K j ! D ,

~4.29!
5-7



ed

SATORU OKUMURA AND TETSUO OGAWA PHYSICAL REVIEW B65 035105
where I d(Q,K ), I x(Q,K ), Gd(Q,K ), and Gx(Q,K ) are independent ofm and n, and 1
2 (K i2K j ) stands for the relative

momentum of two bosonized excitons labeled byi and j. With these functions, we write the final forms of the bosoniz
Hamiltonian:

ĤB5 (
mnK

S E01E1
\K2

2M D B̂mnK
† B̂mnK1(

sK
\vKâsK

† âsK1g(
sK

(
mn

ds
m1nB̂mnK

† âsK1~H.c.!

1
1

2 (
mnm8n8

(
QKK 8

I dS Q,
1

2
~K2K 8! D B̂mnK1Q

† B̂m8n8K82Q
† B̂m8n8K8B̂mnK

1
~2s!

2 (
mnm8n8

(
QKK 8

I xS Q,
1

2
~K2K 8! D B̂m8nK1Q

† B̂mn8K82Q
† B̂m8n8K8B̂mnK

1 (
sm8n8

(
QKK 8

(
mn

ds
m1nGdS Q,

1

2
~K2K 8! D B̂mnK1Q

† B̂m8n8K82Q
† B̂m8n8K8âsK1~H.c.!

1~2s! (
sm8n8

(
QKK 8

(
mn

ds
m1nGxS Q,

1

2
~K2K 8! D B̂m8nK1Q

† B̂mn8K82Q
† B̂m8n8K8âsK1~H.c.!, ~4.30!
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where g[g̃ALDw* (r50). Note that the subscripts$mn%
and $m8n8% of the bosonized excitons before and after t
interaction are exchanged inI x and Gx . This means an ex
change of the components of excitons via these interacti
as shown in Fig. 1. We call these terms the ‘‘compone
exchange scattering term’’ and the ‘‘component-excha
nonlinear-coupling term,’’ respectively. On the other han
the interactionsI d andGd do not exchange these subscrip
We call these the ‘‘component-direct scattering term’’ and
‘‘component-direct nonlinear-coupling term.’’

The exchange of the components is related to the orde
the CPE. SinceI d andGd consist of even orders of the CPE
an exchange of the components takes place even times
sulting in no exchange for the pairs. On the other handI x
and Gx contain odd orders of the CPE, leading to the e
change. We also find that onlyI d is dominant in the region
that the distance between two bosonized excitons is la
thana. This corresponds to the fact that only the interact
I d has a zeroth-order term of the CPE@see Eq.~4.22!#. In
such a region,Gd damps quite rapidly because it has on
more than the second-order terms of the CPE@see Eq.
~4.24!#. Since only up to the first-order of the CPE is es
mated in the incomplete CPE theory, there is no correspo
ing term ofGd . Moreover, it should be noted that only th
component-exchange interactionI x and the component
exchange nonlinear couplingGx depend on the statistics o
the c andd particles.

Our bosonization method exhibits a normal-ordering
pansion of the boson operators, and no boson-number de
dence in bosonized operators.28 Consequently, when we con
sider a system with more than two excitons, the two-bo
interactions in Eq.~4.30! remain unchanged, although man
body scattering terms have to be taken into account. No
that two-body interactions are also of primary importance
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FIG. 1. Schematic diagrams of four kinds of interactions:~a! the
component-direct boson-boson interactionI d , ~b! the component-
exchange boson-boson interactionI x , ~c! the component-direct
boson-photon nonlinear couplingGd , and ~d! the component-
exchange boson-photon nonlinear couplingGx . A pair with m, n,
m8, and n8 stands for an exciton, and a circle withs means a
photon~an a particle!.
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many-exciton systems, our theory provides an effective s
forward to many-exciton systems.35 As an example of the
above general formulation, we will apply it to a semicondu
tor bulk system with a photon field in Sec. V.

V. APPLICATION TO A SEMICONDUCTOR BULK
SYSTEM

In this section, a semiconductor bulk system with a ph
ton field is considered to derive concrete forms of t
bosonized Hamiltonian. We pay special attention to
heavy-hole limit. We also study the formation of bound a
unbound states of two bosonized excitons, which corresp
to an excitonic molecule and to scattering states of two
citons.

A. Bosonized Hamiltonian for a semiconductor bulk system

We consider a III-V semiconductor bulk system, whi
consists of two conduction bands and two heavy-hole
lence bands denoted by total-spin indicesm561/2 andn
563/2, respectively. Photons have a polarization ofs5
61. Light-hole bands are not considered here. This syste
equivalent to the model@Eq. ~2.1!#, by regarding thec par-
ticle as a conduction electron, thed particle as a valence
hole, and thea particle as a photon. The energyE0 corre-
sponds to the band-gap energyEg . We further assume tha
Vcd5Vcc5Vdd[V and V(r )5e2/(«ur u), wheree is an el-
ementary electric charge and« is a dielectric constant. Fo
simplicity, let us take a heavy-hole limit,mc /md→0.29,30 In
this section, we employ a real-space representation, whic
suitable for the heavy-hole limit. We consider a thre
dimensional 1s exciton, whose creation operator and relati
energy are

b̂mnR
† 5E d3rw1s~r !ĉmR1r

† d̂nR
† , ~5.1!

