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Electronic structure of periodic curved surfaces: Topological band structure
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The electronic band structure for electrons bound on periodic minimal surfaces is differential-geometrically
formulated and numerically calculated. We focus on minimal surfaces because they are not only mathemati-
cally elegant(with the surface characterized completely in terms of “navelsiit represent the topology of
real systems such as zeolites and negative-curvature fullerenes. The band structure turns out to be primarily
determined by the topology of the surface, i.e., how the wave function interferes on a multiply connected
surface, so that the bands are little affected by the way in which we confine the electrons on the surface
(thin-slab limit or zero thickness from the outseAnother curiosity is that different minimal surfaces con-
nected by the Bonnet transformati@uch as SchwarzB andD surface$ possess one-to-one correspondence
in their band energies at Brillouin-zone boundaries.
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. INTRODUCTION fullerenes(or a G, zeolite ! ~**whose fabrication has been

attempted with a zeolite as a templat&heir structures can
There is a long history for the fascination with particles be modeled as curved surfaces if we smear out atoms into a
bound on curved surfaces, which dates back to the early dayurface in the effective-mass sense, and it is a fundamental

of guantum mechanics.There are two complementary question to consider how a mobile.g., ) electron behaves
points of interest: one is how the particle motions are afgn such surfaces.

fected by the local curvature of the surface. The other is how Second, there are mathematical interests and simplifica-

the global topology(i.e., how the surface is wouhdiffects  tions when a periodic surface is minimal: we can exploit the
quantum-mechanical wave functions. The latter problem beyeierstrass representation, which enables us to specify the
comes especially interesting if we considgreaiodicsurface  surface in a surprisingly simple manner in terms of “navels.”

embedded in the three-dimensional space. The representation also simplifies Satirmer’s equation as
Geometrically, Schwarz, back in the 19th century, showedve shall show in the present paper.

that we can make curved surfaces extend over the entire There are further mathematical fascinations specific to

three-dimensional space by connecting hyperb@le, ev-  surfaces. One virtue of the structure constructed from sur-
erywhere negatively curvecatches. Specifically, Schwarz faces is that we can deform it. One can in fact deform one
has constructegheriodic minimal surfaceswhere minimal  minimal surface into another with a differential geometrical
means that the negatively curved surface has a minimizeglansformation called the Bonnet transformation. We can
area with the mean curvatufé («,+ «,) with k,x, being  then raise a question of how the band structure for one sur-
the principal curvaturds vanishing everywhere on the face could be related to that for the transformed one. Another
surface>3 interest is that some periodic minimal surfaces, such as

There are reasons from both condensed-matter physid&chwarz'sP surface'® have a high symmetry“interior-
and mathematics why periodic surfaces are intriguing. Firsexterior” symmetry that divides the space into two equiva-
of all, periodic surfaces are of general interest from the perlent parts, which should be reflected in the electronic band
spective of condensed-matter physi@s.In general, “crys-  structure.
tals” (periodic structurescomposed of surfaces are concep- So in the present paper we address how the electronic
tually interesting as a class of periodic system on whichband structures should look like for periodic minimal sur-
electrons move. Mackdy has classified them group theo- faces. To start with, however, we have to envisage in general
retically (just as the ordinary crystals composed of atoms aréwo ways(Fig. 1) to confine electrons to a surfade) One is
classified with the space groypvhich he named “flexicrys- to consider electrons bound to a thin, curved slab of thick-
tallography.” nessd, where the limitd—0 is takent’ (b) The other is to

(i) In terms of materials science, periodic minimal sur-consider the surface with the degree of freedom normal to
faces represent the topology of real condensed-matter sythie surface ignored from the outset, i.e., a two-dimensional
tems. These include not only conventional materials such asheet is rolled into the curved surfal®eEither way it has
zeolites or a silica polymorph called melanophlodifeor ~ been shown that an effective potential arises from the curva-
isostructural silicon clathraté$ but recent advances in fab- ture of the surface, but that the potential is different between
rication of exotic materials such as fullerenes or nanotubethe two cases. Namely, the thin-slab céae(Ref. 17 has a
have inspired further possibilities such as negative-curvaturpotential
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a The purpose of this paper {§ to explicitly write Schre
dinger’s equation for electrons on periodic minimal surfaces
by exploiting Weierstrass’s representation in order to obtain
the electronic band structure afid) to calculate and com-
pare the band structures in cagasand (b). Unexpectedly
the band structures turns out to be similar between ca@ses
and (b), i.e., the bands are primarily determined from the
topological way in which the wave function interferes with
itself. The energy scale of the band struct(sand splitting,
such as a split of thed” band into E; andT,y, and band-
b widths) is also universally~#2/2mL? with L being the linear
dimension of the unit cell of the periodic surfa¢i.) We go
further to “Martensitic-deform” a surface to another con-
nected by the Bonnet transformation. We shall show that
there exists a curious one-to-one correspondence in their
band structures, which illustrates another unique feature in
the topological band structure.

