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Classical dynamics in a random magnetic field

Staffan Grundberg and Jørgen Rammer
Department of Theoretical Physics, Umea˚ University, S-901 87 Umea˚, Sweden

~Received 21 September 2001; published 19 December 2001!

The classical dynamics in a quenched random magnetic field is investigated using both the Langevin and
Boltzmann equations. In the former case, a field-theoretic method permits the average over the random mag-
netic field to be performed exactly. A self-consistent theory is constructed using the functional method for the
effective action, allowing a determination of the particle response to external forces. In the Boltzmann ap-
proach the random magnetic field is treated as a random Lorentz driving force. Langevin dynamics always
leads to negative magnetoresistance, whereas the Boltzmann description can lead to either positive or negative
magnetoresistance. In both descriptions the resistivity decreases at low average magnetic fields as the tempera-
ture increases. In contrast to the Langevin result, the Boltzmann resistivity increases at moderate fields as a
function of temperature, displaying a nonmonotonic temperature dependence. The transverse resistivity de-
creases as the temperature increases in the case of Langevin dynamics, whereas the opposite behavior occurs
in the Boltzmann case.
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The dynamics of a charged particle constrained to m
in two dimensions in a random magnetic field has recei
much recent experimental interest. Such a system can
realized by coating a heterostructure two-dimensional e
tron gas in a homogeneous magnetic field with a type
superconductor.1 superconducting grains,2 or an overlayer of
ferromagnets.3

The semiclassical dynamics of a degenerate electron
in a random magnetic field has been studied using the B
zmann equation, and the effect of the random magnetic fi
has been treated either as a source of scattering,4 or as a
random Lorentz driving force.5 Here we shall study a two
dimensional classical gas, say a nondegenerate
dimensional electron gas, in a random magnetic field us
both the Langevin and Boltzmann approach. We first pres
a field-theoretic formulation of the Langevin dynamics,
lowing the average over the random magnetic field to
performed exactly. A self-consistent theory is then co
structed that makes it possible to calculate the nonequ
rium properties of the particle in a random magnetic fie
Subsequently, using the Boltzmann equation with a rand
Lorentz driving force, a gas obeying Maxwell-Boltzman
statistics is studied.

The Langevin dynamics of a particle is described by
equation

mẍt1h ẋt5eẋt3B~xt!1Ft1jt , ~1!

wherext is the position of the particle in a plane perpendic
lar to the quenched random magnetic fieldB(x) ~chosen
along theẑ axis!. The mass and charge of the particle arem
ande, respectively, andh is the friction coefficient, andF is
an external force. The magnetic field,B(x)5B1dB(x), is
assumed a Gaussian distributed stochastic variable and
characterized by its mean,B5^B(x)&5Bẑ, and the correla-
tion function n(x2x8)5e2^dB(x)dB(x8)& taken to be a
Gaussian function n(x2x8)5n0 /(4pa2)exp$2(x2x8)2/
(4a2)%, with rangea and strengthn0 in our numerical cal-
culations. The thermal noise,j, is the white-noise stochasti
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process with zero mean and correlation function speci
according to the fluctuation-dissipation theore
^ja(t)jb(t8)&52hkBTdabd(t2t8), where the brackets now
denote averaging with respect to the thermal noise.

The average particle motion is conveniently described
reformulating the stochastic problem in terms of the fie
theory of classical statistical dynamics.6 The probability
functional for a realizationxt of the motion of the particle is
expressed as a functional integral over the auxiliary varia
x̃t , and we are led to consider the generating functional~for
details on the method and notation applied, we refer to R
7, where the technique was applied to the case of a ran
scalar potential!

Z@F,J#5E DxtE Dx̃te
iSux• x̃u, ~2!

where in the action

S@x,x̃#5 x̃@DR
21x1F1eẋ3dB~x!1j#1Jx, ~3!

matrix notation is used in order to suppress the integrati
over time and summations over Cartesian indices. The
verse free retarded Green’s function isDR

21(t,t8)5@(m] t
2

1h] t)12 ieBsy] t#d(t2t8), where matrix notation is used
for its Cartesian components, i.e., 1 andsy denote the unit
and Pauli matrices in Cartesian space, respectively.

