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Magnetization of hard superconductor samples subjected to oblique fields

Debjani Karmakar and K. V. Bhagwat
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~Received 13 March 2001; revised manuscript received 10 July 2001; published 19 December 2001!

The Critical State model~CSM! is examined for infinite cylindrical samples of a hard type-II superconductor
subjected to a transverse oblique magnetic field. Our solution is based on a generalization of a result for the
surface current density on a cylindrical surface that produces a uniform interior magnetic field. We give
arguments that lead to this generalization. This result has enabled us to get an analytical formulation of the
CSM, for cylinders of arbitrary cross section, in the form of an infinite system of first order nonlinear
differential equations. An important new outcome of the application of an oblique field is that the current
densities6Jc within the sample are separated not by a line along the applied field direction as one would
naively expect, but along a curve that substantially deviates from it. Following an approximation procedure, we
obtain the virgin magnetization curves for a superconducting elliptical cylinder for different orientations of the
applied magnetic field. Hysteresis loops for parallel and perpendicular components of magnetization are pre-
sented for the applied field orientation of 15°.

DOI: 10.1103/PhysRevB.65.024518 PACS number~s!: 74.25.Ha, 75.60.Ej
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I. INTRODUCTION

The Critical State model~CSM! proposed by Bean1 is
extensively used to analyze magnetization data on h
type-II superconductors. The early solutions due to Be
himself pertained to samples in parallel geometry—an i
nite slab and an infinite circular cylinder. Many extensio
and generalizations of the CSM have been studied in
literature. Solving the CSM for sample shapes with nonz
demagnetization factor has proved to be a difficult and n
trivial exercise.2–7 For determining ac losses from superco
ducting wires there have been some early attempts to ob
flux-fronts numerically.8–10 In an experimental study, supe
conductor samples are usually employed with the app
field Ba along a symmetry direction. Consequently, theore
cal studies in the literature invariably assume thatBa is along
a sample symmetry-axis, and this is also taken to be on
the coordinate axes. In all these cases the magnetizatio
anti-parallel to the applied field. In a realistic sample, ma
netization would acquire a perpendicular component due
inherent anisotropy of the material as well as due to sam
shape. Even in an isotropic specimen there is a possibilit
a misorientation between the direction ofBa and the sample
symmetry axis. A theoretical investigation of samples s
jected to oblique fields would be helpful in estimating t
geometric contribution11 to the perpendicular magnetizatio
in both the cases. We are thus led to examine the CSM
samples subjected to an external magnetic field in an obl
direction. Our solution is based on the idea that a given v
ume current distribution can be broken into infinitesim
shells and that each current shell can be considered
surface current density.12 We restrict to cylindrical sample
in a transverse geometry because the required expressio
the surface current density producing uniform interior fie
can be easily obtained from our earlier result.13

The paper is organized as follows. We begin the n
section with a generalization of our result on surface curr
density producing uniform transverse interior field. Ess
tially, we develop an expression for surface current den
0163-1829/2001/65~2!/024518~7!/$20.00 65 0245
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that produces magnetic field in an oblique direction. We th
present an analytical formulation of CSM for cylindric
samples in the form of an infinite system of nonlinear or
nary differential equations. Subsequently an approximat
method is envisaged. As an illustration, this is worked out
an elliptic cylindrical sample and the results for virgin ma
netization curves for different orientations of the field a
presented. We also give the hysteresis curves for diffe
reversal fields both for the parallel and the perpendicu
components of the sample magnetization. The satura
magnetization and the field for full penetration are obtain
as a function of the angle of orientation of the field and a
compared with the respective quantities resulting from
model current distribution. For comparing the relative ma
nitudes of parallel and perpendicular components of sat
tion magnetization and to check its dependence on sam
asymmetry about the field orientation, a sample with a lar
aspect ratio has been analyzed. The last section summa
these results with a discussion.

II. THE SURFACE CURRENT DENSITY

For a cylindrical conductor the surface current dens
along thez-axis producing uniform transverse interior fie
B0 alongx-direction is given by13

m0Js52gB0 sinf/u f 8~f!u. ~1!

