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Electronic structure of periodic curved surfaces: Topological band structure
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The electronic band structure for electrons bound on periodic minimal surfaces is differential-geometrically
formulated and numerically calculated. We focus on minimal surfaces because they are not only mathemati-
cally elegant~with the surface characterized completely in terms of ‘‘navels’’! but represent the topology of
real systems such as zeolites and negative-curvature fullerenes. The band structure turns out to be primarily
determined by the topology of the surface, i.e., how the wave function interferes on a multiply connected
surface, so that the bands are little affected by the way in which we confine the electrons on the surface
~thin-slab limit or zero thickness from the outset!. Another curiosity is that different minimal surfaces con-
nected by the Bonnet transformation~such as Schwarz’sP andD surfaces! possess one-to-one correspondence
in their band energies at Brillouin-zone boundaries.

DOI: 10.1103/PhysRevB.65.035102 PACS number~s!: 02.40.2k, 73.20.At
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I. INTRODUCTION

There is a long history for the fascination with particl
bound on curved surfaces, which dates back to the early d
of quantum mechanics.1 There are two complementar
points of interest: one is how the particle motions are
fected by the local curvature of the surface. The other is h
the global topology~i.e., how the surface is wound! affects
quantum-mechanical wave functions. The latter problem
comes especially interesting if we consider aperiodicsurface
embedded in the three-dimensional space.

Geometrically, Schwarz, back in the 19th century, show
that we can make curved surfaces extend over the e
three-dimensional space by connecting hyperbolic~i.e., ev-
erywhere negatively curved! patches. Specifically, Schwar
has constructedperiodic minimal surfaces, where minimal
means that the negatively curved surface has a minim

area with the mean curvature@ 1
2 (k11k2) with k1 ,k2 being

the principal curvatures# vanishing everywhere on th
surface.2,3

There are reasons from both condensed-matter phy
and mathematics why periodic surfaces are intriguing. F
of all, periodic surfaces are of general interest from the p
spective of condensed-matter physics.~i! In general, ‘‘crys-
tals’’ ~periodic structures! composed of surfaces are conce
tually interesting as a class of periodic system on wh
electrons move. Mackay3-7 has classified them group theo
retically ~just as the ordinary crystals composed of atoms
classified with the space group!, which he named ‘‘flexicrys-
tallography.’’

~ii ! In terms of materials science, periodic minimal su
faces represent the topology of real condensed-matter
tems. These include not only conventional materials such
zeolites or a silica polymorph called melanophlogite,8,9 or
isostructural silicon clathrates,10 but recent advances in fab
rication of exotic materials such as fullerenes or nanotu
have inspired further possibilities such as negative-curva
0163-1829/2001/65~3!/035102~8!/$20.00 65 0351
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fullerenes~or a C60 zeolite!7,11–14whose fabrication has bee
attempted with a zeolite as a template.15 Their structures can
be modeled as curved surfaces if we smear out atoms in
surface in the effective-mass sense, and it is a fundame
question to consider how a mobile~e.g.,p) electron behaves
on such surfaces.

Second, there are mathematical interests and simplifi
tions when a periodic surface is minimal: we can exploit t
Weierstrass representation, which enables us to specify
surface in a surprisingly simple manner in terms of ‘‘navels
The representation also simplifies Schro¨dinger’s equation as
we shall show in the present paper.

There are further mathematical fascinations specific
surfaces. One virtue of the structure constructed from s
faces is that we can deform it. One can in fact deform o
minimal surface into another with a differential geometric
transformation called the Bonnet transformation. We c
then raise a question of how the band structure for one
face could be related to that for the transformed one. Anot
interest is that some periodic minimal surfaces, such
Schwarz’s P surface,16 have a high symmetry~‘‘interior-
exterior’’ symmetry! that divides the space into two equiva
lent parts, which should be reflected in the electronic ba
structure.

So in the present paper we address how the electr
band structures should look like for periodic minimal su
faces. To start with, however, we have to envisage in gen
two ways~Fig. 1! to confine electrons to a surface:~a! One is
to consider electrons bound to a thin, curved slab of thi
nessd, where the limitd→0 is taken.17 ~b! The other is to
consider the surface with the degree of freedom norma
the surface ignored from the outset, i.e., a two-dimensio
sheet is rolled into the curved surface.18 Either way it has
been shown that an effective potential arises from the cu
ture of the surface, but that the potential is different betwe
the two cases. Namely, the thin-slab case~a! ~Ref. 17! has a
potential
©2001 The American Physical Society02-1
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2~\2/8m!~k12k2!2,

while case~b! ~Ref. 18! has

1~\2/8m!~k11k2!2.

