PHYSICAL REVIEW B, VOLUME 65, 035105

Boson representation of two-exciton correlations: An exact treatment of composite-particle effects
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We derive a bosonized Hamiltonian describing two-exciton correlation of semiconductor-photon coupled
systems with a bosonization method, which takes into full account an effect of deviation of the excitons from
ideal bosons. This deviation effect stems from the fact that excitons are composite particles, whose character
appears clearly in the case where the excitons overlap each other. We call this effect a composite-particle effect
(CPB. To our knowledges this effect was not considered completely in previous theoretical works on exciton-
exciton interaction. The Hamiltonian introduced in this paper includes the results of the previous works as
low-order terms of the CPE. After the introduction of a general theory of the bosonization method for arbitrary
dimension and electron-hole mass ratio, we also demonstrate an application to a semiconductor bulk system
coupled with a photon field in the heavy-hole limit. The bosonized Hamiltonian shows that the CPE brings
about an enhancement of the exciton-exciton scattering strength and a qualitative change of the
photo transition amplitude. It is also shown that the Hamiltonian describes two-exciton bound and scattering
states.
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. INTRODUCTION enologically for both the low-density systetfd® and the
high-density system®?° Therefore, it is important to
Since semiconductors show various phenomena dependtrengthen the microscopic bases of the bosonic methods,
ing on the density of the carriers excited by light, they havei.e., how to obtain the bosonic Hamiltonian by a bosoniza-
attracted much notice for many years. In the low-densitytion of the excitons. Since two-exciton correlations are the
regime, third-order nonlinear optical responses, particularlymost important many-exciton correlations not only for the
four-wave-mixing signals nearslexciton resonance, have low-density regime but also for the high-density regime, the
been intensively investigated because they yield informatiotvosonic Hamiltonian is required to describe two-exciton cor-
not only on the transverse-relaxation time of excitons butelations. For this purpose, the Usui transformattoft and
also on two-exciton correlations, which are the most fundathe point-boson approximatiéh?® have been employed to
mental correlations in many-exciton correlatidn&.In the  estimate two-exciton correlation terms, i.e., the interaction
high-density regime, conversely, the Bose-Einstein conderbetween two bosonized excitons and the nonlinear coupling
sation of the excitons, the electron-hole BCS states, the ebetween two bosonized excitons and lighMoreover, the
citon Mott transition, the electron-hole droplet formation, exciton-exciton interaction described with the same formal-
etc., have been studied as interesting phenoméria. ism as the above bosonization methods have also been ob-
For an analysis of these phenomena, theoretical methodained, though these interactions are not evaluated as the re-
are roughly classified into two kinds of frameworks. One issult of the bosonization of the excitof%?’
“fermionic methods,” which directly treat the semiconduc-  Although excitons have often been considered as bosons,
tors as interacting electron-hole systems, and the other istrictly speaking they areot bosons satisfying typical boson
“bosonic methods,” which describe the systems by interactcommutation relations. This is because an exciton is a com-
ing ideal bosons corresponding to excitdasd the exciton posite particle of an electron and a hole. In general, only
molecules in some cased-ermionic methods are of great when excitons are spatially separated enough from one an-
generality because the electron-hole Hamiltonian describesther in comparison to the exciton Bohr radaisan they be
the Coulomb interaction among the fermionic carriers andegarded as bosons, whose internal structures are negligible.
the carrier-light coupling. These methods have been develConversely, when excitons come close to and overlap one
oped in wide range of carrier densities by manyanother, composite characters of the excitons appear, and
workers*?~1 Bosonic methods, on the other hand, comprisehence the excitons deviate from the bosons. Since the exci-
an effective theory for systems in which the excitons are welton correlations are determined by this deviation effect and
defined. Since these methods represent excitons as bosottse Coulomb interaction among the carriers, the deviation
they give simple pictures to systems where the bosonic propeffect is indispensable for a correct estimation of the exciton
erties are useful in understanding the phenomena. For thisorrelations. We call the deviation effect a composite-particle
reason, bosonic methods have often been employed phenomffect (CPE. Bosonization methods should include the CPE
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in the boson-boson interaction and the boson-light nonlineathe component particles; this was a nuisance in the Usui
coupling. However, this effect has been less frequently contransformation, but can put constraints on the energy of the
sidered thus far. In later sections, we will show that therelative motion of an exciton by using a TD representation.
boson-boson interaction and the boson-light nonlinear couMoreover, we explicitly take into full account the exciton
pling derived in previous works=2426?7do not include the center-of-mass motion and the spin degrees of freedom of
CPE completely. We classify those works as “incompletethe component particles. In Sec. lll, our bosonization method
CPE theories.” is elucidated, and an orthonormalized two-exciton state is
In this paper, we report a bosonized Hamiltonian describintroduced. Section 1V is devoted to a calculation of matrix
ing correct two-exciton correlations in which the CPE is €léments of the model Hamiltonian. In Sec. IV A, we exam-

completely taken into account. To clarify the difference be-N€ the *loose matrix elements,” which stand for the matrix
tween the previous incomplete CPE theories and our scom&lements represented with the two-exciton states which are
» - p ” nonorthonormal basis. These loose matrix elements have of-
plete CPE theory,” we define the “order” of the CPE, and \ '\ o interpreted as interactions among excitbré:26-2
g}e?hgerg:Ea ngnopr;'eztz?yH;:;:It?r:‘éarb'slc“é?'gg Lhoi;ﬂ:zc;;?:gsmce the CPE is, however, not completely included in these

hnique® This Hamiltonian includes th Its of the | elements, they lead to incorrect interactions among excitons
technique.” This Hamiltonian includes the results of the In- 5,y photons in the region that two excitons overlap each
complete CPE theory as low-order terms of the CPE. To ke€Biner In Sec. IV B. we showexactmatrix elements, which

generality, we assume that the material under consideratigiiciyde the CPE completely. We also discuss a relation be-
has two bands with arbitrary effective mass, spin degrees Qfyeen the CPE and the phase-space filling. A general form of
freedom, and spatial dimension. Moreover, we generalize thghe hosonized Hamiltonian is given in Sec. IV C. The Hamil-
quantum statistics of the particles in these bands. Althougkonian contains four nontrivial interaction terms: two kinds
we implicitly suppose these particles as conduction electronsf scattering among the bosonized excitons, and two kinds of
and valence holes in semiconductors, such an assignmentrignlinear coupling between the bosonized excitons and the
not necessarily required in our theory. We need to assumexternal photon field. In Sec. V we apply the general result to
only that they are interacting particles with the same statisa semiconductor bulk system. In the limit of heavy holes, we
tics and make energy eigenstates corresponding to bounghn obtain exact, analytical forms of, e.g., boson-boson and
states of the two-particle composite, e.g., a Wannier excitorhoson-photon interactions. We find that the CPE enhances
Its relative motion is assumed to be extended in the region ohe scattering strength between the bosonized excitons, and
a characteristic length (e.g., an exciton Bohr radiug’ the CPE results in a qualitative change of the nonlinear cou-
In this paper, we confine ourselves to a process in whiclpling between bosonized excitons and photons. We also
up to two two-particle composites are created by an externalhow that our bosonization theory can explain both the
field. This corresponds to third-order nonlinear optical pro-bound and unbound states of two bosonized excitons.
cesses in semiconductofsHere we should note that this
restriction doesot mean that our theory is not applicable to
many-exciton systems, because the Hamiltonian describes
complete two-exciton correlation terms in the ideal-boson
space, e.gB'B'BB, whereB is a boson annihilation opera- ~ We start with a Hamiltonian consisting of three parts:
tor, irrespective of the constraint for the boson space. Even
when we extend the system to a many-exciton system, the NG RN
two-exciton correlations are unchanged and we obtain sim- H=HeatHa*Hega, @
ply the correction of more than two-exciton correlations

e.g.,B'BTBTBBB. The reason for this is that our bosoniza-

Il. STARTING HAMILTONIAN AND NONBOSON
CHARACTERS OF EXCITONS

'where

tion technique gives aormal-orderingexpansion of the bo- 72K2 £2K2
son operators. Therefore, the obtained Hamiltonian is also  f_ =, | Eo+ —) eTkéMk+E ——d’ d,x
useful for many-exciton systems where more than two- K 2me | # & 2my
exciton correlations are negligible. Only if we consider inter-
actions between excitonic molecules, up to four-exciton cor- > > Vcd(Q)@Lmqalkuqauk/@Mk
relation terms become necessary at least. This is a future “Y qgkk’
problem, and we do not consider it in this paper. 1