Heref is the angle between the direction of the fieldB0
and the vector representing the location of the current d
sity, and z5 f (u) represents the conformal mapping th
maps the exterior of the boundaryL of the cross-section o
the cylinder under consideration to the exterior of a u
circle. The parameterg stands for the limit off (u)/u as u
→`. The quantityu f 8(f)u is to be understood as the deriv
tive of f (u) evaluated atu5exp(ıf). In Ref. 13 the param-
eter g was assumed to be real. Ifg is complex, say,g
5p exp(ıb), then the above formula gets modified and t
current density has the form
©2001 The American Physical Society18-1
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m0Js52pB0 sin~f1b!/u f 8~f!u.

Now let a be the angle between the direction ofB0, the
transverse magnetic field produced by the current den
and thex-axis. Resolving the field into itsx and y compo-
nents, viz.,B0x5B0 cosa andB0y5B0 sina, we see that the
net current density can be obtained as a superpositio
appropriate current densities resulting from the repeated
plication of Eq. ~1!. Since both flow in the same directio
they will simply add up and we get

m0Js52pB0@cosa sin~f1b!2sina cos~f1b!#/u f 8~f!u

52pB0 sin~f1b2a!/u f 8~f!u ~2!

as the surface current density producing uniform transve
interior field along the direction inclined at an anglea to the
x-axis. The above result can also be derived from first p
ciples by following the procedure outlined in Ref. 13.

III. FORMULATION OF CSM FOR CYLINDERS

A. Current density, current shells, and flux-fronts

Let us consider a zero field cooled cylindrical sample s
jected to a uniform transverse field. As per the CSM
sample responds to changes in the external field by settin
an induced current densityJc starting from the surface. Th
extent of penetration of flux as well as that of induced c
rent density in the sample is limited by the flux-front.
other words, during the virgin curve, in the region interior
the flux-front bothB50 and J50. In this region the field
generated by induced currents exactly cancels the app
field. The fieldBa may be reached by sequentially applying
large number infinitesimally small steps ofdBa , starting
from zero field. At each of these stepsdBa a new~infinitesi-
mally small! current shell would be set up within the samp
generating field in its interior that exactly annuls the chan
dBa . An infinitesimal current shell may be viewed as a s
face current. Thus the shielding volume current density
be broken up into an effective succession of surface curre
Since each of these current shells~or the equivalent surface
current density! generates uniform interior field, it must hav
the general form given above.

A given flux-front would be characterized byBa , the
magnitude of the applied field. Thus, flux-fronts form a o
parameter family of surfaces. At zero field, the flux-fro
coincides with the sample surface. AsBa is increased mono
tonically the volume enclosed by the flux-front shrinks
size and more flux penetrates the sample. Eventually at s
field Bp the flux completely penetrates the sample. The m
nitude of Bp depends on the critical current densityJc and
sample dimensions, and is deduced from the solution of
model. We shall use the symbolh to denote the flux-front
parameter. Consequently, the sample surface correspon
h50, and the innermost flux-front would be identified b
h5ha5Ba /m0Jcb, where b is one of the semi-axes of th
elliptical cross-section of the cylinder.
02451
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B. Description of flux-fronts by their conformal map

For analytical description of the family of flux-fronts w
conceive of a one to one correspondence between mem
of the family of flux-fronts and a family of conformal map
pings characterized by the parameterh. We require that the
conformal mapping associated with a given flux-front map
onto a unit circle and itsexterior onto theexterior of the
same unit circle. Let the cross-section of the cylinder be
the z-plane (z5x1ıy). For symmetric samples, the famil
of conformal mappings can be represented by the follow
series:

z5 f ~u,h!5 (
n51

`

anu2(2n23), ~3!

where the coefficients$an ,n51,2, . . .% are in general com-
plex functions of the~real! parameterh. These will be chosen
in the form an5pn exp(ıan). Clearly, if we set u
5exp(ıf), (2p<f,p), Eq. ~3! provides an analytical rep
resentation of the flux-front. The initial values of these co
ficients viz.,a1(0), a2(0), a3(0), . . . etc. are obtained by
determining the initial conformal mapping of the exterior
the boundaryL of the cross-section of the cylinder onto th
exterior of a unit circle. These coefficients evolve as fun
tions ofh. The solution consists in obtaining the evolution
the coefficients . The magnetization of the sample is expre
ible in terms of these coefficients and hence can be obtai

