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Product Jahn-Teller systems: TheˆT1‹H ‰‹„g¿2h… icosahedral exciton
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The $T1^ H% ^ (g12h) product Jahn-Teller~JT! system offers a model Hamiltonian for the excited con-
figuration of C60. It describes the combined JT activity of two open shells transforming as the threefold and
fivefold degenerate icosahedral representationsT1 and H. The two separate JT problems interfere via the
interaction with common vibrational modes. In this paper we examine the structure of the resulting potential
energy surface. The treatment first considers the simplified$T1^ H% ^ (2h) problem. The coupling conditions
for this problem can be represented in a two-dimensional phase diagram with a rich structure. The diagram is
separated in four domains by four trough lines. These correspond to different embeddings of SO(3) in SO(5)
and describe the possible spherical couplings between a three vector and a five tensor. Outside the trough lines
symmetry is broken toD5d , D3d , D2h , and evenC2h . Several tables offer a description of the structural
aspects of these low-symmetry solutions. In the second part the full multimode Hamiltonian is treated by the
method of the isostationary function. It is shown that the interconfigurational coupling term of this Hamiltonian
reduces to the same tensorial form as for the simplified single mode$T1^ H% ^ (2h) case.
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I. INTRODUCTION

The excited and ionic states of C60 host many challenging
Jahn-Teller~JT! problems.1 In this paper we will be con-
cerned with the lowest excited triplet and singlet states
neutral C60, which both give rise to emission spectra with
rich vibronic structure.2,3 These states have already been
subject of computational studies,4–6 but a transparent mode
of the Jahn-Teller nature of the exciton is still lacking.

In the excited state two sources of JT activity exist: t
fivefold degenerate hole state, created by removal of an e
tron from the filledHu-HOMO, gives rise to a JT problem o
type H ^ (g12h), and the threefold degenerate electr
state, formed by population of the emptyT1u-LUMO, exhib-
its a JT effect of typeT^ h.

What is novel and interesting about the lowest exci
states of the neutral buckminsterfullerene is that they co
bine two instabilities in a coupled or product Jahn-Tel
problem of type$T1^ H% ^ (g12h). In this paper we char-
acterize the distortions in coordinate space which result fr
these combined instabilities. We examine the rotational s
metries which can arise when a three vector and a five te
are combined, and construct a phase diagram of the pos
coupling schemes. Actual calculations for the excited60
will be reported in a subsequent work. Preliminary to t
present problem we have reported the solution of the$T1
^ T2% ^ (e1t2) product case.7 This case is less intricate sinc
it involves the coupling of two three vectors, and may se
as a useful starting point for the present analysis.

II. THE SINGLE MODE ˆT1‹H ‰‹2h HAMILTONIAN

At the start two important caveats must be brought un
attention. First of all the treatment focuses on the ‘‘stat
structure of the adiabatic potential energy surface of
0163-1829/2001/65~3!/035104~14!/$20.00 65 0351
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coupled JT problem in the space of the active coordina
This means that in the Hamiltonian the kinetic energy of
vibrating nuclei is not included. Once the nature of the s
face has been determined it may be required to consider
plicitly the role of the kinetic energy operator to study th
quantum coherence effects, which are usually referred to
the ‘‘dynamic’’ aspects.

Secondly two-electron operators, describing the Coulo
bic and exchange interactions, are not included either. Th
markedly different from standard Jahn-Teller treatme
where the configurations are first separated into multipl
which are then studied as isolated Jahn-Teller problems
we have already mentioned in our first study of produ
systems,7 our different approach is inspired by the spec
repulsion situation on the fullerene surface. Calculations s
gest that several terms of the excited configuration in C60 are
nearly degenerate.5,6,8 Negri and Orlandi have performe
simulations of the Jahn-Teller distorted emitting state, inc
porating not less than three terms of thehu

9t1u
1 configuration.6

This exceptional repulsion situation has motivated us
switch to the product approach, which gives priority to t
one-electron Hamiltonian and describes its full distorti
power. In a later development these results must of cours
combined with the two-electron part to study the influence
the Coulombic terms.

Only modes ofh symmetry are able to correlate theH and
T1 parts of the product problem, since this is the only sy
metry which is common to bothH and T1 instabilities.
Hence the simplest Hamiltonian, which still describes t
essential features of the problem, only considers a singh
mode coupled both toH and T1. We will mainly base our
treatment on this Hamiltonian, in order to keep the form
ism as transparent as possible. Extensions to the general
with multiple modes of bothh andg symmetry are straight-
forward and will be presented in Sec. V. The single mo
$T1^ H% ^ 2h Hamiltonian reads
©2001 The American Physical Society04-1
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H5 (
lPh

~FHahL̂hl
Ha1FHbhL̂hl

Hb1FT1hL̂hl
T1!Qhl

1
1

2 (
lPh

KhQhl
2 . ~1!

Here $Qhl% spans the five components of the normal mo
of h symmetry. TheF symbols denote the linear JT forc
elements of the separateH andT1 systems, whileKh is the
elastic force constant of theh mode. Note that in our treat
mentFHah andFHbh are the force elements of the hole qui
tuplet. They are obtained from the orbital vibronic consta
of the HOMO by simply inverting the signs. The sing
mode JT coupling scheme is illustrated in Fig. 1. TheL̂
quantities are operators, which are defined as

L̂hl
Ht5 (

a,bPH
^HauHlHb&tca

1cb ~t5a,b!, ~2!

L̂hl
T15 (

i , j PT1

^T1i uHlT1 j &ci
1cj . ~3!

The L̂hl
Ht operator acts in the space of the five electro

components ofH symmetry, via the creation and annihilatio
operatorsca

1 andcb . The^HauHlHb&t bracket denotes the
complex conjugate of the appropriate Clebsch-Gordan c
ficient. Note that there are two sets of independ
^HauHlHb&t coupling coefficients, which are distinguishe
by the extra product multiplicity labelt5a,b.

Similarly the L̂hl
T1 operator acts in the space of theT1

triplet via the ci
1 and cj operators. The correspondin

^T1i uHlT1 j & coefficients are free of product multiplicitie
since theT1^ T1 direct product is simply reducible. TheL̂
operators may be constructed from the standard pro
tables for the icosahedral group9 and are listed for conve
nience in Appendix A. The respective electronic bases
expressed in real form asuHu&,uHe&,uHj&,uHh&,uHz& and
uT1x&,uT1y&,uT1z&, following the standard conventions o
Boyle and Parker.10

III. THE ISOSTATIONARY FUNCTION

For a general description of the stationary points on
adiabatic surface we develop the isostationary function,11,12

which expresses the extremal energies in terms of the ei

FIG. 1. Schematic description of the vibronic coupling of t
product $T1^ H% ^ (g12h) JT system. The two electronic leve
are interacting via coupling to common vibrational modes.
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vector coefficients of the electronic state. To obtain this fu
tion we follow the procedure of Oepik and Pryce13 and mini-
mize the expectation value for the ground state energy
coordinate space, keeping the electronic variables fixed.
resulting extremal coordinates will be denoted as^Q&, and
the associated energy as^uuEuu&. Both quantities are func-
tions which are defined in the space of the electronic v
ables.

