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Andreev bound states and self-consistent gap functions in clean layered superconductorÕnormal
metal systems with finite transverse width

R. E. S. Otadoy* and A. Lodder†
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Andreev bound states in clean, ballisticSNSandSNSNSjunctions are calculated exactly and by using the
Andreev approximation~AA !. The AA appears to break down for junctions with transverse dimensions chosen
such that the motion in the longitudinal direction is very slow. The doubly degenerate states typical for the
traveling waves found in the AA are replaced by two standing waves in the exact treatment and the degeneracy
is lifted. A multiple-scattering Green’s function formalism is used, from which the states are found through the
local density of states. The scattering by the interfaces in any layered system of ballistic normal metals and
clean superconducting materials is taken into account exactly. The formalism allows, in addition, for a self-
consistent determination of the gap function. In the numerical calculations the pairing coupling constant for
aluminum is used. Various features of the proximity effect are shown.

DOI: 10.1103/PhysRevB.65.024521 PACS number~s!: 74.80.Dm
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I. INTRODUCTION

Andreev bound states1 occur in a normal metal~N! system
of finite size that is in contact with superconductors~S!. Al-
though much is known already about these states, still n
features are measured by varying the length of the nor
metal,2,3 by looking at phenomena induced by introducing
constriction in the normal part,4 or by studying questions
such as the occurrence of a ‘‘minigap.’’5,6 All these develop-
ments are induced by phenomena which show up only
smaller and smaller, mesoscopic samples.7 In quite some
studies the samples can still be described in the dirty lim8

in others the clean, ballistic limit is most appropriate rega
ing the phenomena involved.6,9,10 In almost all studies men
tioned a quasiclassical description is used,11 which for the
clean limit has been proven to be equivalent to the Andr
approximation.1,10 In the Andreev approximation~AA ! nor-
mal reflection of an electron approaching anNS interface is
neglected and only the Andreev type reflection, implying j
a reflected hole retracing the path of the incident electron
accounted for. Interestingly, in many cases the AA wo
remarkably well, implying negligible effects of less tha
0.1%.12

In the present paper we addresstransversesize effects in
a situation where neither the quasiclassical approach no
Andreev approximation can help, and we have to proc
with an exact calculation. In many studies the systems
treated as being infinite in the transverse directions, by wh
breakdown of the AA hardly can show up.13–15 Kümmel16

was the first who pointed out that for an electron movi
slowly in the direction of anNS interface, so having a rela
tively large transverse momentum, the Andreev approxim
tion breaks down. At the interface not only a returning ho
amplitude is generated, but also a not negligible elect
amplitude is reflected. While Ku¨mmel worked out this idea
for a superconducting layer with a thickness comparable
the superconducting coherence length, Sˇ ipr and Györffy17

first have shown explicitly its dramatic impact for a standa
SNSjunction. For these effects an exact calculation is
0163-1829/2001/65~2!/024521~12!/$20.00 65 0245
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quired, going beyond the quasiclassical approach. In f
exact calculations are becoming more and more import
either in the form of solving the Bogoliubov equation
exactly,17 by using a scattering matrix formalism,4 or by us-
ing the exact Green’s function as it is done in the pres
paper.18

We use the work of Tanaka and Tsukada as a star
point.13 These authors investigated the energy spectrum
the quasiparticle states in a superconducting superla
based on a Kronig-Penney model potential. Their calcu
tions were done using the Andreev approximation and
system considered was infinite in both the transverse and
longitudinal dimensions. We will deal with three addition
aspects:~i! we do the exact calculation and investigate t
reliability of the Andreev approximation,~ii ! we do the cal-
culation for a limited number of layers, which relates bet
to a possible experimental situation, and~iii ! we investigate
the transverse size dependence of the relevant prope
such as the local density of states. The systems we cons
cover the entire range from very narrow transverse dim
sions to wider ones, thereby simulating one, two, and thr
dimensional systems.

The multiple-scattering Green’s function formalism to
used18 is an extension of the formalism introduced by Tana
and Tsukada13 in that no Andreev approximation is made.
addition it is set up in a quite different way, such that t
multiple scattering of the~quasi!particles by the different in-
terfaces is exhibited explicitly. The formalism is very fle
ible, in that an arbitrary number of layers can be accoun
for in a transparent way, supercurrents can be calculated
the gap function can be determined self-consistently. In
initial application of the theory the local density of states
normal metal-superconductor~NS! and SNSjunctions were
calculated, but the breakdown of the Andreev approximat
was not noticed.12

The paper is organized as follows. First we give a conc
account of the main features of the theory. In Sec. III t
local density of states for the two systems considered is s
ied. In Sec. IV the gap function is calculated self-consisten
for a bar-shaped superconductor and for theNS, SNS, and
©2001 The American Physical Society21-1
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R. E. S. OTADOY AND A. LODDER PHYSICAL REVIEW B65 024521
SNSNSjunctions. Concluding remarks are given in Sec.
Throughout the paper, Rydberg atomic units are used
which the energy is in Rydberg, the distance is in Bo
(1 Bohr'0.5 Å), \51, and the electronic mass is1

2.

II. THEORY

Although in this paper a Green’s function formalism
used, we first give the Bogoliubov–de Gennes equations

F2¹22m D~r !

