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Effective electro-optic constants of free-standing superlattices of any symmetry
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A general framework describing the effective electro-optic constants of an idealized free-standing superlat-
tice, composed of thin alternating layers is derived, as a function of the dielectric and electro-optic constants of
each of theN constituents. The proposed model is valid only if the energy of light is small compared to the gap
of each materials. The results are applied to superlattices with layers of all classes of all symtnietités,
monoclinic, orthorhombic, hexagonal, tetragonal, and Qubic
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INTRODUCTION AND PROBLEM DEFINITION to an applied electric field ig(1/e);; =Eﬁ’zlrijkEk, where
&;; is the dielectric tensor of the materi@) j =1 to 3.° The
The mastery of the molecular-beam-epitaxy process hadifferentiation of the inverse dielectric function tenSor
allowed superlatticésSL) to be developed. These superlat- leads to the constitutive relatiodis;; = —eiis“Eﬁ:lrijkEk
tices are composed of alternating layers of many materials/hich involves a 6<6 matrix « function of the dielectric
(N) of thicknesse$; to |, respectively. The period of such tensor. Then, in reduced notatipa=1 to 6 represents the
superlattices created in the direction perpendicular to the layindex-contraction ofij)], the relation which governs the lin-
ers is defined aE=EiN:1Ii . Since the optical wavelength is €ar electro-optic effect can be expressed in matrix notation as
large compared to the periddin a heterostructure, the su- (N=1 toN, and SL)
perlattice can be considered as a homogeneous medium,
whose physical properties are determined by the so-callegi.n— _ .nnpn  \yith 0
effective parameters. These are usually obtained by consid-

ering some particular averages on the parameters of the con- [ (e]y)? 0 0 0 0 0
stituents. The effective elastic constants have been calculated 0 (e))? 0 0 0 0

by Grimsditch for superlattices with layers of orthorhombic

symmetry? and for superlattices composed of layers of any | 0 0 (s59° O 0 0
symmetry? The photoelastic constafittave been also cal- 0 0 0 0,65 0 o |
culated for superlattices of orthorhombic symmetry. The non

model proposed herein deals with an idealized free-standing 0 0 0 0 £11833 0
superlattice: indeed the development of integrated opto- 0 0 0 0 0 efieh,

electronic SL components composed of semiconductors such i (1)
as GaAs, AlAs, InP, GaP, and their alloys is becoming in-
creasingly interesting. As some of these integrated-optic de-

vices make use of the linear electro-optic eff@ectro-optic where é,n is the variation of the dielectric tensor in reduced
modulator$® tunable filterd® switches, directional cou- Notation(6x1 matriy as an electrical field denote" is
1 1 1 . - n .
plers, eto, it is of interest to obtain analytical expressions of 2PPlied(3X 1 matriY, andr" are the components in reduced
their electro-optic coefficients so as to predict their behaviorlotation (6x3  matriy of the linear electro-optic
In telecommunications the energy of ligtiypically corre-
sponding to\ = 1550 nn) is small compared to the gap of the X
above semiconductors. Moreover, one can neglect the modi™%
N
S

fication of the absorption spectra near the ajpe to

| 1
quantum-confinement effects. In this paper, we consider arX; : gl ¢ e g ! g'| ¢
idealized free-standing superlattice with its axis oriented M| P n NI E
along thexs direction, x; andx, lying in the plane of the ... : ol rr
layers. Hence, all the properties are referred to orthonorma | [
axes of reference. The thickness of each layet1 to N) L L L 1, 1y | | 1
beingl, to Iy, respectively, the related fraction of material is > ] ¢ :
defined hereafter a5, =(l,/L) to fy=(In/L) (Fig. 1. e

The linear electro-opti¢Pockels effect, which is the ba- L i
sis for active waveguide device control, is often used in (L is the period of the superlattice)

integrated-optic devices such as filters, modulators, etc. The

change in the refractive index is proportional to the applied FIG. 1. Schematic diagram of a superlatti@L) featuring N
electric field and modifies the velocity of propagating light different constituentsz", ", andl,, represent the dielectric matrix,
waves. The linear change in the coefficients of the index du¢he electro-optic matrix of the layerand its thickness, respectively.
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tensor. The matrixS- must be calculated owing to the ex-

pressions of the effective dielectric tensor of the superlattice

SSL.