Since the Hamiltonian only contains one-particle ope
tors, the electronic state can strictly be factorized as a pr
uct of a hole and an electron component, i.e.,

uc&5~xuT1x&1yuT1y&1zuT1z&) ^ ~uuHu&1euHe&

1juHj&1huHh&1zuHz&). ~4!

Hence only eight real eigenvector coefficientsx,y, . . . ,z,
are needed to specify a state; they are subject to sep
particle and hole normalization conditions

x21y21x251, u21e21j21h21z251. ~5!

Note that the five components ofH transform as the orbita
d-functions. According to the now standard Boyle and Par
convention theuHj&, uHh&, anduHz& components transform
asdyz , dzx , anddxy , respectively, while theuHu& anduHe&
transform as the linear combinations ofdz2 anddx22y2:

uHu&5A3

8
d3z22r 21A5

8
dx22y2,

uHe&5A3

8
dx22y22A5

8
d3z22r 2.

In the setting of Boyle of Parker the cartesian coordin
frame hasD2h symmetryx,y,z transforming, respectively, a
b3u ,b2u ,b1u . Both dz2 anddx22y2 are therefore ofag sym-
metry, implying that they can be recombined in arbitra
ways. The isostationary function is given by

^uuEuu&5
5

2
ET1h

JT (
l

~Rhl
T1!21

5

4 (
t5a,b

EHth
JT (

l
~Rhl

Ht!2

12(
t

FT1hFHth

Kh
(
l

~Rhl
T1Rhl

Ht!. ~6!

Here the force elements and force constants are combine
effective JT energies, defined by

ET1h
JT 52

1

5

FT1h
2

Kh
, EHth

JT 52
2

5

FHth
2

Kh
. ~7!

The R functions in the equation are obtained by taking t
bracket of theL̂ operators overc

RGg
Vt5^cuL̂Gg

Vtuc&5(
i , j

^Vv j uGgVv i&txixj , ~8!

with xi ,xjP(x,y,z) for G5T1, andxi ,xjP(u,e,j,h,z) for
G5H. These functions are directly obtained from the 3G
coupling tables, and are listed in Appendix B. The Appen
4-2
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PRODUCT JAHN-TELLER SYSTEMS: . . . PHYSICAL REVIEW B 65 035104
also provides the expressions for the corresponding coo
nates ^Qhl& as a function ofxi and xj . In deriving this
expression the following orthogonality rule forR functions
was used:

(
g

RGg
HaRGg

Hb50 for aÞb. ~9!

The isostationary function is a fourth rank tensor of the
genvector coefficients. Its extremal points coincide with
extrema of the adiabatic JT surface. Although the isostat
ary function at first sight looks very complicated, it has
fact a nice transparent structure. The first term of^uuEuu&
indeed coincides with the isostationary function of theT1
^ h system. As is well known, this function is a consta
which corresponds to a Jahn-Teller trough ofT1^ h
problem1,14–17

5

2
ET1h

JT (
l

~Rhl
T1!25ET1h

JT . ~10!

Entirely similarly the second term corresponds to the iso
tionary function of theH ^ 2h problem18

5

4 (
t5a,b

EHth
JT (

l
~Rhl

tH!25
1

14
~5Ehah

JT 15Ehbh
JT !

1
5

56
~5Ehah

JT 29Ehbh
JT ! f ,

~11!

with

f 5
7

12
~u21e2!21

7

3
~j2h21h2z21z2j2!2

7

A3
ue~j22h2!

1
7

6
~u22e2!~2z22j22h2!2

1

3
. ~12!

This function can be reduced to a constant trough poten
under the equal coupling condition 5EHah

JT 59EHbh
JT , or in

term of the force elements

A5FHah563FHbh . ~13!

In all other cases a warped potential is produced with eit
pentagonal (D5d) or trigonal (D3d) minima. Up to this point
the product system is just the superposition of the JT effe
of the hole and particle subsystems. The third term in^uuEuu&,
however, introduces new physics, since it gives rise to
interaction between the hole and particle via coupling to
same phonons. Both continuous and finite symmetries h
to be involved to analyze the effect of this term, as will
demonstrated in the next section.

IV. EXTREMA OF THE ADIABATIC JT SURFACE

This section contains the core of our treatment. Us
group-theoretical arguments we first derive coupling con
tions which reduce the isostationary function to a const
equipotential trough. Two classes of solutions are found,
03510
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pending on the relative signs of theFHth and FT1h param-
eters. Subsequently we relax the strict trough conditions
order to obtain discrete minimal wells. The relative signs
the force elements continue to play an important role in t
nondegenerate coupling regime: they discriminate betw
wells with high and low epikernel symmetries.

A. Trough conditions

To obtain an equipotential minimal energy trough, it
required that the system has rotational symmetry. In the c
of a product system different rotational groups have to
combined. TheT1^ h part exhibits SO(3) symmetry, which
can be identified as the free rotation of theT1 electronic
eigenvector in (x,y,z) space. There is a corresponding tw
dimensional~2D! minimal energy trough in the space of th
five hg coordinates. On the other hand the fullH ^ (g12h)
Hamiltonian attains SO(5) symmetry under suitable eq
coupling conditions.1,18,19The H eigenvector then freely ro
tates in (u,e,j,h,z) space, while the system describes a 4
trough in the nine-dimensionalgg1hg coordinate space.

For the product system to have rotational symmetry,
thus must look for a suitable embedding of SO(3) in SO(5),
i.e., an embedding which does not lift the degeneracy of
H manifold and furthermore yields a constantT1^ H inter-
action term in the isostationary function. For this purpose
investigate first the branching rules of SO(5) representati
upon symmetry reduction to SO(3).

In SO(5) theH manifold transforms as the fundament
vector representation~1,0!. Its direct square reduces as fo
lows:

~1,0! ^ ~1,0!5@~0,0! % ~2,0!# % $~1,1!%,

5355@1114#1$10%,

where the second equation specifies the representationa
mensions. The 14-dimensional~2,0! representation spans th
g12h JT operators, listed in Appendix A. The so-calle
‘‘physical’’ embedding of SO(3) in SO(5) yields the follow
ing branching scheme in the chainSO(5)↓SO(3)↓I :

~1,0!→@2#→H,

~2,0!→H @2# → h,

@4# → g1h,

~1,1!→H @1# → T1 ,

@3# → T21G.