D* ~r ! ¹21mGC~r !5EC~r ![ES u~r !

v~r ! D ~1!

used by Sˇ ipr and Györffy17 to investigate the bound states
a SNSjunction shown in the upper panels of Fig. 1. The ma
reason is that our formalism will be expressed in terms of
solutions of these equations. The inhomogeneity of the s
tem is expressed by the space dependence of the gapD(r ).
In the superconducting parts the gap is a complex cons
whereas in the normal metal it is zero. The spinor wa
function describes quasiparticle excitations and the energE
is measured with respect to the Fermi energym.

Application of the Bogoliubov–de Gennes equations
the bar-shaped superconductor shown in Fig. 2 yields

C~r !5S uS
seif/2

uS
2se2 if/2DeisnkS

sx sinS nyp

Ly
yD sinS nzp

Lz
zD , ~2!

wheref is the phase of the complex constantD, and

FIG. 1. A two-dimensional picture of the systems studied. In
upper panel the vertical direction stands for a transverse direc
In the lower panels the potential is shown, which is zero in
normal part~s!, and proportional toD in the superconducting parts
02452
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ky5
nyp

Ly
; kz5

nzp

Lz
, with ny ,nz51,2,3,..., ~3!

uS
s5AE1sAE22uDu2, ~4!

kS
s5AkFx

2 1sAE22uDu2, ~5!

kFx

2 5m2ky
22kz

2. ~6!

The discretized nature of the transverse wavevectors is
to the vanishing of the wave functions on the transve
boundaries. The four standard solutions are labeled with
sign indicess and n that can both be equal to61. By this
convention, the indexs refers to the type of particle~elec-
tronlike for s511 and holelike fors521! and the indexn
indicates the direction of propagation~n511 to the right
andn521 to the left!. The complete solution of Eq.~1! is a
linear superposition of Eq.~2! for different possible combi-
nations of~s, n!. The above equations also hold for a norm
metal by lettingD50, in which case the subscriptS is to be
replaced byN.

The Green’s function formalism is outlined extensively
Koperdraadet al.18 It is an extension of the microscopi
theory used by Tanaka and Tsukada, in that the electron-
scattering properties are treated exactly, and it traces bac
the microscopic description of superconductivity b
Gor’kov19 and Ishii.20 For the sake of completeness and cla
ity we summarize its main features and add relevant n
elaborations. The matrix Green’s function satisfies the eq
tion

F ivn1¹21m 2D~r !

2D* ~r ! ivn2¹22mGG~r ,r 8,ivn!5d~r2r 8!1

~7!

in which the differential operator is closely related to t
operator in the Bogoliubov–de Gennes equations~1! apart
from the replacement ofE by ivn , where

vn5pnkBT with n a6odd integer. ~8!

The quantityvn is called the Matsubara frequency. Possib
inhomogeneities of the system are fully represented by thr
dependence of the gap function. As far as the transverse
rections are concerned the general solution of Eq.~7! can be

e
n.
e

FIG. 2. The geometry of the bar-shaped superconductor un
consideration. It has finite transverse dimension and is infinite l
gitudinally. A rectangular cross section is shown whose dimensi
areLy andLz .
1-2
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ANDREEV BOUND STATES AND SELF-CONSISTENT . . . PHYSICAL REVIEW B 65 024521
expressed as a linear combination of solutions~2! over all
allowed values ofky , ky8 , kz , andkz8 . Thus

G~r ,r 8,ivn!5
4

LyLz
(

ky ,ky8 ,kz ,kz8
G~x,x8,ky ,ky8 ,kz ,kz8 ,ivn!

3sinkyy sinky8y8 sinkzz sinkz8z8. ~9!

The transverse standing waves are normalized to un
which implies the orthogonality condition

E
0

Ly
sinkyy sink̄yydy5

Ly

2
dky ,k̄y

, ~10!

for the y coordinate and a similar condition for thez coordi-
nate. The Fourier coefficientG(x,x8,ky ,ky8 ,kz ,kz8 ,ivn) can
be obtained from Eq.~9! using Eq.~10!. It takes the form

G~x,x8,ky ,ky8 ,kz ,kz8 ,ivn!

5
4

LyLz
E

0

Ly
sinkyyE

0

Ly
sinky8y8E

0

Lz
sinkzz

3E
0

Lz
sinkz8z8G~r ,r 8,ivn!dz8dzdy8dy.

~11!

Using Eq.~11!, Eq. ~7! can be written as

F ivn1
d2

dx2 1kFx

2 2D

2D* ivn2
d2

dx22kFx

2
G

3G~x,x8,ky ,ky8 ,kz ,kz8 ,ivn!

5d~x2x8!dky ,k
y8
dkz ,k

z8
1. ~12!

Before we proceed we want to make the terminology cle
G(r ,r 8,ivn) is the actual Green’s function. The Fourier c
efficient G(x,x8,ky ,ky8 ,kz ,kz8 ,ivn) is a Green’s function in
the sense that it is the solution of Eq.~12!, but this equation
demonstrates that it is diagonal inky andkz . That facilitates
both the notation, because the variablesky8 and kz8 can be
omitted, and the calculation ofG(r ,r 8,ivn) according to Eq.
~9!. In calculating the local density of states and the se
consistent gap function, we will need the Green’s funct
for diagonal spatial coordinates. As long as we keepxÞx8,
we can already takey5y8 andz5z8 in Eq. ~9!. Since we are
only interested in the variations over the longitudinal dire
tion x, we can average over the transverse dimensions.
that Eq.~9! simplifies to the series

G~x,x8,ivn!5
1

LyLz
(

ky ,kz

G~x,x8,ky ,kz ,ivn!. ~13!

