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Andreev bound states and self-consistent gap functions in clean layered supercondu¢tarmal
metal systems with finite transverse width
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Andreev bound states in clean, ballis8&\NSand SNSNSunctions are calculated exactly and by using the
Andreev approximatioAA ). The AA appears to break down for junctions with transverse dimensions chosen
such that the motion in the longitudinal direction is very slow. The doubly degenerate states typical for the
traveling waves found in the AA are replaced by two standing waves in the exact treatment and the degeneracy
is lifted. A multiple-scattering Green'’s function formalism is used, from which the states are found through the
local density of states. The scattering by the interfaces in any layered system of ballistic normal metals and
clean superconducting materials is taken into account exactly. The formalism allows, in addition, for a self-
consistent determination of the gap function. In the numerical calculations the pairing coupling constant for
aluminum is used. Various features of the proximity effect are shown.
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[. INTRODUCTION quired, going beyond the quasiclassical approach. In fact,
exact calculations are becoming more and more important,
Andreev bound statésccur in a normal metdN) system  either in the form of solving the Bogoliubov equations
of finite size that is in contact with superconducté®s Al-  exactly;” by using a scattering matrix formalishor by us-
though much is known already about these states, still ne¥?d the exact Green’s function as it is done in the present
features are measured by varying the length of the normdlaper. _
metal?® by looking at phenomena induced by introducing a  We _use the work of Tanaka and Tsukada as a starting
constriction in the normal paftor by studying questions POINt= These authors investigated the energy spectrum of
such as the occurrence of a “minigap:® All these develop- the quasiparticle states in a supercondyctlng ;uperlattlce
ments are induced by phenomena which show up only ipased on a Kronig-Penney model potential. Their calcula-

smaller and smaler, mesoscopic samplda.quite some S8 IS U0 (ST L B R RGNS T P e
studies the samples can still be described in the dirty fmit, y

) SR : longitudinal dimensions. We will deal with three additional
in others the clean, ballistic limit is most appropriate regard-

ing the ph Volvéd 11 al ¢ all studi aspects(i) we do the exact calculation and investigate the
ng de P enor_’n:ana_mvlodv cona moséba i uh '?S mhen- reliability of the Andreev approximatiorji) we do the cal-
tione 4a guasiclassica escription s u avhich for the culation for a limited number of layers, which relates better
clean limit has been proven to be equivalent to the Andree

imatiort:10 arst Yo a possible experimental situation, afiid) we investigate
approximation:™ In the Andreev approximatiofAA) nor- e transverse size dependence of the relevant properties

mal reflection of an electron approaching 8 interface is  sych as the local density of states. The systems we consider
neglected and only the Andreev type reflection, implying justcover the entire range from very narrow transverse dimen-
a reflected hole retracing the path of the incident electron, isjons to wider ones, thereby simulating one, two, and three-
accounted for. Interestingly, in many cases the AA worksdimensional systems.
remarkably well, implying negligible effects of less than  The multiple-scattering Green’s function formalism to be
0.1%?? used®is an extension of the formalism introduced by Tanaka
In the present paper we addresansversesize effects in  and Tsukad in that no Andreev approximation is made. In
a situation where neither the quasiclassical approach nor theddition it is set up in a quite different way, such that the
Andreev approximation can help, and we have to proceedhultiple scattering of théquasjparticles by the different in-
with an exact calculation. In many studies the systems arterfaces is exhibited explicitly. The formalism is very flex-
treated as being infinite in the transverse directions, by whiclible, in that an arbitrary number of layers can be accounted
breakdown of the AA hardly can show &p:'° Kimmef®  for in a transparent way, supercurrents can be calculated and
was the first who pointed out that for an electron movingthe gap function can be determined self-consistently. In an
slowly in the direction of arNSinterface, so having a rela- initial application of the theory the local density of states of
tively large transverse momentum, the Andreev approximanormal metal-superconductgNS and SNSjunctions were
tion breaks down. At the interface not only a returning holecalculated, but the breakdown of the Andreev approximation
amplitude is generated, but also a not negligible electromas not noticed?
amplitude is reflected. While Komel worked out this idea The paper is organized as follows. First we give a concise
for a superconducting layer with a thickness comparable taccount of the main features of the theory. In Sec. Il the
the superconducting coherence lengtiprSand Gyaffy!’  local density of states for the two systems considered is stud-
first have shown explicitly its dramatic impact for a standardied. In Sec. IV the gap function is calculated self-consistently
SNSjunction. For these effects an exact calculation is refor a bar-shaped superconductor and for N®, SNSand
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4 4 FIG. 2. The geometry of the bar-shaped superconductor under
consideration. It has finite transverse dimension and is infinite lon-
gitudinally. A rectangular cross section is shown whose dimensions
areLy andL,.
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The discretized nature of the transverse wavevectors is due

to the vanishing of the wave functions on the transverse

FIG. 1. Atwo-dimensional picture of the systems studied. In theboundaries. The four standard solutions are labeled with the
upper panel the vertical direction stands for a transverse directiorsign indiceso and v that can both be equal ta1. By this
In the lower panels the potential is shown, which is zero in theconvention, the index refers to the type of particléelec-
normal parts), and proportional ta\ in the superconducting parts. tronlike for o=+ 1 and holelike forr=— 1) and the index’