This paper is organized as follows. In Sec. Il, we intro- + = 2 2 Vcc(q)(;‘Fk+ @T,k,_ €k €k
duce the starting Hamiltonian and the definition of the exci- 2 un' qkk’ e e
ton, and then discuss the properties of the excitons including 1
the CPE. The bosonization method we employ in this paper + = at . da'., dd,
is formulated with the Tamm-Dancoff D) representatiof® 2 % quk/ Vad @)Dl gl i
which represents a model space with exciton operators. Al- 2.2

though, in general, bosonization methods need some restric-

tions to the ideal-boson space to obtain a one-to-one corre-

spondence between the starting fermion space and the ideal- o =E hooal a 2.3
boson space, we need no restriction to the wave numbers of & K KT oKk
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. _ o composite particle an “exciton.” The Fourier transform of
Hcd-a:gg ; Pokdak +(H.C). 24 the exciton creation operatéf, , defined as

The first term,ﬂcd.,-de-scribes two ki[]ds of irjteracting par- Bt K:ij d°RB! _expliK-R)
ticles, whose annihilation operators d@rg andd,, . We call wvR D2 wy

these particles a particle and a particle, respectively. To

investigate effects of the quantum statistics of the compo-
nents, we shall not assume their statistiésrmionic or
bosonig for the moment, but assume only that both particles .
have identical statistics. Although we implicitly suppose Satisfies the eigenvalue-equationtbf:
these particles as a conduction electron and a valence hole,

such an assignment is not necessarily required in this paper. Iy 0y=
The subscriptge and v are the indices of internal degrees of cdeurK
freedom of each particle, e.g., spins, ard is a
D-dimensional wave vector defined ak=2#/L(n.g;
+n,e,+ - - - +Npep), WhereL is the system sizeg is a unit 1

vector of the direction, andn; is an integer. At least an d(k)= szf dPro(r)exp —ik-r), (2.10
energyE, is needed for & particle to be created. We also L

assume that the interactions between different kinds of par- -
ticles is attractive, while that among the same kinds is repulf’md_|0> meaAnTs the yacuurp state HCP' Thus the one-
sive. The latter condition means that two particles of the€Xciton staten,,,c[0) is an eigenstate dfl¢g.

same kind are not bound to one another. Here the summation T0 investigate effects coming from the composite-particle
on q excludesg=0 andm, (my) is the effective mass of the Nature of the excitons, we calculate the commutation rela-

tions of the exciton operators, i.e.,

:zk: d’(k)é;amkazﬁK—ka (2.9

h2K2\
Eqo+E+ W) b;TwK|O> (2.9

Here

c (d) particle. The second tenh:ia is a free Hamiltonian for
ana particle, corresponding to a photon, whose operators are

a,x anda’, . The subscriptr stands for an internal degree [bur Burvrr]=0, .13
of freedom, e.g., the polarization. The third teﬁi@d_a ex- [6 bt 1=8"6",°(R-R")
presses the interaction between thearticle and a pair of pUR SR Tt O
the c andd particles, wheré! is defined as Loy d°r J[T+R) [r+R’
ot . . At SO ﬁgo a ¢ o
paKEE o > Chak+kdupK —k - (2.9
! 3 xe!

' (R +pr')laCu(R+ pr)la
Here 5“*" is the Kronecker delta describing a selection rule b ,
of the internal degrees of freedom of these particles, @and +s8", d_rqp*(ﬂ)@(r—l? )
and B are m./M and my/M, respectively, withM =m, #J 2P B B
+my. Thus the total Hamiltoniaf can describe semicon- ~t
ductors with a radiation field in an arbitrary dimension. X, (R~ aryigdu(R—an)ig (212
Here we introduce a composite ofandd particles. The
creation operator of the composite particle is defined as

wheres= + 1 when both the andd particles are bosons and
s=—1 when both are fermions. Equati¢2.1]) is a simple
commutation relation of the bosonlike statistics, because an
BLVRZJ dP°r (p(r)@LRWraIRwr, (2.6)  exciton consists of components of an even number, i.e., two
in this case. On the other hand, E§.12 shows that the
where & and d, are the field operators of the and d exciton cannot be regarded as one ideal boson due to the
. ot At . existence of the second and third terms, which are direct
particles related 1@, andd,, via the Fourier transforma-  nsequences of the composite-particle nature of the exci-
tion. We assume only that(r) damps rapidly foir|>a to  tons. Since the inner structures of the exciton appear in the
describe a bound state, wheaas a characteristic length of gacond and third terms, these terms are influenced by the
the spatial extent op(r). This satisfies the eigenvalue equa- statistics of thec and d particles. When a distance between

tion two excitons, whose center-of-mass positionsRrandR’,
r2y2 is sufficiently larger tham, i.e.,|R—R’|>a, Eq. (2.12 be-
{—W—Vcd(f)h(r):lf@(r), (2.7) ~ comes

R AT ~ St sV oD D’
with [dPr|e(r)|?=1, wherem=mmy/M, and V4(r) is [bur:byryirr]= 8,08, 07 (R=RT), (213

the Fourier transform o¥.4(q). Thus the operatdiwa ex-  which is a consequence of the point-boson approximation.

presses the creation of a composite particle,avhose bind-  This means that the exciton can be regarded as a boson only
ing energy isE. According to convention, let us call this if they are sufficiently separated from each other.
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The gffects arising from_ the composite-partic_le nature _of <O|Bn6m6?6f|0>2270(n,m|i )= 5im51n+ 55“5?,
the excitons appear in various physical values in the region
X . . (2.2
that inner structures of the excitons can be recognized. These _ o o
are the CPE’s. The deviation from the ideal bosonic commuwhich is a result of the point-boson approximation. Addition-
tation relation in Eq(2.12 is an example of the CPE. The ally, the second term of Eq2.14) depends ors, i.e., the
CPE also appears in the inner product between the twgstatistics of the components of an exciton. Thus the term
exciton states. We first show the inner product between th@F*(n,m|i,j) results from the CPE. To describe the CPE
; pt Pt tematically, the order of the CPE is introduced here; we
one-exciton state,, |0). Abbreviating the Se{%’vi’Ki} -Sgsard trl1e f)i/rst termF°(n,mli,j) antldS ![her sgcond t(rermw
to i, the inner product between the one-exciton states |§__9(n i) of Eq. (2.14 I C,I-l'E’s o geroth s of firet
&ontiAy . am M_ oHm o¥m oKm i - ’ ! T
(0[brb;[0)= 57", where 5 _5@ 5"i 5Ki' Since the one orders, respectively. Similarly, the CPE of timh order,
exciton states are eigenstatesHyf;, this orthogonality is a  F"(n,m|i,j), is defined for any positive integer, whose
natural result. On the other hand, the inner product betweedefinition will be shown in AppendixA.

the two-exciton stateB-TB-T|O) is evaluated as In this paper, we concentrate our discussion on processes
H where at most two excitons are created, which is sufficient
(O|BanBTBT|O>=2F°(n mli,j)+2sFX(n,mli,j) for the third-order nonlinear optical processes in semicon-
i b ,mii, ;mii,]),

(2.14 ductors. Therefore, we can consider only the subspace
spanned by the ground stat), the one-exciton states

where BLV.K|0>, and the two-exciton statéi{mgBL,V,K,loy As de-
Fon.mli.i)=2[A%n.mli. i) fon.mlii scribed above, however, the two-exciton states do not 'form
(mmli,j) =LA mliL ) Fn.mli, ) an orthonormal set due to the CPE. Hence we need to intro-
+(ie] or men)]=3(8"6]+ &8, duce orthonormalized two-exciton states in Sec. IIl.
(2.15
[lI. ORTHONORMALIZED TWO-EXCITON STATES
FHn,mli,j)=3[A*n,mli,j)f*n,mlij) AND BOSON MAPPING
+(iesj or men)l. (2.16 We define an orthonormalized two-exciton stftg) as

Here we use the following definitions: o - ain o
L1)=2 > bibil0)(—9)'4F (mnlij), (31

A%(n,mli,j)=imaumstnsTr, (2.17
Lo where &= (21)!/(2'1!)? and the coefficientF'(n,mi,j) is
. v v defined in Appendix A. This state is a superposition of the
1 — SM*m s¥m s4n §¥n
A (n'm|"])_5m 5Vi 5/’4 5vj’ (2.18 two-exciton states with the infinite order of the CPE, and has
the following desirable properties:
£O(n,mli,j)= 85", (2.19 S
b li.i)=1j.i), 3.2
f3(n,mli,j)=skm" <n * a(Km—Ki)+k - -
(Rl i) =05 (@7 alknH5) 70 (nm[=2> > (=9)'gF(n,m[m’,n")0|by by,
=0 m’,n’
X ™ (B(Kyn—Kj)+k) 3.3
X (k) p(a(Ky=Kj)+B(Kyn—K;) +k). (nmli,jy=27%n,mli,j)=8"8"+8"s. (3.4
(2.20