E[E1s52
me4

2«2\2
, ~5.2!

respectively. Herew1s(r ) is the three-dimensional 1s exciton
wave function for the relative motion,

w1s~r !5
1

Apa3
expS 2

ur u
a D , ~5.3!

with the three-dimensional exciton Bohr radiusa
5«\2/(me2). Indices$m i ,n i ,Ri% are abbreviated toi in this
section.

The inner product between two-exciton states has
same form as Eq.~2.14!,

^0ub̂nb̂mb̂i
†b̂ j

†u0&52F̃0~n,mu i , j !12sF̃1~n,mu i , j !,
~5.4!

with

F̃0~n,mu i , j !5 1
2 @A0~n,mu i , j ! f̃ 0~n,mu i , j !

1~ i↔ j or m↔n!#, ~5.5!
03510
p

-

-

e

nd
-

-

is

is
-

e

F̃1~n,mu i , j !5 1
2 @A1~n,mu i , j ! f̃ 1~n,mu i , j !

1~ i↔ j or m↔n!#, ~5.6!

f̃ 0~n,mu i , j !5d3~Rm2Ri !d
3~Rn2Rj !, ~5.7!

f̃ 1~n,mu i , j !5d3~Rm2Ri !d
3~Rn2Rj ! f ~Ri2Rj !,

~5.8!

wheres521 in the present case andf (R) is defined as

f ~R!5F11
R

a
1

1

3 S R

a D 2G2

expS 2
2R

a D , ~5.9!

with R5uRu. As shown in Fig. 2, the functionf (R) becomes
unity at the origin and behaves asymptotically asf (R)
; 1

9 (R/a)4exp(22R/a) for uRu@a. The fact f (R50)51
means that two excitons cannot occupy the same place,
the excitons cannot be regarded as bosons, correspondi

^0ub̂nb̂mb̂i
†b̂ j

†u0&50. The asymptotic behavior foruRu@a re-
flects that the excitons behave as bosons when they sep
from each other, resulting from thatF̃1(n,mu i , j ) in Eq.
~5.4!, the first-order CPE, disappears foruRu@a.

The orthonormalized two-exciton state@Eq. ~3.1!# be-
comes simple in the present case as

um in iRi ,m jn jRj&5b̂m in iRi

† b̂m jn jRj

† u0&Fd~Ri2Rj !

1b̂m jn iRi

† b̂m in jRj

† u0&~2s!Fx~Ri2Rj !,

~5.10!

where

Fd~R!5
1

2 F 1

A12 f ~R!
1

1

A11 f ~R!
G , ~5.11!

Fx~R!5
1

2 F 1

A12 f ~R!
2

1

A11 f ~R!
G , ~5.12!

which are plotted in Fig. 3. Since the asymptotic form
of Fd(R) and Fx(R) for uRu@a are Fd(R);1

FIG. 2. The functionf (R) in Eq. ~5.9! is plotted as a function of
uRu/a. It becomes unity at the origin, and damps rapidly foruRu
@a.
5-9
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1 1
216(R/a)8exp(24R/a) and Fx(R); 1

18 (R/a)4exp(22R/a),
respectively, the orthonormalized two-exciton state becom
equivalent to the two-exciton stateb̂m in iRi

† b̂m jn jRj

† u0& in the

case of uRi2Rj u@a. The point-boson approximatio
um in iRi ,m jn jRj&.b̂m in iRi

† b̂m jn jRj

† u0&↔B̂m in iRi

† B̂m jn jRj

† u0) is

valid only in this case.
The loose matrix element@Eq. ~4.6!# becomes

^0ub̂nb̂mĤcdb̂i
†b̂ j

†u0&54~Eg1E1s!@F̃0~n,mu i , j !

1sF̃1~n,mu i , j !#1Ũ(0)~n,mu i , j !

2sṼ(1)~n,mu i , j !, ~5.13!

where

Ũ(0)~n,mu i , j !5A0~n,mu i , j !ũ(0)~n,mu i , j !

1~ i↔ j or m↔n!, ~5.14!

Ṽ(1)~n,mu i , j !5A1~n,mu i , j !ṽ (1)~n,mu i , j !

1~ i↔ j or m↔n!, ~5.15!

ũ(0)~n,mu i , j !5d3~Rm2Ri !d
3~Rn2Rj !u~Ri2Rj !,

~5.16!

ṽ (1)~n,mu i , j !5d3~Rm2Ri !d
3~Rn2Rj !v~Ri2Rj !.

~5.17!

Two functionsu(R) andv(R) are evaluated analytically36 as

u~R!5
e2

2«a

2 exp~22r !

r S 11
5r

8
2

3r 2

4
2

r 3

6 D ,

~5.18!