First we give the Green’s function of a homogeneous b
shaped superconductor
02452
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0~x,x8,ky ,kz ,ivn!5(

s
dS

scS
s2~x,!c̃S

s1~x.!

5(
s

dS
scS

s1~x.!c̃S
s2~x,!,

with dS
s52

1

4VSkS
s , ~14!

in which iVS5A( ivn)22uDu2. The wave functioncS
sn(x) is

given by Eq.~2! after omitting the transverse solutions, an
uS

s andkS
s are given by Eqs.~4! and~5! with the replacement

E→ ivn . In addition the conjugate wave function is define
by

c̃S
sn~x!5~uS

se2 if/2uS
2seif/2!eisnkS

sx. ~15!

The Green’s function~14! describes the propagation of exc
tations~holelike or electronlike! from the starting pointx8 to
the final pointx with the weighting factordS

s . In this case of
a superconducting bar, there is no scattering.

Now we give the Green’s function for a system with o
interface. To account for the scattering at the interface,
appropriate form appears to be21

Gn j n8 j~x,x8,ky ,kz ,ivn!

5Gn j
0 ~x,x8,ky ,kz ,ivn!dnn8

1(
ss8

dn j
s dn8 j

s8 cn j
sn~x!tn j n8 j

ss8nn8c̃n8 j
s8n8~x8!, ~16!

where Gn j
0 is equal toGS

0 given by Eq. ~14!, but for the
present purpose rewritten as

Gn j
0 ~x,x8,ky ,kz ,ivn!

5(
s

dn j
s cn j

sm~x!c̃n j
s,2m~x8! with m5sgn~x2x8!.

~17!

The labelS in Eq. ~14! has been replaced with the mo
flexible labeln j indicating the positionxj of the interface.
The subscript1 j meansx is in the right-hand side of the
interfacexj and2 j means that it is in the left-hand side. Th
first term is nonzero only if the starting and final pointsx8
andx, respectively, are at the same side of the interface.
second term takes into account the scattering of the par
at the interface. This scattering is aptly described by the

rameter we call scatteringt matrix, tn j n8 j
ss8nn8 . For a supercon-

ducting bar thet matrix is zero, because there is pure prop
gation and no scattering. The scatteringt matrix can be
obtained by imposing the continuity of the Green’s functi
and its derivative at the interface. We then obtain

(
sn

ndn j
s cn j

sn~xj !tn j n8 j
ss8nn852n8cn8 j

s8,2n8~xj !. ~18!

In applying the above interface matching condition, it h
come out to be convenient to use an extended definition
1-3
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cS
sn~x!5S uS

seif/2

uS
2se2 if/2

isnkS
suS

seif/2

isnkS
suS

2se2 if/2

D eisnkS
sx ~19!

of the wave functioncS
sn(x) which includes the derivative

with respect tox.
If there are more interfaces as in the systems depicte

Fig. 1, multiple scattering occurs and the Green’s function
given by

Gn j n8 j 8~x,x8,ky ,kz ,ivn!

5Gn j
0 ~x,x8,ky ,kz ,ivn!~dnn8d j j 81d2nn8d j 1n, j 8!

1 (
sms8m8

dn j
s dn8 j 8

s8 cn j
sm~x!Tn j n8 j 8

ss8mm8c̃n8 j 8
s8m8~x8!. ~20!

This is the generalization of Eq.~16!. There are features in
Eq. ~20! that do not appear in that equation. One of the
features is the strange combination of Kronecker deltas in
first term. The first set of Kronecker deltasdnn8d j j 8 insures
that the first term is nonzero only if the starting and fin
positions are in the same layer. The other setd2nn8d j 1n, j 8
serves the same purpose but at the same time it takes ca
the redundancy in the indexing of the layers. The structur
the two sets of Kronecker deltas assures us that there i
overlapping of their functions. If one set gives the val
unity the other set must be zero and vice versa. Anot

feature of Eq.~20! is the presence of the quantityTn j n8 j 8
ss8mm8 .

Whereas thet matrix describes the scattering of the partic
at a particular interface, this quantity describes the multi
scattering of the particle at the interfaces along its path.
call this the multiple scatteringT matrix. TheT matrix is in
fact a function of thet matrix and is given by the multiple
scattering equation

Tn j n8 j 8
ss8nm85tn j m8 j 8

ss8nm8~dm8n8d j j 81d2m8,n8d j 1m8, j 8!

1 (
s9n9

tn j n9 j
ss9nn9dn9 j

s9 Tn9 j n8 j 8
s9s8,2n9m8 . ~21!

To solve this equation it is necessary to first solve for
t-matrix at each interface using Eq.~18!.

Until now no approximations have been made in using
solutions~2! of the Bogoliubov–de Gennes equations. In a
plying the formalism given above to the calculation of t
density of states,ivn has to be replaced byE1 id. After that
one can make the frequently used Andreev approximat
which amounts to the replacement

kn j
s →kFx

1s
AE22uDu2

2kFx

~22!

if kn j
s occurs in the exponential and tokn j

s →kFx
if kn j

s occurs
as a factor as shown explicitly in the third and fourth co
ponents of the wave function~19!. This approximation is
02452
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2 . In the present paper we will inves
tigate its limitation by looking at configurations in whichE,
D'kFx

2 .