The orthonormalized two-exciton state has an exchange sym-
In the above formulas,i{-j or m«<n) means a term metry with repect to the indices, as shown in E22). Equa-
obtained by exchanging the indiceandj or mandn. Note  tion (3.3) can be proved with the use of EGA8) in Appen-
that A%(n,m|i,j)fo(n,m|i,j)=A%m,n|j,i)f°(m,n|j,i)  dix A. The third relation[Eq. (3.4)], means that these states
and Al(n,m|i,j)fY(n,m|i,j)=AY(m,n|j,i)fX(m,n|j,i)  form an orthonormal set. It is obvious that the orthonormal-
but A%(n,mli,j)f%(n,mli,j)#A%n,m|j,i)f°(n,m|j,i)  ized two-exciton states are also orthogonal to the vacuum
#A%m,nli,j)f°(m,nli,j), and so on. The Kronecker deltas and to any one-exciton states. Thus the ground $8atethe

of A*(n,mli.j) in the second term have an exchanged formone-exciton state§!,,|0), and the orthonormalized two-
of wi and u;. This term expresses how much the two- exciton stategi,j) are the orthonormal bases spanning the
exciton state contains another two-exciton state with eXsubspace under consideration.

changed components. We shall take the limit|Bf— R;| The bosonization proceduféds introduced here as a map

>a after the Fourier transformation to change the variablesrom the fermion subspace to an ideal boson space as fol-
from K; to R;. When this procedure, called the point-boson|ows.

limit, is applied to Eq.(2.14), f(n,mli,j) disappears, and
then the inner product is reduced to |0)+|0), (3.5
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bi|0yB/|0), (3. lations are unchanged and we obtain simPlxtrleAcPrrection of
more than two-exciton correlations, e.§/B'B'BBB.

In general, an ideal boson space includiNgoosons is
wider than the corresponding fermion space becauds!of

Here|0) is the vacuum state of the ideal boson space. Th&iNds of permutations ol pairs of fermions, that is, a one-
boson operatorB, andB. with an indexi ={u; v K;} sat to-N! correspondence. Therefore, we need a restriction on
Dj i - [RES R -

li,i)~B{B]]0). (3.7

N the ideal boson space to create a one-to-one correspondence.
isfy the boson commutation relationgB; ,B;]=0 and  This restricted space is called a physical subspace. Since the
[B; ,B}L]za}. The exchange symmetry for the bosons isUsui transformatioff realizes the physical subspace by a
guaranteed by Eq3.2). Hereafter, we call a boson described restriction to the momenta of components of excitons, scat-
by B, ,« a “bosonized exciton.” terings among excitons are hard to describe exactly. The
* : ; Iy bosonization method used here, on the other hand, can lead
It is more useful to define a mapping operaltbras . T ’
to a physical subspace by a restriction to the energy of an
1 exciton relative motior(no restriction to the center-of-mass
0:|o>(o|+2 bl|0)(0|B;+ o> > i ,J>(0|Bj|§i i motion of the excitons Moreover, we will see that interac-
i 2! 73 tion terms in our bosonized Hamiltonian hawe boson-
(3.8 number dependence, which is in striking contrast to the
Marumori mapping° These properties, therefore, enable us
AR i to describe the physical picture that bosons with a definite
an operatorO® in the boson space in terms of the corre-internal energy are created, annihilated, and scattered via in-
sponding statéy) and the operato® in the fermion sub- teractions. In this paper, we adopt the only one relative mo-

With this operator, we can describe an arbitrary stajeand

space as tion with energyE.
ly)=07|y), (3.9 IV. MATRIX ELEMENTS AND BOSONIZED
HAMILTONIAN
0B=0'0U. (3.10 In this section, we derive a bosonized Hamiltonian with

our bosonization method described in Sec. Ill. With the use
of the mapping operatdd defined in Eq.(3.8), the starting
HamiltonianH is transformed to

This method belongs to the Holstein-PrimakdfP) type
bosonizatiort* Hence the bosonized operaP is Hermit-
ian if the fermion operato© is Hermitian. Moreover, it is

obvious that the bosonized operator harcamal-ordering 2y 2

expansion form due to the mapping methéd. (3.10], and AE=0TAU=Y |Ey+E+ 2MI )Bréi

an iteration method of the completeness relafiop(0]= 1 '

—3B/B;+ - - -. In general, the HP-type bosonization trans- 2 .

forms Hermitian operators to Hermitian bosonized operators + (g) A [(n,m[Hcdi,j)—4(Eo+E)
with infinite boson expansion terms. In the case under con- T

sideration, however, the bosonized operator inBdL0 has X FO(n,mi ,j)—7‘°)(n,m|i,j)]éTmBIB,-Bi

simply finite terms. The reason for this is as follows. Since

we consider only optical processes in which up to two exci- ~ 5 vata

tons are created from a vacuum, it is a necessary and suffi- +gvb ‘P*(O)zi 5Z,' Biai+(H.c)
cient condition for such processes that only the ground state,

one-exciton states, and two-exciton states are taken into ac- 1 ~ tpt

count. Moreover, a subspace spanned by two-exciton states +5 n;j [g({n,m|p; b; |0)

is mapped to a subspace spanned by two-bosonized-exciton o

states. Therefore, two-bosonized-exciton states are also cre- —PO)(n,mi .J')]BrTnBEBjéiJF(H-C-), (4.

ated from vacuum in the boson space for the processes under o
consideration. Thus we can safely neglect more than twowhere we use the definition
body scattering terms in the bosonized operator. An example
of such processes is the third-order nonlinear optical process
near Is-exciton resonance in semiconductors. The bosonized
Hamiltonian for this case will be derived in Sec. V. However, (4.2
we should note that irrespective of the constraint for the bo- .
. L .~ and the matrix elements
son space, this restriction doast mean that our theory is
not applicable to many-exciton systems. This is because the
normal-ordering expansion form of the bosonization method
enables the Hamiltonian to describe complete two-exciton
correlation terms in ideal-boson space. Even when we extend A O RATIOy— sm
: - (O[bHcqbi[0) =&
the system to a many-exciton system, the two-exciton corre-

o .
TOM I, )= 537 (K + KR+ KE+KH 0, mli ),

(0[F4l0y=0, (4.3

#2K?2
Eo+E+ 2|v||)' (4.9

035105-5



SATORU OKUMURA AND TETSUO OGAWA PHYSICAL REVIEW B65 035105

9(0lbp]|0)= 5, " GLPRG* (0). (4.5 a<0|6n6mﬁ?6j*|0>=7><°><n,m|i,J>—sQ<1><n,m|i,J>(.)
i [ 4.8
The coefficient?®)(n,mli,j) in Eq. (4.1 is defined by Ed.  perep©)(n,mli ) is given | Onomli i
X . U ) ,mli,j) is given in Eq.(B11) andQ(n,mli,j)
(B11) in AppendixB. An |tgraE|on method of the complete- .o yofined by Eq(B12) in Appendix B. An indexi of pi‘r
ness reIat?odO)('0|=1—EiBiTBi'+-~- is also used. In EQ. denotes {o; K;}. In Eq. (4.8, PO(nmli,j) and
(41), an indexi of the a—partlcle Operat_or stands far _SQ(l)(n,m“,j) result from zeroth-order and first-order
={0i,Ki}, and that of the bosonized exciton operators arecpg’s, respectively. In the point-boson lim@ M (n,mli,j)
i={,ui Vi ,Ki}. In the foIIowing, we shall calculate the ma- disappearsy to lead to
trix elements such agn,m|H4i.j) andﬁ(n,m|ﬁ?6f|0) to o
clarify contribution of the original Coulomb interactions and 9(0[bbpb][0y=PO(n,mli,j). (4.9

the CPE. . Lo
ec When components of an exciton are fermionic, i.8.,

_ =—1, —sQ®(n,mli,j) has been interpreted as the PSF,
A. Loose matrix elements which expresses the reduction of transition amplitudes be-
Before evaluating the matrix elemeﬁ(w,m||:|cd|i,j> and tween the one- and two-exciton states by Pauli blocking.

