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Effective electro-optic constants of free-standing superlattices of any symmetry
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A general framework describing the effective electro-optic constants of an idealized free-standing superlat-
tice, composed of thin alternating layers is derived, as a function of the dielectric and electro-optic constants of
each of theN constituents. The proposed model is valid only if the energy of light is small compared to the gap
of each materials. The results are applied to superlattices with layers of all classes of all symmetries~triclinic,
monoclinic, orthorhombic, hexagonal, tetragonal, and cubic!.
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INTRODUCTION AND PROBLEM DEFINITION

The mastery of the molecular-beam-epitaxy process
allowed superlattices1 ~SL! to be developed. These superla
tices are composed of alternating layers of many mater
~N! of thicknessesl 1 to l N , respectively. The period of suc
superlattices created in the direction perpendicular to the
ers is defined asL5S i 51

N l i . Since the optical wavelength i
large compared to the periodL in a heterostructure, the su
perlattice can be considered as a homogeneous med
whose physical properties are determined by the so-ca
effective parameters. These are usually obtained by con
ering some particular averages on the parameters of the
stituents. The effective elastic constants have been calcu
by Grimsditch for superlattices with layers of orthorhomb
symmetry,2 and for superlattices composed of layers of a
symmetry.3 The photoelastic constants4 have been also cal
culated for superlattices of orthorhombic symmetry. T
model proposed herein deals with an idealized free-stan
superlattice: indeed the development of integrated op
electronic SL components composed of semiconductors s
as GaAs, AlAs, InP, GaP, and their alloys is becoming
creasingly interesting. As some of these integrated-optic
vices make use of the linear electro-optic effect~electro-optic
modulators,5,6 tunable filters,7,8 switches, directional cou
plers, etc.!, it is of interest to obtain analytical expressions
their electro-optic coefficients so as to predict their behav
In telecommunications the energy of light~typically corre-
sponding tol51550 nm! is small compared to the gap of th
above semiconductors. Moreover, one can neglect the m
fication of the absorption spectra near the gap9 due to
quantum-confinement effects. In this paper, we conside
idealized free-standing superlattice with its axis orien
along thex3 direction, x1 and x2 lying in the plane of the
layers. Hence, all the properties are referred to orthonor
axes of reference. The thickness of each layer~n51 to N!
beingl 1 to l N , respectively, the related fraction of material
defined hereafter asf 15( l 1 /L) to f N5( l N /L) ~Fig. 1!.

The linear electro-optic~Pockels! effect, which is the ba-
sis for active waveguide device control, is often used
integrated-optic devices such as filters, modulators, etc.
change in the refractive index is proportional to the appl
electric field and modifies the velocity of propagating lig
waves. The linear change in the coefficients of the index
0163-1829/2001/65~3!/033303~4!/$20.00 65 0333
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to an applied electric field isd(1/«) i j 5Sk51
3 r i jkEk , where

« i j is the dielectric tensor of the material~i, j 51 to 3!.10 The
differentiation of the inverse dielectric function tensor11

leads to the constitutive relationd« i j 52« i i « j j Sk51
3 r i jkEk

which involves a 636 matrix k function of the dielectric
tensor. Then, in reduced notation@a51 to 6 represents the
index-contraction of~ij !#, the relation which governs the lin
ear electro-optic effect can be expressed in matrix notatio
~n51 to N, and SL!

d«n52knr nEn with kn

53
~«11

n !2 0 0 0 0 0

0 ~«22
n !2 0 0 0 0

0 0 ~«33
n !2 0 0 0

0 0 0 «22
n «33

n 0 0

0 0 0 0 «11
n «33

n 0

0 0 0 0 0 «11
n «22

n

4 ,

~1!

whered«n is the variation of the dielectric tensor in reduce
notation ~631 matrix! as an electrical field denotedEn is
applied~331 matrix!, andr n are the components in reduce
notation ~633 matrix! of the linear electro-optic

FIG. 1. Schematic diagram of a superlattice~SL! featuring N
different constituents.«n, r n, andl n represent the dielectric matrix
the electro-optic matrix of the layern and its thickness, respectively
©2001 The American Physical Society03-1
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tensor. The matrixkSL must be calculated owing to the ex
pressions of the effective dielectric tensor of the superlat
«SL.

EXPRESSION OF EFFECTIVE DIELECTRIC TENSOR OF
SUPERLATTICES OF ANY SYMMETRY

The basic relation between the displacement fieldD and
the electric fieldE through the dielectric tensors« can be
expressed as~n51 to N, and SL!:

Dn5«nEn. ~2!