) ] ) ] indicates the direction of propagatidm=+1 to the right
SNSNSunctions. Concluding remarks are given in Sec. V.andv=—1 to the lefi. The complete solution of Eql) is a
Throughout the paper, Rydberg atomic units are used, iflnear superposition of Eq2) for different possible combi-
which the energy is in Rydberg, the distance is in Bohrpations of(c, 1). The above equations also hold for a normal

SNSNS system

(1Bohr=0.5A), 71=1, and the electronic mass }s metal by lettingA =0, in which case the subscriftis to be
replaced byN.
Il. THEORY The Green’s function formalism is outlined extensively by

Koperdraadet al® It is an extension of the microscopic
theory used by Tanaka and Tsukada, in that the electron-hole
scattering properties are treated exactly, and it traces back to

Although in this paper a Green’s function formalism is
used, we first give the Bogoliubov—de Gennes equations

—V2—p A1) u(r) the microscopic description of superconductivity by
{ . , v = qu(r)EE( ) (1)  Gorkov'?and Ishii®® For the sake of completeness and clar-
A*(r)  Vitu v(r) ity we summarize its main features and add relevant new

used by %r and Gyoffy'” to investigate the bound states of €laborations. The matrix Green's function satisfies the equa-
aSNSunction shown in the upper panels of Fig. 1. The maintion

reason is that our formalism will be expressed in terms of the o V24 _A()

solutions of these equations. The inhomogeneity of the sys- n K

tem is expressed by the space dependence of the\ gdp —A*(r) fw,— V2= p
In the superconducting parts the gap is a complex constant (7

whereas in the normal metal it is zero. The spinor waven which the differential operator is closely related to the
function describes quasiparticle excitations and the engérgy operator in the Bogoliubov—de Gennes equatiéhsapart

G(r,r'iwy)=486(r—r")1

is measyre_d with respect to the Fermi energy . from the replacement c by iw,,, where
Application of the Bogoliubov—de Gennes equations to
the bar-shaped superconductor shown in Fig. 2 yields w,=mNnksT with n a*odd integer. (8)
ugei ¢ L nym (nyw The quantityw,, is called the Matsubara frequency. Possible
W(r)= uoei¢/2) gl sm(L—y)sm( L Z), (2)  inhomogeneities of the system are fully represented by the
s y z dependence of the gap function. As far as the transverse di-
where ¢ is the phase of the complex constagtand rections are concerned the general solution of(Zgcan be
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expressed as a linear combination of solutié®sover all
allowed values ok, k, k,, andk; . Thus

4
G(r,riwg) = 2 GO6X Ky Ky kg K o)
Y2k K kg K,
X sinkyy sink;y’ sink,zsink;z". 9
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Gx,x" Ky Ky iwn) =2, dZyZ™ (xo)PZT(x2)
S\AA Ry s Rz, 1 Wi S¥s </J¥s >
:E dg¢g+(x>)@g_(x<).

with dg= (14)

40KZ’

The transverse standing waves are normalized to unity,

which implies the orthogonality condition

L

Ly . . T y _
fo sink,y sink,ydy=—* & i . (10

for they coordinate and a similar condition for tizecoordi-
nate. The Fourier coefficier@®(x,x’,ky ky,k; k; ,iw,) can
be obtained from Eq9) using Eq.(10). It takes the form

G(x,X' Ky K} Ky K} i wp)

4 f"y ink JLV ink’ rfLZ ink
= Sin Sin SINK,Z
LyLz 0 yy 0 yy 0 z

LZ
Xf sink,z’' G(r,r’,iw,)dz'dzdy dy.
0

(12)
Using Eq.(11), Eqg. (7) can be written as
2
iwn+ Wntkﬁx —A
2
—A* i wp— ;—Xz— kg,
XG(x,x" Ky ,ky K, Ky ,iwp)
= 0(x=x") ¢ k1 B, k.1 (12)

Before we proceed we want to make the terminology clear.

in whichiQg= (i ®,)?—[A]?. The wave functionsZ"(x) is
given by Eq.(2) after omitting the transverse solutions, and
ug andkg are given by Eqsi4) and(5) with the replacement
E—iw,. In addition the conjugate wave function is defined
by

Tpgy(x): (uge—id)/Zug(rei zf>/2)ei ‘TngX. (15)

The Green’s functiori14) describes the propagation of exci-
tations(holelike or electronlikgfrom the starting poink’ to
the final pointx with the weighting factodZ . In this case of
a superconducting bar, there is no scattering.

Now we give the Green’s function for a system with one
interface. To account for the scattering at the interface, its
appropriate form appears toBe

Gojurj (XX Ky Ky i @)
=GY(x,x" Ky Ky, iwy) 8,0

+ 2 dyd s OOt (X)), (16)

oo

where G); is equal toG2 given by Eq.(14), but for the
present purpose rewritten as

GY(x,X" Ky Ky i wp)
=2 A9y 0P H(X) with w=sgrix—x).