(n,m|p/b;]0), we first consider(0|b,b,Hcqb;b;]0) and However, we should recall that the two-exciton saB]|0)
~ 0 Atrt . . , . Is notorthonormalized, as shown in E.14). In fact, the
g<_0|b”bmpi b, |0). We call these “loose matrix elements M norms of some two-exciton states become less than unity if
this paper because these are not elements of the matrix réfife omnonents are fermions. The reduction of the transition
resentation of operators, i.&/b]|0) is not orthonormalized.  amplitude, therefore, also comes from the norm reduction as
These loose matrix elements have often been interpreteglel| as the Pauli blocking. Thus we should discuss PSF with
as exciton-exciton scattering amplitudes or inter-exact transition amplitudegr the exact matrix elements
actions”~?*?®2’"However, when the loose matrix elements from a one-exciton state to arthonormalizedwo-exciton

are used as interactions, qualitative problems appear in th&ate. In this sense, our bosonization method leads to the
region that two excitons overlap with each other. We will correct transition amplitudes.

show examples of such problems in Sec. V.

We first evaluate the loose matrix eIementhJd: B. Matrix elements

A A A aan With the use of the loose matrix elements in Sec. IV A,
(0|bybyHcqb/bT|0) : : ~
nmt fed™i E we can obtain matrix elements{n,m|H.i,j) and

=4(Eo+E)[Fn,mli,j)+sFL(n,mli,j)] g(n,m|p/b|0) in Eqg. (4.1). These matrix elements give an
52 exact matrix representation of the operator. In the following,
+ﬂ°)(n,m|i,j)+s—(K2+K2+K-2+K-2) we show analytipal formulas of the matrix elements, and
2m o me discuss the contribution of the CPE.
X FYn,m|i,j) +UOm,mli,j)—svOmn,mli,j), The matrix element oﬂcd between the orthonormalized

two-exciton states is obtained as
(4.6)

A o o
whereZ/©(n,mli,j) andV®(n,mli,j) are defined by Egs. (n.m[Hcdli.j)=4(Eo+ E)F(n.mli )

(B1) and (B6) in Appendix B. The superscripts of >

UO(,mli,j) and Vv®(n,m|i,j) represent the order of the +> (=9)'70(n,mlij)
CPE. In the above equation, the fourth tetfP)(n,m|i,j) 1=0

and the fifth term—sV®(n,m|i,j) result from the interac-

tion terms offH 4. The fourth term expresses the interaction +> (—=9)'UD(n,mlij)

energy among the density distributions of thendd par- 1=0

ticles, while the fifth term is one of the CPE’s expressing the o

interaction with exchange of the componefitdf we take +2 (—s)'v(')(n,m|i,j). (4.10
the point-boson limit, Eq(4.6) is reduced to =1

o Here the second term results from the free part of the model
(0] bpbH c4b D10y =4(Eo+E) FO(n,mli, ) Hamiltonian®* and 7((n,m|i,j) expresses thdth-order
0 - 0 o CPE. Its definition is given by EqC1) in Appendix C. Ac-
+ T mli ) +U(n,mli.j), cording to the definition7¥(n,m|i,j) vanishes. Therefore,
4.7 there is no first-order term of the CPE in the second term of
. o Eq. (4.10. In the abovel/"(n,m|i,j) in the third term and
where the firstorder CPE terms/*(nmli,j) and O mlij) in the fourth term are extensions of

V®(n,mli,j), disappear. o UO(n,mli,j) and v®(n,mli,j) in Eq. (4.6), respectively.
Next the loose matrix elemegt0|b,b,p/b]|0) is evalu-  Their definitions are also given as E¢€4) andC5) in Ap-
ated as pendix C. Note that/("(n,m|i,j) is defined fod =0, while

035105-6
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VO (n,mli,j) is forI=1. In the point-boson limit, the matrix . -z .

elementdEq. (4.10], becomes Id(n,m||,J)=u(°)(n,m|l,])+§l [t@(n,mli, )
<n’m|ﬂcd|| ’J >:4(E0+ E)fo(n’mh ’J ) +T(O)(n’m||'1) + u(2|)(nlm|| ,J)+U(2|)(n,m||,J )]

+UO(n,mli,j), (4.11 (4.22

which is the same form as E@4.7). This results from the o

fact that the orthonormalized two-exciton stditgj) is re- L(nmli,j)=> [t@ Dn,mli,j)+u@-D(nmlij)

duced to the two-exciton stateb;|0) in the point-boson =1

approximation. +0@=D(n,mli,j)], (4.23

Next, we show the matrix element Ejfi)lT between the

one-exciton and orthonormalized two-exciton states, o ” @ o @ o
Ga(n,mli.j) =2, [p(n,mli.j)+a®(n,mlij)],

a(n, m|IOTbT|0>=|ZO (—9)'PO(n,mli,j) (4.29

Gy(n,m|i,j)=2>, [p@ Y(n,mli,j)+g? Y(n,mli,j)],
I=1
(4.25
where PO (n,mli,j) and Q" (n,mli,j) are given as Egs. whereu®(n,mli,j) is given in Eq.(B2) in Appendix B and
(C8 and (C9) in Appendix C. It should be noted that tO(n,ml|i,j), u®P(n,mli,j), vO(n,mli,j), pP(n,mli.j),

PUO(n,mli,j) is defined forl=0 and Q"(n,m|i,j) is for  and q(')(n ml|i,j) are defined by Eqs(C2), (C6), (C7),
[=1. In the point-boson limit for Eq(4.12), we obtain the (C11), and (C12 in Appendix C. From these formulas, it

+|Zl<—s>'Q<'><n,m|i,j>, (4.12

same result as E@4.9), i.e., turns out that 4(n,mli,j) andl(n,mli,j) include the CPE
" o and the interaction¥.q, V.., andVyy, while Gy4(n,mli,j)
g(n,m[p{b|0)=P(n,mli,j). (413 andG,(n,mli,j) contain the CPE and the couplimg With

We arrange the forms of the matrix elemefiiis.(4.10 and ~ fespect to the order of the CPE(n,m|i,j) contains all the
(4.12] with the use of Eq(A3) in Appendix A. Classifying °'der[x(n.mfi,j) andG,(n,m[i,j) have more than zeroth-
terms of thelth-order CPE into even and odd orders, weOrder CPE's, andsq(n,mi,j) results from more than first-
obtain order CPE’s. Therefore, onlyy(n,m|i,j) remains in the

point-boson limit.
n,m|H4li,j)=4(Eo+E)FO(n,mli,j)+7(n,mli,j)
< | Cd| J> (Eo I | : ( | : C. Bosonized Hamiltonian

+Zo(nmli, ) = sZ(n,mli.j), (4.14 We shall define some functions for the bosonized Hamil-

tonian. Due to the translational symmetry, a total momentum

g(n, m|prT|0)—P(°)(n,m|i,j)+gd(n,m|i ) conserves via the interactions. This momentum conservation
—sg,(nmli.j), (415  appears inlg(n, m|| JK), I,(n,mli,j), Gg(n,mli,j), and
Gy(n,mli,j) as 5K i ". Therefore, introducind 4(Q,K),

where 1,(Q,K), Gy(Q, K) and G,(Q,K), we rewrite these four

Ty(n,m|i,j)=A%n,m|i,)l4(n,mli,j)+(i<] or men), functions as

(4.16

1
Z.(n,mli,j)=AYn,mli,j)I«(n,mli,j)+(i—] or men),
(4.1 (4.26
gd(n’m“’j):Bo(n’m“’j)Gd(n’m“'j)+(m(_)n)(’4.1& |x(n,m|i J 2 5K +Q K Q x(Q (K K; ))
(4.2

G(n,mli,j)=B(n,mli,j)G,(n,mli,j)+(men).

(4.19 , 1
Here Ga(n,mli,j) E AR NICY Q,5<Ki—KJ)(, .
4.2

BO(n,mli,j)=&m""mskn s, (4.20 .