In this scheme the@l# labels denote (2l 11) degenerate irre-
ducible representations of SO(3). It is clear that this embed
ding does not lift the degeneracy of the electronic space.
five components ofH are indeed mapped on the five comp
nents of the quadrupolar tensor. On the other hand the
modes are split into@2# and@4# symmetries, transforming in
I as h and g1h, respectively. This offers a possibility t
achieve equal coupling conditions for the product system.
we have argued before, the cross term between theT1 andH
instabilities can only involve modes ofh symmetry. Hence as
far as this cross term is concerned theg mode must be re-
4-3



th
b

ha
n

te
s

t
it

im
le
up

in
e

the

Q. C. QIU, L. F. CHIBOTARU, AND A. CEULEMANS PHYSICAL REVIEW B65 035104
moved from the JT space. The branching scheme shows
this can be done while keeping SO(3) invariance, simply
sacrificing the entire@4# part.

In summary an SO(3) product Hamiltonian requires t
we apply the physical embedding and allow only interactio
transforming as the@2# representation. TheH ^ h@2# Hamil-
tonian can easily be constructed from the (H ^ h)a and (H
^ h)b subsystems by imposing the following constraint:

A5FHah53FHbh . ~14!

This is indeedoneof the coupling constraints which genera
an isotropicH ^ h Hamiltonian. However, on inserting thi
condition in the isostationary function of theH ^ 2h problem
we are confronted with a symmetry dilemma: according
the group theoretical argument we expect a solution w
SO(3) symmetry, but the constant isostationary function
plies that the energy is constant in a five-dimensional e
tronic space. The solution to this problem is that the gro
theoretical treatment refers to the symmetry of the fullH
^ h@2# Hamiltonian, while the isostationary functiononly
reflects the symmetry of the lowest sheet. This is confirmed
by the analysis of Chancey and O’Brien,1 who demonstrate
that theH ^ h@2# has two roots out of five~the lower and the
upper ones! which form a four-dimensional hypersphere
the space of theh coordinates. The wave function of th
g
-

gh

u

x-
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ground state is based on a linear combination of
YM

L (u,w) spherical harmonics, withL52, and the
DM62

L (g,u,w) Wigner functions, withL52, for the rigid
rotator

uc&5sin~a/2!uc1~g,u,w!&1cos~a/2!uc2~g,u,w!&,
~15!

where

uc1&51
1

2
A3

2Fcos2u1
1

2
~211A5 cos 2w!sin2uG

1

8A2
@2„A5~113 cos 2u!…16 cos 2w sin2u#

A3

2
sin 2u sinw

A3

2
sin 2u cosw

A3

2
sin 2w sin2u

2
~16!

and
uc2&51
1

8 A2
$24A5 cosu sin 2g sin 2w1cos 2g@A5 cos 2w~31cos 2u!16 sin2u#%

1

4
A3

2
$22 cosu sin 2g sin 2w1cos 2g@cos 2w~11cos2u!2A5 sin2u#%

2cosw sin 2g sinu2
1

2
cos 2g sinw sin 2u

sin 2g sinw sinu2
1

2
cos 2g cosw sin 2u

cos 2w cosu sin 2g1
1

4
cos 2g~31cos 2u!sin 2w

2 . ~17!
We now insert theseT1 andH trough solutions in the third
term of^uuEuu&, which describes their interaction. Introducin
FHh[2][FHbh5(A5/3)FHah yields two trough solutions de
pending on the signs of the productFHh[2]FT1h . If FHh[2]

andFT1h have opposite sign we find a minimal energy trou

which we will designate as thenormal trough, in view of its
correspondence with previously found solutions for the eq
coupling regime for the$T1^ T2% ^ (e1t2) problem.7 It is
characterized bya5p, which implies that theH ground
state reduces to theYM

2 spherical harmonics and can be e
pressed as the tensor product of aT1 vector with itself. The
three components of this vector will be denoted as (a,b,c) to
make clear distinction with the (x,y,z) components of theT1
al

vector in the other shell. One then has from theT1^ T15H
coupling table

u5
1

2
A3

2
~f21a22fb21c2!,

e5
1

2
A1

2
~f2a22f22b22A5c2!,

j5A3bc, ~18!

h5A3ca,
4-4
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z5A3ab,

where both (a,b,c) and (u,e,j,h,z) are normalized, and
f5 1

2 (11A5) is the golden mean. Substituting these expr
sions for theH vector in the isostationary function, yields

^uuEuu&v5ET1h
JT 1EHh[2]

JT 2
A2

5
@123 cos2v#

FHh[2]FT1h

Kh
,

~19!

wherev denotes the angle between the (a,b,c) and (x,y,z)
vectors

cosv5ax1by1cz. ~20!

This function indeed represents a constant equipoten
trough. SinceFHh[2] and FT1h were taken to have opposit

signs, its energy is minimal forv50 or p:

^uuEuu&v50,p5ET1h
JT 1EHh[2]

JT 1
2A2

5

FHh[2]FT1h

Kh

52
1

5Kh
@FT1h2A2FHh[2] #

2. ~21!

We thus retrieve a solution which is reminiscent of t
spherical symmetry obtained by the concerted rotation
two three vectors in theT1^ T2 problem.7 In the present case
the continuous symmetry combination of a three vector an
five vector is achieved by constructing the five vector a
tensor representation of another three vector, which t
forms with the previous one a rotating pair. The angle
tween the two is zero~or p) meaning that these direction
are parallel. For the$T1^ T2% ^ (e1t2) case this parallel so
lution was found for equal signs of the two JT force e
ments. In the present case the parallel solution is found
opposite signs. This difference is not essential though, s
it only depends on the conventional choice of an exter
phase in the appropriate Clebsch-Gordan coefficients.
structural characteristics of the JT distortion in the norm
trough will be further discussed in Sec. IV B.

Subsquently we have to consider the case whereFHh[2]
and FT1h have the same sign. In analogy with theT1^ T2

treatment one could have anticipated that this case sim
corresponds to a ‘‘perpendicular’’ solution whereH is based
on a three vector (a,b,c) which is perpendicular to the
(x,y,z) vector ofT1. However, this is not the lowest energ
solution. The actual solution has a more intricate symme
and corresponds toa50. TheH vector for this case consist
of the rigid rotator functionDM62

2 (u,w,x), as described in
Eq. ~17!. As compared to theT1 components defined in
(u,w) space the five vector has an additional angular deg
of freedom x, which does not affect the coordinates a
therefore is purely electronic. As a result under this coupl
condition the ground state is twofold degenerate and will
decribed by the two rotator functions

uc&5uc2~g,u,w!&, uc8&5uc2~g1p/4,u,w!&. ~22!

The energy of the trough is given by
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^uuEuu&52
1

5Kh
~A2FHh[2]1FT1h!2. ~23!