17

G(r,r',iwy,) is the actual Green’s function. The Fourier co- The |abelS in Eq. (14) has been replaced with the more

efficient G(x,x’,ky kK, ,k; ,iwp) is a Green’s function in
the sense that it is the solution of E42), but this equation
demonstrates that it is diagonalky andk, . That facilitates
both the notation, because the variablgsand k; can be
omitted, and the calculation @(r,r’,i w,) according to Eq.

flexible labelvj indicating the positiorx; of the interface.
The subscript+j meansx is in the right-hand side of the
interfacex; and—j means that it is in the left-hand side. The
first term is nonzero only if the starting and final points
andx, respectively, are at the same side of the interface. The

(9). In calculating the local density of states and the selfsecond term takes into account the scattering of the particle
consistent gap function, we will need the Green’s functionat the interface. This scattering is aptly described by the pa-

for diagonal spatial coordinates. As long as we ke’
we can already take=y' andz=2z' in Eq.(9). Since we are

only interested in the variations over the longitudinal direc-
tion x, we can average over the transverse dimensions. Bg

that Eq.(9) simplifies to the series

1
—— > G(x,x" ky kg iwp).

G(x,x’,iwn)=L L
Y=z Ky Kz

13

’ !
oo vy

rameter we call scatterir‘lgmatrix,tVJ.V,j . For a supercon-
ducting bar the matrix is zero, because there is pure propa-
ation and no scattering. The scatteringnatrix can be
btained by imposing the continuity of the Green’s function
and its derivative at the interface. We then obtain

> GOt ==yl T (x). (18)

av

First we give the Green'’s function of a homogeneous barin applying the above interface matching condition, it has

shaped superconductor

come out to be convenient to use an extended definition
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uge' #2 valid whenE, |A|<k§x. In the present paper we will inves-
v ug‘fe‘id’/2 s tigate2 its limitation by looking at configurations in whi&h
s'(0= iovkZuge'?? € (19 A%kpx'
iovkZug e 12

Ill. THE LOCAL DENSITY OF STATES

of the wave functionyg”(x) which includes the derivative Section Il provides the basic machinery to determine the
with respect tox. matrix Green'’s function, which enables us to calculate the

If there are more interfaces as in the systems depicted ilocal density of stated DOS) at a positiorx using the equa-
Fig. 1, multiple scattering occurs and the Green’s function igion

given by
LDOS(x,E)=— lim 2 Im G4(X,X;Ky K, E
GVjV’j’(X!X”ky'kZ!iwn) WLVLZ 5~>0k)”kz
=G2(X,X" Ky Ky i 00) (8,0 8+ — 1 811 1) +i9) (23
in which G44 is the upper left matrix element of the multiple
+ E d‘V',dV i AWIO)T ‘V’J"V /JW (x ). (20) scattering Green'’s functﬁo(rZQ). Althogg_h we only study An-
ous’ ! dreev bound states, which imply infinite peaks at the bound-

state energies, the Green’s function formalism makes it pos-
This is the generalization of E¢16). There are features in sible to broaden the peaks by using a small valug.dfhe
Eqg. (20) that do not appear in that equation. One of thesgeaks acquire a finite height and must correspond to the
features is the strange combination of Kronecker deltas in thBound-state energies.
first term. The first set of Kronecker deltas, j;: insures
that the first term is nonzero only if the starting and final A. The SNSjunction

positions are in the same layer. The other &et,: 6., j- We first apply the formalism discussed in Sec. Il to a
serves the same purpose but at the same time it takes careqfperconductor-normal metal-superconduct&NS junc-

the redundancy in the indexing of the layers. The structure ofion. A schematic diagram of the system studied is given in
the two sets of Kronecker deltas assures us that there is nhe upper and middle panels of Fig. 1. The dotted lines in the
overlapping of their functions. If one set gives the valueupper panel serve as an indication of the position of the inner
unity the other set must be zero and vice versa. AnotheNS and SNinterfaces in theSNSNSsystem to be treated in
feature of Eq/(20) is the presence of the quantiy/”, o’ w _ Sec. llI B. In this first application we will show more explic-

Whereas thé matrix describes the scattering of the particleItly how the difierent labels are used._ The m'gerface inglex
at a particular interface, this quantity describes the multipl as only two values 1 and 2. Tematrix equatior(21) can
scattering of the particle at the interfaces along its path. Wi e recast into the form

call this the multiple scatterin@ matrix. TheT matrix is in B B o

fact a function of thet matrix and is given by the multiple T,‘VT,”V g = T’W TV Sjr + 2 t'f,ly TV d’, T‘Iﬁ PR
scattering equation (24

To implement this in matrix form, we must see to it that the
elements of thel matrix in both sides of the equation are
arranged in the same manner. Thus, its elements in the right-

’ ! ! ’
oo'vu _Lo0 vu
ijv'j' _th,u’j’ (1 G516t 1 it pr jr)

+> t‘V’J"V TV ‘V’] ‘V’J"V f” ' (21)  hand side of the equation must be similarly displayed as in
"y the left-hand side. This can be done by writing E24) in
the form
To solve this equation it is necessary to first solve for the
t-matrix at each interface using E(@.8). oo’ —vv' oo’ vyt
Until now no approximations have been made in using the _”Il” 1, _”,1” 2,
solutions(2) of the Bogoliubov—de Gennes equations. In ap- T T,
plying the formalism given above to the calculation of the
density of stated,w,, has to be replaced Wy +i 6. After that t7 0
one can make the frequently used Andreev approximation, = L
which amounts to the replacement 0 t7 e
K7k Lol L (22 | 0 0y Ay
—kg to—F— 22 +
2k -
Fx _tiizwzjzv d "25 0
if k7; occurs in the exponential and k§;—k_if k7; occurs [ A e
— ViV —viv
as a factor as shown explicitly in the third and fourth com- X o' — v oo — v | ° (25
ponents of the wave functiofil9). This approximation is LT 2 Toaum
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LOCAL DENSITY OF STATES
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FIG. 3. Plot of the LDOS againgE/A for a SNSsystem in
which L=13 Bohr.