FIG. 1. Two ways to prepare a surfade) introduce potential II. WEIERSTRASS REPRESENTATION OF MINIMAL
barriers that confine electrons in a three-dimensional space to a thin SURFACES
membrane, orb) roll a sheet of free electrons into the curved

We start with a mathematical prerequisite for representing
minimal surfaces. A two-dimensional surfacgy®,q?) em-
bedded in a three-dimensional space can be expressed in
terms of two-dimensional coordinatgs,g?, where *,q%)
=(u,v) are called isothermal when the metric tenggris
diagonal with

surface.

—(h%18m) (K1~ K2)?,
while case(b) (Ref. 18 has

2 2
*(ATBm) (K + 1) dr - dr = gy (dudut dodo).
The origin of the discrepancy was subsequently revealed by
Ikegami and coworkerS® when the degree of freedom nor- What Weierstrass and Enneper have found is that a necessary
mal to the surface is ignored, Dirac’s prescription for con-and sufficient condition for(u,v) representing a minimal
strained systems can be applied, but there is room for ambsurface with isothermalu,v) e S (S: a simply connected
guity in the order of operators. If we adopt the conservatiorregion is that there exisF,G, functions ofw=u+iv, with
constraint, the resultant equation reduces to that indhe whichr(u,v)=[x(u,v),y(u,v),z(u,v)] is expressed as
—0 approach. When the surface is minimal; ¢ x,=0),
the curvature potential is nonzero in genegigihce k1 — k2 w
=2k,#0) in case(@), while the curvature potential vanishes r(u,v)= Re( f F(1-G?dw,
identically in (b). Wo
For condensed-matter systems such as atoms arrayed w w
along a curved surface, we should take the 0 approach. xf iF(1+GZ)dW’J 2Fde), (1)
Still, the difference in the band structure between the two Wo wo
cases is curious. Namely, although we have a periodic sys-
tem in either case, the periodicity imposed in cémes the  wherew, is a constant, anfFG? is assumed to be regular
periodicity in the strong potential that confines the electron(i.e., mth poles ofG assumed to coincide withrath zeros of
into a thin slab[Fig. 1(@)], while in case(b) the electron F) 4520 there are singularities that violate this condition,
moves freely along the surface, where the only constraint igve can exclude these points by incising (8uto makeS a
that an electron has to move in a space having a nontrivigRiemann surface. Thus there is a one-to-one correspondence
topology. The topology can have a profound effect on thepetween a minimal surface and the functional fornFoG.
electron’s wave function, since, if we regard the periodic Now, Schralinger’s equation for a curved surface, ex-
surface as a network of pipdsa cubic network for the®  pressed with two-dimensional coordinateg,g?) and met-
surface, diamond for thB surface, etg, the wave function rjc tensorg;; , is written as
interferes with itself along various paths wound around the
“necks.” Thus the periodicity felt by an electron amounts to

the strong confining potential in caga®, while the periodic- h? 1 9 Jag’ g h? ) 12
ity only enters as a way in which the wave function interferes - 2m \/_5 g 99 agl %(Kl_ K2)"|9(a7.0%)
in case(b), and it is an intriguing question whether or not

their band structures are similar. =Ey(q,q?), (2
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(a) P-surface

FIG. 3. Descretization for the spherical coordinai@s:a mesh
with even intervals ird and ¢ and(b) uneven ones, adopted here,
which take care of the singular point in the Jacobian.

wheree=E/(#2/2m). As evident from the Weierstrass rep-
resentation1), F has the dimension of length arélis di-
mensionless. Hence the energies in minimal surfaces always
scale asE/(#%/2mL?), whereL~F~ linear dimension of
the unit cell[a precise expression given in E&) below.

We can have a more transparent form wi@iw) =w (as
is often the case with periodic minimal surfaces, including
the P surface. In this case we can exploit the stereographic
map(Gauss mapfrom the infinite complex planeuv) to a
unit sphere 0, ),

el?.