EXPRESSION OF EFFECTIVE DIELECTRIC TENSOR OF
SUPERLATTICES OF ANY SYMMETRY

The basic relation between the displacement fi@ldnd
the electric fieldE through the dielectric tensors can be
expressed ag=1 to N, and Sb:

D"=¢"EM. 2)

The boundary conditions regarding the continuity of the

tangential components &, and the normal component Bf
yield the following matrix notatioin=1 to N):
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f, 0
fn -
pr=1 0 f, 0 =(N>(G”) g (4)
0 0 1IN
with
VIE!=-.-=V"E"=---=VNEN with
1 0 0
vi=| O 1 0 (5

€31 €3 £33
The constitutive relatiori2) for the SL, with Eqs(3), (4)
entailing E"=(V") " 1V'E! and the basic relatioril) for
each layer, yields the general matrix expressions of the ef-
fective dielectric tensor of the superlattice,

N

z Pngn(vn)flvl
n=1

N
E Gn(vn)flvl
n=1

-1

(6)

eSl=

This general expression allows us to obtain a set of major
laws for each dielectric tensorisj" of the superlattice, as a
function of the properties of its constituents. Assuming a
superlattice involving\ different materials of triclinic sym-
metry, we obtain the general framework of laws:

N 1IN 0 O
ESL=> G"E" with G"=| 0 1IN 0], (3
=1
) 0o o0 f,
and
N
DSL=' P"D" with
n=1
|
N
N . N 8i38i3 [.Zl [fislus(jl_lL
o=, (b=, o] 2222 N
= = 33
f.
N N
2 |f|8iuv< H 8J33 }
s =1 j=1#i
Ew= N N (fOI‘ uU:13,23, (8)
H {fi( H 8%3)}
i=1 j=1#i
N
iﬂl 8i33
3= 9)

It is then possible to define only three new general laws

[Eq. (7), (8), and(9)] for the whole dielectric tensor of any
idealized free-standing superlattice featuriiy different

(for uv=11,22,12,

()

lead to the classical resultsit=e55="f,e1,+f,e2, and

e35=(e1£2))/(f162,+f,e1,), as reported in Ref. 12. The
three general expressiofid, (8), and(9), allow us to calcu-
late the matrix«<St in the basic relationshifd).

In order to differentiate Eq(7), (8), and(9), it is neces-
sary to explain these three laws as linear combinations for
the simplification of the whole calculation. Then, so as to
carry on the calculation and to determinate the quantities
calledE;, (n=1 to N, and SL, it is possible to infer from
equations(7), (8), and (9), the relationships known as the
“Vegard rules,”

(10

components of any symmetry. Considering these laws, they In solid state physics such laws show off the linear varia-
just hinge on the number of occurrence of the index “3,” tion of the lattice parameter of a primary solid solution with
which relates to the direction perpendicular to the layers. Foihe atomic percentages of the solute elements. To this end,
a superlattice involving only two different isotropic materials inverting Eq. (9), leads directly to the relationship £

(N=2), e},=e},=¢3, and £2,=3,= 2, for the first and
the second constituent, respectively; then, E@s.and (9)

=3N . f./e3;. In the same way, considering both expres-
sions (7) and (8) allowing for s% from Eq. (9), the two
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Vegard law types, —& 53¢ 5/e 33=2n- 1 f( 0, ~elaea/e 39
for the group of indexuv =11, 12, and 22, and;-/e35
=3N_ f.eh /&5, for the group of indesuv =13 and 23 are,
respectively, obtained. Hence expressidis (8), and (9)
may be considered as Vegard-rule-lik)) with the quanti-

ties =), defined as

.
Hl=—
e n
€33
n
gn fw for up=13,23 11
=~ uv n ’ . ( )
€33
n
& 7€
BN =en — B2 for up=11,12,22
1 uv 8n
\ 33

EXPRESSION OF EFFECTIVE ELECTRO-OPTIC TENSOR
OF SUPERLATTICES OF ANY SYMMETRY

The voltage variation across one period of the superlattice
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(1 0 0 0 0 0