FIG. 4. Plot of the LDOS againdE/A for x=1000 Bohr, L,
=12.5676 Bohr,L =4000 Bohr, andA =0.0001 Ry.

Each element of the above matrices is itself ‘a4 matrix termined by the parametd’in E+i5, wide enough so that

with ov (=++, +—, —+, ——) as row and column indices. the fundamental features can be seen. The numbers in paren-
So actually, the matrices appearing in E&p) have dimen-  theses denote the mode to which the energy belongs. In Fig.
sions 8<8. In this form theT matrix can be obtained by 4 the transverse width is determined by the condition that
appropriate matrix inversion. The Green's function is ob-kg =A for the mode(2,2), by which one finds that,
tﬁi‘:geg ES|nginqu(52(z)2.3')l'he local density of states is deter- =12.5676 Bohr and in Fig. 3 the transyerse widthLis

ed by using EQiea). .. =13Bohr. Although the latter width is slightly larger than

To investigate the validity of the Andreev approximation the criticai width and has the same allowed modes, the cor-
in our SNSunction, we will focus on the choice of the trans- responding<§X=328A. Clearly for the latter value the An-

verse widthL,=L,=L; of the junctions. The transverse < _ _
wave components of the wave functidd) are standing dreev approximatioriAA) is very good, which can be seen
in Fig. 3. In both figures the dashed curve is the local density

waves proportional to sikfy)sin(,2) wherek, andk, are : L
given by Eq.(3). The different combinations ofk( k,) or of states calculated using the AA and the solid curves are the

(n,,n,) are called modes whose allowed values are detertesults from the exact calculation. In Fig. 3, the exact and the
mined by AA results coincide and just three states are found, one for

each mode. For the critical width, the states for the first two
modes are at almost the same position, but for(2h®2 mode
many states are found. The AA clearly breaks down, merely
showing some average of the location of the exact peaks.
When the transverse dimension is small, the second term iRurther we notice that the AA peaks have about the same
the right becomes large, as a result, only a few modes will béaeight whereas the amplitudes of the exact peaks vary widely
allowed. If this term exceeds the chemical potenp'z;,-)dkpX with the energy. The amplitude variation of the exact peaks is

becomes imaginary, the wavefunction is damped, and conséllie to the specific position chosen for the LDOS. Figure 5
quently, such mode cannot exist. For larger transverse ddepicts the exact LDOS at=1000 and 1500 Bohr. We ob-
mensions, the second term is smaller whereupon more modg&§rve that some of the peaks in the solid curve are suppressed
are allowed. Most of our calculations are done for smhall While the corresponding peaks in the dashed curve are
so that only few modes will exist. By that the effects to beProminent and vice versa. The suppressed peaks are pulled
illustrated come out most clearly, but we return to this pointdown by the small magnitude of the weighting wave func-
at the end of this subsection. We will tuhgsuch thak? is  tions at those values of The degenerate traveling waves
of the same order of magnitude as the gap enekgxyn corresponding to the AA are_spllt in fthe exact treatment into
which regime the Andreev approximatig¢@2) is not valid, ﬁg%ﬁgdategﬁglnnet ;gsditi((:)(r)f?r?efunctlons having different
an('j:icall such 4., value a critical width. . .. In general, critical widths are determined by the condition
gures 3 and 4 show the results for a configuration Ny k2 ~ A Itis clear that the number of ks for the high-
which (n,,n,)=(2,2) is the highest allowed mode. The ks peaks for the hig

chemical potentials in the superconductor and in the norma#st mode will increase for smaller valuesigf compared to
metalus anduy , respectively, are assumed equal with mag-the value used in Fig. 4. For larger values the effects will
nitude 0.5. The longitudinal dimensidnof the normal-metal  diminish. We will not expand on this obvious detail.

part is 4000 Bohr and the gapis treated as real with mag- Finally, we want to comment on our choice of the trans-
nitude 0.0001 Ry. The LDOS in the normal-metal parkat verse width up to now. In Sec. IV it will come out that
=1000 Bohr is plotted again&/A. The peaks represent dis- superconductivity is suppressed for transverse widths in the
crete energy statéd.We make the width of the curves, de- order of 20 Bohr or less. This means that so far our choice of

2 m\? 2, .2
K2, =u=| | (nf+nd)>0. (26)
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FIG. 5. Plot of the LDOS for &NSsystem againsE/A at x
=1000 Bohr(solid curve and x=1500 Bohr(dashed curve The
transverse dimension is;=12.5676 Bohr and the length of the
normal metal id=4000 Bohr.

