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Classical dynamics in a random magnetic field
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The classical dynamics in a quenched random magnetic field is investigated using both the Langevin and
Boltzmann equations. In the former case, a field-theoretic method permits the average over the random mag-
netic field to be performed exactly. A self-consistent theory is constructed using the functional method for the
effective action, allowing a determination of the particle response to external forces. In the Boltzmann ap-
proach the random magnetic field is treated as a random Lorentz driving force. Langevin dynamics always
leads to negative magnetoresistance, whereas the Boltzmann description can lead to either positive or negative
magnetoresistance. In both descriptions the resistivity decreases at low average magnetic fields as the tempera-
ture increases. In contrast to the Langevin result, the Boltzmann resistivity increases at moderate fields as a
function of temperature, displaying a nonmonotonic temperature dependence. The transverse resistivity de-
creases as the temperature increases in the case of Langevin dynamics, whereas the opposite behavior occurs
in the Boltzmann case.
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The dynamics of a charged particle constrained to moverocess with zero mean and correlation function specified
in two dimensions in a random magnetic field has receivedccording to the fluctuation-dissipation  theorem
much recent experimental interest. Such a system can W&, (t)é4(t"))=27kgTd,58(t—t"), where the brackets now
realized by coating a heterostructure two-dimensional elecdenote averaging with respect to the thermal noise.
tron gas in a homogeneous magnetic field with a type-ll The average particle motion is conveniently described by
superconductarsuperconducting grairfsor an overlayer of  reformulating the stochastic problem in terms of the field
ferromagnets. theory of classical statistical dynamitsThe probability

The semiclassical dynamics of a degenerate electron gdanctional for a realizatior, of the motion of the patrticle is
in a random magnetic field has been studied using the Boltexpressed as a functional integral over the auxiliary variable
zmann equation, and the effect of the random magnetic fiels,, and we are led to consider the generating functicfual
has been treated either as a source of scattérotgas a  details on the method and notation applied, we refer to Ref.
random Lorentz driving forcé.Here we shall study a two- 7, where the technique was applied to the case of a random
dimensional classical gas, say a nondegenerate twacalar potential
dimensional electron gas, in a random magnetic field using
both the Langevin and Boltzmann approach. We first present
a field-theoretic formulation of the Langevin dynamics, al-
lowing the average over the random magnetic field to be . .
performed exactly. A self-consistent theory is then con-Where in the action
structed that makes it possible to calculate the nonequilib- ~r~—1 .
rium properties of the ;F))article in a random magnetic ?ield. SIXX]=X[Dg X+ F+ @< OB(x) + £]+Jx, ©)
Subsequently, using the Boltzmann equation with a randormatrix notation is used in order to suppress the integrations
Lorentz driving force, a gas obeying Maxwell-Boltzmann over time and summations over Cartesian indices. The in-

Z[F,J]szxtf DR,/ S ¥ )

statistics is studied. verse free retarded Green’s function b, (t,t")=[ (ma?
Th_e Langevin dynamics of a particle is described by the nd)1—ieBoYd,]8(t—t’), where matrix notation is used
equation for its Cartesian components, i.e., 1 am¥l denote the unit
and Pauli matrices in Cartesian space, respectively.
mX;+ %= eX X B(X) + F+ &, 1) The Gaussian averages with respect to the thermal noise

and the quenched random magnetic field are immediately
wherex, is the position of the particle in a plane perpendicu-performed and we obtain the averaged functional
lar to the quenched random magnetic fi@dx) (chosen
along thez axis). The mass and charge of the particle are i . 1
ande, respectively, and; is the friction coefficient, andF is Z[f]:«g»:f Dé ex;{ iSgl+itd+5oKe |, (4)
an external force. The magnetic field(x) =B+ 6B(X), is
assumed a Gaussian distributed stochastic variable and thuéiere the action obtained upon averagiig;, So+ Sg, con-
characterized by its meaB=(B(x))=Bz2, and the correla- sists of a term originating from the random magnetic field
tion function v(x—x’)=e2<58(x)5B(x’)2> taken to be2 a i
Gaussian function v(x—x')=vy/(4ma?)exp{—(x—x")% :_Jw fx (e — X (K XK - (Rer XK
(4a?)}, with rangea and strengthy, in our numerical cal- Ssl 4] 2 %dt wdt PO X ) (R (XX,
culations. The thermal noisé, is the white-noise stochastic (5)
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and a quadratic termSy[¢]=¢D 1¢/2, specified in vanishes, and the second eqt@tion in EfQ. yields the
terms of the free inverse symmetri¢D,* (t,t')  Dyson equationG *=D 1-3[¢,G], with the Keldysh
— Dz %(t',t)] matrix Green’s function, where the matrix Matrix self-energy given by
D! in the dynamical, or Keldysh, indices in addition is a K <R —
matrix in Cartesian indices and time C(EDORT)_8(Splot e
Eij = A =2i 5— . (9)
. L 3 0 Gij K=0, J=0
. [2inkeTo(t-t)1 Dg ’