The origin of the discrepancy was subsequently revealed
Ikegami and coworkers:19 when the degree of freedom no
mal to the surface is ignored, Dirac’s prescription for co
strained systems can be applied, but there is room for am
guity in the order of operators. If we adopt the conservat
constraint, the resultant equation reduces to that in thd
→0 approach. When the surface is minimal (k11k250),
the curvature potential is nonzero in general~sincek12k2
52k1Þ0) in case~a!, while the curvature potential vanishe
identically in ~b!.

For condensed-matter systems such as atoms arr
along a curved surface, we should take thed→0 approach.
Still, the difference in the band structure between the t
cases is curious. Namely, although we have a periodic
tem in either case, the periodicity imposed in case~a! is the
periodicity in the strong potential that confines the elect
into a thin slab@Fig. 1~a!#, while in case~b! the electron
moves freely along the surface, where the only constrain
that an electron has to move in a space having a nontr
topology. The topology can have a profound effect on
electron’s wave function, since, if we regard the perio
surface as a network of pipes~a cubic network for theP
surface, diamond for theD surface, etc.!, the wave function
interferes with itself along various paths wound around
‘‘necks.’’ Thus the periodicity felt by an electron amounts
the strong confining potential in case~a!, while the periodic-
ity only enters as a way in which the wave function interfe
in case~b!, and it is an intriguing question whether or n
their band structures are similar.

FIG. 1. Two ways to prepare a surface:~a! introduce potential
barriers that confine electrons in a three-dimensional space to a
membrane, or~b! roll a sheet of free electrons into the curve
surface.
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The purpose of this paper is~i! to explicitly write Schro¨-
dinger’s equation for electrons on periodic minimal surfac
by exploiting Weierstrass’s representation in order to obt
the electronic band structure and~ii ! to calculate and com-
pare the band structures in cases~a! and ~b!. Unexpectedly
the band structures turns out to be similar between case~a!
and ~b!, i.e., the bands are primarily determined from t
topological way in which the wave function interferes wi
itself. The energy scale of the band structure~band splitting,
such as a split of the ‘‘d’’ band into Eg andT2g , and band-
widths! is also universally;\2/2mL2 with L being the linear
dimension of the unit cell of the periodic surface.~iii ! We go
further to ‘‘Martensitic-deform’’ a surface to another con
nected by the Bonnet transformation. We shall show t
there exists a curious one-to-one correspondence in t
band structures, which illustrates another unique feature
the topological band structure.

II. WEIERSTRASS REPRESENTATION OF MINIMAL
SURFACES

We start with a mathematical prerequisite for represent
minimal surfaces. A two-dimensional surfacer (q1,q2) em-
bedded in a three-dimensional space can be expresse
terms of two-dimensional coordinatesq1,q2, where (q1,q2)
[(u,v) are called isothermal when the metric tensorgi j is
diagonal with

dr•dr5g11~dudu1dvdv !.

What Weierstrass and Enneper have found is that a neces
and sufficient condition forr (u,v) representing a minima
surface with isothermal (u,v)PS (S: a simply connected
region! is that there existF,G, functions ofw[u1 iv, with
which r (u,v)5@x(u,v),y(u,v),z(u,v)# is expressed as

r ~u,v !5ReS E
w0

w

F~12G2!dw,

3E
w0

w

iF ~11G2!dw,E
w0

w

2FGdwD , ~1!

wherew0 is a constant, andFG2 is assumed to be regula
~i.e.,mth poles ofG assumed to coincide with 2mth zeros of
F).4,5,20 If there are singularities that violate this conditio
we can exclude these points by incising cut~s! to makeS a
Riemann surface. Thus there is a one-to-one correspond
between a minimal surface and the functional form ofF,G.

Now, Schrödinger’s equation for a curved surface, e
pressed with two-dimensional coordinates (q1,q2) and met-
ric tensorgi j , is written as

F2
\2

2m

1

Ag

]

]qiAggi j
]

]qj2
\2

8m
~k12k2!2Gc~q1,q2!

5Ec~q1,q2!, ~2!

in
2-2
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ELECTRONIC STRUCTURE OF PERIODIC CURVED . . . PHYSICAL REVIEW B65 035102
where summations over repeated indices are assumed.
equation is for model~a!, while we can replace the secon
term in the bracket~potential term! by 1(\2/8m)(k1
1k2)2 for model ~b!.