transverse widths may seem not too appropriate. We cho

those transverse widths to illustrate with clarity the funda-

mental features of the bound states. In order to see the infl
ence of a wider transverse dimension, we show in Fig. 6 th
LDOS of aSNSsystem withL,= 100 Bohr(solid curve and
L,=99.8514 Bohr (dotted curveé The critical transverse
width of 99.8514 Bohr is obtained from the conditid;ﬁX

=A for the mode(19, 19. To illustrate its main features

PHYSICAL REVIEW B65 024521

is O<h=<1. The LDOS is calculated using EqR3). The
process of determining thematrix, the T matrix, and the
Green’s function for th6&NSNSunction is the same as in the
SNSjunction. The number of interfaces has increased by 2,
and the dimension of the matrices has become 16 instead of
8. We again choose a square transverse cross section whose
dimension isL=12.5676 Bohr. This means that the set of
modes is the same as in tB&Ssystem. The lengths of the
normal metal parts are each 1000 Bohr and that of the middle
superconductor is 2000 Bohr.
Figure 7 shows the development of the bound states as the
gap of the middle superconductor is increased from 8.26
A. All peaks belong to the highe$2,2) mode, apart from a
(1, 2) mode and 41, 2) mode peaks just belo®w/A=1. The
mode labels are shown only in Fig(dJ to avoid cluttering
the figures. Both the exact solution and the states according
to the Andreev approximatiofAA) are shown. Again the
lifting of degeneracy is observed in the exact results. The
distribution of the peak heights shown corresponds to a cal-
culation of the LDOS ak= —1500 Bohr. Results for other
sitions just give other distributions of peak heights. From
now on, we concentrate on the position of the AA peaks to

Yacilitate the comparison of the different figures. TBRSNS
%ystem withh=0 is equivalent to th&SNSsystem, so it is

interesting to compare Fig. 4 with Figs(aj—7(d). One can
see a general shift of the states in the latter figure to the right
relative to the states in Fig. 4. For the system with 0.25

the h=0 state atE=0.07%\ suffers a large displacement.

clearly, we only show the results for the Andreev approxima-This can be understood as follows. States befow0.25A

tion. It appears that higher modes are allowed for a wide
transverse dimension. The peak at abBut0.95A comes
from the many lower modes, each supporting just one boun

Kee a longitudinal lengthy of 1000 Bohr whereas the states
aboveE=0.2% see a lengtlhy of 4000 Bohr,Ly being the
fength of theN metal. According to a quasiclassical restf,

state. Only the highest mode gives rise to the distinct set ofound-state energies scalew@s/Ly, So they are inversely

peaks starting at abolz=0.074A. So effectively, the char-
acter of the results shown above is essentially unchanged.

B. The SNSNSsystem

A schematic representation of the system is shown in th
lower panel of Fig. 1. The height of the middle supercon-
ductor is chosen to take the valuea where the range df

0.300

0.275 ——Lz=100

0.250_' e L= 99,8514
0.225-
0.200—-
0.175—.
0.150-
0.125—-
0.100-‘

0.075 4

LOCAL DENSITY OF STATES

0.050 4

0.025 4

0.000
0.0

E/a

FIG. 6. Plot of the LDOS againdE/A for a SNSsystem in
which L;=100 Bohr (solid curve and L,=99.8514 Bohr(solid
curve). The length of the normal-metal part is 4000 Bohr.

proportional to the longitudinal length, which would imply a
shift upwards toE=0.3A. However, the separation of 2000
Bohr between th&l parts is smaller than the BCS coherence
lengthv g/ mA=~4500 Bohr, which suggests that theparts

of the system are not completely decoupled yet. This is the

feason why the lowest state is found beldi= 0.2,

namely atE=0.19. The positions of the other peaks are
hardly changed.

Looking at Figs. Th)—7(d) one sees that the lowest state
stabilizes at a position of abot=0.26A. All other states
are shifted more and more upwards for increasingalues.
Forh=0.5, Fig. 1b), still a set of peaks is found above 0,5
in Fig. 7(c) the set starts at abofi=0.75A. Forh=1, Fig.
7(d), only three states are seen just beléw A, apart from
a state aE=0.7&)\, lying three times as high as the lowest
state, in agreement with the quasiclassical picture. A test cal-
culation for aSNSsystem withL = 1000 Bohr differs from
Fig. 7(d) only as far as the position of the highest peak, the
(1, 1) peak, is concerned.