We have chosen to call this state an ‘‘anti-Jahn-Te
trough,’’ since it is degenerate and therefore violates
Jahn-Teller theorem. One should not forget though that
violation is only the result of a restrictive coupling conditio
and will disappear if further interactions are included. In t
anti-Jahn-Teller trough the hole and electron parts of the s
tem distort in opposite directions, such as to leave theH hole
in a degenerate state. Chancey and O’Brien1 have noticed
before that theH ^ h@2# Hamiltonian sheets may meet in
certain domain of the SO(5) space. We now observe
precisely this domain is projected out in the anti-Jahn-Te
trough, and that it forms an SO(3) subspace of SO(5).

So far we have examined the ‘‘physical’’ embedding
SO(3) in SO(5) and shown that it successfully genera
two typical equipotential minimal energy troughs. As w
have indicated before@Eq. ~14!# the H ^ h subsystem also
can be made isotropic by applying the alternative coupl
condition

2A5FHah53FHbh . ~24!

In this condition the sign ofA5 has been changed as com
pared to the preceding one. In the character table of
icosahedral group such irrational conjugation interchan
T1 andT2 representations.9 Judd and Lo20 have invented the
name ‘‘kaleidoscope operator’’K to denote this interchange
TheH representation is self conjugate. Under the action oK
theT1^ T15H tensor product switches to aT2^ T25H ten-
sor product, and the components ofH change accordingly.
As a result the conjugate coupling condition gives rise to
isotropicH ^ h@ 2̄# Hamiltonian, where the 2¯ refers to a ten-
sor product ofT2 vectors. The corresponding invarianc
group, say SO8(3), is a Weyl reflection of the physical
SO(3) group in the root diagram of the SO~5! parent
group.21 This H ^ h@ 2̄# Hamiltonian precisely corresponds t
the one which was considered in the first study of icosa
dral JT problems by Khlopinet al.22 The troughlike solution,
which these authors found, confirms its isotropic charac
For the product problem the SO8(3) invariance is expected
to be present in the$T2^ H% ^ h@ 2̄# product, since this is the
precise kaleidoscopic image of the$T1^ H% ^ h@2# case.
This result is indeed easily verified analytically.

To our surprise the mixed product problems$T1^ H%
^ h@ 2̄# or $T2^ H% ^ h@2# also exhibit spherical troughs in
their ground states. This is again due to the fact that, w
the full H ^ h@ 2̄# Hamiltonian has only SO8(3) symmetry,
its lowest root is in fact a four-dimensional trough with n
less than SO(5) symmetry. Hence as far as the ground s
is concerned, the symmetry of the mixed Hamiltonian
type $T1^ H% ^ h@ 2̄# is described by

SO8~3!ùSO~5!5SO8~3!. ~25!

We emphasize once more that this exceptionally high sy
metry is only a property of the lowest and highest sheet
the H ^ h@ 2̄# adiabatic energy surface, and is not retriev
4-5
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TABLE I. Trough conditions and energies for the$T1^ H% ^ (2h) coupling.

Condition
FHh[2]5FHbh5

A5

3
FHah FHh[2̄]5FHbh52

A5

3
FHah

FHbhFT1h,0
2

1

5Kh
~A2FHh[2]2FT1h!2 2

1

5Kh
~A2FHh[2̄]2FT1h!2

‘‘normal’’ trough a5p,v50,p SO8(3)

FHbhFT1h.0
2

1

5Kh
~A2FHh[2]1FT1h!2 2

1

5Kh
~A2FHh[2̄]1FT1h!2

‘‘anti-JT’’ trough a50 SO8(3)
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for the sheets in between. Moreover as shown by Manini
De Los Rios,23 the low-lying states of theH ^ h@2# dynamic
spectrum have SO(3) degeneracies only. Introduc
FHh[2̄]5FHbh52(A5/3)FHah into the isostationary function
yields spherical symmetry troughs, for either sign
FT1hFHh[2̄] . Energies are as in Eqs.~21! and ~23! for nega-

tive and positive sign ofFT1hFHh[2̄] , respectively. Anti-
Jahn-Teller behavior is not observed since the intersectio
SO8(3) and SO(5) does not coincide with thea50 sphere.

As a result we find altogether four spherical troughs
the $T1^ H% ^ (2h) product problem. They are summarize
once more in Table I.

B. Phase diagram for theT1‹H exciton

As can be seen from Eq.~6! the actual ground state en
ergy of theT1^ H problem only depends on three paramete
FHah ,FHbh ,FT1h , and therefore can be represented in a tw
dimensional diagram based on the parameter ra
FHah /FT1h and FHbh /FT1h . The results of an extensive
analysis as a function of these parameters are presente
the phase diagram of Fig. 2. In the diagram one immedia

FIG. 2. Phase diagram for theT1^ H exciton. The encircled
numbers refer to the stationary points described in Tables IV–
For the minima ofD5d and D3d symmetry, the domains are clea
But for other symmetries in the system, detailed explanations
given in the text.
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recognizes the straight lines through the origin which cor
spond to the SO(3) and SO8(3) troughs described previ
ously. These lines divide the diagram in four ‘‘wedges,’’ le
and right, upper and lower. The straight line with positi
slope is the$T1^ H% ^ h@2# Hamiltonian with SO(3) sym-
metry. For negative ratios ofFHh[2] /FT1h , i.e., left from the
origin in Fig. 2, we find the normal trough. The JT surfa
consists of a 2D spherical trough in the 5D coordinate spa
The curvature of the surface is expressed analytically by
following Hessian eigenvalues:

H 0,0,Kh ,
FT1hKh

2A2FHh[2]1FT1h

,
FT1hKh

2A2FHh[2]1FT1h
J .

~26!
In Appendix C expressions are presented for the ang

momentum operators inQ space. Exactly the same operato
are found for theH part of the electronic space since bothQ
andH transform as a quadrupolar@ l 52# tensor. TheT1 part
forms the basic@ l 51# vector of this space. As the diagram
indicates this trough solution is found at the intersection
the regions ofD3d andD5d symmetries, which are the high
est epikernel symmetries of the problem. An entirely simi
degenerate trough solution is found for instance in the cu
T^ (e1t2) problem on the line of coexistence of trigon
and tetragonal wells.24,25 Across the origin the signs of th
parameter ratios are switched and the trough adopts
anti-JT phase in which theH tensor is constructed from
rigid rotator function. High epikernel symmetries are bann
from this trough and it is indeed surrounded by a region
low epikernel symmetries. Furthermore the Hessian eig
values inQ space are now given by

H 0,0,Kh ,Kh ,
FT1hKh

A2FHbh1FT1h
J . ~27!