) 0
w=u+iv=co >

After a bit of algebra, we finally arrive at the differential
equation for @, ¢),

(1—cosh)?| 4° -+ cotd d . 1 4 1
——— | = tcotd—+ —— =g
FIG. 2. The structures d? (a) andD (b) surfaces. We show a [F|? 96° 30 sirkg 9d° y=ey
unit patch on the left panel, and a full unit cell on the right. The (4)
gray scale in the right panel represents the curvature potential, ) o a2
where shadedopen circles depict potential minimémaxima, co- Curiously, a common coefficient (1cos6)”/|F|* factors

inciding with the navels (c) The stereographic projection from the ©OUt for the Laplaciarithe first three terms in the large paren-

minimal surface to Gauss spheres. A unit patctPodr D corre-  theses in the above equatjoand the curvature potential

sponds to a pair of 1/8 spheres. (+1), which is made manifest due to the Weierstrass repre-
sentation. Hence the kinetic and potential energies vary in a

. - correlated manner as we go from one minimal surface to
where summations over repeated indices are assumed. This

equation is for mode(a), while we can replace the second P-surface
term in the bracket(potential term by -+ (2%/8m)(k;
+ k)2 for model (b).

In the Weierstrass-Enneper representation, every quantity
in Schralinger’s equation can be expressed in termg ahd
G, since the Laplacian, the first term in the angular brackets
in Eq. (2), reduces to ¢%/9q?)//g in the isothermal coordi-
nates, where

4

1
gzdel{gij}:[§|F|(|G|2+ 1)

while we can plug ink,;=—k,=4|G’|/|F|(|G|?+1)? for
the curvature term. Schdinger’s equation for periodic mini-
mal surfaces then reduces to

FIG. 4. The energy-band structure in unitsiéf2mL? is shown
for the P surface, when the curvature potential is considered

4 #? 5P 4|G'|?
-t 5t ————|Y=s, (curves or ignored(dots with an energy offset to make the band
IF|2(|G|2+1)2| U™ dv® (|G|?+1)? bottoms coincide between the two cases. The inset depicts the Bril-

(3 louin zone for a bce unit cell.
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(@) (b)

() (d)

FIG. 5. (Color Typical wave
functions for a unit cell of® sur-
faces with positivdnegative am-
plitudes color coded in retlue).
Their eigenenergies are indicated
in Fig. 4.

N

another by changinf. However, this does not imply that the the language of flexicrystallography Some authof§=22
curvature potential always exerts as large an effect as thgave the Weierstrass-Enneper representation forPtlseir-
kinetic energy does, since the expectation values of the kiface as

netic and potential energies depend on the amplitude of the _ -
wave function, and a quantitative study is required. F(w)=iL/yV1-1aw*+ w8, )

whereL ~ linear dimension of the unit cefto be precise the
unit-cell size is 2.15lZ, which is given as an elliptic inte-
gral).

So we first take Schwarz'®B surface as a typical triply A unit cell of the P surface comprises eight identical
periodic (periodic inX,y,z) minimal surface, or a “simple patches, as shown in Fig. 2. With the stereographic mapping
cubic” minimal surface(belonging to space groupn3m in  discussed above, a unit cell is mapped onto two spheres,

IIl. RESULTS FOR SCHWARZ'S P SURFACE
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connected into a Riemann surface via four cuts, which have P-surface D-surface
to be introduced to makéG? nonsingular sinc& has poles. 40

Differential geometricallyF is in general specified solely
by such poles in a fornio 1/I1;(w—w;)” where n deter- 30

mines the topology of the surface. In fact the poles corre-
spond, in the language of differential geometry, to lagels
(umbilical pointg, which are defined as the points where g0
every cross section is inflected, with the two principal curva-
tures becoming degenerate,= x, (=0 for a minimal sur-
face. So a periodic minimal surface is completely character-
ized by the navels that appear periodically. The curvature
potential « — (k,— k,)? in case(a) varies on the surface, 0
which may be called a “crystal field” in flexicrystals. Navels

then specify the positions where the curvature potential be- r X

comes maxima £0), while the minima occurs at the G 6 The band structures for tReandD surfaces. Horizontal

maxima of the absolute value af; (= —«, for a minimal  jines indicate how the energies at the zone center or edges coincide
surface. In the P surface the navel@otential maximpoc-  petween the two cases.

cur at eight “Affensattel’(monkey’s-saddlepoints in a unit

v

fe5)