III. THE LOCAL DENSITY OF STATES

Section II provides the basic machinery to determine
matrix Green’s function, which enables us to calculate
local density of states~LDOS! at a positionx using the equa-
tion

LDOS~x,E!52
1

pLyLz
lim
d→0

(
ky ,kz

Im G11~x,x;ky ,kz ,E

1 id! ~23!

in which G11 is the upper left matrix element of the multipl
scattering Green’s function~20!. Although we only study An-
dreev bound states, which imply infinite peaks at the bou
state energies, the Green’s function formalism makes it p
sible to broaden the peaks by using a small value ofd. The
peaks acquire a finite height and must correspond to
bound-state energies.

A. The SNS junction

We first apply the formalism discussed in Sec. II to
superconductor-normal metal-superconductor~SNS! junc-
tion. A schematic diagram of the system studied is given
the upper and middle panels of Fig. 1. The dotted lines in
upper panel serve as an indication of the position of the in
NS andSN interfaces in theSNSNSsystem to be treated in
Sec. III B. In this first application we will show more explic
itly how the different labels are used. The interface indej
has only two values 1 and 2. TheT-matrix equation~21! can
be recast into the form

T2n j n8 j 8
2ss82nn85t2n j n8 j 8

ss82nn8d j j 81 (
s9n9

t2n j n9 j 8
ss82nn8dn9 j

s9 T2n9, j 1n9,n8 j 8
s9s8,2n9n8 .

~24!

To implement this in matrix form, we must see to it that t
elements of theT matrix in both sides of the equation ar
arranged in the same manner. Thus, its elements in the r
hand side of the equation must be similarly displayed as
the left-hand side. This can be done by writing Eq.~24! in
the form

FT2n1n81
ss82nn8 T2n1n82

ss82nn8

T2n2n81
ss82nn8 T2n2n82

ss82nn8G
5F t2n1n81

ss82nn8 0

0 t2n2n82
ss82nn8G

1F 0 t2n1n91
ss92nn9dn91

s9 dn91

t2n2n92
ss92nn9dn92

s9 dn92 0
G

3FT2n1n91
ss92nn9 T2n1n92

ss92nn9

T2n2n91
ss92nn9 T2n2n92

ss92nn9G . ~25!
1-4
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Each element of the above matrices is itself a 434 matrix
with sn ~511, 12, 21, 22! as row and column indices
So actually, the matrices appearing in Eq.~25! have dimen-
sions 838. In this form theT matrix can be obtained by
appropriate matrix inversion. The Green’s function is o
tained using Eq.~20!. The local density of states is dete
mined by using Eq.~23!.

To investigate the validity of the Andreev approximatio
in our SNSjunction, we will focus on the choice of the tran
verse width Ly5Lz5Lt of the junctions. The transvers
wave components of the wave function~2! are standing
waves proportional to sin(kyy)sin(kzz) where ky and kz are
given by Eq.~3!. The different combinations of (ky ,kz) or
(ny ,nz) are called modes whose allowed values are de
mined by

kFx

2 5m2S p

Lt
D 2

~ny
21nz

2!.0. ~26!

When the transverse dimension is small, the second term
the right becomes large, as a result, only a few modes wil
allowed. If this term exceeds the chemical potentialm, kFx

becomes imaginary, the wavefunction is damped, and co
quently, such mode cannot exist. For larger transverse
mensions, the second term is smaller whereupon more m
are allowed. Most of our calculations are done for smallLt
so that only few modes will exist. By that the effects to
illustrated come out most clearly, but we return to this po
at the end of this subsection. We will tuneLt such thatkFx

2 is

of the same order of magnitude as the gap energyD, in
which regime the Andreev approximation~22! is not valid,
and call such aLt value a critical width.

Figures 3 and 4 show the results for a configuration
which (ny ,nz)5(2,2) is the highest allowed mode. Th
chemical potentials in the superconductor and in the nor
metalmS andmN , respectively, are assumed equal with ma
nitude 0.5. The longitudinal dimensionL of the normal-metal
part is 4000 Bohr and the gapD is treated as real with mag
nitude 0.0001 Ry. The LDOS in the normal-metal part ax
51000 Bohr is plotted againstE/D. The peaks represent dis
crete energy states.12 We make the width of the curves, de

FIG. 3. Plot of the LDOS againstE/D for a SNSsystem in
which Lt513 Bohr.
02452
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termined by the parameterd in E1 id, wide enough so tha
the fundamental features can be seen. The numbers in pa
theses denote the mode to which the energy belongs. In
4 the transverse width is determined by the condition t
kFx

2 5D for the mode ~2,2!, by which one finds thatLt

512.5676 Bohr and in Fig. 3 the transverse width isLt
513 Bohr. Although the latter width is slightly larger tha
the critical width and has the same allowed modes, the
respondingkFx