- Dt 0

The notation ¢(t)=(X(t),x(t))=(¢1(t),P»(t)) and f

(6)  The matrix self-energy has two independent components
[since3”  (t,t')=3%, (t',1)]

=(F,J) is employed, and the source terd(t), coupling to y dk ) )

thé pa)rticle pgsit}i/onx(t), allow us to gegﬁer)ate thg cgrrela— Sq :J (27)2 v(kjexpgk-v(t—t") = g (t,t")]

tion functions. In order to obtain self-consistent equations . _

involving the two-point Green’s function in a two-particle ><e3ﬂﬁ{éf,'f5i[vﬁ—(Gf,’t”— Gft‘”)ky]
irreducible fashion, we have added a two-particle source ) )

termK in Eq. (4). X[v5— (G =Gk, I} ess, (10

Assuming that the external force is constant, the particle
reaches a constant steady-state veloaity,(X;)), and the dk
average force on the particle vanishBs; yv+evxB+Fg  Shi'= €3M563ayf9tf @7 v(k)exgk-v(t—t")— g, (t,t")]
=0, i.e., there will be a balance between the external force, m

the average friction force, the Lorentz force due to the aver- X[GR*+iv sk,GRP*—i(GK — GK ")k k,GRP*].
age magnetic field, and the average force due to the random t P " R
part of the magnetic fieldFg= ((ex(t) X 6B(x(t)))). Pursu- (11)

ng an .equ.atlon for the .average force.due t‘? the randon.].he influence of thermal and magnetic disorder induced fluc-
magnetic field, we consider the effective actibii$,G]  (yations are described by the fluctuation exponef(t,t’)
=W[f,K]-f¢p— pKp/2—i Tr(GK)/2, the generator of =ik[GX(t,t)—GX(t,t")]k. For any given average velocity
two-particle irreducible vertex functions, i.e., the Legendreof the particley, the Dyson equation and E(@) constitute a
transform of the generator of connected Green’s functionsset of self-consistent equations for the Green’s functions and

W[ f,K]=—i In Z[f K], which satisfies the equatiohs the self-energies.
The average force due to the random part of the magnetic
ol — or i field is determined by the averaged equation of motion and
—=-1-K¢, EZ - EK1 () the first Keldysh component of the first equation in Eq,
5¢ which yields

where ¢ is the average field with respect to the action —
S p]+fp+pK¢i2, andG is the full connected two-point  p _ XSgl P+ ¥])e
matrix Green’s function, and Tr denotes the trace over all = Bt SHH(t)
variables and indices. !

In the physical problem of interest, the sour¢ésand J
vanish,K=0 andJ=0, and the full matrix Green’s function _ J'w dt’j dk
has, due to the normalization of the generating functional, — (2m)?
Z[F,J=0K=0]=1, the structure in Keldysh space

¢=(0,vt)

V(k)€3aﬁ€3,u5 eX[:[k'V(t—t')
— ot G T 5= (GEE = Gk, ]

A 0 aya’
Gijz(; EK)=—i , <6(txt'>? ) + G Pk, GRT +ik,GRI (v 5= (GEPT = Gk, ]
@xExg B (oxgoxg )