The straight line with negative slope corresponds to the c
pling condition for the$T1^ H% ^ h@ 2̄# Hamiltonian, which
also has an isotropic adiabatic potential in the ground st
This line divides the diagram in a high and low symme
domain. Below the line in the left and lower wedge o
encounters the high epikernel phases, above it in the r
and upper wedge onlyD2h andC2h are found.

I.

re
4-6
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If the equal coupling condition is relaxed, warping term
enter in the potential and will give rise to minimal ener
wells and turning points. According to the epikern
principle14 these points are expected to be characterized
epikernel symmetries, corresponding to intermediate gro
in the tree structure of the parentI h group
D5d ,D3d ,D2h ,C2h . In the isolated JT systems the highe
epikernel symmetriesD5d and D3d , prevail, but—as we
have shown in the previous study of theT1^ T2
problem7—in excitonic systems coupling conditions can
such that high epikernel symmetries are avoided and lo
symmetry solutions will occur. This is not the case in the l
and lower wedges surrounding the normal trough, wh
hole and electron act in parallel, as can indeed be seen in
phase diagram.

We will now discuss the various regions in order of d
creasing symmetry. The highest epikernel is theD5d point
group. There are six equivalent pentagonal directions, on
which is described by

FIG. 3. Pentagonal distortion with the splitting of the pare
terms alongQxz

D5d . The JT forces acting on the orbital singlet com
ponents ofH and T1 are given by2(2/A5)FHbh and (2/A10)FT1

respectively.
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Qxz
D5d5

1

A10
~A3Qu2Qe1A6Qh!. ~28!

In Fig. 3, we present the splitting of the parent terms alo
Qxz

D5d . The JT forces acting on the orbital singlet compone
of H andT1 are given by2(2/A5)FHbh and1(2/A10)FT1h

respectively. We remind the reader that the splitting in t
figure refers to term energies. In the case of excited C60 theH
term represents a2H(hu

9). The splitting of the corresponding
hu orbitals is of course the inverse of the splitting of this ho
term. For a stable pentagonal minimum to developFHbh and
FT1h are thus required to have opposite signs so that b
shells will distort in the same direction. Otherwise the pe
tagonal distortions will be unable to remove the remain
ground state degeneracy no matter in which direction t
act, implying that further symmetry lowering distortions w
occur. This is also reflected in the energy expression for
D5d minimum

ED5d
52

1

5Kh
~A2FHbh2FT1h!2. ~29!

Clearly this expression will be minimal ifFHbh andFT1h

have different sign.FHah is not involved in the JT force
along the pentagonal distortions. We thus find the region
existence of the pentagonal minima in the left wedge alo
the negative horizontalFHbh /FT1

axis. The FT1hFHbh,0

coupling regime ranges the pentagonal solutions in thev
50 coupling class of the normal trough. The correspond
H eigenvector can indeed be written as tensor product o
three vector (a,b,c) which is exactly parallel to the (x,y,z)
vector of theT1 shell. The ground state eigenvectors and
corresponding distortion coordinates for the six pentago
minima are listed in Table II. The extent of theQD5d distor-

t

rgy of
TABLE II. Electronic states and stationary coordinates for pentagonal minima with the ground ene
ED5d

and condition ofFT1FHbh,0.

Label (a,b,c) ^ (x,y,z) ^Qu& ^Qe& ^Qj& ^Qh& ^Qz&

P1
1

m
~0,f,1! ^

1

m
~0,f,1! 2sA 3

10 2sA 1
10 sA 3

5
0 0

P2
1

m
~0,2f,1! ^

1

m
~0,2f,1! 2sA 3

10 2sA 1
10 2sA 3

5
0 0

P3
1

m
~1,0,f! ^

1

m
~1,0,f! sA 3

10 2sA 1
10

0 sA 3
5

0

P4
1

m
~1,0,2f! ^

1

m
~1,0,2f! sA 3

10 2sA 1
10

0 2sA 3
5

0

P5
1

m
~f,1,0! ^

1

m
~f,1,0! 0 sA 2

5
0 0 sA 3

5

P6
1

m
~2f,1,0! ^

1

m
~2f,1,0! 0 sA 2

5
0 0 2sA 3

5

af5
1
2 (11A5), andm5A21f is the normalization factor.
4-7
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s5^Qxz
D5d&5

A2

A5Kh

~A2FHbh2FT1h!. ~30!

Entirely similar considerations apply to the alternative hi
symmetry epikernelD3d , whereFHah takes over the role o
FHbh . A trigonal distortion coordinate is given by

Qxz
D3d5

1

A6
~Qu1A3Qe1A2Qh!. ~31!

FIG. 4. Trigonal distortion with the splitting of the parent term
alongQxz

D3d . The JT forces acting on the orbital singlet compone
of H andT1 are given by2

2
3 FHah and (2/A10)FT1

, respectively.
03510
Figure 4 shows the splitting pattern. The orbital singlets
subject to forces (2/A10)FT1h and 2 2

3 FHah for T1 and H

respectively. Hence trigonal minima are coupled whenFHah
is dominant overFHbh andFT1hFHah,0. This puts the trigo-
nal phase in the lower wedge along the negative vertical a
in the phase diagram. Again these points are elements o
normal trough. In Table III we list the eigenvectors and d
tortion coordinates for the ten equivalent trigonal minim
The corresponding energy and extent of distortion are gi
by

ED3d
52

1

45Kh
~A10FHah23FT1h!252

1

2
Khr2,

r5^Qxz
D3d&5

A2

3A5Kh

~A10FHah23FT1h!.

Next we consider the lower epikernel symmetryD2h . The
orthorhombic group completely resolves the electronic ma
folds T1→B11B21B3 , H→2A1B11B21B3. As a result
different kinds of exciton states can be formed. There
essentially three distinct configurations, which can be
noted asB1A,B1B1 ,B1B2 exemplified by the nonzero eigen
vector composition (z)(u,e),(z)(z),(z)(h), respectively.
The corresponding energies are given by

s

y of
TABLE III. Electronic states and stationary coordinates for trigonal minima with the ground energ
ED3d

and condition ofFT1FHah,0.