FIG. 3. Two functionsFd(R) and Fx(R) in Eqs. ~5.11! and
~5.12! are plotted as a function ofuRu/a. These approach asymp
totically unity and zero, respectively, foruRu@a.
03510
es v~R!5
e2

2«a H S 2
2

r
2

5

4
1

209r

30
1

26r 2

5
1

56r 3

45 D
3exp~22r !2

12

5r
@gS1

2 ~r !1S1
2 ~r !ln~r !

22S1~r !S2~r !Ei~22r !1S2
2 ~r !Ei~24r !#J ,

~5.19!

wherer[uRu/a, g is the Euler’s constant, and

S1~r ![S 11r 1
r 2

3 Dexp~2r !, ~5.20!

S2~r ![S 12r 1
r 2

3 Dexp~r !, ~5.21!

Ei~2r ![2E
r

`

dt
exp~2t !

t
. ~5.22!

Theseu(R) and v(R) are plotted in Fig. 4. The function
u(R), which expresses the Coulomb interaction between
charge distributions of excitons, diverges as 1/uRu in the vi-
cinity of the origin (uRu;0), and behaves asymptoticall
(uRu@a) asu(R);2e2/(6«a)(R/a)2exp(22R/a); near the
origin the Coulomb repulsive interaction between holes
comes dominant, and foruRu@a the Coulomb interaction
between the charge distributionswith no poleis essential in
three-dimensional 1s exciton systems. It should be noted th
the exponential decay ofu(R) for uRu@a results not from
the CPE but from the Coulomb interaction between the
pole charge distributions. If we consider two-dimension
systems instead of three-dimensional ones,u(R) is propor-
tional to 1/uRu5 for uRu@a due to the quadrupole-quadrupo
Coulomb interaction.37 On the other hand,v(R) behaves as
21/uRu near the origin, and exhibits an exponential decay
uRu@a due to the CPE. In Fig. 5,u(Q) andv(Q), the Fou-
rier transforms ofu(R) andv(R), are drawn.

FIG. 4. The loose matrix elementsu(R) andv(R), given in Eqs.
~5.18! and ~5.19!, are plotted as a function ofuRu/a. The matrix
elementsI d(R) and I x(R) given in Eqs.~5.30! and ~5.31! are also
plotted. The vertical axis is normalized by a unit ofe2/2«a. The
inset is an enlargement of the main plot.
5-10
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BOSON REPRESENTATION OF TWO-EXCITON . . . PHYSICAL REVIEW B65 035105
The loose matrix elements aboutg̃p̂sR
† @Eq. ~4.8!# is

evaluated as

g̃^0ub̂nb̂mp̂i
†b̂ j

†u0&5P̃(0)~n,mu i , j !2sQ̃(1)~n,mu i , j !,
~5.23!

where

P̃(0)~n,mu i , j !5B0~n,mu i , j ! p̃(0)~n,mu i , j !1~m↔n!,
~5.24!

Q̃(1)~n,mu i , j !5B1~n,mu i , j !q̃(1)~n,mu i , j !1~m↔n!,
~5.25!

p̃(0)~n,mu i , j !5d3~Rm2Ri !d
3~Rn2Rj !g̃AL3w1s* ~0!,

~5.26!

q̃(1)~n,mu i , j !5d3~Rm2Ri !d
3~Rn2Rj !q~Ri2Rj !.

~5.27!

FIG. 5. The Fourier transforms ofu(R), v(R), I d(R), and
I x(R), denoted asu(Q), v(Q), I d(Q) and I x(Q), respectively, are
plotted as a function ofuQua. The vertical axis is normalized by
unit of (2pa/L)3e2/2«a. We find that the interactions between tw
bosonized excitonsI d(Q), and I x(Q) nearQ.0 are enhanced by
the CPE in comparison with the incorrect interactionsu(Q) and
v(Q), which are estimated with the loose matrix elements.
03510
Here the index i of p̂i means $s i ,Ri% and p̂sR
†

5L23/2(K p̂sK
† exp(2iK•R). The analytical form ofq(R) is

q~R!52gF11
R

a
1

1

3 S R

a D 2GexpS 2
2R

a D , ~5.28!

whereg[g̃AL3w1s* (0). Thefunction q(R) damps exponen-
tially in the region ofuRu@a due to the CPE, as shown i
Fig. 6. The behavior ofq(R) near the origin indicates that a
exciton cannot be created at the position where the o
exciton has already stayed. The Fourier transformq(Q) is
shown in Fig. 7.