The boundary conditions regarding the continuity of t
tangential components ofE, and the normal component ofD
yield the following matrix notation~n51 to N!:

ESL5 (
n51

N

GnEn with Gn5F 1/N 0 0

0 1/N 0

0 0 f n

G , ~3!

and

DSL5 (
n51

N

PnDn with
w
y

he
,’
Fo
ls

03330
e
Pn5F f n 0 0

0 f n 0

0 0 1/N
G5S f n

N D ~Gn!21, ~4!

with

V1E15¯5VnEn5¯5VNEN with

Vn5F 1 0 0

0 1 0

«31
n «32

n «33
n
G . ~5!

The constitutive relation~2! for the SL, with Eqs.~3!, ~4!
entailing En5(Vn)21V1E1 and the basic relation~1! for
each layer, yields the general matrix expressions of the
fective dielectric tensor of the superlattice,

«SL5F (
n51

N

Pn«n~Vn!21V1GF (
n51

N

Gn~Vn!21V1G21

. ~6!

This general expression allows us to obtain a set of ma
laws for each dielectric tensor« i j

SL of the superlattice, as a
function of the properties of its constituents. Assuming
superlattice involvingN different materials of triclinic sym-
metry, we obtain the general framework of laws:
«uv
SL5(

i 51

N

$ f i«uv
i %2(

i 51

N H f i S «u3
i «v3

i

«33
i D J 1

F(
i 51

N H f i«u3
i S )

j 51Þ i

N

«33
j D J GF(

i 51

N H f i«v3
i S )

j 51Þ i

N

«33
j D J G

F(
i 51

N H f iS )
j 51Þ i

N

«33
j D J GF)

i 51

N

«33
i G ~ for uv511,22,12!,

~7!
for
to

ties

e

ia-
th
end,

s-
«uv
SL5

(
i 51

N H f i«uv
i S )

j 51Þ i

N

«33
j D J

)
i 51

N H f iS )
j 51Þ i

N

«33
j D J ~ for uv513,23!, ~8!

«33
SL5

)
i 51

N

«33
i

(
i 51

N H f iS )
j 51Þ i

N

«33
j D J . ~9!

It is then possible to define only three new general la
@Eq. ~7!, ~8!, and~9!# for the whole dielectric tensor of an
idealized free-standing superlattice featuringN different
components of any symmetry. Considering these laws, t
just hinge on the number of occurrence of the index ‘‘3
which relates to the direction perpendicular to the layers.
a superlattice involving only two different isotropic materia
(N52), «11

1 5«22
1 5«33

1 and «11
2 5«22

2 5«33
2 for the first and

the second constituent, respectively; then, Eqs.~7! and ~9!
s

y
’
r

lead to the classical results«11
SL5«22

SL5 f 1«11
1 1 f 2«11

2 and
«33

SL5(«11
1 «11

2 )/( f 1«11
2 1 f 2«11

1 ), as reported in Ref. 12. The
three general expressions~7!, ~8!, and~9!, allow us to calcu-
late the matrixkSL in the basic relationship~1!.

In order to differentiate Eq.~7!, ~8!, and ~9!, it is neces-
sary to explain these three laws as linear combinations
the simplification of the whole calculation. Then, so as
carry on the calculation and to determinate the quanti
calledJuv

n ~n51 to N, and SL!, it is possible to infer from
equations~7!, ~8!, and ~9!, the relationships known as th
‘‘Vegard rules,’’

Juv
SL5 (

n51

N

f nJuv
n . ~10!

In solid state physics such laws show off the linear var
tion of the lattice parameter of a primary solid solution wi
the atomic percentages of the solute elements. To this
inverting Eq. ~9!, leads directly to the relationship 1/«33

SL

5Sn51
N f n /«33

n . In the same way, considering both expre
sions ~7! and ~8! allowing for «33

SL from Eq. ~9!, the two
3-2
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Vegard law type«uv
SL2«u3

SL«v3
SL/«33

SL5Sn51
N fn(«uv

n 2«u3
n «v3

n /«33
n )

for the group of indexuv511, 12, and 22, and«uv
SL/«33

SL

5Sn51
N f n«uv

n /«33
n for the group of indexuv513 and 23 are,

respectively, obtained. Hence expressions~7!, ~8!, and ~9!
may be considered as Vegard-rule-like~10! with the quanti-
ties Juv

n defined as

5
J33

n 5
1

«33
n ,

Juv
n 5

«uv
n

«33
n for uv513,23

Juv
n 5«uv

n 2
«u3

n «v3
n

«33
n for uv511,12,22

. ~11!