Label (a,b,c) ^ (x,y,z) ^Qu& ^Qe& ^Qj& ^Qh& ^Qz&

t1
1

A3
~0,f21,f! ^

1

A3
~0,f21,f! r/A6 2A 1

2 r r/A3 0 0

t2
1

A3
~0,2f21,f! ^

1

A3
~0,2f21,f! r/A6 2A 1

2 r 2r/A3 0 0

t3
1

A3
~f,0,f21! ^

1

A3
~f,0,f21! r/A6 A 1

2 r 0 r/A3 0

t4
1

A3
~f,0,f21! ^

1

A3
~f,0,f21! r/A6 A 1

2 r 0 2r/A3 0

t5
1

A3
~f21,f,0! ^

1

A3
~f21,f,0! 2A 2

3 r 0 0 0 r/A3

t6
1

A3
~2f21,f,0! ^

1

A3
~2f21,f,0! 2A 2

3 r 0 0 0 2r/A3

t7
1

A3
~1,1,1! ^

1

A3
~1,1,1! 0 0 r/A3 r/A3 r/A3

t8
1

A3
~21,1,1! ^

1

A3
~21,1,1! 0 0 r/A3 2r/A3 2r/A3

t9
1

A3
~1,21,1! ^

1

A3
~1,21,1! 0 0 2r/A3 r/A3 2r/A3

t10
1

A3
~1,1,21! ^

1

A3
~1,1,21! 0 0 2r/A3 2r/A3 r/A3
4-8
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TABLE IV. D2h minima and their correspondingC2h extrema in the upper and right wedges of the pha
diagram~Calculations refer to points 1, 2, and 3 in Fig. 2!.

Test points 1D2h

B1A 1C2h

BA 2D2h

B1A 2C2h

BA 3D2h

B1B1 3C2h

BA

FHah
a 8 8 8 8 8 8

FHbh
a 25 25 1.5 1.5 6.1 6.1

FT1h
a 1 1 1 1 1 1

^Qu& 23.577 24.537 23.405 24.299 23.653 3.179
^Qe& 4.617 22.759 4.396 21.527 4.813 20.488
^Qj& 0 0 0 0 0 0
^Qh& 0 0 0 0 0 0
^Qz& 0 22.244 0 23.453 0 5.108

Hessian Evals~1!b 1 1 1 1 1 1
Hessian Evals~2! 0.888 0.577 0.840 0.847 1.000 0.69
Hessian Evals~3! 0.211 0.248 0.114 0.689 0.033 0.01
Hessian Evals~4! 0.108 0.056 0.063 0.274 0.025 0.03
Hessian Evals~5! 0.031 20.100 0.023 0.037 0.025 20.015

Energy 217.056 216.615 215.457 216.366 218.257 218.220

aKh51.
bHessian eigenvalues are listed by the order of their absolute values.
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ED2h

B1A
52

1

80Kh
~A5~3FHah

2 1FHbh
2 !14uFT1hu!2,

ED2h

B1B152
1

40Kh
F1

3
~A10FHah13FT1h!2

15~A2FHbh1FT1h!2G , ~32!

ED2h

B1B252
FT1h

2

5Kh
2

1

12Kh
~FHah

2 13FHbh
2 !

2
FT1h

2A10Kh

~f22FHbh2fFHah!.

Both AB1 andB1B1 states can be minimal energy solutio
but B1B2 is always a saddle point. In the diagram orth
rhombic solutions are found both in upper and right wedg
Sample calculations for points marked 1, 2, and 3 in
diagram are reported in Table IV. In the upper wedge m
mum energyD2h solutions are ofB1A type. Point 1 belongs
to a narrow region close to the SO8(3) trough where the
surface has absolute minima ofD2h symmetry. Point 2 be-
longs to an adjacent domain whereD2h is coexistent with an
absolute minimum of lowerC2h symmetry. In the right
wedge there is a very narrow region bordering the anti
trough where an orthorhombic absolute minimum of ty
B1B1 exists. This region is indicated asD2h8 in the diagram
and contains point 3.

In the other parts of the upper and right wedges we o
find C2h solutions. In this symmetry the electronic manifol
split asT1→A12B, H→3A12B. There are therefore fou
possible ground state configurations which we will denote
03510
-
s.
e
i-

T

y

s

AA, AB, BA, andBB, characterized by nonzero eigenvect
compositions (z)(u,e,z), (z)(j,h), (x,y)(u,e,z),
(x,y)(j,h), respectively. Here theC2 axis was put along the
Cartesianz direction. The onlyC2h ground states that ar
encountered in the diagram are ofAA and BA types. Of
these theAA case can be described by the roots of an eff
tive quartic equation while the otherBA type is even more
complicated. We thus have to recur to numerical diagon
ization and minimization procedures to analyze theC2h

ground states. TheC2h solutions in the upper wedge ar
included in Table V. The domain characterized by poin
has an absoluteC2h minimum of typeAA. In the lower part
of this domain is a small tip marked by point 6, where t
absoluteC2h

AA minimum coexists with a secondary minimu
of type D2h

B1A as indicated in the diagram. In the doma
marked by point 5 absoluteC2h minima are encountered o
symmetry typeBA and at this point theD2h solution clearly
has become a saddle point. As we have already discussed
domain contains a region, exemplified by point 2, where s
ondaryD2h

B1A minima coexist.
Finally the right wedge entirely consists ofC2h absolute

minima, except for the narrowD2h8 region bordering the
anti-JT trough. In the upper half of the wedge~points 7 and
8! one hasC2h

AA minima, as listed in Table VI. In this region
the D2h

B1B1 solutions form saddle points as we have indica
in the table for point 7. In the lower part of the wedge~points
10 and 11! the symmetry type of theC2h ground state has
changed toBA. The phase transition marking this switch
ground state is indicated by the dashed line in the diagr
Close to this line one of the Hessian eigenvalues beco
very small, as shown for point 8, 9, and 11. The calculatio
show that near this lineC2h

AA andC2h
BA ground states are co

existing, as shown for point 9 in Table VI.
4-9
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TABLE V. Examples ofC2h minima andD2h extrema in the upper wedge of the phase diagram.

Example points 4C2h

AA 4D2h

B1A 5C2h

BA 5D2h

B1A 6C2h

AA 6D2h

B1A

FHah
a 8 8 8 8 4 4

FHbh
a 22.5 22.5 4.5 4.5 0 0

FT1h
a 1 1 1 1 1 1

^Qu& 24.580 23.436 23.117 23.542 22.448 21.887
^Qe& 1.665 4.436 23.608 4.572 1.384 2.436
^Qj& 0 0 0 0 0 0
^Qh& 0 0 0 0 0 0
^Qz& 2.998 0 23.320 0 21.301 0

Hessian Evals~1!b 1 1 1 1 1 1
Hessian Evals~2! 0.729 0.673 0.910 0.615 0.767 0.79
Hessian Evals~3! 0.610 0.543 0.225 0.370 0.699 0.20
Hessian Evals~4! 0.218 0.113 0.109 0.109 0.198 0.14
Hessian Evals~5! 0.098 20.105 0.061 20.042 0.041 0.038

Energy 216.366 215.739 216.876 216.723 24.799 24.749

aKh51.
bHessian eigenvalues are listed by the order of their absolute values.
n
o

e

- the
V. THE GENERAL ˆT1‹H ‰‹„g¿2h… HAMILTONIAN IN A
MULTIMODE ENVIRONMENT

We now turn to the more general form of the Hamiltonia
which should be directly applicable to the excited states
C60. As compared to the formalism in Sec. II normal mod
are now denoted asQmGg wherem is an extra label which
enumerates the modes of symmetry typeG. The linear JT
force elements receive a more general labeling asFmG

Vt .
Again heremG is a particular mode,V denotes the symme
try of the electronic level (V5T1 ,H) andt is the multiplic-
03510
,
f

s

ity index in the case ofH ^ h coupling (t5a,b). The general
form of the Hamiltonian is given by

H5
1

2 (
mGg

KmGQmGg
2 1 (

mGg
S (

t
FmG

Ht L̂Gg
Ht1FmG

T1 L̂Gg
T1 D .