The idea of decoupling can also be illustrated by Fig. 8.
For the sake of clarity we just give the results for the An-
dreev approximation. Figure(® shows the LDOS for a
SNSNSsystem withL=6000Bohr. The lengths of thal
parts are kept at 1000 Bohr but now the length of the middle
superconductor is 4000 Bohr, slightly below the BCS coher-
ence length of approximately 4500 Bohr. In Figbg the
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FIG. 7. Plot of the LDOS ak= — 1500 Bohr againsE/A for a SNSNSsystem in whichL,=12.5676 Bohr for(a) h=0.25, (b) h
=0.5,(c) h=0.75, and(d) h=1.

lengthL of the SNSNSsystem is 8000 Bohr and the lengths A(x)=—VF(r,r,0%) (27
of the N parts are again kept at 1000 Bohr. This makes the ) . ,
middle superconductor 6000 Bohr in length, which is longer" whlcth(r,r,O ) is the well-known anomalous Green's
than the BCS coherence length. In both figures the gap of thibinctior’® given by the upper right element of the origirtel
middle superconductor is 0.35 Thus, there is effectively 7)-dependent matrix Green's function. Taking into account
complete decoupling in Fig.(B). In addition, one sees that the expansion of the matrix Green'’s function over the Mat-
the (2, 2) peaks are lying closer to one another for the |0nge,su_bara frequencies and the transverse wave vectors, we ob-
system, which is in line with the/s /L, behavior of the t@n
energies.

A(X)=—

F(X, XKy K iwpn), (28
IBLyLan%,kz ( y 1Kz wn) ( )
. . ) ] where F(x,X,ky Kk, ,iwp) is the upper right element of the
In the preceding discussions, the gap functiomised in  matrix Green’s function in Eq20). The summation over the

the calculation is steplike, that is, it has a finite constanfatsubara frequencies is restricted by the Debye temperature
value in the superconducting part and is zero in the norma}9D according to the formula

part. At the interfaces, it has a step discontinuity. This con-
figuration is shown in Fig. 1. So in the calculation of the KgbOp=wn =NpaksT. (29

. . . . . max
bound states in Sec. Ill, the proximity effect is not taken into . )
account. However, we want to demonstrate in this Sectioﬁ—he summation over the transverse wave vector is over all
that our formalism makes it possible to show that the actuaPositive values ok, andk, according to Eq(3). Evaluation
gap function is not steplike, but decreases smoothly toward@f the summation takes much computer time, so we resort to
the interface and abruptly goes down to zero in the norma$ome approximations. Since the cross section is a square,
metallic layer. This proximity effect is studied in the presentthat isLy=L, an excellent approximation to reduce the
section. In addition, the actual gap function will be calcu-number of terms is to partition the transvetse plane by

IV. SELF-CONSISTENT CALCULATION OF THE GAP

lated self-consistently. concentric circles with radiuk, = \/ky2+ kZ2 and a ok,
The self-consistency condition is given by =m/L;. The number of allowed values &f andk, in each
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FIG. 9. The gap against the number of iterations for a bar-
5 shaped superconductor. Note that the value of the gap stabilizes as
the number of iterations increases. For the system considered,
al =1000 Bohr andlr=0.6 K.
2]
w
E (28) one straightforwardly obtains the following selfconsis-
g 3 tency condition for the homogeneous bar-shaped supercon-
> ductor
E
o AX) VI|A| 1 1 1
4 X)= — + _ .
g 1- JJ (12) Blylzo Tk 40s| \IE +iQs  \kE —iQs
] (31
i Jb 1 J( Ll k JU\ 1
00 10 In calculating the gap self-consistently, we first assume an
(b) E/a initial value of the gap. By substituting it on the right-hand

side of Eq.(31) we obtain a new value of the gap. Then this
L,=12.5676 Bohr. In(a) L=6000 Bohr, the length of the middle new value is again SubStitUtEd on the right-hand side to. get
superconductor is 4000 Bohr and the LDOS is calculateg=at a_nOther new value. This pro_ced_ure can b_e repe:?\t(_ad until the
2500 Bohr. In(b) L=8000 Bohr, the length of the middle super- difference _between successive iterations is negl|g|bly s_maII.
conductor is 6000 Bohr and the LDOS is calculated xat As shown in Fig. 9, the difference between the first ten itera-
—3500 Bohr. The gap of the middle superconductor is 8.2 tions is still si.gnificant. After about 80 iterations, the value of
unlabeled LDOS peaks belong to the md@e2). The calculationis  the gap stabilizes to 1.16610 °Ry. The transverse length
done in the Andreev approximation. is 1000 Bohr and the temperature is 0.6 K. The initial value
of the gap is 2.6 10 °Ry.

Figure 10 shows the plot of the gap against the transverse
lengthL, for different temperatures. The number of iterations

FIG. 8. The LDOS againdE/A for a SNSNSsystem in which

ring is given by its surface divided by the density of the
transversek states r/L,)2. Another approximation can be
made by noting that the terms involvikg > \/. do not have

1.4x10°

significant contributions to the sum. This allows us to evalu-
ate a finite number of terms instead of evaluating an infinite a0
series. In our calculation we take max=3\/ﬁ. In determin- n
ing the coupling constant according to the BCS relation "]
i 8.0x10°
M g
T.=1.13wpe” ™N® = with N(u)= e (30) 5 6010
™ B . bulk at T=0.2 (K)
g 4.0x10° ——T=0.2(K)
we useT,=1.2K andwp=375K for aluminum. We find & ] T8
2.0x10 T=1.0 (K)
V=9.516 Ry.
0.0 T L) T T L)
0 500 1000 1500 2000 2500 3000