The matrix elements of the Hamiltonian are calculat
with the orthonormalized two-exciton states@Eq. ~5.10!#. De-
tails of the matrix elements are given in Appendix D. Wi
use of these matrix elements, we finally derive the bosoni
Hamiltonian for the semiconductor bulk system in the hea
hole limit:

FIG. 6. The functionq(R) in Eq. ~5.28! is plotted as a function
of uRu/a. The nonlinear couplings between the bosonized excit
and a photon,Gd(R) andGx(R) in Eqs.~5.32! and~5.33!, are also
plotted. The vertical axis is normalized by a unit ofg

5g̃AL3w1s* (0).
ĤB5(
mn

E d3R~Eg1E1s!B̂mnR
† B̂mnR1(

sK
\vKâsK

† âsK1g(
s

E d3R(
mn

ds
m1nB̂mnR

† âsR1~H.c.!

1
1

2 (
mnm8n8

E d3Rd3R8I d~R2R8!B̂mnR
† B̂m8n8R8

† B̂m8n8R8B̂mnR

2
s

2 (
mnm8n8

E d3Rd3R8I x~R2R8!B̂m8nR
† B̂mn8R8

† B̂m8n8R8B̂mnR

1 (
sm8n8

E d3Rd3R8(
mn

ds
m1nGd~R2R8!B̂mnR

† B̂m8n8R8
† B̂m8n8R8âsR1~H.c.!

2s (
sm8n8

E d3Rd3R8(
mn

ds
m1nGx~R2R8!B̂m8nR

† B̂mn8R8
† B̂m8n8R8âsR1~H.c.!. ~5.29!
5-11
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SATORU OKUMURA AND TETSUO OGAWA PHYSICAL REVIEW B65 035105
The first three terms ofĤB are the free Hamiltonian for the
bosonized excitons, the photons, and a linear coup
among them. The other four terms express the boson-bo
scattering terms, whose coefficients areI d(R) andI x(R), and
the boson-photon nonlinear-coupling terms, whose coe
cients areGd(R) andGx(R). All of the coefficients are func-
tions only ofR, and given as

I d~R!5F1~R!u~R!1F2~R!v~R!, ~5.30!

I x~R!5F2~R!u~R!1F1~R!v~R!, ~5.31!

Gd~R!5g@Fd~R!21#1Fx~R!q~R!, ~5.32!

Gx~R!5gFx~R!1Fd~R!q~R!. ~5.33!

The scattering coefficientsI d(R) and I x(R) are plotted in
Fig. 4, and the nonlinear coupling coefficientsGd(R) and
Gx(R) are in Fig. 6. Hereu(R), v(R), Fd(R), Fx(R), and
q(R) are given in Eqs.~5.18!, ~5.19!, ~5.11!, ~5.12!, and
~5.28!, respectively, and

F1~R!5
1

2 F 1

12 f ~R!
1

1

11 f ~R!G , ~5.34!

F2~R!5
1

2 F 1

12 f ~R!
2

1

11 f ~R!G . ~5.35!

Since the CPE disappears foruRu@a, I d(R) and I x(R) are
reduced respectively tou(R) and v(R)1 f (R)u(R), which

FIG. 7. The Fourier transforms ofq(R), Gd(R), and Gx(R),
denoted asq(Q), Gd(Q), andGx(Q), respectively, are plotted as
function of uQua. The vertical axis is normalized by a unit o
(2pa/L)3g.
03510
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are the lowest-order CPE terms of theI d(R) and I x(R).
Since the lowest-order of the CPE inGd(R) is second order,
Gd(R) damps quite rapidly foruRu@a. On the other hand
the asymptotic behavior ofGx(R) can be reduced toq(R)
1 f (R)/2, which is the first-order CPE inGx(R). These re-
duction forms correspond to the results of the incompl
CPE theory, whose scattering and nonlinear-coupling coe
cients are described asI d(R)5u(R), I x(R)5v(R), and
Gx(R)5q(R). There is no corresponding term o
Gd(R).21–24,26,27Correspondence between the coefficients
the complete- and incomplete CPE theory is summarized
Table I.

The Fourier transforms ofI d(R), I x(R), Gd(R), and
Gx(R), which are denoted, respectively, asI d(Q), I x(Q),
Gd(Q), and Gx(Q), are shown in Figs. 5 and 7. In thes
figures, the behavior aroundQ50 is remarkable. The
strength of the scattering terms has often been estimate
the value at Q50. Compared with the previou
results,21–24,26,27 the scattering strength between th
bosonized excitons are enhanced by the CPE, as show
Fig. 5. Moreover, the behavior of the nonlinear coupling
Gd(Q), andGx(Q), nearQ50 is qualitatively different from
the previous results using the Usui transformation.21,22A rea-
son for this disagreement is that in our theory the strength
the couplings is estimated with the use of the matrix e
ments, which include the CPE correctly, while in the Us
transformation it is estimated with the loose matrix elemen

As shown in Eq.~5.29!, the scatterings described b
I x(R) andGx(R) exchange the indices of the bosonized e
citons. Therefore, it is possible to create the bosonized e
tons, to which the dipole transition is forbidden, i.e.,m1n
562. For example, two bosonized excitons of (m5
21/2,n53/2) and (m51/2,n523/2) change to those o
(m51/2,n53/2) and (m521/2,n523/2) after I x scatter-
ing, and a bosonized exciton of (m521/2,n53/2) is trans-
formed to two bosonized excitons of (m51/2,n53/2) and
(m521/2,n523/2) after the nonlinear interactionGx with
a photon ofs521.