~33!

The L̂ operators are straightforward generalizations of
cases considered proviously, i.e.,
26

8
45
71
TABLE VI. Examples ofC2h minima in the right wedge of the phase diagram.

Label 7C2h

AA 7D2h

B1B1 8C2h

AA 9C2h

BA 9C2h

AA 10C2h

BA 11C2h

BA 11C2h

AA

FHah
a 8 8 22 22 22 25 24 24

FHbh
a 9.5 9.5 8 4.5 4.5 4.5 8 8

FT1h
a 1 1 1 1 1 1 1 1

^Qu& 20.927 23.653 20.394 0.387 20.387 0.492 0.387 20.388
^Qe& 6.255 7.218 5.033 2.446 3.046 2.029 4.425 5.0
^Qj& 0 0 0 0 0 0 0
^Qh& 0 0 0 0 0 0 0
^Qz& 6.197 0 5.536 3.608 3.118 3.874 6.033 25.542

Hessian Evals~1!b 1 1 1 1 1 1 1 1
Hessian Evals~2! 0.911 1 0.979 1 1 0.540 0.998 0.99
Hessian Evals~3! 0.782 0.453 0.783 0.684 0.684 0.273 0.645 0.6
Hessian Evals~4! 0.413 0.444 0.716 0.563 0.563 0.107 0.571 0.5
Hessian Evals~5! 4.131024 21.236 4.631026 4.731028 1.731028 0.031 1.731027 24.631027

Energy 239.196 232.720 228.066 29.573 29.573 29.682 228.063c 228.063d

aKh51.
bHessian eigenvalues are listed by the order of their absolute values.
cThe accurate numerical result for this energy is228.063000488.
dThe accurate numerical result for this energy is228.063000426.
4-10
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L̂Gg
Ht5 (

a,b,PH
^HauGgHb&tca

1cb , ~t5a,b!, ~34!

L̂Gg
T1 5 (

i , j PT1

^T1i uGgT1 j &ci
1cj . ~35!

The coupling coefficients inL̂Gg
Ht are defined forG ’s which

are contained in the symmetrized square ofH ^ H, i.e., G

5A1G12H. For theL̂Gg
T1 operator possible symmetries o

active modes are limited to@T1^ T1#, i.e., G5A1H. No
product multiplicities occur here and no extrat label is
therefore needed. The isostationary function for the e
tronic statesuC& described by the eigenvector coefficien
(x,y,z) and (u,e,j,h,z) in the complete multimode Hamil
tonian reads

^uuEuu&52
1

2 (
G

H SG~T1 ,T1!(
g

~RGg
T1 !2

1(
t

SG~Ht,Ht!(
g

~RGg
Ht!2

12(
t

SG~T1 ,Ht!(
g

RGg
T1 RGg

HtJ . ~36!

The S parameters in this expression are effective coupl
constants, which depend on the JT force elements and f
constants

SG~Lt,L8t8!5(
m

FmG
Lt FmG

L8t8

KmG
. ~37!

The R functions are the appropriate tensor expressions
fined previously and listed in Appendix B. The totally sym
metric R functions reduce to scalars in view of the norm
ization condition

RA
T15

1

A3
~x21y21z2!5

1

A3
,

RA
H5

1

A5
~u21e21j21h21z2!5

1

A5
. ~38!

As a result totally symmetric vibrations only produce glob
vertical shifts of the entire JT surface, and therefore will
left out from further consideration. The summation indexG
is thus restricted toG5H for the T1 contributions, and to
G5G,H for the H contributions. Although the generalize
isostationary function at first sight looks very complicated
is in fact a transparent expression. The first term
SG(T1 ,T1) indeed coincides with the isostationary functio
of the multimodeT1 subsystem. As is well known, this func
tion is a constant and corresponds to the Jahn-Teller tro
energy of theT1^ h problem:

2
1

2
SH~T1 ,T1!(

g
~RGg

T1 !252
1

5 (
m

~FmH
T1 !2

KmH
5ET1

JT .

~39!
03510
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In a similar way, the second term inSG(Ht,Ht) is the iso-
stationary function of theH ^ (g12h) subsystem. It can be
expressed as

2
1

2 (
G5G,H

(
t

SG~Ht,Ht!(
g

~RGg
Ht!2

5
1

14
~4EG

JT15EHa
JT 15EHb

JT !

1
5

56
~4EG

JT15EHa
JT 29EHb

JT ! f . ~40!

The JT energies for the multimode case are given by

EG
JT52

1

2 (
m

~FmG
H !2

KmG
,

EHa
JT 52

2

5 (
m

~FmH
Ha !2

KmH
, ~41!

EHb
JT 52

2

5 (
m

~FmH
Hb !2

KmH
.

The dependence on the eigenvector coefficients is conta
in the functionf, which is given in Eq.~12!. Note that the
multimode aspect of this JT problem is fully incorporat
into the effective coupling constants, so that its isostation
function takes the same form as the single modeH ^ (g
12h) problem. As has been described in previous work t
problem can be reduced to a trough potential under eq
coupling conditions, which eliminate the factor in front off,
but in all other cases a warped potential will be produc
with either pentagonal (D5d) or trigonal (D3d) minima. Up
to this point the product system is just the superposition
the JT effects of the hole and particle subsystems. The t
term in SG(T1 ,Ht) gives rise to an interaction between th
hole and particle via coupling to the same phonons. One

2(
G

(
t

SG~T1 ,Ht!(
g

RGg
T1 RGg

Ht

52(
t

S (
m

FmH
T1 FmH

Ht

KmH
D(

g
~RHg

T1 RHg
Ht !. ~42!