“Kop_ K8
where 8x,=x,—{(x,)). Similarly, in the absence of sources X[v5=(Gu™ = Gk, I} (12
the expectation value of the auxiliary field vanishes, and the g geif-consistent Langevin theory is intractable to analyti-
average field is, therefore, given by =({X).(X)) cal treatment, except in limiting cases, but it is manageable
=(0,vt), wherev is the average velocity of the particle. The numerically. For any given average velocity of the particle,
retarded Green’s functioG}:, gives the linear response to the coupled equations of Green's functions and self-energies
the forceF 5, andGﬁB is the correlation functiofboth ma-  may be solved numerically by iteration. The force due to the

trices in Cartesian indices as indicated random part of the magnetic field can then be evaluated nu-
We now employ the standard method for constructing anerically from Eq.(12).
self-consistent theory following Cornwadt al.® and employ Before displaying the numerical results obtained from the

the Hartree approximation as described in detail in Ref. 7. IrLangevin approach, we discuss the dynamics in a random
the physical problem of interest, the two-particle sout¢g, magnetic field using the Boltzmann equation
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f— fMB 0.8 I I I ]
V-V, f+e[E+VvXB(x)] -V, f=— , (13
T 0.7 - -
where elastic collisions are described by a relaxation time 0.6 l\f\\ =
In the absence of the random part of the magnetic field the ‘.\\
Boltzmann equation yields the same average velocity as the 0.5 '\\‘ B
Langevin equation since we identify=m/». Solving the é%0_4 | \\ 4
Boltzmann equation, treating the random magnetic field in Pz “~f~\\
lowest-order perturbation theory, proceeds analogously to the 03 '\tf\ n
treatment of the degenerate electron Yaxcept that the 02 L \'\\\\ .
particles obey Maxwell-Boltzmann instead of Fermi-Dirac ' \\\\
statistics. The nondegeneracy results in an additional integra- 0.1 AN -1
tion over velocity, giving for the current density 0 LSS LTty
0 2 4 6 8 10
. fume
j= | dv— = E-[ay(v)v+ay(v)vXBl, (14 B

FIG. 1. Longitudinal excess resistivity due to the random part of
> 1 by A . the magnetic field as a function of the average magnetic fiald
a(v)=em c(v)|”*Rec(v) are specified in terms of its of /e). The solid curve in the figure represents the result of
Cc(v)=wc+ilT—%(v), wherew.=|e[B/m is the cyclotron e Langevin theory, and the dash-dotted curve the result of the
frequency in the average magnetic field and the effect of th@giizmann theory both at the temperatbgg = 0.17%a?m™ 1. The
fluctuations in the magnetic field is described by dashed curves are the behaviors at the temperaty®

=27°a’m™1, the result of the Langevin theory being represented
by the equidistantly spaced long dashes. The disorder strength is in
all cases taken to bey=107%a2.

where the coefficients,(v) =e’mYc(v)| ?Imc(v) and

ivg(4malw,) "t [2m
l_e(Zw)/(wCT) de

S(v)=

0 becomes more homogeneous leading to a negative magne-
25— i : : :
v 2 toresistance in accordance with the absence of magnetoresis-
Xexpl ————>—+ —i6]. (15 tance in the case of a homogeneous magnetic field. In the
azwg WcT