A. The bar-shaped superconductor Transverse width L ,

The matrix Green’s function for a bar-shaped supercon- FG. 10. Plot of the self-consistent gap function against the

ductor G(x,x,k, Kk, ,iw,) is given by Eq.(14). By substi-  transverse length., for a bar-shaped superconductor at different
tuting the upper right element of this Green'’s function in Eq.temperatures. The number of iterations is 100.
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1.4x10° ok plicit presence of the positior; in Eq. (18), the matrices
- L1000 involved have alternating columns of very small and very
= I N L= 100 large values which the computer cannot handle anymore.
- I N e However, this problem is not intrinsic to the formalism and
\ can be solved by appropriate rescaling. By defining the ma-

8.0x10° trix f

£ e.0x10° 4 ,

) oo = gk gl kg (32

vjv'j

the Green’s functior{16), combined with Eq(17), obtains

J
4.0x10° Vv

2.0x10°

the form
0.0 T Ll = T T L L] T
0.0 0.2 04 0.6 0.8 1.0 1.2 1.4 G S X,X,,k ’k ,iw
T (the temperature in Kelvin) viv ]( vz n)
_ FIG. 11. The tempgrature variation of the self-consistent gap for = E d‘v’j lpfj“(x) ¢‘]fj"“(x’)5w,
different transverse widths. o
is 100. It can be seen that there are oscillations of the gap. +> dyidy, g (x=x) 7 (X =x))
The amplitudes of the oscillations decrease as the transverse oo’
dimension increases. These oscillations can be attributed to (33)

the discreteness of the transverse wave vector. As the trans-

verse width increases, the transverse wave vector approach@swhich only position differences occur. The rescaled matrix

the continuous regime which can be gauged from the gap is determined by the equation

becoming closer to its bulk value obtained by integrating

instead of summing over the transverse wave vectors. In the o ovsmaroo vy Lol =y

figure, we show the bulk value at 0.2 K. Another interesting ; vd i (O)thV'J =V, (0), (34)

thing which can be seen in the figure is the suppression of

superconductivity for narrower transverse dimensions. Weound straightforwardly from the original equatidh8).

notice that as the temperature increases the onset of the sup-Figure 1Za) shows the spatial variation of the gap near

pression of superconductivity occurs at higher valuek.of the interface of a normal metal-superconductor systeih at
In Fig. 11 we show the temperature variation of the gap=0.6 K for different transverse widths. At a distance of

for different transverse widthk;. A residual value of the 30000 Bohr from the interface, which is about six times the

gap for the bulk superconductor can still be observed beyondoherence lengtli=4500 Bohy, the gap is slightly smaller

the critical temperatur€l.2 K for aluminum. We also notice  than the one obtained for the bar-shaped superconductor. The

small-amplitude oscillations of the gap at higher temperadifferences are about 7.79, 6.57, and 2.93% of their bar

tures, which only show up in the curves for larger transversealue forL,=99.8514 =100, and 1000 Bohr, respectively.

dimensions. For smaller transverse dimensions, the oscilléAt 4000 Bohr, which is of the order of the coherence length

tions are suppressed. These oscillations are due to the cutdfbm the interface, the differences are about 21.7, 20.44, and

in the summation over the Matsubara frequencies. For lowet4.71 %, respectively. These figures lead to the inevitable

temperatures, the cutoff valug,,, in Eq. (29) becomes very conclusion that for larger transverse dimensions, the proxim-

large and the results are no longer sensitive to it. ity effect is less pronounced than for smaller ones. This may
be due to the fact that for small transverse dimensions the
B. The NS system superconductivity tends to be suppressed. We find that the

) ) . difference seen for the two smaller widths can be attributed
The matrix Green's function appropriate for a normaltg the oscillations in the self-consistent gap shown in Fig. 10.
metal-superconductor system is given in EG%) and(17). e have not seen a special influence of the fact that the
The first term on the right-hand side of E46) is the matrix  smaller width is a critical one. Figure @8 shows the cor-
Green's function for the bar superconductor. The secondesponding pair amplitude defined Byx)/V [see Eq(27)]
term contains the elements of thenatrix, which take into  whjch has a finite value in the normal metallic region near
account the scattering of the quasiparticles at the interfacene NS interface but it decays in the inner region of the
The latter acts as a perturbing term to the former and i$,ormal metal.
therefore responsible for the spatial variations of the gap and
the pair amplitude at the vicinity of the interface. To calcu-
late the spatial variation of the gap according to &§), we
substitute the upper right element of the matrix Green’s func- In the superconductor-normal metal-superconductor sys-
tion, Eqg.(16), using the value of the self-consistent gap fortem, there are two interfaces which we designate;aand
the bar-shaped superconductor. X». Thet matrices must be determined at these interfaces so
Before presenting our results, we want to mention a comthat we can evaluate thEmatrix. The unpleasant singulari-
putational problem which has to be solved. Due to the exties due to the explicit presence of the position of the inter-

C. The SNSsystem
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FIG. 12. (@ The gap andb) the pair amplitude against the FIG. 13. (a) The gap function andb) the pair amplitude of a
distance from the interface of S system aff=0.6 K. The inter-  SNSsystem against the distance from the middle of the system
face is chosen at=0. chosen ak=0. The interfaces are located»t +2000.

faces in Eq(18) can be removed by using E(2) resulting D. The SNSNSsystem

to a corresponding transformation of thematrix given by The extension of the steps outlined in Sec. IV C leading to

, the T matrix and the matrix Green’s function for NSNS
-‘l-fr_fr’,u_/v’:emkjjx,--l-o_«r’,w;’ ia’u’k‘y’,j,xjr_ (35) syste_m is straightforward. In this_ case we have to consider
v nv four interfaces but the procedure is basically the same. In the
outer superconductors, we again use the self-consistent value

By implementing this, the multiple-scattering Green'’s func- X .
y Imp 'ng i utp ng N of the gap for the superconducting bar we have calculated in

tion (20) and Eq.(21), which determines thd matrix in
terms of thet matrices, can be modified straightforwardly.