In the Weierstrass-Enneper representation, every qua
in Schrödinger’s equation can be expressed in terms ofF and
G, since the Laplacian, the first term in the angular brack
in Eq. ~2!, reduces to (]2/]qi

2)/Ag in the isothermal coordi-
nates, where

g[det$gi j %5F1

2
uFu~ uGu211!G4

,

while we can plug ink152k254uG8u/uFu(uGu211)2 for
the curvature term. Schro¨dinger’s equation for periodic mini
mal surfaces then reduces to

2
4

uFu2~ uGu211!2 F ]2

]u21
]2

]v21
4uG8u2

~ uGu211!2Gc5«c,

~3!

FIG. 2. The structures ofP ~a! andD ~b! surfaces. We show a
unit patch on the left panel, and a full unit cell on the right. T
gray scale in the right panel represents the curvature poten
where shaded~open! circles depict potential minima~maxima, co-
inciding with the navels!. ~c! The stereographic projection from th
minimal surface to Gauss spheres. A unit patch ofP or D corre-
sponds to a pair of 1/8 spheres.
03510
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where«[E/(\2/2m). As evident from the Weierstrass rep
resentation~1!, F has the dimension of length andG is di-
mensionless. Hence the energies in minimal surfaces alw
scale asE/(\2/2mL2), whereL;F; linear dimension of
the unit cell@a precise expression given in Eq.~5! below#.

We can have a more transparent form whenG(w)5w ~as
is often the case with periodic minimal surfaces, includi
the P surface!. In this case we can exploit the stereograph
map~Gauss map! from the infinite complex plane (u,v) to a
unit sphere (u,f),

w5u1 iv5cotS u

2Deif.

After a bit of algebra, we finally arrive at the differentia
equation for (u,f),

2
~12cosu!4

uFu2 S ]2

]u21cotu
]

]u
1

1

sin2u

]2

]f211D c5«c.

~4!

Curiously, a common coefficient (12cosu)4/uFu2 factors
out for the Laplacian~the first three terms in the large pare
theses in the above equation! and the curvature potential
(11), which is made manifest due to the Weierstrass rep
sentation. Hence the kinetic and potential energies vary
correlated manner as we go from one minimal surface

al,

FIG. 3. Descretization for the spherical coordinates:~a! a mesh
with even intervals inu andf and ~b! uneven ones, adopted her
which take care of the singular point in the Jacobian.

FIG. 4. The energy-band structure in units of\2/2mL2 is shown
for the P surface, when the curvature potential is conside
~curves! or ignored~dots! with an energy offset to make the ban
bottoms coincide between the two cases. The inset depicts the
louin zone for a bcc unit cell.
2-3
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FIG. 5. ~Color! Typical wave
functions for a unit cell ofP sur-
faces with positive~negative! am-
plitudes color coded in red~blue!.
Their eigenenergies are indicate
in Fig. 4.
e
t
k
t

l
ing
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another by changingF. However, this does not imply that th
curvature potential always exerts as large an effect as
kinetic energy does, since the expectation values of the
netic and potential energies depend on the amplitude of
wave function, and a quantitative study is required.

III. RESULTS FOR SCHWARZ’S P SURFACE

So we first take Schwarz’sP surface as a typical triply
periodic ~periodic in x,y,z) minimal surface, or a ‘‘simple
cubic’’ minimal surface~belonging to space groupIm3m in
03510
he
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the language of flexicrystallography!. Some authors20–22

gave the Weierstrass-Enneper representation for theP sur-
face as

F~w!5 iL /A1214w41w8, ~5!

whereL; linear dimension of the unit cell~to be precise the
unit-cell size is 2.157L, which is given as an elliptic inte-
gral!.

A unit cell of the P surface comprises eight identica
patches, as shown in Fig. 2. With the stereographic mapp
discussed above, a unit cell is mapped onto two sphe
2-4
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ELECTRONIC STRUCTURE OF PERIODIC CURVED . . . PHYSICAL REVIEW B65 035102
connected into a Riemann surface via four cuts, which h
to be introduced to makeFG2 nonsingular sinceF has poles.

Differential geometricallyF is in general specified solel
by such poles in a formF}1/) i(w2wi)

h where h deter-
mines the topology of the surface. In fact the poles cor
spond, in the language of differential geometry, to thenavels
~umbilical points!, which are defined as the points whe
every cross section is inflected, with the two principal curv
tures becoming degenerate,k15k2 (50 for a minimal sur-
face!. So a periodic minimal surface is completely charact
ized by the navels that appear periodically. The curvat
potential }2(k12k2)2 in case~a! varies on the surface
which may be called a ‘‘crystal field’’ in flexicrystals. Nave
then specify the positions where the curvature potential
comes maxima (50), while the minima occurs at th
maxima of the absolute value ofk1 (52k2 for a minimal
surface!. In the P surface the navels~potential maxima! oc-
cur at eight ‘‘Affensattel’’~monkey’s-saddle! points in a unit
cell,23,21 while the potential minima occur at four poin
around each nape of the neck as depicted in Fig. 2~a!.24