EXPRESSION OF EFFECTIVE ELECTRO-OPTIC TENSOR
OF SUPERLATTICES OF ANY SYMMETRY

The voltage variation across one period of the superlat
results from the addition of the corresponding changes ac
the adjacent layers. Then, the electrical field in the effec
medium and in the layers of the superlattice satisfies b
Eqs.~3! and ~5!. Considering the equation of continuity~5!,
the first and second lines of the matrixVn express the conti-
nuity of the tangential components of the electric vec
across the surfaces, whereas the third line expresses the
tinuity of the normal component of the electrical displac
ment vector. Hence, the constitutive relationship~1! for the
superlattice with Eqs.~3! and ~5! yields

d«SL52kSLr SLS (
n51

N

Gn~Vn!21V1E1D . ~12!

This equation can be solved forr SL only if a linear com-
bination is defined regardingd«SL andd«n ~for n51 to N!,
that is,

d«
SL5 (

n51

N

f nLnd«
n with d«n5F d«11

n

d«22
n

d«33
n

d«23
n

d«13
n

d«12
n

G . ~13!

By differentiating each linear combination expression
the six elements of the effective dielectric tensor~uv533,
13, 23, 11, 22, and 12! for all symmetries of the layers whic
are expressed in the relations~10! and ~11!, Eq. ~13! can be
obtained with a 636 diagonal matrixL defined as
03330
e
ss
e
th

r
on-
-

f

Ln53
1 0 0 0 0 0

0 1 0 0 0 0

0 0 ~«33
SL/«33

n !2 0 0 0

0 0 0 ~«33
SL/«23

n ! 0 0

0 0 0 0 ~«33
SL/«13

n ! 0

0 0 0 0 0 1

4
for n51 to N. ~14!

Considering now the basic equation~1! for the N materi-
als and the boundary conditions~5!, the expression of the
electro-optic constants of the superlattice for all classes o
the symmetries, triclinic, monoclinic, orthorhombic, hexag
nal, tetragonal, and cubic, is then

r SL5@kSL#21F (
n51

N

f nLnknr n~Vn!21V1G
3F (

n51

N

Gn~Vn!21V1G21

. ~15!

As the kSL matrix is diagonal, it can be noted that th
linear dependence is on the inverse of the dielectric respo
of the superlattice, not the dielectric response itself.

DISCUSSION

Unfortunately, up to now, the number of experimen
data for electro-optic coefficients of superlattices is qu
limited in the literature. One of the most significant sets
experimental results reported so far deals with the meas
ment of the electro-optic coefficientsr 63

SL andr 41
SL for a super-

lattice made of GaAs and ternary alloys GaAlAs.13,14 The
authors point out that such a heterostructure becomes a
fective medium exhibiting a 42̄m symmetry, that is,r 41

SL

5r 52
SLÞr 63

SL . In this special case, each component of the

perlattice exhibits cubic 43̄m symmetry, that is,r 41
n 5r 52

n

5r 63
n and «11

n 5«22
n 5«33

n for each componentn of the SL.
Actually, Eq. ~15! highlights for this particular example tha
GaAs/GaAlAs SL yields an effective medium exhibiting t
tragonal 4̄2m symmetry, with

r 41
SL5r 52

SL5

(
i 51

N

$ f i«11
i r 41

i %

(
i 51

N

$ f i«11
i %

Þr 63
SL

5

S )
i 51

N

«11
i D S (

i 51

N

$ f i«11
i r 41

i % D
S (

i 51

N

$ f i«11
i % D 2S (

i 51

N H f iS )
j 51Þ i

N

«11
j D J D . ~16!

This special result~16! can also be expressed asr 63
SL

5jN( f i ,«11
i )r 41

SL with the function
3-3
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jN~ f i ,«11
i !5

S )
i 51

N

«11
i D

S (
i 51

N

$ f i«11
i % D S (

i 51

N H f iS )
j 51Þ i

N

«11
j D J D .

It is clear with this model that the functionjN51 is equal to
unity. That is,

jN51~ f 1 ,«11
1 !5

S )
i 51

N

«11
i D

«11
1 S )

j 51Þ i

N

«11
j D 51

when f i 5151 and f j Þ i50.

Considering then homogeneous bulk constituents like Ga
or AlAs, or a ternary alloy~GaAlAs! one find that: the cubic
A
o

pt

ua

03330
s,

4̄3m symmetry of the constituent is characterized byr 41
5r 525r 63.

CONCLUSION

Equation~15! stands for a general formulation of the e
fective electro-optic constants of an idealized free-stand
superlattice, when the optical wavelength is large compa
to the thickness of each of theN constituents, and the energ
of light is small compared to the gap of theN materials. The
results are usable for superlattices with layers of all clas
of all symmetries, i.e., triclinic 1 and 1,̄ monoclinic 2,m and
2/m, hexagonal 6mm and 622, tetragonal 4mm, 422 and
4̄2m, and cubic 4̄3m and 23, provided that appropriate sim
plification of the tensor components of the layers is ma
The formulation also gives valuable information about t
symmetry of the heterostructure considered as an effec
medium.
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