! J ]

. Gx(n!m“ J E 6}( +Q G (QIE(KI_Kj))!
BY(n,mli,j)=8,"" "msiman, (4.20)

I ] ]

(4.29
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where | 4(Q,K), 1,(Q,K), G4(Q,K), and G,(Q,K) are independent of. and v, and %(Ki—Kj) stands for the relative
momentum of two bosonized excitons labeledibgndj. With these functions, we write the final forms of the bosonized

Hamiltonian:

2

o=y
nrK

2M

KA Lo o
Eo+ E+—) BLVKB#VK+2K hokahka+92

+vRat 2
s fo VBwKa,,KJr(H.c.)
o 2%

1 1
"B T e o
52 X Id(Q,§<K—K))BLWQBM,V,K,_QB,,V,K,B,LVK

uvu' v QKK

(—9)
32

pvu' v’ QKK

1
nlat X A A
E lX(Q!E(K_K )>B[L’VK+QBMV’K,—QB[L,V’K,BMVK

1 ol fal ~
+ z z z 5’;+VGd<Q’§(K_K,))BI/,VK'FQBL’V/K’—QBM’V’K’a(TK_i_(H'C')

op' v’ QKK AV

+(-9) X X X 5ﬁ+”GX(Q.

op' v’ QKK AV

1
2

(K_K')) é;’vK+QBLV'K’—QBM’V’K’éUK—’—(H'C')'

(4.30

where g=g\/LP¢* (r=0). Note that the subscriptsuv}
and{u'v'} of the bosonized excitons before and after the
interaction are exchanged Ip andG,. This means an ex-
change of the components of excitons via these interactions,
as shown in Fig. 1. We call these terms the “component-
exchange scattering term” and the “component-exchange
nonlinear-coupling term,” respectively. On the other hand,
the interactiond 4y and G4 do not exchange these subscripts.
We call these the “component-direct scattering term” and the
“component-direct nonlinear-coupling term.”

The exchange of the components is related to the order of
the CPE. Sincéy andG4 consist of even orders of the CPE,
an exchange of the components takes place even times, re-
sulting in no exchange for the pairs. On the other hdgd,
and G, contain odd orders of the CPE, leading to the ex-
change. We also find that only is dominant in the region
that the distance between two bosonized excitons is larger
thana. This corresponds to the fact that only the interaction
I4 has a zeroth-order term of the CP&ee Eq.(4.22]. In
such a regionG, damps quite rapidly because it has only
more than the second-order terms of the CPREe Eq.
(4.24)]. Since only up to the first-order of the CPE is esti-
mated in the incomplete CPE theory, there is no correspond-
ing term of G4. Moreover, it should be noted that only the
component-exchange interaction and the component-
exchange nonlinear coupling, depend on the statistics of
the c andd patrticles.

Our bosonization method exhibits a normal-ordering ex-

SECION d pelo
©9" @9
RECION x/
@9 @9
00N, /
©9" @9
@ O\ /
©@9" @9

pansion of the boson operators, and no boson-number depen- FIG. 1. Schematic diagrams of four kinds of interactic@agthe
dence in bosonized operatdfsConsequently, when we con- component-direct boson-boson interactign (b) the component-
sider a system with more than two excitons, the two-bodyexchange boson-boson interactidp, (c) the component-direct
interactions in Eq(4.30 remain unchanged, although many- boson-photon nonlinear couplinG,, and (d) the component-
body scattering terms have to be taken into account. Notin§*change boson-photon nonlinear couplg. A pair with x, v,

that two-body interactions are also of primary importance in/ » @nd v’ stands for an exciton, and a circle with means a
photon(an a particle.
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many-exciton systems, our theory provides an effective step
forward to many-exciton systemi3As an example of the
above general formulation, we will apply it to a semiconduc-
tor bulk system with a photon field in Sec. V.

V. APPLICATION TO A SEMICONDUCTOR BULK
SYSTEM

J®)

In this section, a semiconductor bulk system with a pho-
ton field is considered to derive concrete forms of the
bosonized Hamiltonian. We pay special attention to the
heavy-hole limit. We also study the formation of bound and
unbound states of two bosonized excitons, which correspond
to an excitonic molecule and to scattering states of two ex-
citons.

FIG. 2. The functiorf (R) in Eq. (5.9 is plotted as a function of
|R|/a. It becomes unity at the origin, and damps rapidly f&t

A. Bosonized Hamiltonian for a semiconductor bulk system >a.

We consider a lll-V semiconductor bulk system, which

consists of two conduction bands and two heavy-hole va- FHnmli.j)=2[A%nmi, ) TH(n,mli, )

lence bands denoted by total-spin indiges =1/2 and v +(i+j or men)], (5.6
=+ 3/2, respectively. Photons have a polarizationoof
+ 1. Light-hole bands are not considered here. This system is To(n,mli,j)=%Rn—R) Ry~ R)), (5.7

equivalent to the moddEq. (2.1)], by regarding thec par-
ticle as a conduction electron, tlteparticle as a valence F1 N _RVS3R _R. B
hole, and thea particle as a photon. The ener@y corre- Fnmli )= 8%Rn—R) &(Ra—R)F(Ri—Ry), (5.8
sponds to the band-gap energy. We further assume that '
Veg=Vee=Vge=V and V(r)=e?/(g|r|), wheree is an el-
ementary electric charge anrdis a dielectric constant. For
simplicity, let us take a heavy-hole limity,/my—0.2°3%In
this section, we employ a real-space representation, which is
suitable for the heavy-hole limit. We consider a three- .

) . . . -~ with R
dimensional & exciton, whose creation operator and relative

2

wheres= —1 in the present case aridR) is defined as
R 1
1+ -+
a

2 ZR)
3la) | AT )
=|R|. As shown in Fig. 2, the functioh(R) becomes
unity at the origin and behaves asymptotically H3R)

R

f(R)= - (5.9

energy are
bpn [ drenEendle, 62

E=E,= me' (5.2

o 2242 .

respectively. Here4(r) is the three-dimensionalslexciton
wave function for the relative motion,

1 Ir| £ 3
¢1s(r)—\/ﬁex = (5.3
with the three-dimensional exciton Bohr radiua

=eh?/(mé?). Indices{y; ,v; ,R;} are abbreviated tbin this
section.

~3(R/a)*exp(—2R/a) for |R|>a. The fact f(R=0)=1
means that two excitons cannot occupy the same place, i.e.,
the excitons cannot be regarded as bosons, corresponding to
(0|babymb{b[0)=0. The asymptotic behavior foR|>a re-
flects that the excitons behave as bosons when they separate
from each other, resulting from thefFl(n,m|i ,j) in Eq.
(5.4), the first-order CPE, disappears {&|>a.

The orthonormalized two-exciton staf&q. (3.1)] be-
comes simple in the present case as

|wiviRi 1 viR) =D, r DL, R [0)Fa(Ri—R)

The inner product between two-exciton states has the

same form as Eq2.14),

(0|babb{ B0y =270(n, mli j) + 2sF(n,mli j),
(5.4)
with
Fo(n,mlij)=3[A%n,mli,j)T(n,mli,j)
(5.5

+(i<] or men)],

+E)LjviRiBLiVjRj|0>(_S)FX(Ri_Rj)’
(5.10
where
F4(R _1 ! + (5.11)
o(R)=73 J1I-f(R) Vi+f(R)) '
F Fe)—1 ! - (5.12
(R1=3 J1I—f(R) V1+f(R)| '

which are plotted in Fig. 3. Since the asymptotic forms
of F4(R) and F,(R) for |R|>a are F4R)~1

035105-9
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7
6 Fi(R) —
5 Fx(R) —
-
3 4
§ 3
2
1
0 N
3 4 5

FIG. 3. Two functionsF4(R) and F,(R) in Egs. (5.1) and

PHYSICAL REVIEW B65 035105

LaR) —

- L(R) -
g ) -~
i v(R) -
g
3
\"
3
3 -1
3
3
2 i
1 2 3 4 5
3 . s
0 1 2 3 4 5

Ria

FIG. 4. The loose matrix element¢R) andv (R), given in Egs.
(5.19 and (5.19, are plotted as a function dR|/a. The matrix

(5.12 are plotted as a function dR|/a. These approach asymp- elements 4(R) andl(R) given in Egs.(5.30 and(5.31) are also

totically unity and zero, respectively, foR|>a.

+ 51s(R/a)Bexp(—4R/a) and F,(R)~ & (R/a)*exp(—2R/a),

respectively, the orthonormalized two-exciton state becomes (R) e {

equivalent to the two-exciton stafe’

ot .
Wi Vi Riby,j V] Rj|0> in the

case of |[Ri—Rj|>a. The point-boson approximation

|/'LiviRi-/'LjVjRj>2BLiViRiBLjVJ-RJ-|0>HBLiviRiBLjVjR]—|O) is
valid only in this case.
The loose matrix elemenEq. (4.6)] becomes
(0|bpbyH bl b]10) = 4(Eg+ E1 o) [ FO(n,mlij)
+sF(n,mli,j)]+UO(n,mli,j)

sV (n,mli,j), (5.13
where

HO(n,mli,j)=A%n,mli,j) u®n,mli,j)

+(i<>]j or men), (5.19

YO (n,mli,j)=An,m|i,j)oB(n,mli,j)
+(i<>] or men), (5.195

u@(n,mli,j)=6%Rn—R) (R, —R)U(R —R)),
(5.16

D (n,mli,j)= %Ry~ R) 3Ry~ R)v(R—R)).
(5.17)

Two functionsu(R) andv (R) are evaluated analyticafiyas

e’ 2 exg—2r) 5r 3r% r3
U(R):ﬁf e 7 6)
(5.18

plotted. The vertical axis is normalized by a unit ef2sa. The
inset is an enlargement of the main plot.