B. Bound and unbound states of the two bosonized excitons

We show that our boson theory can explain both bou
and unbound states of the two bosonized excitons, wh
correspond to excitonic molecules and scattering state
two excitons, respectively. We first define the ‘‘triplet states
ut;1), ut;21), andut;0), and the ‘‘singlet state,’’us) as
e CPE
ed for
TABLE I. Correspondence between scattering and nonlinear-coupling coefficients in the complet
theory and the incomplete CPE theory. Coefficients up to the first order of the CPE are also list
comparison.

Complete CPE theory Complete CPE theory Incomplete CPE theory
~exact! ~up to the first order of the CPE!

I d(R) u(R) u(R)
I x(R) v(R)1 f (R)u(R) v(R)
Gd(R) 0 none
Gx(R) q(R)1 f (R)/2 q(R)
5-12
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ut;61)[B̂6(1/2)nR
† B̂6(1/2)n8R8

† u0), ~5.36!

ut;0)[
1

A2
@B̂(1/2)nR

† B̂2(1/2)n8R8
†

1B̂2(1/2)nR
† B̂(1/2)n8R8

†
#u0),

~5.37!

us)[
1

A2
@B̂(1/2)nR

† B̂2(1/2)n8R8
†

2B̂2(1/2)nR
† B̂(1/2)n8R8

†
#u0),

~5.38!

wheren andn8 are arbitrary. For two-photon absorption pr
cesses,ut;61) are allowed for the cocircular polarizatio
configuration, whileut;0) andus) are allowed for the counte
circular configuration. We shall calculate an energy expe
tion value for these four states as a function ofR2R8, that
is,

~ t;zuĤcd
B ut;z!52~Eg1E1s!1DEt~R2R8!, ~5.39!

~suĤcd
B us!52~Eg1E1s!1DEs~R2R8!, ~5.40!

wherez521, 0, or 1 and the interaction potentials,DEt(R)
andDEs(R), are given as

DEt~R!5I d~R!1~2s!I x~R!, ~5.41!

DEs~R!5I d~R!2~2s!I x~R!. ~5.42!

TheseDEt(R) andDEs(R) are drawn in Fig. 8 for the cas
of s521. We find thatDEt(R) is positive for arbitraryuRu,
while DEs(R) becomes negative arounduRu5a. Therefore,
the triplet and singlet states correspond to unbound states
a bound state of the two bosonized excitons, respectively
a fictitious case ofs511, i.e., the components of an excito
are bosons, the triplet states correspond to bound states
the singlet state corresponds to the unbound state. Our t
ment on the interaction potentials is a modified version of
Heitler-London theory from the viewpoint of the bosoniz

FIG. 8. The interaction potentials for the triplet states and
singlet state,DEt(R) and DEs(R) in Eqs. ~5.41! and ~5.42!, are
plotted as a function ofuRu/a for s521. The vertical axis is nor-
malized by a unit ofe2/2«a. The incorrect interaction potentials
DEt8(R) andDEs8(R) are also drawn for comparison.
03510
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excitons. In fact, these interaction potentials agree with
result of the Heitler-London theory, which treatsa as a varia-
tional parameter.

Here we see the interaction strength between
bosonized excitons with the use of the loose matrix eleme
in Sec. IV A. We stress again that the use of loose ma
elements instead of the matrix elements is an unreliable
proximation in the bosonization procedure: the point-bos
approximation. Under this approximation,I d(R) and I x(R)
in the bosonized Hamiltonian becomeu(R) and v(R), re-
spectively. With these interactions, the interaction potent
of the triplet states and the singlet state are evaluated as

DEt8~R!5u~R!1~2s!v~R!, ~5.43!

DEs8~R!5u~R!2~2s!v~R!, ~5.44!

which are shown also in Fig. 8 fors521. We can easily
find that DEt8(R) shows a qualitative difference from
DEt(R) in the region ofuRu,a. Thus employing loose ma
trix elements leads to incorrect results, in particular, in
region where the excitons overlap with each other.