The Gaussian averages with respect to the thermal n
and the quenched random magnetic field are immedia
performed and we obtain the averaged functional

Z@ f #5 ^̂ Z&&5E Df expS iS@f#1 i f f1
1

2
fKf D , ~4!

where the action obtained upon averaging,S5S01SB , con-
sists of a term originating from the random magnetic fie

SB@f#5
i

2 E2`

`

dtE
2`

`

dt8n~xt2xt8!~ x̃t3 ẋt!•~ x̃t83 ẋt8!,

~5!
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and a quadratic term,S0@f#5fD21f/2, specified in

terms of the free inverse symmetric@DA
21aa8(t,t8)

5DR
21a8a(t8,t)# matrix Green’s function, where the matri

D21 in the dynamical, or Keldysh, indices in addition is
matrix in Cartesian indices and time

D215S 2ihkBTd~ t2t8!1 DR
21

DA
21 0

D . ~6!

The notation f(t)5„x̃(t),x(t)…5„f1(t),f2(t)… and f
5(F,J) is employed, and the source term,J(t), coupling to
the particle position,x(t), allow us to generate the correla
tion functions. In order to obtain self-consistent equatio
involving the two-point Green’s function in a two-partic
irreducible fashion, we have added a two-particle sou
term K in Eq. ~4!.

Assuming that the external force is constant, the part
reaches a constant steady-state velocity,v5 ^̂ ẋt&&, and the
average force on the particle vanishes,F2hv1ev3B1FB
50, i.e., there will be a balance between the external for
the average friction force, the Lorentz force due to the av
age magnetic field, and the average force due to the ran
part of the magnetic field,FB5 ^̂ eẋ(t)3dB„x(t)…&&. Pursu-
ing an equation for the average force due to the rand
magnetic field, we consider the effective actionG@f̄,G#

5W@ f ,K#2 f f̄2f̄Kf̄/22 i Tr(GK)/2, the generator of
two-particle irreducible vertex functions, i.e., the Legend
transform of the generator of connected Green’s functio
W@ f ,K#52 i ln Z@f,K#, which satisfies the equations7

dG

df̄
52 f 2Kf̄,

dG

dG
52

i

2
K, ~7!

where f̄ is the average field with respect to the acti
S@f#1 f f1fKf/2, andG is the full connected two-poin
matrix Green’s function, and Tr denotes the trace over
variables and indices.

In the physical problem of interest, the sourcesK and J
vanish,K50 andJ50, and the full matrix Green’s function
has, due to the normalization of the generating function
Z@F,J50,K50#51, the structure in Keldysh space

Gi j 5S 0 GA

GR GKD 52 i S 0 ^̂ x̃t
axt8

a8&&

^̂ xt
ax̃t8

a8&& ^̂ dxt
adxt8

a8&&
D , ~8!

where dxt5xt2 ^̂ xt&&. Similarly, in the absence of source
the expectation value of the auxiliary field vanishes, and
average field is, therefore, given byf̄5( ^̂ x̃t&&,^̂ xt&&)
5(0,vt), wherev is the average velocity of the particle. Th
retarded Green’s functionGab

R gives the linear response t
the forceFb , andGab

K is the correlation function~both ma-
trices in Cartesian indices as indicated!.

We now employ the standard method for constructin
self-consistent theory following Cornwallet al.,8 and employ
the Hartree approximation as described in detail in Ref. 7
the physical problem of interest, the two-particle source,K,
03330
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vanishes, and the second equation in Eq.~7! yields the
Dyson equation,G215D212S@f̄,G#, with the Keldysh
matrix self-energy given by

S i j 5S SK SR

SA 0 D 52i
d^SB@f̄1c#&G

dGi j
U

K50 , J50

. ~9!

The matrix self-energy has two independent compone
@sinceSaa8

A (t,t8)5Sa8a
R (t8,t)#

S tt8
Kmn

5E dk

~2p!2 n~k!exp@k•v~ t2t8!2wk~ t,t8!#

3e3mb$G̈t8t
Kbdi @vb2~Ġt8t

Kbg
2Ġtt

Kbg!kg#

3@vd2~Ġt8t8
Kds

2Ġtt8
Kds

!ks#%e3dn , ~10!

S tt8
Rmn

5e3mde3an] tE dk

~2p!2 n~k!exp@k•v~ t2t8!2wk~ t,t8!#

3@Ġtt8
Rda

1 ivdkrGtt8
Rra

2 i ~Ġtt
Kds2Ġtt8

Kds
!kskrGtt8

Rra
#.

~11!

The influence of thermal and magnetic disorder induced fl
tuations are described by the fluctuation exponentwk(t,t8)
5 ik@GK(t,t)2GK(t,t8)#k. For any given average velocit
of the particle,v, the Dyson equation and Eq.~9! constitute a
set of self-consistent equations for the Green’s functions
the self-energies.

The average force due to the random part of the magn
field is determined by the averaged equation of motion a
the first Keldysh component of the first equation in Eq.~7!,
which yields

FBt
m 5

d^SB@f̄1c#&G

df̄1
m~ t !