2 5328D. Clearly for the latter value the An

dreev approximation~AA ! is very good, which can be see
in Fig. 3. In both figures the dashed curve is the local den
of states calculated using the AA and the solid curves are
results from the exact calculation. In Fig. 3, the exact and
AA results coincide and just three states are found, one
each mode. For the critical width, the states for the first t
modes are at almost the same position, but for the~2,2! mode
many states are found. The AA clearly breaks down, mer
showing some average of the location of the exact pea
Further we notice that the AA peaks have about the sa
height whereas the amplitudes of the exact peaks vary wid
with the energy. The amplitude variation of the exact peak
due to the specific position chosen for the LDOS. Figure
depicts the exact LDOS atx51000 and 1500 Bohr. We ob
serve that some of the peaks in the solid curve are suppre
while the corresponding peaks in the dashed curve
prominent and vice versa. The suppressed peaks are p
down by the small magnitude of the weighting wave fun
tions at those values ofx. The degenerate traveling wave
corresponding to the AA are split in the exact treatment i
odd and even~sine and cosine! functions having different
heights at different positions.17

In general, critical widths are determined by the conditi
0,kFx

2 'D. It is clear that the number of peaks for the hig

est mode will increase for smaller values ofkFx

2 compared to

the value used in Fig. 4. For larger values the effects w
diminish. We will not expand on this obvious detail.

Finally, we want to comment on our choice of the tran
verse width up to now. In Sec. IV it will come out tha
superconductivity is suppressed for transverse widths in
order of 20 Bohr or less. This means that so far our choice

FIG. 4. Plot of the LDOS againstE/D for x51000 Bohr, Lt

512.5676 Bohr,L54000 Bohr, andD50.0001 Ry.
1-5
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transverse widths may seem not too appropriate. We ch
those transverse widths to illustrate with clarity the fund
mental features of the bound states. In order to see the in
ence of a wider transverse dimension, we show in Fig. 6
LDOS of aSNSsystem withLt5100 Bohr~solid curve! and
Lt599.8514 Bohr ~dotted curve!. The critical transverse
width of 99.8514 Bohr is obtained from the conditionkFx

2

5D for the mode~19, 12!. To illustrate its main features
clearly, we only show the results for the Andreev approxim
tion. It appears that higher modes are allowed for a wi
transverse dimension. The peak at aboutE50.95D comes
from the many lower modes, each supporting just one bo
state. Only the highest mode gives rise to the distinct se
peaks starting at aboutE50.074D. So effectively, the char-
acter of the results shown above is essentially unchange

B. The SNSNSsystem

A schematic representation of the system is shown in
lower panel of Fig. 1. The height of the middle superco
ductor is chosen to take the valueshD where the range ofh

FIG. 5. Plot of the LDOS for aSNSsystem againstE/D at x
51000 Bohr~solid curve! and x51500 Bohr~dashed curve!. The
transverse dimension isLt512.5676 Bohr and the length of th
normal metal isL54000 Bohr.

FIG. 6. Plot of the LDOS againstE/D for a SNSsystem in
which Lt5100 Bohr ~solid curve! and Lt599.8514 Bohr ~solid
curve!. The length of the normal-metal part is 4000 Bohr.
02452
se
-
u-
e

-
r

d
of

.

e
-

is 0<h<1. The LDOS is calculated using Eq.~23!. The
process of determining thet matrix, theT matrix, and the
Green’s function for theSNSNSjunction is the same as in th
SNSjunction. The number of interfaces has increased by
and the dimension of the matrices has become 16 instea
8. We again choose a square transverse cross section w
dimension isLt512.5676 Bohr. This means that the set
modes is the same as in theSNSsystem. The lengths of the
normal metal parts are each 1000 Bohr and that of the mid
superconductor is 2000 Bohr.

Figure 7 shows the development of the bound states as
gap of the middle superconductor is increased from 0.25D to
D. All peaks belong to the highest~2,2! mode, apart from a
~1, 1! mode and a~1, 2! mode peaks just belowE/D51. The
mode labels are shown only in Fig. 7~d! to avoid cluttering
the figures. Both the exact solution and the states accor
to the Andreev approximation~AA ! are shown. Again the
lifting of degeneracy is observed in the exact results. T
distribution of the peak heights shown corresponds to a
culation of the LDOS atx521500 Bohr. Results for othe
positions just give other distributions of peak heights. Fro
now on, we concentrate on the position of the AA peaks
facilitate the comparison of the different figures. TheSNSNS
system withh50 is equivalent to theSNSsystem, so it is
interesting to compare Fig. 4 with Figs. 7~a!–7~d!. One can
see a general shift of the states in the latter figure to the r
relative to the states in Fig. 4. For the system withh50.25
the h50 state atE50.075D suffers a large displacemen
This can be understood as follows. States belowE50.25D
see a longitudinal lengthLN of 1000 Bohr whereas the state
aboveE50.25D see a lengthLN of 4000 Bohr,LN being the
length of theN metal. According to a quasiclassical result,6,10

bound-state energies scale asvF /LN , so they are inversely
proportional to the longitudinal length, which would imply
shift upwards toE50.3D. However, the separation of 200
Bohr between theN parts is smaller than the BCS coheren
lengthvF /pD'4500 Bohr, which suggests that theN parts
of the system are not completely decoupled yet. This is
reason why the lowest state is found belowE50.25D,
namely atE50.19D. The positions of the other peaks a
hardly changed.