VI. CONCLUSIONS

Starting with the Hamiltonian describing interban
electron-hole excitations, excitons, in semiconduct
coupled with a photon field, we derive a bosonized Ham
tonian for two-exciton optical processes, taking into full a
count deviations of the excitons from ideal bosons. In
bosonization procedure, we have clarified how the excit
exciton and exciton-photon interactions depend on the qu
tum statistics of the component particles of an exciton, on
momenta of the exciton center-of-mass motion, and on
internal degrees of freedom of the components. In the c
where two excitons overlap one another, deviations of ex
tons from ideal bosons become crucial, which affect the
teractions among bosonized excitons and photons. We h
called such effects the composite-particle effect~CPE!. It is
stressed again that our bosonization can map two-exc
systems with anarbitrary exciton Bohr radiusa to the ideal
boson systems even when the point-boson approximatio
invalid, e.g., uR2R8u;a. In the bosonized Hamiltonian
there are four nontrivial interaction terms— the compone
direct boson-boson scattering term denoted byI d , the
component-exchange boson-boson scattering termI x , the
component-direct nonlinear-coupling termGd , and the
component-exchange nonlinear-coupling termGx—between
the bosonized excitons and a photon. In terms of the C
order, I d starts from a zeroth-order CPE,I x and Gx from
more than a zeroth-order CPE andGd from more than a
first-order CPE. It has also been shown that the quan
statistics of the components affects only the signs ofI x and
Gx . As an example, we have studied a semiconductor b
system with a radiation field in the heavy-hole limit. Th
strength ofI d(Q) and I x(Q) in the vicinity of Q50 is en-
hanced by the CPE. We have also shown that our theory
correctly explain the bound and unbound states of the
bosonized excitons.

e
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The bosonization method used in this paper exhib
normal-ordering expansion of the boson operators, and
boson-number dependence in the bosonized operators28,33

Accordingly, when we consider more than two exciton s
tems, the two-body interactionsI d , I x , Gd , andGx obtained
in this paper remain unchanged. Then we believe that
bosonization to two-exciton systems can be an impor
step forward in understanding excitonic nonlinear opti
processes and the nature of many-exciton states.
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APPENDIX A: DEFINITION OF THE COEFFICIENT
IN EQ. „3.1…

We shall give a definition ofF l(n,mu i , j ) for any integer
l>1, which expresses thel th-order CPE. We first introduce
two definitionsf l(n,mu i , j ) andAl(n,mu i , j ),

Al~n,mu i , j ![S )
k51

l 21

(
i (k) j (k)

D A1~n,mu i ( l 21), j ( l 21)!

3A1~ j ( l 21),i ( l 21)u i ( l 22), j ( l 22)!3 . . .

3A1~ j (2),i (2)u i (1), j (1)!A1~ j (1),i (1)u i , j !,

~A1!

f l~n,mu i , j ![S )
k51

l 21

(
i (k) j (k)

D f 1~n,mu i ( l 21), j ( l 21)!

3 f 1~ j ( l 21),i ( l 21)u i ( l 22), j ( l 22)!3 . . .

3 f 1~ j (2),i (2)u i (1), j (1)! f 1~ j (1),i (1)u i , j !,

~A2!

wherei (k)5$m i (k),n i (k)% in Eq. ~A1!, i (k)5K i (k) in Eq. ~A2!,
and A1(n,mu i , j ) and f 1(n,mu i , j ) are given in Eqs.~2.18!
and ~2.20!. HereAl(n,mu i , j ) can be reduced to

Al~n,mu i , j !5H A0~n,mu i , j ! for l 5even

A1~n,mu i , j ! for l 5odd
~A3!

On the other hand,f l(n,mu i , j ) has a wave-number conse
vation rule of

f l~n,mu i , j !50, if Km1KnÞK i1K j . ~A4!

Next we defineF l(n,mu i , j ) as
03510
s
o

-

ur
nt
l

-

-
l-

.
.

-

F l~n,mu i , j ![S )
k51

l 21

(
i (k) j (k)

DF 1~n,mu i ( l 21), j ( l 21)!

3F 1~ j ( l 21),i ( l 21)u i ( l 22), j ( l 22)!3 . . .

3F 1~ j (2),i (2)u i (1), j (1)!F 1~ j (1),i (1)u i , j !,

~A5!

where i (k)5$m i (k),n i (k),K i (k)% and F 1(n,mu i , j ) is given in
Eq. ~2.16!. We can rewrite this in terms off l(n,mu i , j ) and
Al(n,mu i , j ) as

F l~n,mu i , j !5 1
2 @Al~n,mu i , j ! f l~n,mu i , j !

1~ i↔ j or m↔n!#. ~A6!

Here we note some useful relations:

F l~n,mu i , j !5F l~n,mu j ,i !5F l~m,nu i , j !, ~A7!

F l~ j ,i um,n!5@F l~n,mu j ,i !#* . ~A8!

APPENDIX B: DEFINITIONS OF SOME FUNCTIONS IN
THE LOOSE MATRIX ELEMENTS

This appendix is devoted to definitions of some functio
in Sec. IV A. The interaction energy among density distrib
tions of the components of excitons,U (0)(n,mu i , j ), which is
a zeroth-order CPE, is defined as

U (0)~n,mu i , j !5A0~n,mu i , j !u(0)~n,mu i , j !

1~ i↔ j or m↔n!, ~B1!

where

u(0)~n,mu i , j !5ucd~n,mu i , j !1ucc~n,mu i , j !1udd~n,mu i , j !,
~B2!

with

ucd~n,mu i , j !522(
Q

dK i1Q
Km dK j 2Q

Kn Vcd~Q!