U
f̄ t5~0,vt !

5E
2`

`

dt8E dk

~2p!2
n~k!e3abe3md exp@k•v~ t2t8!

2wk~ t,t8!#$Ġtt8
Rda

@vb2~Ġt8t
Kbs

2Ġt8t8
Kds

!ks#

1G̈tt8
KdbksGtt8

Rsa
1 ikgGtt8

Rga
@vb2~Ġt8t

Kbs
2Ġt8t8

Kds
!ks#

3@vd2~Ġtt
Kdr2Ġtt8

Kdr
!kr#% ~12!

The self-consistent Langevin theory is intractable to anal
cal treatment, except in limiting cases, but it is managea
numerically. For any given average velocity of the partic
the coupled equations of Green’s functions and self-ener
may be solved numerically by iteration. The force due to
random part of the magnetic field can then be evaluated
merically from Eq.~12!.

Before displaying the numerical results obtained from
Langevin approach, we discuss the dynamics in a rand
magnetic field using the Boltzmann equation
9-2
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v•“xf 1e@E1v3B~x!#•“pf 52
f 2 f MB

t
, ~13!

where elastic collisions are described by a relaxation timt.
In the absence of the random part of the magnetic field
Boltzmann equation yields the same average velocity as
Langevin equation since we identifyt5m/h. Solving the
Boltzmann equation, treating the random magnetic field
lowest-order perturbation theory, proceeds analogously to
treatment of the degenerate electron gas,5 except that the
particles obey Maxwell-Boltzmann instead of Fermi-Dir
statistics. The nondegeneracy results in an additional inte
tion over velocity, giving for the current density

j5E dv
] f MB

]v
E•@a1~v !v1a2~v !v3B#, ~14!

where the coefficientsa1(v)5e2m21uc(v)u22 Im c(v) and
a2(v)5e2m21uc(v)u22 Rec(v) are specified in terms o
c(v)5vc1 i /t2S(v), wherevc5ueuB/m is the cyclotron
frequency in the average magnetic field and the effect of
fluctuations in the magnetic field is described by

S~v !5
in0~4pa2vc!

21

12e~2p!/~vct! E
0

2p

du

3expS 2

v2 sin2
u

2

a2vc
2 1

u

vct
2 iuD . ~15!

The quantities of interest are the changes in the long
dinal, along the direction of the current~defining thex axis!,
and transverse resistivities due to the random part of
magnetic field, and just as in the Boltzmann theory we n
consider in the Langevin approach a classical gas of den
n instead of a single particle. The excess longitudinal re
tivity is in the Langevin approachDrxx5(rxx2rxx

(0))5

2FB
x /(ne2v), wherev is the magnitude of the average v

locity, andrxx
(0)5m/(ne2t) is the resistivity in the absence o

the random magnetic field. Similarly we have for the exc
transverse resistivityDrxy5(rxy2rxy

(0))5FB
y /(ne2v), where

rxy
(0)52B/(ne). In the Boltzmann approach the resistivitie

are calculated numerically from Eq.~14!.
In Fig. 1 is shown the Langevin and Boltzmann exce

longitudinal resistivities as functions of the average magn
field for two different temperatures. We note that the exh
ited magnetoresistance is negative. However, at low ave
magnetic fields the Boltzmann theory yields a positive m
netoresistance when the ratio,x5 l /a, between the mean fre
path,l 5v tht, and the correlation length of the random ma
netic field,a, exceeds the valuex;6. In this case the scat
tering of the electrons is mainly due to the random magn
field, which acts as spatially separated skew-symmetric s
tering centers giving rise to a positive magnetoresistan
Such a positive magnetoresistance can persist as long a
average of the magnetic field does not exceed its fluc
tions, since as the magnetic field becomes more homo
neous the skew-symmetric character of the scattering is
duced. At high average magnetic field, the magnetic fi
03330
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becomes more homogeneous leading to a negative ma
toresistance in accordance with the absence of magnetor
tance in the case of a homogeneous magnetic field. In
opposite regime,l !a, the electrons experience an almo
constant magnetic field in between collisions with impuritie
and the electrons diffuse between areas of sizea having dif-
ferent magnetic fields. The relative difference between
magnetic fields in these areas decreases as the average
netic field increases thereby again giving rise to a nega
magnetoresistance. In Langevin dynamics the thermal n
gives rise to erratic motion and the velocity changes dir
tion many times as the particle traverses a correlation len
of the random magnetic field. Langevin dynamics, therefo
always exhibits negative magnetoresistance in accorda
with the motion resembling that of the Boltzmann descr
tion when l !a. At low temperatures,kBT,h2a2/m, the
excess longitudinal resistivity is larger for Langevin th
Boltzmann dynamics. In support of the interpretation ju
given, we have observed that at lower temperatures, wh
the thermal velocity in the Boltzmann description becom
smaller and the Boltzmann dynamics, therefore, resem
the Langevin dynamics, the difference in magnetoresista
decreases. Increasing the temperature always decrease
excess longitudinal resistivity for Langevin dynamics.
contrast, the Boltzmann theory yields at low average m
netic fields, i.e.,vct,1, that the excess longitudinal resi
tivity strongly decreases with increased temperature, whe
at moderate average magnetic fields,vct;1, the excess lon-
gitudinal resistivity is increased. The Boltzmann longitudin
resistivity thus exhibits at moderate average magnetic fi
strengths a nonmonotonic behavior as a function of temp
ture, since eventually at high enough temperature the ex
resistivity vanishes. The reason for the nonmonotonic beh
ior of the temperature dependence of the Boltzmann mag

