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Product Jahn-Teller systems: The{T,®H}®(g+2h) icosahedral exciton
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The {T,;®H}®(g+2h) product Jahn-TelletJT) system offers a model Hamiltonian for the excited con-
figuration of G. It describes the combined JT activity of two open shells transforming as the threefold and
fivefold degenerate icosahedral representatibpnsand H. The two separate JT problems interfere via the
interaction with common vibrational modes. In this paper we examine the structure of the resulting potential
energy surface. The treatment first considers the simplffiecb H} ® (2h) problem. The coupling conditions
for this problem can be represented in a two-dimensional phase diagram with a rich structure. The diagram is
separated in four domains by four trough lines. These correspond to different embeddings of SO(3) in SO(5)
and describe the possible spherical couplings between a three vector and a five tensor. Outside the trough lines
symmetry is broken t®s4, D3y, D,,, and evenC,,. Several tables offer a description of the structural
aspects of these low-symmetry solutions. In the second part the full multimode Hamiltonian is treated by the
method of the isostationary function. It is shown that the interconfigurational coupling term of this Hamiltonian
reduces to the same tensorial form as for the simplified single fibgeH}® (2h) case.

DOI: 10.1103/PhysRevB.65.035104 PACS nuni®er71.70.Ej, 73.61.Wp

I. INTRODUCTION coupled JT problem in the space of the active coordinates.
This means that in the Hamiltonian the kinetic energy of the
The excited and ionic states ofghost many challenging Vibrating nuclei is not included. Once the nature of the sur-
Jahn-Teller(JT) problems' In this paper we will be con- fa_cg has been determin_ed i_t may be required to consider ex-
cerned with the lowest excited triplet and singlet states ofliCitly the role of the kinetic energy operator to study the
neutral Go, which both give rise to emission spectra with a quantum coherence effects, which are usually referred to as
rich vibronic structuré® These states have already been thén€_“dynamic” aspects.

subject of computational studiés® but a transparent model bi Secdondlyi]two-e!etctrontpperators, (:igsclrlt:jlng tht?] Co_l#]qm.-
of the Jahn-Teller nature of the exciton is still lacking. IC and exchange Interactions, are not inciudea eitner. 1his 1

In the excited state two sources of JT activity exist: themarkedly different from standard Jahn-Teller treatments

fivefold degenerate hole state, created by removal of an ele(‘,[‘-’here the configurations are first separated into multiplets,
tron from the filledH. -HOMO ,gives rise to a JT problem of which are then studied as isolated Jahn-Teller problems. As
u L]

we have already mentioned in our first study of product
type H® (g+2h), and the threefold degenerate electron . AT X
state, formed by population of the emply,-LUMO, exhib- systems, our different approach is inspired by the special

its a JT effect of typaa h. repulsion situation on the fullerene surface. Calculations sug-

What is novel and interesting about the lowest exciteogeSt that several terms of the excited configurationgpare

6.8 : H
states of the neutral buckminsterfullerene is that they com[].early _degeneral%. Negri anq Orland h_aye performed
) ) S simulations of the Jahn-Teller distorted emitting state, incor-
bine two instabilities in a coupled or product Jahn-Teller

problem of type{T,@H}® (g+2h). In this paper we char- porating not less than three terms of tife], configuratior®

acterize the distortions in coordinate space which result fron:I—hIS exceptional repulsion situation has motivated us to

these combined instabilities. We examine the rotational sym§WItCh to the prodgct approach, Wh'c.h gives priority to t_he
Ine-electron Hamiltonian and describes its full distortive

metries which can arise when a three vector and a five tens®)

are combined, and construct a phase diagram of the possi QWEr. Ina Ifater development these results must of course be
coupling schemes. Actual calculations for the exciteg) C combined with the two-electron part to study the influence of

will be reported in a subsequent work. Preliminary to thetheoi?u:gmdb'c tefzmsr.nm trv are able t rrelate theand
present problem we have reported the solution of {fhe y modes oh symmetry are able 1o correlate

®T,}®(e+t,) product caséThis case is less intricate since T, parts of the product problem, since this is the only sym-

tnolves tre couping of o e vecor, and may sen 1S I > SOTITEn 0 bolk AT nites
as a useful starting point for the present analysis. P ’

essential features of the problem, only considers a sihgle
mode coupled both tél and T,. We will mainly base our
treatment on this Hamiltonian, in order to keep the formal-
ism as transparent as possible. Extensions to the general case

At the start two important caveats must be brought undewith multiple modes of botth andg symmetry are straight-
attention. First of all the treatment focuses on the “static”forward and will be presented in Sec. V. The single mode
structure of the adiabatic potential energy surface of thdT,®H}®2h Hamiltonian reads

Il. THE SINGLE MODE {T;®H}®2h HAMILTONIAN
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T T vector coefficients of the electronic state. To obtain this func-
ot \“{:‘T,h tion we follow the procedure of Oepik and Pry¢and mini-
mize the expectation value for the ground state energy in
! coordinate space, keeping the electronic variables fixed. The

({g- mOde} {h- mOde}) resulting extremal coordinates will be denoted(&y, and
19 F Y the associated energy 48E||). Both quantities are func-
H — = . F H IF tions which are defined in the space of the electronic vari-
u ¢ e R ables.

Since the Hamiltonian only contains one-particle opera-
tors, the electronic state can strictly be factorized as a prod-

FIG. 1. Schematic description of the vibronic coupling of the i
uct of a hole and an electron component, i.e.,

product{T,®H}®(g+2h) JT system. The two electronic levels

are interacting via coupling to common vibrational modes. |¢//)—(X|T x>+y|T y)+z|T z))®(0|H 6)+ e|He>
= 1 1 1

- - AT +EHE + n|Hn)+{HD). (4)
H= 2, (Fuanlhe+Fuonlhy + Frnlpb) Qs | ol > O o
Aeh Hence only eight real eigenvector coefficiexty, ... .,
1 are needed to specify a state; they are subject to separate
+ > > KnQ3, - (1)  particle and hole normalization conditions
Aeh
X2+y?+xi=1, P+eEE+E+ P+ ?=1. (5