C. Division of current carrying region into current shells

We have seen that the current carrying region of
sample can be the build up of several infinitesimal curr
shells, thereby enabling us to view volume current density
a succession of surface current density. We will now exp
itly accomplish this by studying the expression for the fie
generated by the given current density. Let us conside
slightly more general situation when the cylindrical samp
carries a~volume! current densityJ(x8,y8) parallel to the
axis of the cylinder. As in Ref. 13 we obtain the fieldBJ
generated byJ from a complex functionB(z) defined as

BJ~z!5
m0

2pE E J~x8,y8!

z2z8
dx8 dy8, ~4!

wherez5x1ıy andz85x81ıy8. The components ofBJ are
obtained asBJx5IBJ(z) and BJy5RBJ(z). Effecting a
change of variables from (x8, y8) to (h, u85exp(ıf8) by
writing z85 f (u8,h), where the functionf is as defined in Eq.
~3!. The integral in Eq.~4! can be expressed in the form

B~z!5
m0

2pE dhE J~x8,y8!

~z2z8!

ux~h,f8!u

u f 8~h,u8!u
ds8. ~5!

Herex(h,f8)[xh8yf8
8 2xf8

8 yh8 is the Jacobean of transforma
tion andds85udz8u5u f 8(h,u8)udf8. The netB(z) is clearly
seen as produced by a succession of current shells of th
nessdh. Each current shell carries a surface current den
Js5Juxu/u f 8(h,u8)udh. Since this surface current densi
produces uniform interior field, canceling the changedBa in
8-2
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MAGNETIZATION OF HARD SUPERCONDUCTOR . . . PHYSICAL REVIEW B65 024518
the applied field, it should have the same form as in Eq.~2!
~with B0 replaced bydB052dBa). This condition leads to
the relation

m0J dh52dB0p1 sin~f1a12a!/uxu. ~6!

D. Determination of the conformal maps

To determine the conformal maps that consistently p
vide the evolution of flux-fronts from the sample surface,
choosem0Jcb dh5dB052dBa , in Eq. ~6! and setuJu5Jc
as implied by the CSM. This leads to the equationuxu
52p1busin(f1a12a)u. We choose x52p1busin(f1a1
2a)u which is consistent with the above equation and a
consistent with the explicit expression forx derived below.
To get this expression we return to Eq.~3! and use the ex-
plicit form an5pn exp(ıan). Separating into real and imag
nary parts, gives the transformation equations forx andy in
terms ofh and f. Using these equations we obtain the r
quired partial derivatives and subsequently get the exp
sion for x. The foregoing condition provides the startin
point to determine the evolution of flux-fronts. Carrying o
some simplifications and rearrangement of terms in the
pression forx we cast it as a Fourier series

x~h,f![(
k50

`

$Uk cos 2kf1Vk sin 2kf%, ~7!

where

Uk5 (
m51

`

~2m12k23!pm1k

3$pmam8 sin~am2am1k!2pm8 cos~am2am1k!%

1 (
m5k11

`

~2m22k23!pm2k$pmam8 sin~am2am2k!

2pm8 cos~am2am2k!%,

Vk5 (
m51

`

~2m12k23!pm1k

3$pmam8 cos~am2am1k!1pm8 sin~am2am1k!%

2 (
m5k11

`

~2m22k23!pm2k$pmam8 cos~am2am2k!

1pm8 sin~am2am2k!%.

In the above equations the prime onpm and am denotes
derivative with respect toh. We also have the Fourier serie
expansion

usin~f1a12a!u[
2

p
2 (

k51

`
4

p~4k221!
cos 2k~f1a12a!.

~8!

As noted earlier, the conditionuJu5Jc implies equality of
left hand sides of Eqs.~7! and ~8!. Hence their right hand
02451
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sides must also be equal. A comparison of the coefficient
cos 2kf and sin 2kf for k50,1,2,3, . . . , appearing on the
right hand sides of Eqs.~7! and ~8! we get a system of
ordinary differential equations forpn andan . The equations
can be expressed in a compact form as a system of
matrix equations:

Ap81Bq5c, ~9!

Cp81Dq5d. ~10!