3F(
k

f* ~aQ1k!f~k!G
3F(

k
f* ~bQ1k!f~k!G , ~B3!

ucc~n,mu i , j !5(
Q

dK i1Q
Km dK j 2Q

Kn Vcc~Q!

3F(
k

f* ~bQ1k!f~k!G2

, ~B4!

udd~n,mu i , j !5(
Q

dK i1Q
Km dK j 2Q

Kn Vdd~Q!

3F(
k

f* ~aQ1k!f~k!G2

. ~B5!
5-14
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The interaction for the exchange of the exciton compone
V (1)(n,mu i , j ), the first-order CPE, is

V (1)~n,mu i , j !5A1~n,mu i , j !v (1)~n,mu i , j !

1~ i↔ j or m↔n!, ~B6!
ix

03510
s,where

v (1)~n,mu i , j !5vcd~n,mu i , j !1vcc~n,mu i , j !1vdd~n,mu i , j !,
~B7!

with
vcd~n,mu i , j !5
1

2
dK i1K j

Km1Kn(
q

Vcd~q!(
k

@f* „a~Km2K j !1k2q…f* „b~Km2K i !1k…

3f~k!f„a~Km2K j !1b~Km2K i !1k…1f* „a~Km2K j !1k…f* „b~Km2K i !1k2q…

3f~k!f„a~Km2K j !1b~Km2K i !1k…1f* „a~Km2K j !1k…f* „b~Km2K i !1k…

3f~k2q!f„a~Km2K j !1b~Km2K i !1k…1f* „a~Km2K j !1k…f* „b~Km2K i !1k…

3f~k!f„a~Km2K j !1b~Km2K i !1k2q…#, ~B8!

vcc~n,mu i , j !52dK i1K j

Km1Kn(
q

Vcc~q!(
k

f* „a~Km2K j !1k…f* „b~Km2K i !1k2q…

3f~k2q!f„a~Km2K j !1b~Km2K i !1k…, ~B9!

vdd~n,mu i , j !52dK i1K j

Km1Kn(
q

Vdd~q!(
k

f* „a~Km2K j !1k2q…f* „b~Km2K i !1k…

3f~k2q!f„a~Km2K j !1b~Km2K i !1k…. ~B10!
Next we give the definitions ofP (0)(n,mu i , j ) and
Q (1)(n,mu i , j ) as

P (0)~n,mu i , j !5B0~n,mu i , j !p(0)~n,mu i , j !1~m↔n!,
~B11!

Q (1)~n,mu i , j !5B1~n,mu i , j !q(1)~n,mu i , j !1~m↔n!,
~B12!

whereB0(n,mu i , j ) andB1(n,mu i , j ) are given in Eqs.~4.20!
and ~4.21!, respectively, and

p(0)~n,mu i , j !5g̃dK i

KmdK j

KnALDw* ~0!, ~B13!

q(1)~n,mu i , j !52g̃(
k

f* „a~Km2K j !1k…

3f* „b~Km2K i !1k…f„a~Km2K j !

1b~Km2K i !1k…. ~B14!

APPENDIX C: DEFINITIONS OF SOME FUNCTIONS
IN THE MATRIX ELEMENTS

Here we give the definition of the functions in the matr
elements @Eqs. ~4.10! and ~4.12!#. The definition of
T ( l )(n,mu i , j ) is
T ( l )~n,mu i , j !5
1

2 (
l 850

l

~j l 8h l 2 l 81h l 8j l 2 l 8!

3 (
n8m8 i 8 j 8

F l 8~n,mum8,n8!

3T (0)~n8,m8u i 8, j 8!F l 2 l 8~ j 8,i 8u i , j !

5Al~n,mu i , j !t ( l )~n,mu i , j !

1~ i↔ j or m↔n!, ~C1!

wherej l5(2l )!/(2 l l !) 2, T (0)(n,mu i , j ) andF l(n,mu i , j ) are
defined in Eqs.~4.2! and ~A5!, and

t ( l )~n,mu i , j !5
1

2 (
l 850

l

~j l 8h l 2 l 81h l 8j l 2 l 8!

3 (
K i 8K j 8

f l 8~n,mu i 8 j 8!
\2

2M
~K i 8

2
1K j 8

2
!

3 f l 2 l 8~ j 8,i 8u i , j !, ~C2!

h l5H j0 for l 50

j l2j l 21 for l>1.
~C3!

According to this definition,T (1)(n,mu i , j )50 because of
j0h11h0j150.

Next, U ( l )(n,mu i , j ) andV ( l )(n,mu i , j ) are defined as
5-15
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U ( l )~n,mu i , j !5 (
l 850

l

j l 8j l 2 l 8 (
n8m8 i 8 j 8

F l 8~n,mum8,n8!

3U (0)~n8,m8u i 8, j 8!F l 2 l 8~ j 8,i 8u i , j !

5Al~n,mu i , j !u( l )~n,mu i , j !

1~ i↔ j or m↔n!, ~C4!