IV. RESULTS FOR THE BAND STRUCTURE

A. Band structure for case „a…

In Schrödinger’s equation for periodic minimal surface
Eq. ~4!, the variablesu,f cannot be separated, so that w
have solved the equation numerically by discretizingu,f to
diagonalize the Hamiltonian matrix. In discretizing th
spherical coordinates, special care is taken around the na
since the JacobianJ of the transformation to the Gaus
sphere is singular there~Fig. 3!. The band structure is ob
tained by connecting the adjacent unit cells with appropr
phase factors.

We now come to the result for the band structure for thP
surface in Fig. 4~curves!, and typical wave functions atG
andH in the bcc Brillouin zone (G in the simple cubic zone!
in Fig. 5. TheP surface happens to divide the space into t
equivalent parts, since a body center enclosed by the
rounding unit cells has the same shape as the original uni
that we first note that the true symmetry is body-cente
cubic rather than simple cubic. So the bands are displaye
the Brillouin zone for bcc. In accord with the above arg
ment, the energy scale~bandwidth, splitting, etc.! is
;\2/2mL2. This is of the order of 1 eV forL;10 Å, the
unit-cell size assumed for a hypothetical negative-curva
fullerene.25

The curvature, or the effective mass, of these bands
either positive~electronlike! or negative~holelike! according
to the nature of the wave function. The mass cannot be e
mated with a simplek•p perturbation, since the perturbatio
}k•p derives from the fact that the HamiltonianH0}p2

while H0 has no such simple form on a curved surface.
other words, thek•p formula has( j (^ i upmu j &^ j upnu i &)/(Ei
2Ej ), so we would have to calculate the matrix elements
p for wave functions that are finite only along the surface

B. Band structure for case„b…

Now we are in position to compare the~a! confinement
case~curves in Fig. 4! with the~b! rolled case~dotted lines in
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Fig. 4!. We can immediately see that the two band structu
are rather similar up to some offset (2.34\2/2mL2). This is
surprising, since there is noa priori reason why they should
be. To be more precise, quantitative features characteri
the band, i.e., the effective mass and bandwidths, are sim
between the two cases. So we conclude that the band s
ture does not essentially depend on the way in which e
trons are confined, at least for ‘‘gently’’ curved surfaces su
as minimal surfaces where there are no sharp edges
would give large curvature potentials.

V. BONNET TRANSFORMATION

A. Bonnet transformation

The next important question is whether the band str
tures for surfaces connected by the Bonnet transforma
are related.

The deformation of theP surface to other periodic mini
mal surfaces can be implemented by the Bonnet transfor
tion, which is conformal and is represented by an ellip
transformation. A beautiful asset of the Weierstrass repres
tation for minimal surfaces is that the Bonnet transformat
is simply represented by a phase factor,F→Feib, in Eq. ~1!,
whereb is called the Bonnet angle. If we apply this to theP
surface~cubic!, the transformation changes20 it into the G
surface~gyroid with b50.211p) and theD surface~dia-
mond withb5p/2), which may be regarded as a ‘‘Marten
sitic transformation’’ in the words of Ref. 26. The structu
of theD surface is depicted, along with theP surface, in Fig.
2. Since theD surface has a diamond symmetry, its unit c
contains two ‘‘cages.’’

We can first note that the Bonnet transformation preser
the metric tensor and the Gaussian curvature. This imp
that all the surfaces connected by the Bonnet transforma
obey theidentical Schrödinger equation within a unit patch
Indeed, if we look at Schro¨dinger’s Eq.~4!, F only enters as
uFu, so thatF→Feib does not alter the equation. Althoug
this is curious enough, this does not mean that the b
structures are identical, since, while the transformed surfa
share the same genus (5 three for P and D), the way in
which unit cells are connected is different among them.

FIG. 6. The band structures for theP andD surfaces. Horizontal
lines indicate how the energies at the zone center or edges coin
between the two cases.
2-5
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FIG. 7. ~Color! Typical wave functions for a
unit cell of the Bonnet-connectedP and D sur-
faces with positive~negative! amplitudes color
coded in red~blue!. Their eigenenergies are indi
cated in Fig. 6.
e
n
th

s

ac

e

r
te
w
8

a

ta
nt

ar
o

in

tc

-
o
rit

mall

are
tual

iden-
-

B. Band structure of a Bonnet-transformed surface

Figure 6 compares the band structures for theP and D
surfaces. The two band structures are indeed different du
the difference in the three-dimensional connection of the u
cells discussed above. Curiously, however, we find that
values of the band energy atspecial points~Brillouin-zone
corners, edges, and face centers! have identical sets of value
between different surfaces. Namely, a close comparison
the two band structures reveals that the band energies ex
coincide, where the ‘‘law of correspondence’’ is

P surface D surface

G, H ⇔ G, R
N ⇔ X, M .