The steps in calculating the gap and the pair amplitude t1oxt0°®
self-consistently are the same as in Sec. IVB. Figure 13
shows the self-consistent gap function and the pair amplitude  s.ox10™
for different transverse widths. The center of the system is ai
x=0. The spatial variation of the gap near the interfaces isA 6.0x10"
clearly shown. The proximity effect is stronger than for the &
NS system shown in Fig. 12. Whereas in Fig.(d2for L, 8 .
— 1000 Bohr the gap at a distance of 6000 Bohr from thes *“*
interface has a value of 9.753.0 ° Ry, in Fig. 13a) it has g
already increased to 1.0%4.0" ° Ry, which is much closer 2.0x10™
to the bulk value of 1.108 10 °Ry. In Fig. 13b) the pair 1
amplitude in theN region does not decrease below a value of oo . — . —
5x10 ‘. In Fig. 12b) it decreases to zero and the value at 8000 6000 4000 2000 O 2000 4000 6000 8000

X (the distance from the middle of the system)

2000 Bohr from theNS interface has already decreased to

2.784<10 . In Fig. 14 we show the gap functions for dif-  FiG. 14. The gap function of SNSsystem against the distance
ferent values ol. It can be seen that for largérthe gap  from the middle of the system choserxat O for different values of
function is lesser in magnitude. This is another manifestation. The interfaces are located at2000 for L =4000 Bohr and at
of the proximity effect. +4000 forL=8000 Bohr.
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1.0x10° SNSNSsystems, one with a lengthy=3000 Bohr for the

1 normal metallic parts and the other one with a larger length
Ln=15000 Bohr. First note that the gap of the middle super-
conductor is smaller than the gap of the outer superconduct-
ors although the metallic parameters for these superconduct-
ors are taken equal. This supports our choice ¢f \aalue
smaller than 1 in Sec. Ill, see Fig. 1. Further note that the gap
and the pair amplitude are higher for the system with nar-
rower normal-metal part, which is just another manifestation
2.0x107 7 of the proximity effect. Although by definition the gap is

; zero in the normal-metal parts, the pair amplitude is different

0.0 . — —_— —_— . from zero. This is also a manifestation of the proximity ef-
(@ 0 w0 000 e 902000 4000 enoo 8000 fect. If the width of the normal-metal layers had been much
X (distance from the mide of the system) larger than the sum of the coherence lengths of the outer and
9.0x10° middle superconductors, the pair amplitude would have been

] zero there except in those regions near the interfaces.

8.0x107

—— L,,=3000
|_N=5000

6.0x107

4.0x107

Gap function A{x)

8.0x10° .

V. CONCLUSIONS AND FUTURE PROSPECTS

7.0x10°

§ . The multiple-scattering Green’s function formalism de-
£ 5017 veloped by Koperdradfi has been applied to determine the
5 s oto* Andreev bound states iBNSand SNSNYunctions through

the local density of states and to calculate the superconduct-
ing gap function self-consistently. We have shown that for
i R transverse junction widths tuned such that the motion in the
0x10° : : : : : : : longitudinal direction is very slow, the Andreev approxima-
8000 -6000  -4000 2000 O 2000 4000 6000 8000 tion breaks down. For these transverse dimensions, the high-
(b) x (distance from the middle of the system) est mode is supported by many bound states whose degen-
eracy is lifted when no approximation is applied. The
the distance from the middle of @NSNSystem, which is chosen at J’EE::tkt%isﬁj\lxjvseerdmfg(;etzzea?éjggiL rglej;%g?tgyi;sgﬁl;hoonsfgosﬁgg_
x=0. The interfaces are chosen &t *=2000+=5000 for Ly . .
=3000Bohr (solid curve and x==2000=7000 for Ly generate state. Results for the se_lf-c_:onS|stent gap functions
—5000Bohr (dotted curve The transverse width isL, exhibit various features of the proximity effe_ct. Furthermore,
=100 Bohr. our results show that for small transverse dimensions, super-
conductivity is suppressed.
Sec. IVA. In calculating the gap in the middle supercon- The formalism is applicable to systems of an arbitrary
ductor self-consistently, we apply the recipe introduced byhumber of layers. In addition, it allows for the calculation of
Tanaka and Tsukadd.We start the iteration procedure by the supercurrents through such junctions, to which self-
taking half of the gap in the outer superconductors for theconsistent gap functions are necessary.This will be in-
gap in the middle. By substituting these values in the rightvestigated in the near future.
hand side of Eq(28), the middlex-dependent gap function is
obtain(_ed and its spatial average is determined_. This average ACKNOWLEDGMENTS
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