0 1 0 0 0 0
|00 (e35/£50)? 0 0 0
1o o0 0 (e35/€59) 0 0

0 0 0 0 (e35/efs) O

0 0 0 0 0 1
for n=1 to N. (14

Considering now the basic equati¢h for the N materi-
als and the boundary conditiorf§), the expression of the
electro-optic constants of the superlattice for all classes of all
the symmetries, triclinic, monoclinic, orthorhombic, hexago-
nal, tetragonal, and cubic, is then

N
rSt= [KSL]l{ 21 fnLnKnrn(Vn)flvl
n=

X (15

N -1
21 G”(v“)-lvl} .

results from the addition of the corresponding changes across
the adjacent layers. Then, the electrical field in the effective As the xS matrix is diagonal, it can be noted that the
medium and in the layers of the superlattice satisfies botlinear dependence is on the inverse of the dielectric response

Egs.(3) and(5). Considering the equation of continuitg),

the first and second lines of the matkik express the conti-

nuity of the tangential components of the electric vector
across the surfaces, whereas the third line expresses the con-
tinuity of the normal component of the electrical displace—d

ment vector. Hence, the constitutive relationstiip for the
superlattice with Eqs(3) and(5) yields

N
S,st=— k5SS D, GN(v") T IVIED]. (12)
n=1

This equation can be solved fort only if a linear com-
bination is defined regardingeS- and 5" (for n=1 to N),
that is,

oe 11
n
oe 22

N
Seh
55 = 3 foL"o] with se"=| o ¥ (13)
n=1 €23

n
Og13

n
0g15

By differentiating each linear combination expression of

the six elements of the effective dielectric tengop = 33,

13, 23, 11, 22, and 2Zor all symmetries of the layers which

are expressed in the relatioffs)) and(11), Eq. (13) can be
obtained with a & 6 diagonal matrixX. defined as

of the superlattice, not the dielectric response itself.

DISCUSSION

Unfortunately, up to now, the number of experimental
ata for electro-optic coefficients of superlattices is quite
limited in the literature. One of the most significant sets of
experimental results reported so far deals with the measure-
ment of the electro-optic coefficient§s andr 3T for a super-
lattice made of GaAs and ternary alloys GaAl&s? The
authors point out that such a heterostructure becomes an ef-

fective medium exhibiting a 2m symmetry, that isr5r
=rzs#rgs. In this special case, each component of the su-

perlattice exhibits cubic 3m symmetry, that isrj,=rg,
=rg; and e],=e5,= &5, for each componenn of the SL.
Actually, Eq. (15) highlights for this particular example that
GaAs/GaAlAs SL yields an effective medium exhibiting te-

tragonal_42m symmetry, with

N . .
21 {fievira

1
SL_ .SL_ sL
l41=152= # 163

izl{fisin}

B A [popaemt

RIS i)

This special result(16) can also be expressed agy
=¢N(f; &) r3- with the function

(16)
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( i ) 43m symmetry of the constituent is characterized ty
€11

N .
fi( H 811 )]) CONCLUSION

N
I1 =rg,="r
. ] 52~ 1'63-
&N(fi )= 7 N
|2 a3 o I,
. Equation(15) stands for a general formulation of the ef-

It is clear with this model that the functiof'=?! is equal to  fective electro-optic constants of an idealized free-standing
unity. That is, superlattice, when the optical wavelength is large compared
to the thickness of each of tid constituents, and the energy
( H i ) of light is small compared to the gap of thematerials. The
Ll &1 results are usable for superlattices with layers of all classes
N el)=—F———=1 of all symmetries, i.e., triclinic 1 and, monoclinic 2,m and
811( H 8111) 2/m, hexagonal égdm and 622, tetragonalmm, 422 and

j=1#i 42m, and cubic 8m and 23, provided that appropriate sim-
plification of the tensor components of the layers is made.
The formulation also gives valuable information about the
Considering then homogeneous bulk constituents like GaAsymmetry of the heterostructure considered as an effective
or AlAs, or a ternary alloyGaAlAs) one find that: the cubic medium.

when fi_;=1 and f;.;=0.
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