Here{Qn\} spans the five components of the normal mode
of h symmetry. TheF symbols denote the linear JT force Note that the five components bf transform as the orbital
elements of the separatt and T, systems, while<;, is the  d-functions. According to the now standard Boyle and Parker
elastic force constant of the mode. Note that in our treat- convention théH ¢), |H 7), and|H¢) components transform
mentF ., andFpp are the force elements of the hole quin- asd,,, d,,, andd,,, respectively, while th¢H 6) and|He>
tuplet. They are obtained from the orbital vibronic constantgransform as the linear combinations ay¢ and dy2_y2

of the HOMO by simply inverting the signs. The single

mode JT coupling scheme is illustrated in Fig. 1. The IH6)= \ﬁd i \ﬁd s
guantities are operators, which are defined as g 3! gy
FH7_ + — 3 5
Lh)\_a,;sH (Ha|HNHB) ¢, cg (7=a,b), (2 |He)= \/%dx2—y2_ \/%d&z_rz.
0T In the setting of Boyle of Parker the cartesian coordinate
= E (T4[HAT ) ¢y (3 frame had,, symmetryx,y,z transforming, respectively, as
et b3y,b2y .01, . Bothd,2 andd,2_,2 are therefore o, sym-

The L™ operator acts in the space of the five electronicMetry, implying that they can be recombined in arbitrary
components oH symmetry, via the creation and annihilation Ways. The isostationary function is given by

operators,, andc,z. The(Ha|H\H B), bracket denotes the

complex conjugate of the appropriate Clebsch-Gordan coef- (||E||)= _EJThE (R 2 E hE (R

ficient. Note that there are two sets of independent

(Ha|HNHB) . coupling coefficients, which are distinguished

by the extra product multiplicity labet=a,b. +22

Similarly the I:k operator acts in the space of tfig

triplet via the ¢ and c; operators. The corresponding Here the force elements and force constants are combined in
(T4i|HAT4j) coefficients are free of product multiplicities effective JT energies, defined by

since theT,® T, direct product is simply reducible. THe 5

operators may be constructed from the standard product T 1 Frpn I 2 Fa.

tables for the icosahedral grolpnd are listed for conve- Ervn="5 % EBum= "5 - )
nience in Appendix A. The respective electronic bases are n h

expressed in real form d$16),|He),|HE),|Hp),|HE) and  The R functions in the equation are obtained by taking the
|T.x),|T1y),| T12), following the standard conventions of bracket of thel operators overy

Boyle and Parkel?

Th H7h

E (RLRH). (6)

RET = (L2 )= D) (Qwi [T yQw;) XX, 8
IIl. THE ISOSTATIONARY FUNCTION ry= (WLl %< oj|T v xix; ®

For a general description of the stationary points on thewith x; ,x; e (x,y,2z) for I'=T,, andx; ,x; € (6,€,§,7,{) for
adiabatic surface we develop the isostationary functtdd, TI'=H. These functions are directly obtained from thE 3
which expresses the extremal energies in terms of the eigeroupling tables, and are listed in Appendix B. The Appendix
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also provides the expressions for the corresponding coordpending on the relative signs of thg, 4, and Fr.n param-

nates(Qn\) as a function ofx; and x;. In deriving this  eters. Subsequently we relax the strict trough conditions in
expression the following orthogonality rule fé functions  order to obtain discrete minimal wells. The relative signs of
was used: the force elements continue to play an important role in this
nondegenerate coupling regime: they discriminate between
> R?';‘R?’;:O for a#b. (9)  wells with high and low epikernel symmetries.
Y

The isostationary function is a fourth rank tensor of the ei- A. Trough conditions

genvector coefficients. Its extremal points coincide with the To obtain an equipotential minimal energy trough, it is
extrema of the adiabatic JT surface. Although the isostationrequired that the system has rotational symmetry. In the case
ary function at first sight looks very complicated, it has in of a product system different rotational groups have to be
fact a nice transparent structure. The first term(|0E||) ~ combined. TheT;®h part exhibits SO(3) symmetry, which
indeed coincides with the isostationary function of the  can be identified as the free rotation of tiig electronic
®h system. As is well known, this function is a constanteigenvector in X,y,z) space. There is a corresponding two-
which corresponds to a Jahn-Teller trough @f®h dimensional2D) minimal energy trough in the space of the
problent-14-17 five hy coordinates. On the other hand the i (g+ 2h)
Hamiltonian attains SO(5) symmetry under suitable equal
EEJT S (R1)2=EX (10 coupling conditiong:*®*°The H eigenvector then freely ro-
2 ~Tah4d 27 Tih- tates in @, €,&,7,{) space, while the system describes a 4D
trough in the nine-dimensional,+hg coordinate space.
& For the product system to have rotational symmetry, we
thus must look for a suitable embedding of SO(3) In(5)
5 . o, 1 . . ie., an_embedding which does_ not lift the degeneracy of the
2 gb EHTh; (REY) :ﬁ(5Ehah+ 5E;un) H manifold and furthermore yields a constantoH inter-
=a action term in the isostationary function. For this purpose we
5 investigate first the branching rules of SO(5) representations
+ %(SE;}Lh—QEﬂLh)f, upon symmetry reduction to §8).
In SO(5) theH manifold transforms as the fundamental
(11 vector representatiofi,0). Its direct square reduces as fol-
lows:

Entirely similarly the second term corresponds to the isost
tionary function of theH® 2h problent®

with
(1,0©(1,0=[(0,0®(2,0]a{(1,D},
f_102+22+z 22+22+22_l0 2 2
= 12( €%) 3(5 N+t 7E) \/§ e(&°— ") 5X5=[1+14]+{10},
2 1 where the second equation specifies the representational di-
+ (07— €)) (22— E— ) — <. (12) mensions. The 14-dim_ensior_(2|,0) repregentation spans the
6 3 g+2h JT operators, listed in Appendix A. The so-called

This function can be reduced to a constant trough potentigiPhysical” embedding of SO(3) in SO(5) yields the follow-
under the equal coupling conditionE&.,=9EJT | or in g branching scheme in the cha(5)| SX3)|1:

term of the force elements (1,00—[2]—H,
V5F an=* 3F pn- (13 [2] — h,
In all other cases a warped potential is produced with either (20— [4] — g+h,

pentagonal Ds4) or trigonal O34) minima. Up to this point

the product system is just the superposition of the JT effects [1] — Ty,

of the hole and particle subsystems. The third terrd|ig|| ), (1.D— [3] — T,+G.