As this expression shows the coupling can only arise thro
a common mode ofH symmetry, since this is the only coor
dinate symmetry which is contained in both compone
problems. Moreover in spite of the multimode character
force constants are absorbed in only two parame
SH(T1 ,Ha) andSH(T1 ,Hb). The tensorial part of the inter
action term is thus entirely the same as for the simple Ham
tonian considered in the previous section, the two effectivS
parameters playing the roles ofFHah and FHbh . The phase
diagram thus continues to offer a relevant classification,
cept that now superimposed on the distortions ofH symme-
try, there may be a further distortion in the coordinate sp
of G symmetry. It should also be kept in mind that in th
multimode environment the curvature of the potential ene
surface in the extremal points is described by a Hessian o
all coordinates, which of course no longer coincides with
simple curvature expressions for the single mode case.
4-11
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VI. CONCLUSION

In this paper we have made a start with the detailed
amination of theT1^ H exciton that governs the excite
states of C60. In the product system, theT1 and H compo-
nents interact with each other via modes ofh symmetry. Our
analysis was based on the continuous invariance grou
this coordinate space. Quite remarkably, while theH ^ h
Hamiltonian can only attain SO(3) symmetry as a whole,
ground state can under equal coupling condition reach
SO(5) symmetry. The study of the coupling term in th
space is—in mathematical terms—equivalent to finding e
beddings of SO(3) in SO(5). Four different solutions were
obtained, corresponding to the four diagonal lines radiat
from the center in Fig. 2, and summarized in Table I. For
normal and anti-JT troughs, explicit substitution formul
were presented which demonstrate the invariance of the
stationary function. Outside of the trough lines the diagr
is clearly divided in a high and low epikernel region. The
two regions were encountered in the preliminary study of
T1^ T2 system, and depend on whether the two compone
of the exciton exert distortion forces in the same or in op
site directions. However, we have demonstrated that
combination of a three vector and five vector with oppos
JT tendencies has a much richer tensorial structure tha
the case of two three vectors. In subsequent work we
now concentrate on the analysis of the particular coup
conditions in actual C60, in order to establish to what regio
of the diagram they belong.
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APPENDIX A: L̂ OPERATORS

L̂hu
T15

1

2
A3

5
~f21c1

1c12fc2
1c21c3

1c3!,

L̂he
T15

1

2A5
~f2c1

1c12f22c2
1c22A5c3

1c3!,

L̂hj
T15A 3

10
~c2

1c31c3
1c2!,

L̂hh
T1 5A 3

10
~c3

1c11c1
1c3!,

L̂hz
T15A 3

10
~c1

1c21c2
1c1!,

L̂hu
Ha5

1

2A6
~3cu

1cu23ce
1ce2cj

1cj2ch
1ch12cz

1cz!,
03510
-

in

s
ll

-

g
e

o-

e
ts
-
e

g
in

ill
g

i-
n-

L̂he
Ha52

1

2A2
@A3~ce

1cu1cu
1ce!2cj

1cj1ch
1ch#,

L̂hj
Ha52

1

12
@A6~cj

1cu1cu
1cj!23A2~cj

1ce1ce
1cj!

14A3~cz
1ch1ch

1cz!#,

L̂hh
Ha5

1

12
@A6~ch

1cu1cu
1ch!13A2~ch

1ce1ce
1ch!

14A3~cz
1cj1cj

1cz!#,

L̂hz
Ha5

1

2A3
@A5~cz

1cu1cu
1cz!22~ch

1cj1cj
1ch!#,

L̂hu
Hb5

1

2A2
@ce

1cu1cu
1ce1A3~cj

1cj2ch
1ch!#,

L̂he
Hb5

1

2A2
~cu

1cu2ce
1ce1cj

1cj1ch
1ch22cz

1cz!,

L̂hj
Hb5

1

2A2
@cj

1ce1ce
1cj1A3~cj

1cu1cu
1cj!#,

L̂hh
Hb5

1

2A2
@ch

1ce1ce
1ch2A3~ch

1cu1cu
1ch!#,

L̂hz
Hb52

1

A2
~cz

1ce1ce
1cz!.

APPENDIX B: STATIONARY COORDINATES
AND R FUNCTIONS

1. Stationary coordinates

^Qhu&5
1

2A6Kh
H ~112e223z224u2!FHa1@3~h22j2!

22A3eu#FHb23A2

5
~f21x22fy21z2!FT1J ,

^Qhe&5
1

2A2Kh
H ~h22j212A3ue!FHa1~2e213z221!

3FHb2A2

5
~f2x22f22y22A5z2!FT1J ,

^Qhj&5
1

A6Kh
H @2A2hz1~u2A3e!j#FHa

2A3~e1A3u!jFHb2
6

A5
yzFT1J ,
4-12
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^Qhh&5
1

A6Kh
H @2A2jz1~u1A3e!h#FHa

2A3~e2A3u!hFHb2
6

A5
zxFT1J ,

^Qhz&5
1

A3Kh
H ~2hj2A2uz!FHa

1A6ezFHb23A2

5
xyFT1J ,

wheref5 1
2 (11A5) is the golden mean.

2. R functions

RA
T15

1

A3
~x21y21z2!5

1

A3
,

RHu
T1 5

1

2
~f21x22fy21z2!,

RHe
T1 5

1

2A3
~f2x22f22y22A5z2!,

RHj
T1 5A2yz,

RHh
T1 5A2zx,

RHz
T1 5A2xy,

RA
H5

1

A5
~u21e21j21h21z2!5

1

A5
,

RGa
H 5A 3

10
~u21e2!2A 2

15
~j21h21z2!,

RGx
H 52

1

A3
~u2A3e!j1

2

A6
hz,

RGy
H 52

1

A3
~u1A3e!h1

2

A6
jz,

RGz
H 5

2

A3
uz1

2

A6
jh,

RHu
Ha5

1

2
A3

2
~u22e2!2

1

2A6
~j21h222z2!,
,

03510
RHe
Ha52A3

2
ue1

1

2A2
~j22h2!,

RHj
Ha52

1

A6
~u2A3e!j2

2

A3
hz,

RHh
Ha52

1

A6
~u1A3e!h2

2

A3
jz,

RHz
Ha5

2

A6
uz2

2

A3
jh,

RHu
Hb5

1

A2
ue1

1

2
A3

2
~j22h2!,

RHe
Hb5

1

2A2
~u22e21j21h222z2!,

RHj
Hb5

1

A2
~A3u1e!j,

RHh
Hb52

1

A2
~A3u2e!h,

RHz
Hb52A2ez.

APPENDIX C: ANGULAR MOMENTUM OPERATORS IN
Q SPACE

L̂x~Q!52
f2

A2
~Q1P̂32Q3P̂1!1A3

2
f21~Q2P̂32Q3P̂2!

1~Q5P̂42Q4P̂5!,

L̂y~Q!5
f22

A2
~Q1P̂42Q4P̂1!2A3

2
f~Q2P̂42Q4P̂2!

1~Q3P̂52Q5P̂3!,

L̂z~Q!5A5

2
~Q1P̂52Q5P̂1!1A3

2
~Q2P̂52Q5P̂2!

1~Q4P̂32Q3P̂4!,

where

P̂k52 i\
]

]Qk
.
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