Here p, q are column vectors with elementspn and qn

5pnan8 , respectively, and the column vectorsc andd have
elements ck528p1b cos 2k(a2a1)/@p(4k221)# and dk5
28p1b sin 2k(a2a1)/@p(4k221)#. The elements of the ma
tricesA, B, C, andD are functions ofpn andan and can be
obtained as

Akm52~2m12k23!pm1k cos~am2am1k!

2~2m22k23!pm2k cos~am2am2k!Q~m2k!,

Bkm5~2m12k23!pm1k sin~am2am1k!

1~2m22k23!pm2k sin~am2am2k!Q~m2k!,

Ckm5~2m12k23!pm1k sin~am2am1k!

2~2m22k23!pm2k sin~am2am2k!Q~m2k!,

Dkm5~2m12k23!pm1k cos~am2am1k!

2~2m22k23!pm2k cos~am2am2k!Q~m2k!,

where the function Q(m2k)50, for m<k,and
51otherwise . Equations~9! and~10! can be formally solved
to obtain the derivativesp8 and a8, however, possibility of
an exact solution appears very remote. A numerical solu
can be obtained by approximating the infinite dimensio
matrices by truncation and performing numerical integrat
of the differential equations. We will now calculate virgi
magnetization in terms of the coefficients.

IV. MAGNETIZATION CURVES

A. Virgin magnetization

The magnetization associated with a cylindrical curre
distribution is given by

mv5~1/2A!E E ~r 83J!dx8 dy8, ~11!

whereA is the cross-sectional area of the sample. Chang
the variables of integration to (h,f8), noting that the current
density is alongz-axis and using Eq.~6!, we get

mv5~H* /A!E
0

haE
2p

p

p1 sin~f82a!~ îy82 ĵx8!dh df8,

~12!

whereH* 5m0Jcb and ha5Ba /H* . In this case the cross
sectional areaA5pab. Carrying out the integration we ge
the components of magnetization as
8-3
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DEBJANI KARMAKAR AND K. V. BHAGWAT PHYSICAL REVIEW B 65 024518
m0mvx5~pH* /A!E
0

ha
p1$p1 cos~a!

2p2 cos~a22a1a1!%dh, ~13!

m0mvy5~pH* /A!E
0

ha
p1$p1 sin~a!

2p2 sin~a22a1a1!%dh. ~14!

We determined the set of pointsx0(ha) and y0(ha) for a
fixed value of the parametric angle, sayf50 on the flux-
contour labeled byha . Full penetration fieldBa5H* ha is
determined as the smallest simultaneous zero ofx0(ha) and
y0(ha). For a50°, y0(ha)[0 and its intersection with
x0(ha) is obtained by extrapolation of the latter.

B. Hysteresis loops

A hysteresis loop can be obtained by following t
virgin curve upto some fieldBa5Bm and then reversing the
field direction to reach the field2Bm . To complete the loop
we carry out another field reversal to reach the fieldBm .
When the direction of the change in field is reversed at
applied field valueBm , shielding currents in a certain regio
near the surface also reverse direction. Thus the magne
tion m↓(Bm2h) can be obtained as a superpositi
m↓(Bm2h)5mv(Bm ,Jc)2mv(h,2Jc).

Finally, when the direction of the field change is revers
once again, the magnetization during the field increasing
of the cycle is obtained asm↑(Ba)52m↓(2Ba).

V. RESULTS AND DISCUSSION

We have obtained a general expression for the sur
current density producing uniform transverse interior field
an oblique direction. This result is used to study the probl
of flux penetration in a cylindrical sample of a hard sup
conductor subjected to a transverse oblique magnetic fi
The formulation leads to an infinite system of nonlinear fi
order ordinary differential equations~9!,~10!. We have
solved these differential equations numerically, and de
mined the values ofpn’s andan’s for a set of values ofBa
starting from zero value uptoBa5Bp , the field for full pen-
etration. The number of coefficients retained in the pres
calculation is 14. We found that retaining a larger numb
does not significantly alter final results. We can then c
struct the various flux-contours as the field penetrates
sample at a definite angle of orientationa with a sample
symmetry axis. We have presented in Fig. 1 flux-contours
three differenta values for the elliptic cylindrical sample 1~a
5 0.4, b5 1.0!. It is seen in Fig. 1 that the flux-contours a
have a notch~apex!. The apex leaves the sample surface
the applied field is increased. The result that apex leaves
sample surface is in general agreement with other nume
calculations for the casea50 and this feature has also bee
justified on physical grounds.12,14