however, introduces new physics, since it gives rise to an i
interaction between the hole and particle via coupling to thdn this scheme thél] labels denote (2+1) degenerate irre-
same phonons. Both continuous and finite symmetries havéucible representations of §8). It is clear that this embed-

to be involved to analyze the effect of this term, as will peding does not lift the degeneracy of the electronic space. The

demonstrated in the next section. five components off are indeed mapped on the five compo-
nents of the quadrupolar tensor. On the other hand the JT
IV, EXTREMA OF THE ADIABATIC JT SURFACE modes are split intp2] and[4] symmetries, transforming in

I ash and g+h, respectively. This offers a possibility to
This section contains the core of our treatment. Usingachieve equal coupling conditions for the product system. As
group-theoretical arguments we first derive coupling condiwe have argued before, the cross term betwee jhendH
tions which reduce the isostationary function to a constaninstabilities can only involve modes bfsymmetry. Hence as
equipotential trough. Two classes of solutions are found, defar as this cross term is concerned thenode must be re-
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moved from the JT space. The branching scheme shows thgtound state is based on a linear combination of the

this can be done while keeping SO(3) invariance, simply bwk,l(e,cp) spherical harmonics, withL=2, and the

sacrificing the entir¢4] part. Di.o(7,60,¢) Wigner functions, withL=2, for the rigid

In summary an SO(3) product Hamiltonian requires thatrotator

we apply the physical embedding and allow only interactions

transforming as thg2] representation. Thel®h[2] Hamil- | ) =sin(al2)| 1 (y,0,0))+cod al2)| (v, 0,¢)),

tonian can easily be constructed from thésh), and H (19

®h)y subsystems by imposing the following constraint: where

VBF pan=3Fuon.- (14 1 \[
2

3 1
cof6+ S(—1+ \/5 cos 2¢)sin?g

This is indeedneof the coupling constraints which generate 2

an isotropicH®h Hamiltonian. However, on inserting this .

condition in the isostationary function of tihé® 2h problem .
we are confronted with a symmetry dilemma: according to ﬁ[_(\/g(ﬂ?’ c0s X))+ 6 cos 2p sin 4]
the group theoretical argument we expect a solution with

SO(3) symmetry, but the constant isostationary function im- lr)= —35in 20sin

plies that the energy is constant in a five-dimensional elec- 2

tronic space. The solution to this problem is that the group- J3

theoretical treatment refers to the symmetry of the il ——sin 20 cosg

®h[2] Hamiltonian, while the isostationary functiconly 2

reflects the symmetry of the lowest shégtis is confirmed J3

by the analysis of Chancey and O’Briényho demonstrate 7sin 2¢ st

that theH ® h[ 2] has two roots out of fivéthe lower and the

upper oneswhich form a four-dimensional hypersphere in (16
the space of thén coordinates. The wave function of the and

1 . . .

ﬁ{—%/g cos6 sin 2y sin 2 ¢+ cos 2] /5 cos 2¢(3+cos 26) + 6 sirt9]}
1 /3 . ) _
2 5{_2 cosf'sin 2y sin 2 ¢+ cos 2y[ cos 2¢( 1+ cogh) — /5 sirf 6]}
: . 1 o
|h2) = —COS¢ Sin2ysing— -cos2ysingsin26 : (17)

2

1
sin2ysing sing— Ecos 2ycospsin26

1
COS 2¢ cosAsin2y+ Zcos 2y(3+cos26)sin2¢

We now insert thes&,; andH trough solutions in the third vector in the other shell. One then has from the T,=H
term of(||E||), which describes their interaction. Introducing coupling table

FHh[Z]EFthz(\EIS)FHah yields two trough solutions de-

pending on the S|gn's of' the prgdUéph[?]FTlh. If Frnz) o —\ﬁ(¢la2—¢b2+c2),

andFTlh have opposite sign we find a minimal energy trough 2 V2

which we will designate as theormal trough in view of its

correspondence with previously found solutions for the equal 1 /1

coupling regime for thgT,®T,}® (e+t,) problem’ It is €= 5\/;(4’232_4’2[32_ V5e?),
characterized byw= 7, which implies that theH ground

state reduces to theZ, spherical harmonics and can be ex-

pressed as the tensor product of avector with itself. The £=\3bc, (18)
three components of this vector will be denotedadb(c) to
make clear distinction with thex(y,z) components of th& n= J3ca,
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{=+/3ab,

where both &,b,c) and (0,¢,¢,7,{) are normalized, and

PHYSICAL REVIEW B 65 035104

1
(IIEID =~ 5 (V2Funzr + Frpn)?. (23

é=131(1+/5) is the golden mean. Substituting these expresWe have chosen to call this state an “anti-Jahn-Teller

sions for theH vector in the isostationary function, yields

V2 Funiz1F1,n

?[1—3 cogw]K—h,
(19

wherew denotes the angle between ttelf,c) and ,y,z)
vectors

(IEl) o= E%IhJFEﬂﬂw[z]_

trough,” since it is degenerate and therefore violates the
Jahn-Teller theorem. One should not forget though that the
violation is only the result of a restrictive coupling condition
and will disappear if further interactions are included. In the
anti-Jahn-Teller trough the hole and electron parts of the sys-
tem distort in opposite directions, such as to leaverHtwle

in a degenerate state. Chancey and O’Bribave noticed
before that theH @ h[2] Hamiltonian sheets may meet in a

20 certain domain of the SO(5) space. We now observe that
(20 precisely this domain is projected out in the anti-Jahn-Teller
This function indeed represents a constant equipotentidfough, and that it forms an SO(3) subspace o 50
trough. SinceF 2 andFr , were taken to have opposite SO far we have examined the “physical” embedding of
signs, its energy is minimal fap=0 or SO(3) in SO(5_) and §hown _that it successfully generates
two typical equipotential minimal energy troughs. As we
22 FuniziFr,n have indicated befor€Eq. (14)] the H®h subsystem also
5 K,

cosw=ax+by+cz

E o-0,=EF, +E o1+ can be made isotropic by applying the alternative coupling
0, T,h Hh[2] .
! condition