VIS 3%

—

N H r r RM

cell 2 while the potential minima occur at four points Fig. 4). We can immediately see that the two band structures
around each nape of the neck as depicted in Fig.% are rather similar up to some offset (2342mL?). This is
surprising, since there is rpriori reason why they should
IV. RESULTS FOR THE BAND STRUCTURE be. To be more precise, quantitative features characterizing

the band, i.e., the effective mass and bandwidths, are similar

- between the two cases. So we conclude that the band struc-
In Schralinger’s equation for periodic minimal surfaces, tyre does not essentially depend on the way in which elec-

Eq. (4), the variablesd, ¢ cannot be separated, so that wetrons are confined, at least for “gently” curved surfaces such

have solved the equation numerically by discretizihg to  as minimal surfaces where there are no sharp edges that
diagonalize the Hamiltonian matrix. In discretizing the would give large curvature potentials.

spherical coordinates, special care is taken around the navels,

A. Band structure for case (a)

since the Jacobiad of the transformation to the Gauss V. BONNET TRANSFORMATION

sphere is singular therg-ig. 3). The band structure is ob- _

tained by connecting the adjacent unit cells with appropriate A. Bonnet transformation

phase factors. The next important question is whether the band struc-

We now come to the result for the band structure forRhe tres for surfaces connected by the Bonnet transformation
surface in Fig. 4(curves, and typical wave functions dt  gre related.
andH in the bce Brillouin zone X in the simple cubic zone The deformation of thé surface to other periodic mini-
in Fig. 5. TheP surface happens to divide the space into twoma| surfaces can be implemented by the Bonnet transforma-
equivalent parts, since a body center enclosed by the sufion, which is conformal and is represented by an elliptic
rounding unit cells has the same shape as the original unit, Seansformation. A beautiful asset of the Weierstrass represen-
that we first note that the true symmetry is body-centeredation for minimal surfaces is that the Bonnet transformation
cubic rather than simple cubic. So the bands are displayed qg simply represented by a phase facfr: Fe'?, in Eq. (1),
the Brillouin zone for bee. In accord with the above argu-\whereg is called the Bonnet angle. If we apply this to tRe
mer;t, thf energy scalgbandwidth, splitting, ?&t\tﬁ' IS" surface(cubicd), the transformation chang@sit into the G
~#h*/2mL". This is of the order of 1 eV fot ~10 A, the  gyrface (gyroid with =0.2117) and theD surface (dia-
unit-cell size assumed for a hypothetical negative-curvature, nq with 8= 7/2), which may be regarded as a “Marten-

25
fullerener sitic transformation” in the words of Ref. 26. The structure

_The curvature, or the effective mass, of these bands args ihe p surface is depicted, along with tiResurface, in Fig.
either positive(electronlike or negative(holelike) according 5 gince theD surface has a diamond symmetry, its unit cell
to the nature of the wave function. The mass cannot be est,tains two “cages.”
mated with a simplé- p perturbation, since the p_erturbaztlon We can first note that the Bonnet transformation preserves
«k-p derives from the fact that the Hamiltonigo>p the metric tensor and the Gaussian curvature. This implies
while Ho has no such simple form on a curved surface. It gl the surfaces connected by the Bonnet transformation
other words, thek-p formula hasZ;((i|p,[i)ilp.li)/(Ei  opey theidentical Schralinger equation within a unit patch.
—E;), so we would have to calculate the matrix elements Oflndeed, if we look at Schidinger’s Eq.(4), F only enters as
p for wave functions that are finite only along the surface. |F|, so thatF —Fe'# does not alter the equation. Although
this is curious enough, this does not mean that the band
structures are identical, since, while the transformed surfaces

Now we are in position to compare tli@) confinement share the same genus- (three forP and D), the way in
case(curves in Fig. 4with the (b) rolled casddotted lines in  which unit cells are connected is different among them.

B. Band structure for case(b)
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(a) P-surface (b) D-surface

-~
& N
) FIG. 7. (Color) Typical wave functions for a
unit cell of the Bonnet-connecteld and D sur-

faces with positive(negative amplitudes color
coded in redblue). Their eigenenergies are indi-

&
) (\ cated in Fig. 6.