" 2ea

2 5 200 262 56°
r 2t 305 T

12 5
Xexp—2r)— 5[78+(r)+s+(r)ln(r)

—28+(r)S(r)Ei(—Zr)+82(r)Ei(—4r)]],

(5.19
wherer=|R|/a, v is the Euler’s constant, and
r2
S+(r)E(1+r+§ exp(—r), (5.20
r2
S(r)z(l—r+§ expr), (5.2)
© exp —t
Ei(—r)s—f dt p(t ) (5.22
r

Theseu(R) andv(R) are plotted in Fig. 4. The function
u(R), which expresses the Coulomb interaction between the
charge distributions of excitons, diverges aklLin the vi-
cinity of the origin (R|~0), and behaves asymptotically
(|IR|>a) asu(R)~ —e?/(6sa)(R/a)%exp(—2R/a); near the
origin the Coulomb repulsive interaction between holes be-
comes dominant, and fdiR|>a the Coulomb interaction
between the charge distributiomsth no poleis essential in
three-dimensional 4 exciton systems. It should be noted that
the exponential decay af(R) for |R|>a results not from
the CPE but from the Coulomb interaction between the no-
pole charge distributions. If we consider two-dimensional
systems instead of three-dimensional ong®) is propor-
tional to 1JR|® for |R|>a due to the quadrupole-quadrupole
Coulomb interactiori’ On the other hand;(R) behaves as

— 1/|R| near the origin, and exhibits an exponential decay for
|R|>a due to the CPEIn Fig. 5,u(Q) andv(Q), the Fou-
rier transforms ou(R) andv(R), are drawn.
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0.16 .
014 Q) —
S 012p EQ) — =
3 010 ™, Y
T =
T 008 )
S 006 § 02p
< 0041 g 04r Ga(R)—
9 0.02} S 06} Gx(R) -
ol qR) -
0 08}/
-0.02 . : 1.0 .
0 1 2 4 5 0 1 2 3 4 5
Qa Rla
FIG. 5. The Fourier transforms af(R), v(R), 14(R), and FIG. 6. The functiom(R) in Eq. (5.28 is plotted as a function

Ix(R), denoted asi(Q), v(Q), 14(Q) andl1,(Q), respectively, are  of |R|/a. The nonlinear couplings between the bosonized excitons
plotted as a function ofQ|a. The vertical axis is normalized by a gnd a photonG4(R) andG,(R) in Egs.(5.32 and(5.33, are also
unit of (2ma/L)%?/2ea. We find that the interactions between two piotted. The vertical axis is normalized by a unit af
bosonized exciton$y(Q), andl,(Q) nearQ=0 are enhanced by :a\/[3¢*40).

the CPE in comparison with the incorrect interactian(®)) and .

v(Q), which are estimated with the loose matrix elements.

The loose matrix elements aboﬁf):r,R [Eq. (4.8)] is

evaluated as

Here the indexi of p;, means {o;,R} and P/
=L"%%3,p! exp(=iK-R). The analytical form ofj(R) is

9(0|b,b,.p b0y =P (n,mli,j) —sOV(n,mli,j), R 1/R\? 2R
9(0[b,bmp ][0y =P (n,mli,j) —sQM(n,m| 125.23 QR = —g| 1+ Rt 2 _) exp(_?» 5.28
where
whereg=g \/fgcp’l*s(O). Thefunctionq(R) damps exponen-
PO(n,mli,j)=B%n,m|i,j)p@(n,m|i,j)+(men), tially in the region of|R|>a due to the CPE, as shown in
(5.29 Fig. 6. The behavior ofi(R) near the origin indicates that an
. _ exciton cannot be created at the position where the other
oM(n,m|i,j)=Bn,mli,j)g®(n,mli,j)+ (m-n), exciton has already stayed. The Fourier transfop(®@) is
(5.29  shown in Fig. 7.
The matrix elements of the Hamiltonian are calculated
PO(n,mli,j)= 6% Ry—Ry) 8*(R,— R)) gL 9% 0), with the orthonormalized two-exciton stafé. (5.10]. De-
(5.26 tails of the matrix elements are given in Appendix D. With
use of these matrix elements, we finally derive the bosonized
a®(n,m|i,j)=(Rn—R;) (R, RjA(Ri—R;). Hamiltonian for the semiconductor bulk system in the heavy-

(5.27 hole limit:

F|B=% d°R(Eq+ Els)QLVRBWRwL; théZKégK-l—g; fd3RM2V 8B, p8,r+ (H.C)

1
2

pvp'v

= > , fd3Rd3R’Id(R—R’)ELDRI%L,V,RBM/V/R,BM,,R

S ~ ~ ~ ~
-5 > | d®RdPRI(R-RHBT, B B, rB.r

/LV#,V/

w'vR= uv'R’

’ v R 5T 2 A
+ 2 d*Rd°R MZ 84 "Gy(R—R")BL,RB/ ipBurvrBort (H.C)
ou'v v

—s > | ®RPR'Y 847'G(R-R")B', B B, ra.et(HC). (5.29

ou'v'

o w'vR= uv'R’
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0.08
0.06 [
004t N\
0.02

Ga(Q), Gx(Q), q(Q)

0.02 )
004}

O\M

-0.06

FIG. 7. The Fourier transforms af(R), G4(R), and G,(R),
denoted ag|(Q), G4(Q), andG,(Q), respectively, are plotted as a
function of |Q|a. The vertical axis is normalized by a unit of

(2malL)%.

The first three terms dfi® are the free Hamiltonian for the

bosonized excitons, the photons, and a linear coupling,s,nized excitons are enhanced by the CPE, as shown in

among them. The other four terms express the boson-bosqs)y 5 \oreover, the behavior of the nonlinear couplings,
scattering terms, whose coefficients Bf€R) andl,(R), and

the boson-photon nonlinear-coupling terms, whose coeffi

cients areG4(R) andG,(R). All of the coefficients are func-

tions only ofR, and given as

la(R)=F1(R)u(R) +F2(R)v(R), (5.30

Ix(R)=F2(R)u(R)+F1(R)v(R), (5.3

G4(R)=g[Fq4(R)—1]+Fx(R)q(R), (5.32

Gx(R)=gF«(R) +F4(R)q(R).

(5.33

The scattering coefficienty(R) and I,(R) are plotted in
Fig. 4, and the nonlinear coupling coefficier@s(R) and
G4(R) are in Fig. 6. Herau(R), v(R), F4(R), F\(R), and
g(R) are given in Egs(5.18, (5.19, (5.1, (5.12, and

(5.28, respectively, and

1-f(R) T1ri(R)

1 1
Fl(R):E

1 1
Fz(R):E[

1-f(R) 1+f(R)

(5.39

(5.39

Since the CPE disappears fi®|>a, 14(R) andl,(R) are
reduced respectively ta(R) andv(R) + f(R)u(R), which

PHYSICAL REVIEW B65 035105

are the lowest-order CPE terms of thg(R) and I,(R).
Since the lowest-order of the CPEGy(R) is second order,
Gy4(R) damps quite rapidly fotR|>a. On the other hand,
the asymptotic behavior d&,(R) can be reduced tq(R)
+f(R)/2, which is the first-order CPE iG,(R). These re-
duction forms correspond to the results of the incomplete
CPE theory, whose scattering and nonlinear-coupling coeffi-
cients are described ag(R)=u(R), I,(R)=v(R), and
G,(R)=q(R). There is no corresponding term of
Gy(R).21-2426.21Correspondence between the coefficients in
the complete- and incomplete CPE theory is summarized in
Table 1.

The Fourier transforms of4(R), 1,(R), G4(R), and
G,(R), which are denoted, respectively, RQ), 1,(Q),
Gy4(Q), and G,(Q), are shown in Figs. 5 and 7. In these
figures, the behavior aroun@=0 is remarkable. The
strength of the scattering terms has often been estimated by
the value at Q=0. Compared with the previous
results?=242627 the scattering strength between the

G4(Q), andG,(Q), nearQ=0 is qualitatively different from
the previous results using the Usui transformatibffA rea-
son for this disagreement is that in our theory the strength of
the couplings is estimated with the use of the matrix ele-
ments, which include the CPE correctly, while in the Usui
transformation it is estimated with the loose matrix elements.
As shown in Eg.(5.29, the scatterings described by
I«(R) andG,(R) exchange the indices of the bosonized ex-
citons. Therefore, it is possible to create the bosonized exci-
tons, to which the dipole transition is forbidden, i.g.; v
=+2. For example, two bosonized excitons oft=
—1/2py=3/2) and w=1/2,y=-3/2) change to those of
(u=1/12p=3/2) and (w=—1/2p=—3/2) afterl, scatter-
ing, and a bosonized exciton ofiE& —1/2,v=3/2) is trans-
formed to two bosonized excitons o 1/2,v=23/2) and
(u=—1/2,v=—3/2) after the nonlinear interactidd, with
a photon ofo=—1.