= V5F tan=3F o (24

In this condition the sign of/5 has been changed as com-
We thus retrieve a solution which is reminiscent of thepared to the preceding one. In the character table of the
spherical symmetry obtained by the concerted rotation ofcosahedral group such irrational conjugation interchanges
two three vectors in th&,® T, problem! In the present case T, andT, representation$Judd and L&’ have invented the
the continuous symmetry combination of a three vector and dame “kaleidoscope operatoi’ to denote this interchange.
five vector is achieved by constructing the five vector as aheH representation is self conjugate. Under the actiokt of
tensor representation of another three vector, which thethe T,® T,=H tensor product switches toTa® T,=H ten-
forms with the previous one a rotating pair. The angle besor product, and the components léfchange accordingly.
tween the two is zergor ) meaning that these directions As a result the conjugate coupling condition gives rise to an
are parallel. For theT, @ To}® (e+15) case this parallel so- isotropicH @ h[2] Hamiltonian, where the 2efers to a ten-
lution was found for equal signs of the two JT force ele-gor product of T, vectors. The corresponding invariance

ments. In the present case the parallel solution is found foéroup say SQO3), is a Weyl reflection of the physical
opposite signs. This difference is not essential though, sincgo(3)' group in the root diagram of the @D parent
it only depends on the conventional choice of an external roup2! This H& h[2] Hamiltonian precisely corresponds to
phase in the appropriate Clebsch-Gordan coefficients. Th p- P y P

structural characteristics of the JT distortion in the normalt e one which was considered in the first study of icosahe-

. 22 . .
trough will be further discussed in Sec. IV B. dral JT problems by Khlopiet al=“ The troughlike solution,

: which these authors found, confirms its isotropic character.
Subsquently we have to consider the case witgg) ' . . .
and Frn have the same sign. In analogy with tfigs T, For the product problem the S(B) invariance is expected

treatment one could have anticipated that this case simpl be_ prekseln'F(;n th{aT?®H}®h[2]]( product, S|n(;]e2th|s s the
corresponds to a “perpendicular” solution wheteis based TLeiglfgsul?i? ir?jgggiz;;nnagveer;iectjr{;lﬁ Ti(};gl [2] case.

on a three vector g b,c) which is perpendicular to the T e th y d q ty bly. 5 oH
(x,y,z) vector of T,. However, this is not the lowest energy O our surprise the mixe prQ .UC p“? er{i§; @ H} )
solution. The actual solution has a more intricate symmetry? [2] or {T,®@H}®h[2] also exhibit spherical troughs in
and corresponds ta=0. TheH vector for this case consists their ground states. This is again due to the fact that, while
of the rigid rotator functiorDZ, . ,(#,,x), as described in the full H®h[2] Hamiltonian has only SE3) symmetry,

Eq. (17). As compared to thel; components defined in its lowest root is in fact a four-dimensional trough with not
(6,¢) space the five vector has an additional angular degrelgss than SO(5) symmetry. Hence as far as the ground state
of freedom y, which does not affect the coordinates andis concerned, the symmetry of the mixed Hamiltonian of
therefore is purely electronic. As a result under this couplingype {T,®H}®h[2] is described by

condition the ground state is twofold degenerate and will be
decribed by the two rotator functions

The energy of the trough is given by

1
_ 2
=- 5Kh[FT1h_ V2F ynp2y 17 (21

SO (3)NSA(5)=S0O(3). (25

We emphasize once more that this exceptionally high sym-
metry is only a property of the lowest and highest sheet of

the Hoh[ 2] adiabatic energy surface, and is not retrieved
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TABLE I. Trough conditions and energies for thi€,® H}® (2h) coupling.

Condition J5 5
Pzt =Fron="3" Fran Fhnz) =Fron=— 75 Fran
FhpnFr,n<0 1 .
2 - 2
_5_Kh(\/§FHh[2]_FT1h) _5_Kh(\/§FHh[2]_FTlh)
“normal” trough a=m,0=0,7 SO(3)
FronF1,n>0 1 .
2 - 2
_5_Kh(\/§FHh[2]+FT1h) _5_Kh(\/§FHh[2]+FTlh)
“anti-JT” trough a=0 SO (3)

for the sheets in between. Moreover as shown by Manini andecognizes the straight lines through the origin which corre-
De Los Rios? the low-lying states of thel®h[2] dynamic  spond to the SO(3) and $(8) troughs described previ-
spectrum have SO(3) degeneracies only. Introducingusly. These lines divide the diagram in four “wedges,” left
FHh[2_1=Fth=—(\/§/3)FHah into the isostationary function and right, upper and lower. The straight line with positive
yields spherical symmetry troughs, for either sign ofslope is the{T,;®H}®h[2] Hamiltonian with SO(3) sym-
Fr.nFhniz) - Energies are as in Eq&1) and(23) for nega- ~ metry. For negative ratios &fypp) /Fr h, i.e., left from the
tive and positive sign Oﬁ:TthHh[Z_]v respectively. Anti- origir_1 in Fig. 2, we finq the norm_al trough. The QT surface
Jahn-Teller behavior is not observed since the intersection ONSists of a 2D spherical trough in the 5D coordinate space.
SO/(3) and SO(5) does not coincide with the=0 sphere. | N€ curvature of the surface is expressed analytically by the
As a result we find altogether four spherical troughs forfollowing Hessian eigenvalues:
the {T,®H}®(2h) product problem. They are summarized

once more in Table I. FTlhKh FTlhKh
O!OKh 1] )
. . _\/EFHh[Z]_I'FTlh _\/EFHh[2]+FTlh
B. Phase diagram for theT,®H exciton (26)
As can be seen from E@6) the actual ground state en- In Appendix C expressions are presented for the angular

ergy of theT,;®H problem only depends on three parametersnomentum operators iQ space. Exactly the same operators
Fhah,Frbn,F1 n, and therefore can be represented in a two-are found for theH part of the electronic space since b@h

dimensional diagram based on the parameter ratio§ndH transform as a quadrupolgr=2] tensor. Ther, part
Fran/Frn and Fupy/Fr . The results of an extensive forms the basi¢|=1] vector of this space. As the diagram

analysis as a function of these parameters are presented:‘zﬂwd'cates this trough solution is found at the intersection of

the phase diagram of Fig. 2. In the diagram one immediately € "€910NS 0D34 andDsq symmetries, which are the high-
est epikernel symmetries of the problem. An entirely similar

degenerate trough solution is found for instance in the cubic
T®(et+t,) problem on the line of coexistence of trigonal
and tetragonal well&*?° Across the origin the signs of the
parameter ratios are switched and the trough adopts its
anti-JT phase in which thél tensor is constructed from a
rigid rotator function. High epikernel symmetries are banned
from this trough and it is indeed surrounded by a region of
low epikernel symmetries. Furthermore the Hessian eigen-
values inQ space are now given by