This can be explained from the property of the Bonn
transformation that does not change Schro¨dinger’s equation.
For this purpose we have to look at the unit cells mo
closely. In Fig. 8, we show how unit patches are connec
for theD andP surfaces. We have indicated in the figure ho
the eight patches in a unit cell, numbered with 1 through
are connected to other patches in the adjacent cells by m
ing the edges with those numbers~i.e., if an edge is marked
with, say, 7, the adjacent patch should be 7!. The wave func-
tion should be continued to the adjacent patch with a cer
phase factor. We have indicated the connection coefficie

r i5exp~ if i !,

wheref i is the Bloch phase alongi 5x,y,z. Hence this dia-
gram fully characterizes how the Bloch wave functions
connected on the periodic minimal surfaces in terms
patches. We can then compare the coefficients for theP and
D surfaces to extract a correspondence at special pointsk
space.

In the diagrams introduced here naturally different pa
numbers are assigned to them between theP andD surfaces,
since the way in which the patches are connected~i.e., num-
bers attached to the edges! is different between them. How
ever, we can make them identical, if we rearrange the c
nection numbers by noting the symmetry. Since the pa
03510
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FIG. 8. ~a! The way in which patches~labeled by large numbers!
are connected to those in adjacent unit cells are indicated by s
numbers attached to the edges for theD surface. The Bloch phase
factors (r i ’s! are also shown. In the left panels the patches
flattened and expanded, while the right panels depict the ac
three-dimensional shapes.~b! The corresponding diagram for theP
surface, where we have rearranged the numbers to make them
tical with those for theD surface by exploiting the symmetry. Ac
cordingly the Bloch phase factors for theP surface involve the
parity inversion (sp). An example is shown in~c!, which indicates
how patches 7,8 are neighboring 5,6 throughrxsp .
2-6
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inversion sp with respect to the center of a unit cell pr
serves the Hamiltonian and does not change the speck
vectors on the zone edges either, the group theory dict
that the eigenstates on thosek points should have the parity
or 21. Then we can always construct the wave function
one half of the unit cell by multiplying the wave function fo
the other with 1 or21. Namely, if we employ a simple cubi
unit cell for the P surface@Fig. 2~a!, right panel which is
twice the bcc unit cell depicted in Fig. 8~b!# to make the
correspondence clearer, we can reproduce the wave fun
in the lower half from that in the upper half by applyingsp,
which enables us to make the connection numbers inP the
same as inD as shown in Fig. 8. So we have now the sa
connection numbers betweenP and D, where the only dif-
ference is different connection coefficients (r i ’s! between P
and D as indicated in the figure. If we compare these, we
up with a ‘‘law of correspondingk points,’’

P surface D surface
k points (rx,ry,rz) k points (rx,ry,rz)

G~1,1,1! sp51 ⇔ G(1,1,1)
sp521 ⇔ R(21,21,21)

M (21,21,1) sp521 ⇔ X(1,1,21)
sp51 ⇔ M (21,21,1)

We can immediately translate this into the corresponde
found above,G,H⇔G,R, etc., if we note the relation,

simple cubic bcc

G ⇔ G, H
M ⇔ N
15

l
,

d

,

e

ys
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between the simple cubic and bcc unit cells.
The wave functions shown in Fig. 7 are actually relat

through this relation. A simplest way to confirm this is
note that the wave function on each unit patch behaves
similar manner. In fact, the wave functionc(u,f) in Eq. ~4!
is identical between the two surfaces.

VI. DISCUSSION

The band structures revealed here should have impor
implications for various physical properties. These sho
include transport properties as well as the cyclotron re
nance, which can detect the effective mass arising from
pological band structures. Since the mass is determined
the interference of wave functions, effects of external m
netic fields should also be interesting.

We can finally comment that if we adopt foams of grap
ite to realize curved surfaces,7 then the equation of motion o
p electrons on the network of the honeycomb lattice w
become, in the effective-mass picture, the problem of a ze
mass Dirac equation~i.e., Weyl’s equation! on curved sur-
faces. While we have ignored spin degrees of freedom h
the spin connection on the surface will give rise to a Berr
geometrical phase.
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