Apex represents the point on a flux-contour whereJ van-
ishes. Figure 2 depicts the movement of the apex for dif
ent a values. The movement, in general, is along a p
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curved near the sample surface and is almost linear ot
wise. The curve generated by the movement of the ape
the field penetrates the sample divides the current carry
region into ones carrying the current density1Jc and
2Jc . In the case of an elliptical cylinder fora50° and 90°
and for a circular cylinder for alla values, the apex move
along a straight line parallel to the field direction. The line
portion of the curve is, in general, not parallel to the appl
field. The angle between the two, however, progressively
creases as the field orientation approaches 90°.

At first sight the result presented in Fig. 2 appears con
dictory to what one would expect from asymptotic consid

FIG. 1. Flux-contours for an elliptic cylindrical sample with th
semi-axesa50.4 andb51.0 are shown. The outermost curve co
responds to the sample surface (Ba50). Successive contours cor
respond to a changedBa50.042H* . Results are shown for thre
orientions of the applied magnetic field~a! a50°, ~b! a515°, ~c!
a575° measured from thex-axis. The arrowheaded line in th
figures shows the direction of the applied field.
8-4
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MAGNETIZATION OF HARD SUPERCONDUCTOR . . . PHYSICAL REVIEW B65 024518
ations. At very high applied fields~beyond the field for full
penetration!, the whole of sample carries shielding curren
and an increase in the external field does not lead to se
up of additional currents. At this stage one would imag
that the changedB in the local field is equal to the chang
dBa in the applied field. Thus, ifBa is increased at a constan
rate, it gives rise to an electric fieldE that vanishes along th
direction ofBa . Since current must flow in the direction o
E, E50 line must also represent the line of separation
tween the current densities6Jc . It is to be noted, however
that before full penetration it is not the electric field acco
panyingdBa alone, that governs apex movement. One m
also consider a contribution coming from thedBJ generated
by the induced currents. A straightforward but detailed c
culation reveals that the local electric field due todBJ gen-
erated by the current density~already set up! contains a term
that exactly cancels that coming from the changedBa. The
resultingE leads to the apex movement depicted in Fig.

All along the process of field penetration,Ba is assumed
to changequasi-statically. Thus beyond full penetration a
increasedBa would generate a surface current density
shield the interior from the change. The surface current d
sity would relax into a current shell~volume current density!,
the net current density would now exceed the critical curr
densityJc . The relaxation would then continue by transfe
ring the excess current on the next current shell and the
cess would continue until the excess current is transferre
to the innermost current shell. Once the changedBa has been
established all over the sample,J in the innermost shell tha
is in excess ofJc would start decaying. The direction ofE in
the shells external to the innermost shell does not cha
during the decay ofJ leaving the current distribution ther
unchanged.

The extent of proximity of the slope of the linear portio
of the apex movement curve and that of the applied fi
direction depends on the inherent sample asymmetry a
the applied field direction. The more asymmetric the sam
the more is the deviation of the above-mentioned slope fr
the applied field direction.

FIG. 2. Movement of the ‘‘apex’’ of various flux-fronts for dif
ferent orientions of the applied field. For the field directiona the
apex follows a curved path, the linear portion of which has a sl
different froma.
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In Fig. 3~a! the virgin magnetization curves for differen
angles of field orientation are plotted for sample 1. The v
ues of saturation magnetization (M sat) andBp vary between
the maximum for 0° and minimum for 90°. At each stage
field penetration, we have checked that the field, genera
by the induced current distribution, everywhere within t
flux-contour indeed cancels the applied field. The direct
of the magnetization is, however, different from that of t
applied field, implying the existence of a perpendicular co
ponent to magnetization. In Fig. 3~b! we have plotted the
orientation angleu of M as a function of the orientation
anglea of the applied fieldBa for two fixed field values as
well as at the saturation fieldBp . The geometry of the
sample is shown as an inset. Figure 3~b! compares well with
Fig. 5 of Ref. 11.