Fr.nKn
V2F ot Frop

O,OKhnKhv (27)

The straight line with negative slope corresponds to the cou-
pling condition for the{T,®H}®h[2] Hamiltonian, which

FIG. 2. Phase diagram for tH,@H exciton. The encircled @ISO has an isotropic adiabatic potential in the ground state.
numbers refer to the stationary points described in Tables IV=VI.This line divides the diagram in a high and low symmetry
For the minima ofDsy and D34 symmetry, the domains are clear. domain. Below the line in the left and lower wedge one
But for other symmetries in the system, detailed explanations arencounters the high epikernel phases, above it in the right
given in the text. and upper wedge onli,, andC,, are found.
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1

V10

Dsg_
sz -

(\V3Q,—Q.+6Q,). (28)

In Fig. 3, we present the splitting of the parent terms along
szf’d. The JT forces acting on the orbital singlet components
of H andT; are given by—(2/\5)Fp, and + (2/{10)Fy
respectively. We remind the reader that the splitting in this
figure refers to term energies. In the case of excitgtizH
5 term represents él—l(hﬁ). The splitting of the corresponding
Doy ‘ h, orbitals is of course the inverse of the splitting of this hole
Xz term. For a stable pentagonal minimum to deveqg,, and

FIG. 3. Pentagonal distortion with the splitting of the parent FT,n @re thus required to have opposite signs so that both
terms a|onQQSZ5d. The JT forces acting on the orbital singlet com- shells will distort in the same direction. Otherwise the pen-
ponents ofH and T, are given by— (2/\/5)F .y, and (2@)51 tagonal distortions will be unable to remove the remaining
respectively. ground state degeneracy no matter in which direction they
act, implying that further symmetry lowering distortions will
occur. This is also reflected in the energy expression for the
D5y minimum

If the equal coupling condition is relaxed, warping terms
enter in the potential and will give rise to minimal energy
wells and turning points. According to the epikernel
principle** these points are expected to be characterized by 1 )
epikernel symmetries, corresponding to intermediate groups Ep,,=— 5_Kh(\/§Fth_FTlh) : (29
in the tree structure of the parentl, group . . . -
Dsq,D34,D5,,Cop. In the isolated JT systems the highest Clearly this expression will be_ minimal _ﬁth andFrp
epikernel symmetrieDs, and Daq, prevail, but—as we have different S|gnFHat1 is not involved m_the JT for_ce
have shown in the previous study of th@,®T, alo_ng the pentagonal d|stort|or!s: We_thus find the region of
problenf—in excitonic systems coupling conditions can be EXistence _of the pentagonal minima in the left wedge along
such that high epikernel symmetries are avoided and lowdf'® negative horizontaFpn/Fr ~axis. TheFy pFipn<0
symmetry solutions will occur. This is not the case in the leftcoupling regime ranges the pentagonal solutions in dhe
and lower wedges surrounding the normal trough, where=0 coupling class of the normal trough. The corresponding
hole and electron act in parallel, as can indeed be seen in thé eigenvector can indeed be written as tensor product of a
phase diagram. three vector &,b,c) which is exactly parallel to thex(y,z)

We will now discuss the various regions in order of de-vector of theT; shell. The ground state eigenvectors and the
creasing symmetry. The highest epikernel is g, point  corresponding distortion coordinates for the six pentagonal
group. There are six equivalent pentagonal directions, one ghinima are listed in Table Il. The extent of tigPs¢ distor-
which is described by tion is expressed as

TABLE Il. Electronic states and stationary coordinates for pentagonal minima with the ground energy of
Ep,, and condition ofF11Fph<0.

Label @,b,c)®(x,y,2) (Qqp) (Qu (Qy) (Q,,) <Qg>
1 1
P1 J0se (06D ok ok o 0 0
1 1
& S0-eDe0-60  -oVE ok —ai 0 0
1 1
Ps S (1.04)® ~-(1,09) NN E S SNE 0
1 1
P, ~ (10~ $)® (10 ¢) NG oV 0 SN 0
1 1
Ps L(#L0® (4,10 0 o2 0 0 o2
Pe 1(—¢>,1,0)®1(—¢>,1,0) 0 o2 0 0 —o/f2
m I

8p= %(1+ \/5), andu= 2+ ¢ is the normalization factor.
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[T ' ' ' ] Figure 4 shows the splitting pattern. The orbital singlets are
: subject to forces (2/10)Fy , and —5Fpqp for T; andH

respectively. Hence trigonal minima are coupled wkeg,
is dominant ovef,, and Fr,nFHan<0. This puts the trigo-

nal phase in the lower wedge along the negative vertical axis
in the phase diagram. Again these points are elements of the
normal trough. In Table Il we list the eigenvectors and dis-
tortion coordinates for the ten equivalent trigonal minima.
The corresponding energy and extent of distortion are given

by

0 D3y
pv:4

1 1
S T VIOF yah—3F 1 )=~ EKhPZv
FIG. 4. Trigonal distortion with the splitting of the parent terms h
alongQD3d The JT forces actlng on the orbital singlet components
of H and T, are given by— 3FHah and (2,(/—0)FT respectively.

D5d \/—

&
35K,

Next we consider the lower epikernel symmeby,. The
orthorhombic group completely resolves the electronic mani-
Entirely similar considerations apply to the alternative highsg|gs T,—B;+B,+Bs, H>2A+B,+B,+B;. As a result
symmetry epikerneDq, whereF,, takes over the role of gjfferent kinds of exciton states can be formed. There are

p=(Qu2%) = ——=—(V1O0F yan—3F ).

—Frn). (30

Frbn- A trigonal distortion coordinate is given by essentially three distinct configurations, which can be de-
noted aBB,A,B,B;,B,B, exemplified by the nonzero eigen-
QDSd_ —(Q,+13 \/—Qe+ \/—Q ). (31) vector composition %)(6,€),(2)({),(2)(n), respectively.
\6 The corresponding energies are given by

TABLE IlIl. Electronic states and stationary coordinates for trigonal minima with the ground energy of
Ep,, and condition ofF1;F,,5<0.