Looking at Figs. 7~b!–7~d! one sees that the lowest sta
stabilizes at a position of aboutE50.26D. All other states
are shifted more and more upwards for increasingh values.
Forh50.5, Fig. 7~b!, still a set of peaks is found above 0.5D,
in Fig. 7~c! the set starts at aboutE50.75D. For h51, Fig.
7~d!, only three states are seen just belowE5D, apart from
a state atE50.78D, lying three times as high as the lowe
state, in agreement with the quasiclassical picture. A test
culation for aSNSsystem withLN51000 Bohr differs from
Fig. 7~d! only as far as the position of the highest peak, t
~1, 1! peak, is concerned.

The idea of decoupling can also be illustrated by Fig.
For the sake of clarity we just give the results for the A
dreev approximation. Figure 8~a! shows the LDOS for a
SNSNSsystem withL56000 Bohr. The lengths of theN
parts are kept at 1000 Bohr but now the length of the mid
superconductor is 4000 Bohr, slightly below the BCS coh
ence length of approximately 4500 Bohr. In Fig. 8~b!, the
1-6
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FIG. 7. Plot of the LDOS atx521500 Bohr againstE/D for a SNSNSsystem in whichLt512.5676 Bohr for~a! h50.25, ~b! h
50.5, ~c! h50.75, and~d! h51.
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lengthL of the SNSNSsystem is 8000 Bohr and the length
of the N parts are again kept at 1000 Bohr. This makes
middle superconductor 6000 Bohr in length, which is long
than the BCS coherence length. In both figures the gap o
middle superconductor is 0.25D. Thus, there is effectively
complete decoupling in Fig. 8~b!. In addition, one sees tha
the ~2, 2! peaks are lying closer to one another for the lon
system, which is in line with theVF /LN behavior of the
energies.

IV. SELF-CONSISTENT CALCULATION OF THE GAP

In the preceding discussions, the gap functionD used in
the calculation is steplike, that is, it has a finite const
value in the superconducting part and is zero in the nor
part. At the interfaces, it has a step discontinuity. This c
figuration is shown in Fig. 1. So in the calculation of th
bound states in Sec. III, the proximity effect is not taken in
account. However, we want to demonstrate in this sec
that our formalism makes it possible to show that the ac
gap function is not steplike, but decreases smoothly towa
the interface and abruptly goes down to zero in the nor
metallic layer. This proximity effect is studied in the prese
section. In addition, the actual gap function will be calc
lated self-consistently.

The self-consistency condition is given by
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D~x!52VF~r ,r ,01! ~27!

in which F(r ,r ,01) is the well-known anomalous Green
function19 given by the upper right element of the original~r ,
t!-dependent matrix Green’s function. Taking into accou
the expansion of the matrix Green’s function over the M
subara frequencies and the transverse wave vectors, we
tain

D~x!52
V

bLyLz
(

vn ,ky ,kz

F~x,x,ky ,kz ,ivn!, ~28!

where F(x,x,ky ,kz ,ivn) is the upper right element of th
matrix Green’s function in Eq.~20!. The summation over the
Matsubara frequencies is restricted by the Debye tempera
uD according to the formula

kBuD5vnmax
5nmaxpkBT. ~29!

The summation over the transverse wave vector is over
positive values ofky andkz according to Eq.~3!. Evaluation
of the summation takes much computer time, so we reso
some approximations. Since the cross section is a squ
that is Ly5Lz , an excellent approximation to reduce th
number of terms is to partition the transversek' plane by
concentric circles with radiusk'5Aky

21kz
2 and a dk'

5p/Lt . The number of allowed values ofky andkz in each
1-7
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R. E. S. OTADOY AND A. LODDER PHYSICAL REVIEW B65 024521
ring is given by its surface divided by the density of t
transversek states (p/Lt)

2. Another approximation can b
made by noting that the terms involvingk'@Am do not have
significant contributions to the sum. This allows us to eva
ate a finite number of terms instead of evaluating an infin
series. In our calculation we takek' max53Am. In determin-
ing the coupling constantV according to the BCS relation

Tc51.13vDe21/N~m!, with N~m!5
m

4p2 ~30!

we useTc51.2 K and vD5375 K for aluminum. We find
V59.516 Ry.

A. The bar-shaped superconductor

The matrix Green’s function for a bar-shaped superc
ductor GS

0(x,x,ky ,kz ,ivn) is given by Eq.~14!. By substi-
tuting the upper right element of this Green’s function in E

FIG. 8. The LDOS againstE/D for a SNSNSsystem in which
Lt512.5676 Bohr. In~a! L56000 Bohr, the length of the middle
superconductor is 4000 Bohr and the LDOS is calculated atx5
22500 Bohr. In~b! L58000 Bohr, the length of the middle supe
conductor is 6000 Bohr and the LDOS is calculated atx5
23500 Bohr. The gap of the middle superconductor is 0.25D. All
unlabeled LDOS peaks belong to the mode~2, 2!. The calculation is
done in the Andreev approximation.
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~28! one straightforwardly obtains the following selfconsi
tency condition for the homogeneous bar-shaped super
ductor

D~x!5
VuDu

bLyLz
(

vn ,ky ,kz

1

4VS
S 1

AkFx

2 1 iVS

1
1

AkFx

2 2 iVS
D .

~31!