V ( l )~n,mu i , j !5 (
l 850

l 21

j l 8j l 212 l 8 (
n8m8 i 8 j 8

F l 8~n,mum8,n8!

3V (1)~n8,m8u i 8, j 8!F l 212 l 8~ j 8,i 8u i , j !

5Al~n,mu i , j !v ( l )~n,mu i , j !

1~ i↔ j or m↔n!, ~C5!

where U (0)(n,mu i , j ) and V (1)(n,mu i , j ) are given in Eqs.
~B1! and ~B6!, and

u( l )~n,mu i , j !5 (
l 850

l

j l 8j l 2 l 8 (
Km8n8i 8 j 8

f l 8~n,mum8,n8!

3u(0)~n8,m8u i 8, j 8! f l 2 l 8~ j 8,i 8u i , j !,

~C6!

v ( l )~n,mu i , j !5 (
l 850

l 21

j l 8j l 212 l 8 (
Km8n8i 8 j 8

f l 8~n,mum8,n8!

3v (1)~n8,m8u i 8, j 8! f l 212 l 8~ j 8,i 8u i , j !,

~C7!

with u(0)(n,mu i , j ) andv (1)(n,mu i , j ) given in Eqs.~B2! and
~B7!. The summation runs overKm8 , Kn8 , K i 8 , and K j 8 .
Here note thatU ( l )(n,mu i , j ) and V ( l )(n,mu i , j ) are defined
for l>0 andl>1, respectively.

In Eq. ~4.12!, P ( l )(n,mu i , j ) andQ ( l )(n,mu i , j ) are given
as

P ( l )~n,mu i , j !5j l (
m8n8

F l~n,mum8,n8!P (0)~n8,m8u i , j !

5Bl~n,mu i , j !p( l )~n,mu i , j !1~m↔n!,

~C8!

Q ( l )~n,mu i , j !5j l 21 (
m8n8

F l 21~n,mum8,n8!

3Q (1)~n8,m8u i , j !

5Bl~n,mu i , j !q( l )~n,mu i , j !1~m↔n!,

~C9!

where P (0)(n,mu i , j ) and Q (1)(n,mu i , j ) are given in Eqs.
~B11! and ~B12!, and
03510
Bl~n,mu i , j !5(
m in i

ds i

m i1n iAl~n,mu i , j !

5H B0~n,mu i , j ! for l 5even

B1~n,mu i , j ! for l 5odd,
~C10!

p( l )~n,mu i , j !5 (
Km8Kn8

j l f
l~n,mum8,n8!p(0)~n8,m8u i , j !,

~C11!

q( l )~n,mu i , j !5 (
Km8Kn8

j l 21f l 21~n,mum8,n8!

3q(1)~n8,m8u i , j !, ~C12!

with B0(n,mu i , j ) andB1(n,mu i , j ) in Eqs.~4.20! and~4.21!,
and p(0)(n,mu i , j ) and q(1)(n,mu i , j ) in Eqs. ~B13! and
~B14!. HereP ( l )(n,mu i , j ) andQ ( l )(n,mu i , j ) are defined for
l>0 andl>1, respectively.

APPENDIX D: MATRIX ELEMENTS FOR
A SEMICONDUCTOR BULK SYSTEM

The matrix elements ofĤcd and g̃p̂sR
† for a semiconduc-

tor bulk system are given here in the heavy-hole limit. W
the use of the orthonormalized two-exciton states@Eq.
~5.10!# we obtain the matrix elements ofĤcd as

^n,muĤcdu i , j &54~Eg1E1s!F 0~n,mu i , j !

1Ĩd~n,mu i , j !2sĨx~n,mu i , j !, ~D1!

where

Ĩd~n,mu i , j !5A0~n,mu i , j !d3~Rm2Ri !d
3~Rn2Rj !

3I d~Ri2Rj !1~ i↔ j or m↔n!, ~D2!

Ĩx~n,mu i , j !5A1~n,mu i , j !d3~Rm2Ri !d
3~Rn2Rj !

3I x~Ri2Rj !1~ i↔ j or m↔n!. ~D3!

Here I d(R) and I x(R) are given in Eqs.~5.30! and ~5.31!.
The matrix element ofg̃p̂sR

† is

g̃^n,mu p̂i
†b̂ j

†u0&5P̃(0)~n,mu i , j !1G̃d~n,mu i , j !

2sG̃x~n,mu i , j !, ~D4!

whereP̃(0)(n,mu i , j ) is given in Eq.~5.24! and

G̃d~n,mu i , j !5B0~n,mu i , j !d3~Rm2Ri !d
3~Rn2Rj !

3Gd~Ri2Rj !1~m↔n!, ~D5!

G̃x~n,mu i , j !5B1~n,mu i , j !d3~Rm2Ri !d
3~Rn2Rj !

3Gx~Ri2Rj !1~m↔n!. ~D6!

HereGd(R) andGx(R) are given in Eqs.~5.32! and~5.33!,
respectively.
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