FIG. 1. Longitudinal excess resistivity due to the random par
the magnetic field as a function of the average magnetic field~in
units of h/e!. The solid curve in the figure represents the result
the Langevin theory, and the dash-dotted curve the result of
Boltzmann theory both at the temperaturekBT50.1h2a2m21. The
dashed curves are the behaviors at the temperaturekBT
52h2a2m21, the result of the Langevin theory being represen
by the equidistantly spaced long dashes. The disorder strength
all cases taken to ben0510h2a2.
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BRIEF REPORTS PHYSICAL REVIEW B 65 033309
toresistance is due to the competing factors in ImS(v). In-
creasing the temperature broadens the Maxwell-Boltzm
distribution and the contribution from larger velocity valu
is strongly increased at moderate magnetic fields.

In Fig. 2 is shown the Langevin and Boltzmann exce
transverse resistivities as functions of the average magn

FIG. 2. Transverse excess resistivity due to the random pa
the magnetic field as a function of the average magnetic field~in
units of h/e!. The solid curve in the figure represents the result
the Langevin theory, and the dash-dotted curve the result of
Boltzmann theory both at the temperaturekBT50.1h2a2m21. The
dashed curves are the behaviors at the temperaturekBT
52h2a2m21, the result of the Langevin theory being represen
by the equidistantly spaced long dashes. The disorder strength
all cases taken to ben0510h2a2.
s.

de

.

03330
n

s
tic

field for two different temperatures. The excess transve
resistivity has opposite sign compared to the transverse
sistivity in the absence of the random magnetic field, in
cating that the fluctuations in the magnetic field increase
sipation. Both descriptions exhibit a maximal absolute va
at zero average magnetic field. As a function of temperat
the Langevin dynamics exhibits the opposite feature co
pared to the longitudinal one: the magnitude of the exc
transverse resistivity increases with increasing temperat
reflecting that increased velocity fluctuations, through
force due to the random part of the magnetic field, leads
increased transverse resistivity. In contrast, the magnitud
the Boltzmann excess transverse resistivity decreases w
the temperature increases.

In conclusion, we have studied the transport properties
a classical gas in a quenched random magnetic field, u
both the Langevin and Boltzmann descriptions. Langevin
namics always exhibits negative magnetoresistance whe
in the Boltzmann description the magnetoresistance is p
tive or negative depending on the value of the mean f
path. The temperature has at low average magnetic-fi
strengths the effect of reducing the excess longitudinal re
tivities in both descriptions. However, the temperature
pendence of the excess longitudinal resistivities behav
moderate average magnetic-field strengths oppositely in
two descriptions, showing in the Boltzmann case a n
monotonic behavior with a maximum at a temperaturekBT
.h2a2/m. This behavior should be observable in a tw
dimensional electron gas such as, e.g., the one studied in
2 by having a lower electron density.
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gård, and P. E. Lindelof, Phys. Rev. B50, 14 726~1994!.

3L. Zielinski, K. Chaltikian, K. Birnbaum, C. M. Marcus, K
Campman, and A. C. Gossard, Europhys. Lett.42, 73 ~1998!.
-

4A. V. Khaetskii, J. Phys. C3, 5515~1991!.
5P. Hedega˚rd and A. Smith, Phys. Rev. B51, 10 869~1995!.
6H. K. Janssen, Z. Phys. B23, 377 ~1976!; P. C. Martin, E. D.

Siggia, and H. A. Rose, Phys. Rev. A8, 423 ~1973!.
7S. Grundberg and J. Rammer, Phys. Rev. B61, 699 ~2000!.
8J. M. Cornwall, R. Jackiw, and E. Tomboulis, Phys. Rev. D10,

2428 ~1974!.
9-4