B. Bound and unbound states of the two bosonized excitons

We show that our boson theory can explain both bound
and unbound states of the two bosonized excitons, which
correspond to excitonic molecules and scattering states of
two excitons, respectively. We first define the “triplet states,”
|t;1), |t;—1), and|t;0), and the ‘singlet state,”|s) as

TABLE I. Correspondence between scattering and nonlinear-coupling coefficients in the complete CPE
theory and the incomplete CPE theory. Coefficients up to the first order of the CPE are also listed for

comparison.

Complete CPE theory

Complete CPE theory

Incomplete CPE theory

(exac) (up to the first order of the CRE

14(R) u(R) u(R)
1«(R) v(R)+f(R)u(R) v(R)
Gu(R) 0 none
G«(R) q(R)+f(R)/2 q(R)
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excitons. In fact, these interaction potentials agree with the
result of the Heitler-London theory, which trea@sas a varia-
tional parameter.

Here we see the interaction strength between the
bosonized excitons with the use of the loose matrix elements
in Sec. IV A. We stress again that the use of loose matrix
elements instead of the matrix elements is an unreliable ap-
proximation in the bosonization procedure: the point-boson
approximation. Under this approximatiohy(R) and|,(R)
in the bosonized Hamiltonian becon¢R) and v (R), re-
spectively. With these interactions, the interaction potentials
5 of the triplet states and the singlet state are evaluated as

Interaction Potential

O =2 N W kA 0~

L
o
-
ot
w
~

Ria
AE/(R)=u(R)+(—s)v(R), (5.43
FIG. 8. The interaction potentials for the triplet states and the
singlet state AE,(R) and AE4(R) in Egs. (5.41) and (5.42, are AE (R)=u(R) - (— R 4
plotted as a function ofR|/a for s= —1. The vertical axis is nor- s(R)=U(R)=(=9)v(R), (5.49
malized by a unit ofe?/2ca. The incorrect interaction potentials,

; which are shown also in Fig. 8 fa=—1. We can easily
AE{(R) andAE,(R) are also drawn for comparison.

find that AE/(R) shows a qualitative difference from

R ) AE(R) in the region ofR|<a. Thus employing loose ma-
It;i1)5Bl(l/z)vRBL(l,z),,rRJO), (5.36 trix elements leads to incorrect results, in particular, in the
region where the excitons overlap with each other.

1
N\ — AT 5T AT 5T
|t’0):E[B(llszB—(l/Z)v’R’—i_B*(l/z)vRB(1/2)v’R’]|0)' VI. CONCLUSIONS

(5.37 Starting with the Hamiltonian describing interband
electron-hole excitations, excitons, in semiconductors
coupled with a photon field, we derive a bosonized Hamil-

0), tonian for two-exciton optical processes, taking into full ac-

(5.39 count deviations of the excitons from ideal bosons. In the
bosonization procedure, we have clarified how the exciton-

wherev andv’ are arbitrary. For two-photon absorption pro- exciton and exciton-photon interactions depend on the quan-

cesses|t;=1) are allowed for the cocircular polarization tum statistics of the component particles of an exciton, on the
configuration, whildt;0) and|s) are allowed for the counter momenta of the exciton center-of-mass motion, and on the
circular configuration. We shall calculate an energy expectainternal degrees of freedom of the components. In the case
tion value for these four states as a functionRof R’, that  where two excitons overlap one another, deviations of exci-
is, tons from ideal bosons become crucial, which affect the in-
teractions among bosonized excitons and photons. We have
(t;§||3|Ed|t;§)=2(Eg+ E;) +AE(R—R’), (5.39 called such effects the composite-particle eff@@Pp). It is
stressed again that our bosonization can map two-exciton
YB ey Y systems with ararbitrary exciton Bohr radius to theideal
(s[Hcol$) =2(Eg+ 19 +AE(R-R"), (540 boson systems even when the point-boson approximation is

Where{: _1, O, or 1 and the interaction poten“a&Et(R) inVa”d, e.g., |R_ R,|~a. In the bosonized Ham”tonian,

(BB e — B e
|S)_E[ (12vRB= (17207 r T B (12)R (1/2)V'R']

andAE(R), are given as there are four nontrivial interaction terms— the component-
direct boson-boson scattering term denoted IRy the
AE(R)=14(R)+(—=5)I(R), (5.41) component-exchange boson-boson scattering tgrmthe
component-direct nonlinear-coupling ter®,, and the
AE(R)=14(R)—(—8)I(R). (5.4  component-exchange nonlinear-coupling tebp—between

the bosonized excitons and a photon. In terms of the CPE
TheseAE(R) andAE¢(R) are drawn in Fig. 8 for the case order, |4 starts from a zeroth-order CPE, and G, from
of s=—1. We find thatAE(R) is positive for arbitraryyR|, = more than a zeroth-order CPE a@}; from more than a
while AE¢(R) becomes negative arounR|=a. Therefore, first-order CPE. It has also been shown that the quantum
the triplet and singlet states correspond to unbound states asthtistics of the components affects only the signs,adnd
a bound state of the two bosonized excitons, respectively. IG,. As an example, we have studied a semiconductor bulk
a fictitious case o= +1, i.e., the components of an exciton system with a radiation field in the heavy-hole limit. The
are bosons, the triplet states correspond to bound states, asilength ofl 4(Q) andI,(Q) in the vicinity of Q=0 is en-
the singlet state corresponds to the unbound state. Our tredtanced by the CPE. We have also shown that our theory can
ment on the interaction potentials is a modified version of thecorrectly explain the bound and unbound states of the two
Heitler-London theory from the viewpoint of the bosonized bosonized excitons.
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The bosonization method used in this paper exhibits -1
normal-ordering expansion of the boson operators, and no F'(n,mli,j)= (H > )J-‘l(n,m|i("1),j("1))

boson-number dependence in the bosonized oper&tdis. k=1 j(j(k)
Accordingly, when we consflder more than two excn_on Sys- X (00, j0-D]j0-2) j(-2))
tems, the two-body interactiong, I, G4, andG, obtained ' ' T
in this paper remain unchanged. Then we believe that our X FL(j@,i@}iM jaOy £ M i@ ),
bosonization to two-exciton systems can be an important
step forward in understanding excitonic nonlinear optical (AS)
processes and the nature of many-exciton states. Wherei(k):{,lLi(k),Vi(k),Ki(k)} and fl(n,mli,j) is given in
Eq. (2.16. We can rewrite this in terms df (n,m|i,j) and
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This work was supported by CREST, JST and Grant-in- F'inmli,j)=3[A(n,m|i,j)f'(n,mli,j)
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search on “Strongly Correlated Electron Phase under Mulyere we note some useful relations:
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Aihara, H. Ishihara, and T. Ishihara for stimulating discus- F'(j,ilmn)y=[F'(n,m|j,i)]*. (A8)
sions.
APPENDIX B: DEFINITIONS OF SOME FUNCTIONS IN
APPENDIX A: DEFINITION OF THE COEFFICIENT THE LOOSE MATRIX ELEMENTS