Label (a,b,c)®(x,y,z) <Q0> (Qe> <Q§> <Qn> <Q{>
b %(0,¢‘1,¢)®%(0,¢‘1,¢) plE - \/Ep pl\3 0 0

t2 715(0.— ¢ P)® %(0.— ¢t 9) pl 6 *\/gp —pl\3 0 0
ts %(¢.0.¢’1)® %w,o,wl) pl 6 \/Ep 0 pl\3 0

ts %w,o.«fl)@ %w.o,wl) e \ip 0 —plN3 0

ts %(qﬁ’l,qﬁ.o)@ %(dfl.d).o) - \/gp 0 0 0 pl\3

1

te (( #7000 (-4 140 V& o0 0 0 —pl\3
ts ;5(111)@; %(111) 0 0 pl\3 pl\3 pl\3
tg \/15( 1,1,)® \/l§( 1,1, 0 0 pl\3 —pl\N3  —pl\3
tg \/15(1 1) \;-5(1 1,1 0 0 —pl\3 pl\3 —pl\3
tio j§(11 1)® %(11 1) 0 0 —plN3  —plN3  pl\3
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TABLE IV. D,, minima and their correspondir@,;, extrema in the upper and right wedges of the phase
diagram(Calculations refer to points 1, 2, and 3 in Fig. 2

H B{A BA B{A BA B,B BA
Test points 1D12h 1c, 2D12h 2¢c,, 3Dthl 3¢,
Frand 8 8 8 8 8 8
Fapnd -5 -5 15 15 6.1 6.1
Frn® 1 1 1 1 1 1
(Qp —-3.577 —4.537 —3.405 —4.299 —3.653 3.179
(Qo) 4.617 —2.759 4.396 —1.527 4.813 —0.488
(Qy) 0 0 0 0 0 0
(Q,7> 0 0 0 0 0 0
(Qy) 0 —2.244 0 —3.453 0 5.108
Hessian Evald)? 1 1 1 1 1 1
Hessian Eval®) 0.888 0.577 0.840 0.847 1.000 0.697
Hessian Eval) 0.211 0.248 0.114 0.689 0.033 0.015
Hessian Evalg) 0.108 0.056 0.063 0.274 0.025 0.038
Hessian Eval®) 0.031 —0.100 0.023 0.037 0.025 —0.015
Energy —17.056 —16.615 —15.457 —16.366 —18.257 —18.220
aKh: 1

PHessian eigenvalues are listed by the order of their absolute values.

AA, AB, BA, andBB, characterized by nonzero eigenvector

1
Eoin =~ ok (VB(3Fhant Fiaon) +4IF 1) compositions  )(6,6.0),  D(Em),  (xy)(6,6.0),

(x,¥)(&,7), respectively. Here th€, axis was put along the

1 Cartesianz direction. The onlyC,,, ground states that are
[8)12':1=— 20K [g(\/l—OFHath 3FT1h)2 encountered in the diagram are AfA and BA types. Of
h these theAA case can be described by the roots of an effec-
tive quartic equation while the oth&A type is even more
+5(\2F ypn+ Frn)?), (32 complicated. We thus have to recur to numerical diagonal-
ization and minimization procedures to analyze iBe,
F% ) ground states. Th&,, solutions in the upper wedge are
ngz:_ L (F2.,+3F2,) included in Table V. The domain characterized by point 4
2h 5Kh 12Kh a

has an absolut€,, minimum of typeAA. In the lower part
of this domain is a small tip marked by point 6, where the

_ Frn ., B absoluteC5* minimum coexists with a secondary minimum
(¢ “Frpn— #Fnan). BiA o . : )
210K}, of type D, as indicated in the diagram. In the domain

marked by point 5 absolut€,, minima are encountered of
. . ) symmetry typeBA and at this point th®,,, solution clearly
but BB, is always a saddle point. In the diagram ortho- ¢ hecome a saddle point. As we have already discussed this

rhombic solutions are found both in upper and right wedgesy,main contains a region, exemplified by point 2, where sec-
Sample calculations for points marked 1, 2, and 3 in the

B A .. .

diagram are reported in Table IV. In the upper wedge mini-()r1(j",’1r3/[)Zﬁ m|_n|ma coexist. i i
mum energyD.;, solutions are oB,A type. Point 1 belongs _F_lnally the right wedge entlrely cons_|sts G5y, at_Jsqute
to a narrow region close to the $@) trough where the Minima, except for the narrovDy, region bordering the
surface has absolute minima Bf,, symmetry. Point 2 be- ant-JT troug/]& In the upper half of the wedgints 7 and
longs to an adjacent domain whebeg,, is coexistent with an 8 one Easczh minima, as listed in Table VI. In this region
absolute minimum of lowerC,, symmetry. In the right theD,!™* solutions form saddle points as we have indicated
wedge there is a very narrow region bordering the anti-JTin the table for point 7. In the lower part of the wedg®ints
trough where an orthorhombic absolute minimum of typel0O and 1] the symmetry type of th€,,, ground state has
B,B, exists. This region is indicated &, in the diagram changed tBA. The phase transition marking this switch of
and contains point 3. ground state is indicated by the dashed line in the diagram.

In the other parts of the upper and right wedges we onlyClose to this line one of the Hessian eigenvalues becomes
find C,;, solutions. In this symmetry the electronic manifolds very small, as shown for point 8, 9, and 11. The calculations
split asT;—A+2B, H—3A+2B. There are therefore four show that near this lin€5;* and C5/* ground states are co-
possible ground state configurations which we will denote agxisting, as shown for point 9 in Table VI.

Both AB; andB;B; states can be minimal energy solutions
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TABLE V. Examples ofC,, minima andD,,, extrema in the upper wedge of the phase diagram.

: AA B,A BA B,A AA B,A
Example points ac, Dth 5S¢, Dth 6c,, 6D12h
Frand 8 8 8 8 4 4
Frphd -25 -25 4.5 4.5 0 0
Frn® 1 1 1 1 1 1
(Qp) —4.580 —3.436 —3.117 —3.542 —2.448 —1.887
(Q.) 1.665 4.436 —3.608 4.572 1.384 2.436
(Qx) 0 0 0 0 0 0
(Q, 0 0 0 0 0 0
(Qy) 2.998 0 —3.320 0 -1.301 0
Hessian Evald)? 1 1 1 1 1 1
Hessian Eval®) 0.729 0.673 0.910 0.615 0.767 0.793
Hessian Eval®) 0.610 0.543 0.225 0.370 0.699 0.205
Hessian Evalg) 0.218 0.113 0.109 0.109 0.198 0.144
Hessian Eval®) 0.098 —0.105 0.061 —0.042 0.041 0.038
Energy —16.366 —15.739 —16.876 —16.723 —4.799 —4.749
aKh: 1

PHessian eigenvalues are listed by the order of their absolute values.