opposite regime|<a, the electrons experience an almost

The quantities of interest are the changes in the Icmgitugonstant magnetic f_ield in between collisions yvith _impu_rities,
dinal, along the direction of the currefdefining thex axis), and the electrqns_dlﬁuse betweer) areas of aibaving dif-
and transverse resistivities due to the random part of thgerent magnetic fields. The relative difference between the
magnetic field, and just as in the Boltzmann theory we noana.gneft'C f[elds in these areas deprea}s_es as the average mag-
consider in the Langevin approach a classical gas of densi etic field Increases thereby again giving rise to a negatlye
n instead of a single particle. The excess longitudinal resis- )agnetoresistance. In Langevin dynamlcs_ the thermal hoise
tivity is in the Langevin approacht py=(p,— p®)= gives rise to erratic motlon_and the velocity chang_es direc-
CEX/(ne? . . h XX _tion many times as the particle traverses a correlation length
Fg/(n v)é wherev is the magnitude of the average ve- o iha random magnetic field. Langevin dynamics, therefore,
locity, andpgx)zm/(nezr) is the resistivity in the absence of always exhibits negative magnetoresistance in accordance
the random magnetic field. Similarly we have for the excessyith the motion resembling that of the Boltzmann descrip-
transverse resistivit p, = (pe,— piy)) =F4/(N€?), where  tion when|<a. At low temperaturesksT< 7%a2/m, the
pf(‘;): —B/(ne). In the Boltzmann approach the resistivities excess longitudinal resistivity is larger for Langevin than
are calculated numerically from E{L4). Boltzmann dynamics. In support of the interpretation just
In Fig. 1 is shown the Langevin and Boltzmann excessgiven, we have observed that at lower temperatures, where
longitudinal resistivities as functions of the average magnetithe thermal velocity in the Boltzmann description becomes
field for two different temperatures. We note that the exhib-smaller and the Boltzmann dynamics, therefore, resembles
ited magnetoresistance is negative. However, at low averagbe Langevin dynamics, the difference in magnetoresistance
magnetic fields the Boltzmann theory yields a positive magdecreases. Increasing the temperature always decreases the
netoresistance when the ratios |/a, between the mean free excess longitudinal resistivity for Langevin dynamics. In
path,| =vy,7, and the correlation length of the random mag-contrast, the Boltzmann theory yields at low average mag-
netic field, a, exceeds the value~6. In this case the scat- netic fields, i.e.,w.7<1, that the excess longitudinal resis-
tering of the electrons is mainly due to the random magneticivity strongly decreases with increased temperature, whereas
field, which acts as spatially separated skew-symmetric scatt moderate average magnetic fieldss~ 1, the excess lon-
tering centers giving rise to a positive magnetoresistancegitudinal resistivity is increased. The Boltzmann longitudinal
Such a positive magnetoresistance can persist as long as tresistivity thus exhibits at moderate average magnetic field
average of the magnetic field does not exceed its fluctuastrengths a nonmonotonic behavior as a function of tempera-
tions, since as the magnetic field becomes more homogeure, since eventually at high enough temperature the excess
neous the skew-symmetric character of the scattering is reesistivity vanishes. The reason for the nonmonotonic behav-
duced. At high average magnetic field, the magnetic fieldor of the temperature dependence of the Boltzmann magne-

033309-3



BRIEF REPORTS PHYSICAL REVIEW B 65 033309

0.05 I field for two different temperatures. The excess transverse
0 resistivity has opposite sign compared to the transverse re-
-0.05 sistivity in the absence of the random magnetic field, indi-
0.1 cating that the fluctuations in the magnetic field increase dis-
0.15 7 sipation. Both descriptions exhibit a maximal absolute value
Bpay -0.2 at zero average magnetic fielld'. As a functio_n of temperature
o) 0.5 the Langevin dynamics exhibits the opposite feature com-
pared to the longitudinal one: the magnitude of the excess
03 transverse resistivity increases with increasing temperature,
-0.35 1i; reflecting that increased velocity fluctuations, through the
-0.4 7‘!" T force due to the random part of the magnetic field, leads to
-0.45 7 increased transverse resistivity. In contrast, the magnitude of
-0.5 é 10 the Boltzmann excess transverse resistivity decreases when
B the temperature increases.

In conclusion, we have studied the transport properties of

FIG. 2. Transverse excess resistivity due to the random part o classical gas in a quenched random magnetic field, using
the magnetic field as a function of the average magnetic field both the Langevin and Boltzmann descriptions. Langevin dy-
units of »/e). The solid curve in the figure represents the result ofnamics always exhibits negative magnetoresistance whereas
the Langevin theory, and the dash-dotted curve the result of thgy the Boltzmann description the magnetoresistance is posi-
Boltzmann theory both at the temperatigel =0.17°a’m . The  ive or negative depending on the value of the mean free
das“fdz curves are the behaviors at the temperaky® o The temperature has at low average magnetic-field
=2n7am -, the result of the Langevin theory.be'ng reloresent.edstrengths the effect of reducing the excess longitudinal resis-
by the equidistantly spaced long dashes. The disorder strength is ltrl]vities in both descriptions. However. the temperature de-
all cases taken to bey=107%a?. P - rlowever, the temp

pendence of the excess longitudinal resistivities behave at

toresistance is due to the competing factors irSiw). In- ~ moderate average magnetic-field strengths oppositely in the
creasing the temperature broadens the Maxwell-BoltzmanfVO descriptions, showing in the Boltzmann case a non-
distribution and the contribution from larger velocity values monotonic behavior with a maximum at a temperati&
is strongly increased at moderate magnetic fields. =n?a®/m. This behavior should be observable in a two-

In Fig. 2 is shown the Langevin and Boltzmann excesglimensional electron gas such as, e.g., the one studied in Ref.
transverse resistivities as functions of the average magneti¢ by having a lower electron density.
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