-4

v

B. Band structure of a Bonnet-transformed surface (a) D-surface
Figure 6 compares the band structures for Ehand D 1.
surfaces. The two band structures are indeed different due to PPz
the difference in the three-dimensional connection of the unit
cells discussed above. Curiously, however, we find that the
values of the band energy apecial points(Brillouin-zone
corners, edges, and face centdrave identical sets of values pxpz"
between different surfaces. Namely, a close comparison of :
the two band structures reveals that the band energies exactly
coincide, where the “law of correspondence” is

PxPz

P surface D surface
I'H = I''R
N =3 X, M.

This can be explained from the property of the Bonnet
transformation that does not change Sclimger’s equation.
For this purpose we have to look at the unit cells more
closely. In Fig. 8, we show how unit patches are connected
for theD andP surfaces. We have indicated in the figure how
the eight patches in a unit cell, numbered with 1 through 8,
are connected to other patches in the adjacent cells by mark-
ing the edges with those numbdi<., if an edge is marked
with, say, 7, the adjacent patch should BeThe wave func-
tion should be continued to the adjacent patch with a certain
phase factor. We have indicated the connection coefficients,

pi=expi¢i),

where ¢; is the Bloch phase along=x,y,z. Hence this dia-
gram fully characterizes how the Bloch wave functions are FIG. 8.(a) Th in which patchedabeled by | b
connected on the periodic minimal surfaces in terms of - 8 (@ The way in which patcheliabeled by large numbers

. are connected to those in adjacent unit cells are indicated by small
patches. We can then compare the coefficients foPtaed numbers attached to the edges for bhsurface. The Bloch phase

D surfaces to extract a correspondence at special poirkKs iNgaetors (5's) are also shown. In the left panels the patches are

space. _ _ flattened and expanded, while the right panels depict the actual

In the diagrams introduced here naturally different patchree-dimensional shapet®) The corresponding diagram for tife
numbers are assigned to them betweenRlaadD surfaces,  surface, where we have rearranged the numbers to make them iden-
since the way in which the patches are conneéied num- tical with those for theD surface by exploiting the symmetry. Ac-
bers attached to the edges different between them. How- cordingly the Bloch phase factors for the surface involve the
ever, we can make them identical, if we rearrange the conparity inversion ¢,). An example is shown iifc), which indicates
nection numbers by noting the symmetry. Since the parityhow patches 7,8 are neighboring 5,6 throyghr, .
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inversion o, with respect to the center of a unit cell pre-
serves the Hamiltonian and does not change the spkcial

vectors on the zone edges el_ther, the group theory q'Ctatefﬁrough this relation. A simplest way to confirm this is to
that the eigenstates on thdspoints should have the parity 1 note that the wave function on each unit patch behaves in a

or —1. Then we can always construct the wave function for_.” . .
. o , similar manner. In fact, the wave functiaf( 8, ¢) in Eq. (4)
one half of the unit cell by multiplying the wave function for . .
. ! . . is identical between the two surfaces.
the other with 1 or— 1. Namely, if we employ a simple cubic
unit cell for the P surface[Fig. 2(a), right panel which is
twice the bcc unit cell depicted in Fig.(l8] to make the
correspondence clearer, we can reproduce the wave function V1. DISCUSSION

in the lower half from that in the upper half by applying, The band structures revealed here should have important
which enables us to make the connection numbei the  jmpjications for various physical properties. These should
same as irD as shown in Fig. 8. So we have now the samejnc|yde transport properties as well as the cyclotron reso-
connection numbers betwe¢hand D, where the only dif-  nance, which can detect the effective mass arising from to-
ference is different connection coefficients’¢) between P pojogical band structures. Since the mass is determined by
and D as indicated in the figure. If we compare these, we enghe interference of wave functions, effects of external mag-

between the simple cubic and bcc unit cells.
The wave functions shown in Fig. 7 are actually related

up with a “law of corresponding points,” netic fields should also be interesting.
We can finally comment that if we adopt foams of graph-
P surface D surface ite to realize curved surfacéshen the equation of motion of
k points (ox, py,p2) k points (ox,py,p2) 7 electrons on the network of the honeycomb lattice will
T(1,1,0 oy=1 o r(1,1,1) become_, in the effgctive-mass ,picture, _the problem of a zero-
o1 - R(-1,-1,-1) mass Dquc equatlon.g., Weyl's (_aquatloh on curved sur-
P faces. While we have ignored spin degrees of freedom here,
M(—1,-1,1) op=—1 = X(1,1,—-1) the spin connection on the surface will give rise to a Berry’s
op=1 & M(-1,-1,1) geometrical phase.

We can immediately translate this into the correspondence
found abovel’\H<T R, etc., if we note the relation,
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