In calculating the gap self-consistently, we first assume
initial value of the gap. By substituting it on the right-han
side of Eq.~31! we obtain a new value of the gap. Then th
new value is again substituted on the right-hand side to
another new value. This procedure can be repeated unti
difference between successive iterations is negligibly sm
As shown in Fig. 9, the difference between the first ten ite
tions is still significant. After about 80 iterations, the value
the gap stabilizes to 1.10631025 Ry. The transverse length
is 1000 Bohr and the temperature is 0.6 K. The initial va
of the gap is 2.031025 Ry.

Figure 10 shows the plot of the gap against the transve
lengthLt for different temperatures. The number of iteratio

FIG. 9. The gap against the number of iterations for a b
shaped superconductor. Note that the value of the gap stabilize
the number of iterations increases. For the system consideredLt

51000 Bohr andT50.6 K.

FIG. 10. Plot of the self-consistent gap function against
transverse lengthLt for a bar-shaped superconductor at differe
temperatures. The number of iterations is 100.
1-8
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ANDREEV BOUND STATES AND SELF-CONSISTENT . . . PHYSICAL REVIEW B 65 024521
is 100. It can be seen that there are oscillations of the g
The amplitudes of the oscillations decrease as the transv
dimension increases. These oscillations can be attribute
the discreteness of the transverse wave vector. As the tr
verse width increases, the transverse wave vector approa
the continuous regime which can be gauged from the
becoming closer to its bulk value obtained by integrat
instead of summing over the transverse wave vectors. In
figure, we show the bulk value at 0.2 K. Another interesti
thing which can be seen in the figure is the suppression
superconductivity for narrower transverse dimensions.
notice that as the temperature increases the onset of the
pression of superconductivity occurs at higher values ofLt .

In Fig. 11 we show the temperature variation of the g
for different transverse widthsLt . A residual value of the
gap for the bulk superconductor can still be observed bey
the critical temperature~1.2 K for aluminum!. We also notice
small-amplitude oscillations of the gap at higher tempe
tures, which only show up in the curves for larger transve
dimensions. For smaller transverse dimensions, the osc
tions are suppressed. These oscillations are due to the c
in the summation over the Matsubara frequencies. For lo
temperatures, the cutoff valuenmax in Eq. ~29! becomes very
large and the results are no longer sensitive to it.

B. The NS system

The matrix Green’s function appropriate for a norm
metal-superconductor system is given in Eqs.~16! and ~17!.
The first term on the right-hand side of Eq.~16! is the matrix
Green’s function for the bar superconductor. The sec
term contains the elements of thet matrix, which take into
account the scattering of the quasiparticles at the interf
The latter acts as a perturbing term to the former and
therefore responsible for the spatial variations of the gap
the pair amplitude at the vicinity of the interface. To calc
late the spatial variation of the gap according to Eq.~28!, we
substitute the upper right element of the matrix Green’s fu
tion, Eq. ~16!, using the value of the self-consistent gap f
the bar-shaped superconductor.

Before presenting our results, we want to mention a co
putational problem which has to be solved. Due to the

FIG. 11. The temperature variation of the self-consistent gap
different transverse widths.
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plicit presence of the positionxj in Eq. ~18!, the matrices
involved have alternating columns of very small and ve
large values which the computer cannot handle anym
However, this problem is not intrinsic to the formalism an
can be solved by appropriate rescaling. By defining the m
trix t̂

t̂ n j n8 j
ss8nn8[eisnkn j

s xj tn j n8 j
ss8nn8eis8n8k

n8 j
s8 xj ~32!

the Green’s function~16!, combined with Eq.~17!, obtains
the form

Gn j n8 j~x,x8,ky ,kz ,ivn!

5(
s

dn j
s cn j

sm~x!c̃n j
s,2m~x8!dnn8

1(
ss8

dn j
s dn8 j 8

s8 cn j
sn~x2xj ! t̂ n j n8 j

ss8nn8c̃n8 j
s8n8~x82xj !

~33!

in which only position differences occur. The rescaled mat
t̂ is determined by the equation

(
sn

ndn j
s cn j

sn~0! t̂ n j n8 j
ss8nn852n8cn8 j

s8,2n8~0!, ~34!

found straightforwardly from the original equation~18!.
Figure 12~a! shows the spatial variation of the gap ne

the interface of a normal metal-superconductor system aT
50.6 K for different transverse widths. At a distance
30 000 Bohr from the interface, which is about six times t
coherence length~'4500 Bohr!, the gap is slightly smaller
than the one obtained for the bar-shaped superconductor.
differences are about 7.79, 6.57, and 2.93 % of their
value forLt599.8514,Lt5100, and 1000 Bohr, respectively
At 4000 Bohr, which is of the order of the coherence leng
from the interface, the differences are about 21.7, 20.44,
14.71 %, respectively. These figures lead to the inevita
conclusion that for larger transverse dimensions, the prox
ity effect is less pronounced than for smaller ones. This m
be due to the fact that for small transverse dimensions
superconductivity tends to be suppressed. We find that
difference seen for the two smaller widths can be attribu
to the oscillations in the self-consistent gap shown in Fig.
We have not seen a special influence of the fact that
smaller width is a critical one. Figure 12~b! shows the cor-
responding pair amplitude defined byD(x)/V @see Eq.~27!#
which has a finite value in the normal metallic region ne
the NS interface but it decays in the inner region of t
normal metal.