IN EQ. (3.1
Q (3D This appendix is devoted to definitions of some functions

We shall give a definition of'(n,m|i,j) for any integer in Sec. IV A. The interaction energy among density distribu-
I=1, which expresses th¢h-order CPE. We first introduce tions of the components of excitorig{®(n,mli,j), which is

two definitionsf'(n,m|i,j) andA'(n,mli,j), a zeroth-order CPE, is defined as
- UO(n,mli,j)=A%n,mli,j)u®(n,mli,j)
Alnmli Al(nm|i¢-D j0-1)
(nmfi.j)= H (;(k) (n,mfiT=, 75 +(iej or men), (B1)
X ALj0-Dj0-1)}j0-2) j0-2))5 where
XAYP, BN JO)AL DG, u©@(n,mli,j)=uco(n,mli,j)+uce(n,mli,j) +uga(n,mli, j),
(A1) (B2)
with
I-1
[ Dy 1 S(1-1) s (1-1)
F(n.mi.J) (kﬂl & )f (mmfiE 2 el )= =235 57, 00 Ve Q)
X 10D j0-D)j(1-2) j0=2)y 5
*
><fl(j(2),i(2)|i(l),j(l))fl(j(l),i(l)li,j), x ; ¢ (aQ+k)¢(k)}
(A2)
x| 2 ¢*(ﬁQ+k>¢(k)}, (B3)
Wherei(k):{,ui(k),vi(k)} in Eq. (A1), i®=K,w in Eq. (A2), k
and AY(n,m|i,j) and f(n,mli,j) are given in Eqs(2.18
| . .
and(2.20. HereA'(n,m|i,j) can be reduced to Uee(n,mli,j)= E 5K +Q cc(Q)
| ~ [A%n,mli,j) for I=even )
AMILD=] A i) for 1=oad A x| 3 ¢*(BQ+k)¢(k)} . (B9
On the other handt'(n,m|i,j) has a wave-number conser-
vation rule of Ugq(n, m|| )= 2 5K +Q Vdd(Q)

fi(nmli,j)=0, if Kp+K,#K;+K;. (A4) ’
X ; ¢>*(aQ+k)¢(k)} . (B9

Next we defineF'(n,m|i,j) as
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The interaction for the exchange of the exciton componentsyhere

Y®)(n,m|i,j), the first-order CPE, is

o®(n,mli,j)=vea(n,mli,j)+vec(nmli,j)+vgg(nmli,j),

YO (n,mli,j)=AYn,mli,j)v®(n,mli,j) (B7)
+(i<>] or m«n), (B6) with
|
vcd<n,m|i,j>——5Km+K 2 Ve q>2 [¢* (a(Kpn—K))+k—=q)p* (B(K n—Kj)+K)
X p(K) pla(Kn—Kj)+ B(Kn—Ki) +K)+ ¢* (a(Kn—Kj) +K)* (B(K = Ki) +k—0)
X $(K) pla(Kn—Kj)+ B(Kn—Ki) +K)+ ¢* (a(K = K;) +K)¢* (B(K = Ki) + k)
X p(k—q) p(a(Km—K))+ B(Kn—K)+K)+ ¢* (a(Kn—K;) +K)* (B(K n—K;) +K)
X p(K) p(a(Kn—Kj)+B(Kyn—K)+k—a)], (B8)
vcc<n,m|i,j>——5Km+K E vcc<q>2 ¢* (a(K =K +K)¢* (B(Km—K))+k—0q)
X (k=) p(a(Kpn—K;)+ B(Kn—K;)+kK), (B9)
vgd(n.mli,j)=— M 2 vdd<q>2 ¢* (a(K =K ) +k—q)¢* (B(K n—K;) +k)
X p(k—q) p(a(Kn—K;j)+ B(Kn—K;)+K). (B10)

Next we give the definitions ofP(®(n,m|i,j) and
Q®(n,mli,j) as

PO(n,m[i,j)=B%n,m[i,j)p®(n,m|i,j)+(men),
(B11)

o®W(n,mli,j)=Bn,mli,j)g®(n,mli,j) +(men),
(B12)

whereB®(n,m|i,j) andB(n,m|i,j) are given in Eqs(4.20
and(4.21), respectively, and

pO(n.mli.j)=g5 "5 LP¢*(0),  (B13

q<”<n,mli,j>=—§; ¢* (a(Km—K;j)+k)
X * (B(K =K +K)p(a(Km—K;)

+ B(Kn—K;) +Kk). (B14)

APPENDIX C: DEFINITIONS OF SOME FUNCTIONS
IN THE MATRIX ELEMENTS

E (Evmoyptméiy)

I’—O

7<'>(n,m|i,j)—

x > F'(nmm’,n")
nm'i’j’

XIZ—(O)(n/,mr“/,j/)Flfl’(j/,irli’j)
=A(n,mli,HtO(n,mli,j)
+(i<>] or m«n), (C1

where& = (21)!/(2'11)2, 7O(n,mli,j) andF'(n,mli,j) are
defined in Eqs(4.2) and(A5), and

tO(n,mli,j)= E (Erm_y+m &)
2=,
2 2
|’ e
XKVEK,-,f (n,m|i’j )W(Ki’+KJ')
XAV (L), (C2)
¢ for 1=0
=1 (e5)

&—§ -4 for I=1.

Here we give the definition of the functions in the matrix According to this definition,7(*)(n,m|i,j)=0 because of

elements [Egs. (4.10 and (4.12]. The definition of

T70(n,mlij) is

Eom1t 1706, =0.
Next, 4D (n,m|i,j) andV(n,mli,j) are defined as
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|
UVmli, =2 &&- 2 F'(nmlm’,n")

[

I"=0 n'm'i’]
xUOm m'|i", i) F GV
=A'(n,m|i,j)u(')(n,m|i,j)
+(i«<>] or men), (CH
-1
VO(n,mli,j)= 2 SR ,2” , F'(n,m[m’,n")
n'm'i’]
xVOn,m'[i’,jHF G L)

=Al(n,mli,j)v®(n,mli,j)

+(i<>j or men), (CH

(B1) and(B6), and

|
uO,mlij)=> && 1 X

I"=0

f'"(n,mm’,n")

m'n’i’j’
XU(O)(nI'mr“l,j/)fl—l'(j/,i/“'j)’
(C6)
1-1
oO(nmlij)=2> &é-1 2 f'(nmlm’,n")
I"=0 m'n’i’j’

xoO(n,mlin G,
(C7)
with u©@(n,mli,j) ando®(n,mli,j) given in Eqs(BZ) and
(B7). The summation runs ove{ ., K, , K;,, andKj,.
Here note that/((n,mli,j) and V(')(n mli,j) are defined
for I=0 andl=1, respectively.

In Eq. (4.12, P(')(n,m|i,j) andQ(n,mli,j) are given
as

PO,mli,jp)=¢& >, F'(nmm .n)POn mij)

=B'(n,mli,j)p®(n,mli,j)+(men),
(C8)

QO(nmli,j)=¢&_ 1> FXnmm’,n")

xQ®(n",m'[i,j)
=B'(n,mli,j)a®(n,mli,j)+(men),
(C9

where P©(n,m|i,j) and Q™M (n,m|i,j) are given in Egs.

(B11) and(B12), and

PHYSICAL REVIEW B65 035105

B'(n,m|i,j)=>, 5"“'+V'A'(n mli,j)

MiVi
B%(n,m|i,j) for I=even
BY(n,m|i,j) for I=odd, (€10

p<'><n,m|i,j>=K2K &f'(n,mm’,n")p©n’,m'li,j),

(C1)
q<'><n,m|i.j>=K2K &-1f'"H(n,mm’,n")
xg®(n’,m'li,j), (C12

with B%(n,m|i,j) andB(n,m|i,j) in Egs.(4.20 and(4.21),

and p@(n,m|i,j) and q™(n,mli,j) in Egs. (B13) and
(B14). HerePO(n,m|i,j) andQ"(n,m|i,j) are defined for
I=0 andl=1, respectively.

APPENDIX D: MATRIX ELEMENTS FOR
A SEMICONDUCTOR BULK SYSTEM

The matrix elements ofl .4 andgp! 5 for a semiconduc-
tor bulk system are given here in the heavy-hole limit. With
the use of the orthonormalized two-exciton stafés.

(5.10] we obtain the matrix elements 6f.4 as

(n,m[Acgli,i)=4(Eq+E) FO(n,mli,j)

+Z4(n,m|i,j)—sZy(n,mli,j), (D1)
where
Zg(n,m|i,j)=A%n,mli,j) *(Ry,—Ry) *(R,—R))
X'd(Rl_RJ)+(I<—>J or m<—>n), (DZ)

Zyn,mli,j)=A*nmli,j) % Ry—R) (R,—R;)
Herel4(R) and1,(R) are given in Eqs(5.30 and (5.31).
The matrix element ofp’ is

g(n,m|p/b10y=PO(n,mli,j)+Gy(n,mli,j)

=sGy(n,mli, j), (D4)
whereP9(n,mli,j) is given in Eq.(5.24 and
gd(nvmli!j):BO(nvmli!j)éG(Rm_ Rl)ﬁ(Rn_RJ)
XGy(Rj—Rj) +(men), (D5)

Ge(n,m[i,j)=B(n,mi,j)8*(Ry—Ri) *(R,—R;)
XGy(Ri—R))+(men). (D6)

Here G4(R) andG,(R) are given in Egs(5.32 and(5.33,
respectively.
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