V. THE GENERAL {T;®H}®(g+2h) HAMILTONIAN IN A
MULTIMODE ENVIRONMENT

ity index in the case ofl ® h coupling (r=a,b). The general
form of the Hamiltonian is given by

We now turn to the more general form of the Hamiltonian,

which should be directly applicable to the excited states of
Cso- As compared to the formalism in Sec. Il normal modes
are now denoted aQ ,r, where u is an extra label which
enumerates the modes of symmetry typeThe linear JT

force elements receive a more general IabeIingF%i.

Again hereul is a particular mode{) denotes the symme- The L operators are straightforward generalizations of the
try of the electronic level Q =T, ,H) andr is the multiplic-

1 rHr, =TT
H=2 E K/.LFQZFV+ 2 2 F;HLFL?)/_{— F Jf‘LFl
2 iTy uly \ 7 " Y

(33

cases considered proviously, i.e.,

TABLE VI. Examples ofC,, minima in the right wedge of the phase diagram.

Label W, TR e %% oy e 1)
Fran® 8 8 -2 -2 -2 -5 -4 —4
Frpn® 9.5 9.5 8 4.5 45 45 8 8
Frpn® 1 1 1 1 1 1 1 1
(Qp) -0.927 —3.653 —-0.394 0.387 —-0.387 0.492 0.387 —-0.388
(QJ) 6.255 7.218 5.033 2.446 3.046 2.029 4.425 5.026
(Qp) 0 0 0 0 0 0 0

(Q,) 0 0 0 0 0 0 0

(Qp) 6.197 0 5.536 3.608 3.118 3.874 6.033 —5.542
Hessian Evald)® 1 1 1 1 1 1 1 1
Hessian Eval®) 0.911 1 0.979 1 1 0.540 0.998 0.998
Hessian Eval®) 0.782 0.453 0.783 0.684 0.684 0.273 0.645 0.645
Hessian Evalg) 0.413 0.444 0.716 0.563 0.563 0.107 0.571 0.571
Hessian Evals) 4.1x10°4 —-1236 4.610°% 4.7x10°® 1.7x10°8 0.031 1.x10°7 —4.6x1077
Energy —39.196 —32.720 —28.066 —9.573 -9573 —9.682 —28.063° —28.063¢

aKhzl.

PHessian eigenvalues are listed by the order of their absolute values.
“The accurate numerical result for this energy-i28.063000488.
9The accurate numerical result for this energy-i28.063000426.
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- N In a similar way, the second term B-(H7,H ) is the iso-
Lf7= > (HallyHB).cics, (7=ab), (34  stationary function of théd®(g-+2h) subsystem. It can be
«p,<H expressed as

- _ _ 1

Lii= > (ThilTyTi)cic. (35 —2 3 S S(HrHNY (RH7)?

ijeTy 2F:G,H T b% v

The coupling coefficients irﬁF; are defined fod™’s which 1 T I T
are contained in the symmetrized squareHosbH, i.e., T =12 (4EG +5ERa+ 5Ejp)
=A+G+2H. For theI:Py operator possible symmetries of c
active modes are limited tpT,®T,], i.e., =A+H. No + £5(4EG + 5B~ 9B, . (40)
product multiplicities occur here and no extralabel is

therefore needed. The isostationary function for the elecThe JT energies for the multimode case are given by
tronic states W) described by the eigenvector coefficients

(x,y,2) and (9,€,&,7,£) in the complete multimode Hamil- I _ 1 > (Fha)?
2 I

tonian reads K. '
1 T 2 (FHa)Z
(Eh=-752 srm,m; (Ri)? Bl 2 (41

M pH
b

+2 Sp(HT,HM) Y (RI)? o 2 » (FHR)2

T y EHb_ - g K '
M uH

Ty pHT The dependence on the eigenvector coefficients is contained
+227 SF(Tl’HT)Ey RFyRFV ) (36) in the functionf, which is given in Eq.(12). Note that the

) ) ) ) . multimode aspect of this JT problem is fully incorporated
The S parameters in this expression are effective couplingntg the effective coupling constants, so that its isostationary
constants, which depend on the JT force elements and forggnction takes the same form as the single métie (g

constants +2h) problem. As has been described in previous work this
Al problem can be reduced to a trough potential under equal

. FourFar’ coupling conditions, which eliminate the factor in frontfof
Sr(A7,A'T ):g K—,m (37 but in all other cases a warped potential will be produced

with either pentagonall¥sy) or trigonal (D34) minima. Up
The R functions are the appropriate tensor expressions deo this point the product system is just the superposition of
fined previously and listed in Appendix B. The totally sym- the JT effects of the hole and particle subsystems. The third
metric R functions reduce to scalars in view of the normal-term in Sp(T,,H ) gives rise to an interaction between the

ization condition hole and particle via coupling to the same phonons. One has
1 1 _ T1pHT
R}=E(x2+y2+zz)=ﬁ, ; 2 ST(Tl'HT)Ey RpyRry
FILEHs
1 1 --3 |2 =3 RERED. (42
RY=—"—(6%+ 2+ &2+ p?+ P)= —. 38 T (  Kun Y Hy W
A \/g( E+n+ %) \/g (38) "

As this expression shows the coupling can only arise through
As a result totally symmetric vibrations only produce globala common mode dfl symmetry, since this is the only coor-
vertical shifts of the entire JT surface, and therefore will bedinate symmetry which is contained in both component
left out from further consideration. The summation indéx Problems. Moreover in spite of the multimode character all
is thus restricted td’=H for the T, contributions, and to force constants are absorbed in only two parameters
I'=G,H for the H contributions. Although the generalized S1(T1,Ha) andS,(T,,Hb). The tensorial part of the inter-

isostationary function at first sight looks very complicated, itaction term is thus entirely the same as for the simple Hamil-

is in fact a transparent expression. The first term intonian con5|dereq in the previous section, the two effe@ive