C. The SNSsystem

In the superconductor-normal metal-superconductor s
tem, there are two interfaces which we designate asx1 and
x2 . The t matrices must be determined at these interfaces
that we can evaluate theT matrix. The unpleasant singular
ties due to the explicit presence of the position of the int

r

1-9
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faces in Eq.~18! can be removed by using Eq.~32! resulting
to a corresponding transformation of theT matrix given by

T̂n j n8 j 8
ss8nn85eisnkn j

s xjTn j n8 j 8
ss8nn8eis8n8k

n8 j 8
s8 xj 8. ~35!

By implementing this, the multiple-scattering Green’s fun
tion ~20! and Eq. ~21!, which determines theT matrix in
terms of thet matrices, can be modified straightforwardly.

The steps in calculating the gap and the pair amplitu
self-consistently are the same as in Sec. IV B. Figure
shows the self-consistent gap function and the pair amplit
for different transverse widths. The center of the system i
x50. The spatial variation of the gap near the interface
clearly shown. The proximity effect is stronger than for t
NS system shown in Fig. 12. Whereas in Fig. 12~a! for Lt
51000 Bohr the gap at a distance of 6000 Bohr from
interface has a value of 9.75331026 Ry, in Fig. 13~a! it has
already increased to 1.07431025 Ry, which is much closer
to the bulk value of 1.10631025 Ry. In Fig. 13~b! the pair
amplitude in theN region does not decrease below a value
531027. In Fig. 12~b! it decreases to zero and the value
2000 Bohr from theNS interface has already decreased
2.78431027. In Fig. 14 we show the gap functions for di
ferent values ofL. It can be seen that for largerL the gap
function is lesser in magnitude. This is another manifesta
of the proximity effect.

FIG. 12. ~a! The gap and~b! the pair amplitude against th
distance from the interface of aNS system atT50.6 K. The inter-
face is chosen atx50.
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D. The SNSNSsystem

The extension of the steps outlined in Sec. IV C leading
the T matrix and the matrix Green’s function for aSNSNS
system is straightforward. In this case we have to cons
four interfaces but the procedure is basically the same. In
outer superconductors, we again use the self-consistent v
of the gap for the superconducting bar we have calculate

FIG. 13. ~a! The gap function and~b! the pair amplitude of a
SNSsystem against the distance from the middle of the sys
chosen atx50. The interfaces are located atx562000.

FIG. 14. The gap function of aSNSsystem against the distanc
from the middle of the system chosen atx50 for different values of
L. The interfaces are located at62000 for L54000 Bohr and at
64000 forL58000 Bohr.
1-10
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Sec. IV A. In calculating the gap in the middle superco
ductor self-consistently, we apply the recipe introduced
Tanaka and Tsukada.13 We start the iteration procedure b
taking half of the gap in the outer superconductors for
gap in the middle. By substituting these values in the rig
hand side of Eq.~28!, the middlex-dependent gap function i
obtained and its spatial average is determined. This ave
value is used as the new value of the gap in the mid
superconductor. The process is repeated until the differe
of these average values between successive iterations is
ligibly small. To determine the gap’s spatial variation, t
self-consistent average value of the gap in the middle su
conductor and the bar value in the outer ones are substit
in the right-hand side of Eq.~28!.

Figure 15 shows the gap and the pair amplitude of t

FIG. 15. ~a! The gap function and~b! the pair amplitude agains
the distance from the middle of aSNSNSsystem, which is chosen a
x50. The interfaces are chosen atx562000,65000 for LN

53000 Bohr ~solid curve! and x562000,67000 for LN

55000 Bohr ~dotted curve!. The transverse width isLt

5100 Bohr.
an

C

in,
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SNSNSsystems, one with a lengthLN53000 Bohr for the
normal metallic parts and the other one with a larger len
LN55000 Bohr. First note that the gap of the middle sup
conductor is smaller than the gap of the outer supercond
ors although the metallic parameters for these supercond
ors are taken equal. This supports our choice of ah value
smaller than 1 in Sec. III, see Fig. 1. Further note that the
and the pair amplitude are higher for the system with n
rower normal-metal part, which is just another manifestat
of the proximity effect. Although by definition the gap
zero in the normal-metal parts, the pair amplitude is differ
from zero. This is also a manifestation of the proximity e
fect. If the width of the normal-metal layers had been mu
larger than the sum of the coherence lengths of the outer
middle superconductors, the pair amplitude would have b
zero there except in those regions near the interfaces.

V. CONCLUSIONS AND FUTURE PROSPECTS

The multiple-scattering Green’s function formalism d
veloped by Koperdraad18 has been applied to determine th
Andreev bound states inSNSand SNSNSjunctions through
the local density of states and to calculate the supercond
ing gap function self-consistently. We have shown that
transverse junction widths tuned such that the motion in
longitudinal direction is very slow, the Andreev approxim
tion breaks down. For these transverse dimensions, the h
est mode is supported by many bound states whose de
eracy is lifted when no approximation is applied. T
thickness used for the normal metallic layers is chosen s
that the lower modes are each supported by only one no
generate state. Results for the self-consistent gap funct
exhibit various features of the proximity effect. Furthermo
our results show that for small transverse dimensions, su
conductivity is suppressed.

The formalism is applicable to systems of an arbitra
number of layers. In addition, it allows for the calculation
the supercurrents through such junctions, to which s
consistent gap functions are necessary.13,18 This will be in-
vestigated in the near future.
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