To get an estimate of the order of magnitude of the
quantities, we considered a model current distribution
6Jc on either side of a line through the center, parallel to
applied field and evaluated expressions for saturation m
netization M sat and the corresponding fieldB p . As ex-
pected, fora50°,90° the results obtained from the mod

e

FIG. 3. ~a! The virgin magnetization curves for different orien
tations of the applied magnetic field are shown forBa<Bp , the
field corresponding to full penetration. The elliptical sample h
semi-axesa50.4 andb51. ~b! Orientation angleu of M as a
function of the orientation anglea of the applied field is shown for
different Ba values. The inset shows the sample geometry. The
entations ofM and Ba with respect to the coordinate axes a
shown.
8-5
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DEBJANI KARMAKAR AND K. V. BHAGWAT PHYSICAL REVIEW B 65 024518
current distribution coincide with exact results~obtained by
our numerical procedure!. For intermediate values ofa the
model current distribution leads to results close to the ex
results. It is clear, however, that the true values ofM sat and
Bp depend on the detailed description of field-penetrati
Further, as per the model calculation, the directions of b
B p and M sat are not along the applied field direction. W
have shown the angle dependence ofBp , M sat, B p , and
M sat in Fig. 4. The mismatch between the model and
exact values of these quantities is apparent. The true sep
tion between the regions carrying6Jc at full penetration is
depicted in Fig. 2.

We have also presented a set of hysteresis loops for
orientation anglea515° for different reversal fields. In Fig
5~a! we have shown the loops for the parallel componen
magnetizaion, while in Fig. 5~b! we have depicted the per
pendicular component. These show the familiar behav
well-known for case ofa50°. We may mention in passin
that the hysteresis loop for the perpendicular component
unimportant as far as the ac loss is concerned. This is ent
governed by the parallel component.

To get a comparison of the effect of inherent sam
asymmetry about the applied field direction we have plot
in Fig. 6 the flux-contours fora575° for sample 2~a 5
0.05, b5 1.0!. A comparison with Fig. 1~c! shows the dif-
ference in the angular position of the point where the a
leaves the sample surface (89.2° for sample 2 and 83.5°
sample 1!. This angle can be calculated by noting that t
pole of the current density on the sample surface is at
parametric anglef5a. For an elliptic cylinder the corre
sponding polar angle,u5arctan$(b/a)tana%. Thus it is clear
that the deviation of the path of the apex from the appl
field direction is more for more asymmetric samples. W
have compared the ratio (M' /M i) of saturation magnetiza
tions for perpendicular and parallel components for the sa
angle a. This turns out to be'0.468 for sample 1 and
'2.503 for sample 2, indicating a relatively larger value
the perpendicular component of magnetizaion for the sec
sample.

FIG. 4. The variation of saturation magnetizationM sat and the
field for full penetrationBp , as a function ofa is shown. We have
also plotted the quantitiesB p and M sat as a function ofa for a
model current distribution,~see text!.
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FIG. 5. Virgin curve and Hysteresis loops in the~a! M i and~b!
M' components of sample magnetization are shown for vari
reversal fields. The elliptic cylinder has semi-axesa50.4 andb
51.

FIG. 6. Flux-contours for the field orientationa575° are shown
for a sample with semi axesa50.05 andb51. The outermost is the
sample surface (Ba50), successive flux-fronts correspond to
changedBa50.006H* . The shift in the orientations of the flux
contours compared to the earlier sample may be noted. The d
tion of Ba is shown by an arrowheaded line. The dimensions of
cross-section of the real sample and the field orientation with
spect to the sample symmetry axis are qualitatively shown in
inset.
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Finally, we have found that for the samples analyzed
this paper, a misorientation of up to 5° about the direction
the thinner dimension ‘‘a’’ does not lead to any significa
corrections for the quantitiesBp andM sat. However, there is
a significant change in the magnetization if the misorien
tion is about the direction of the thicker dimension ‘‘b
Lastly, we must emphasize that although we have consid
only cylindrical samples of elliptical cross-section, th
02451
n
f

t

-

ed

method presented is applicable to cylinders of arbitr
cross-section.
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