S(T,,T,) indeed coincides with the isostationary function Parameters playing the roles Bf,an andFyp,. The phase
diagram thus continues to offer a relevant classification, ex-

qf th_e multimodeT; subsystem. As is well known, this func- ept that now superimposed on the distortionsiaymme-
tionis a fc?rﬁ'fanthand t():lorre.sponds to the Jahn-Teller trc’ngt?Py, there may be a further distortion in the coordinate space
energy of thel,@h problem: of G symmetry. It should also be kept in mind that in the

1 1 (FTl )2 multimode environment the curvature of the potential energy
Iy (T TS (RT1)2= - RHT g3 surface in the extremal points is described by a Hessian over
2 ' S Ty S%  Kun T all coordinates, which of course no longer coincides with the

(39 simple curvature expressions for the single mode case.
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VI. CONCLUSION

In this paper we have made a start with the detailed ex-
amination of theT;®H exciton that governs the excited
states of G. In the product system, th&;, andH compo-
nents interact with each other via modeshafymmetry. Our
analysis was based on the continuous invariance group in
this coordinate space. Quite remarkably, while tHeh
Hamiltonian can only attain SO(3) symmetry as a whole, its
ground state can under equal coupling condition reach full
SO(5) symmetry. The study of the coupling term in this
space is—in mathematical terms—equivalent to finding em-
beddings of SO(3) in S@G). Four different solutions were
obtained, corresponding to the four diagonal lines radiating
from the center in Fig. 2, and summarized in Table I. For the
normal and anti-JT troughs, explicit substitution formulas
were presented which demonstrate the invariance of the iso-
stationary function. Outside of the trough lines the diagram
is clearly divided in a high and low epikernel region. These
two regions were encountered in the preliminary study of the
T,®T, system, and depend on whether the two components
of the exciton exert distortion forces in the same or in oppo-
site directions. However, we have demonstrated that the
combination of a three vector and five vector with opposing
JT tendencies has a much richer tensorial structure than in
the case of two three vectors. In subsequent work we will
now concentrate on the analysis of the particular coupling
conditions in actual gy, in order to establish to what region
of the diagram they belong.

77
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APPENDIX A: [ OPERATORS

0T
ho= \[(¢ €1 C1— ¢pC; Cy+C3 Ca),

1
<Qh0>:T6Kh

Ha__ _
he —

_1
2\2

PHYSICAL REVIEW B65 035104

2\/_[\/—0 CotCyc)—Cicgtcc,],

1 + + + +
—1—2[\/§(c§cg+c0c§)—3\/§(c§ce+cec§)
+4\3(c/c,+cico]l,

[\/—(c cotcyc,)+3v2(cic+clc,)

+4\/§(c{+c§+cgc§)],

1
zm[\/g(cg%,ﬁ cyc)—2(c,ce+cic,)l,

1
_ + + + +
_ﬁ[cE CytCpC.+ \/§(cif C:—C,C, 1,

(cyco—c/Ctcicetcyc,—2¢c/cy),

1
Hb:ﬁ[cgcﬁ clce+\3(cic +cycol,

1
=m[c;cé+ clc,—V3(cico+cyc,)l,

+ +
(c;cetce, Cy).

2

APPENDIX B: STATIONARY COORDINATES

AND R FUNCTIONS

1. Stationary coordinates

(1+262—3L2—46%)F . +[3(7%— &)

in_ 2\/— (¢p?cici— ¢ %cyCo— \/—0303), 2
—2ﬁea]FHb—3\[g(¢‘1x2—¢y2+22)FT1],
3
[T \ﬁ(c§c3+c3+c2), 1
N 10 (Qne)= 2\/§Kh[(7/2_§2+2\/§06)FH3+(262+3§2_1)
T1_ 2
\/>(C3 C1+Cl C3 XFHb_ \/;(¢2X2_¢2y2_ \/EZZ)FTJ_}V
T1_
\/>(Cl Co+C;5Cy), (Qne)= oK. [[2\/—77§+(9 V3€)¢]Fha
LHazi(sc%ﬁ—sc*c —cjc;—clc,+2c)c,) —3(e+\30) EFp— iyZFr
ho 2\/6 0 eve “VEVE 7N ¢ \/g 1]’
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3 1
(Qnn)= o ‘[2f§z+<e+fe>n]FHa Rm:—\@aﬁmwz—nzx
B30 pF - 2y RfE=— (0 3ot~ —
Hb \/g 0 HE— \/6(0 €)¢ \/§7]€,
(Qnp= |(277§ V200)Fpa Rnaz—i(0+\/§e)n—i§§,
BK, e V3
+\/BelFrp— 3\/>XyFT1] RHazi _2
H¢ \/gag \/5677!
where¢=1(1+ 5) is the golden mean.
. 1 1 /3
2. R functions REB:EBHE\/;(&Z_ 772)
1 1
R/T\lz—(x2+y2+zz):—, 1
\/l§ \/§ Rﬂg=m(62—ez+§2+n2—2§2),
Ri=5(¢ = dy*+27), L
REE=E(@0+e)§,

RiL=—=(¢"%°— ¢ 2y*~ 62,

\/— 1
REE;:—E(\E@—GM,
Tl_\/_
2yz,
Hb_
RLl =\2zx Rre=~ Vet
. :
Tl_\/_x APPENDIX C: ANGULAR MOMENTUM OPERATORS IN
y: Q SPACE
1 1 2
Ho & (g2 2. 42, 2. #2y_ = A ¢
Ram g0t r+ =%, L(Q)=~ 5 (QuPs-QsP 1>+\[¢ "(QzP3—QsP2)
H 3 2. o 2 2y 2.2 +(QsP4—Q4Ps),
Rea= \1g 0"t e)— Y&+ 7"+ ),

2
1 2 I:y(Q) i (Q1P4 Q4 1)~ \[975 Q2P4 Q4 2)
R =~ —=(6—\Be)é+—=n¢ V2
“ 3 N

+(Q3Ps—QsPa),

1 2
RN =— —(0+3e)p+—=¢¢, R 5 . . 3 . .
AN AN Q- \HQPs 0P\ QPP
H :i 2 +(Q4P3—Q3Py),
b \/§6§+ \/6577, where

1 /3 1 - J
RHaz—\/: 02— €2)— ——(£24 p2—2{?), Pe=—ifi—.
H=3 \ 507~ €) 2¢6(§ 72 Qi
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