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Magnetization of hard superconductor samples subjected to oblique fields
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The Critical State moddICSM) is examined for infinite cylindrical samples of a hard type-II superconductor
subjected to a transverse oblique magnetic field. Our solution is based on a generalization of a result for the
surface current density on a cylindrical surface that produces a uniform interior magnetic field. We give
arguments that lead to this generalization. This result has enabled us to get an analytical formulation of the
CSM, for cylinders of arbitrary cross section, in the form of an infinite system of first order nonlinear
differential equations. An important new outcome of the application of an oblique field is that the current
densities=J, within the sample are separated not by a line along the applied field direction as one would
naively expect, but along a curve that substantially deviates from it. Following an approximation procedure, we
obtain the virgin magnetization curves for a superconducting elliptical cylinder for different orientations of the
applied magnetic field. Hysteresis loops for parallel and perpendicular components of magnetization are pre-
sented for the applied field orientation of 15°.
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[. INTRODUCTION that produces magnetic field in an oblique direction. We then
present an analytical formulation of CSM for cylindrical

The Critical State mode{CSM) proposed by Bednis ~ samples in the form of an infinite system of nonlinear ordi-
extensively used to analyze magnetization data on harfiary differential equations. Subsequently an approximation
type-Il superconductors. The early solutions due to Bearinethod is envisaged. As an illustration, this is worked out for
himself pertained to samples in parallel geometry—an infi-2n €elliptic cylindrical sample and the results for virgin mag-
nite slab and an infinite circular cylinder. Many extensionsnetization curves for different orientations of the field are
and generalizations of the CSM have been studied in theresented. We also give the hysteresis curves for different
literature. Solving the CSM for sample shapes with nonzerdeversal fields both for the parallel and the perpendicular
demagnetization factor has proved to be a difficult and noncomponents of the sample magnetization. The saturation
trivial exercise®™’ For determining ac losses from supercon_magnetization and the field for full penetration are obtained
ducting wires there have been some early attempts to obta@s @ function of the angle of orientation of the field and are
flux-fronts numerically~°In an experimental study, super- compared with the respective quantities resulting from a
conductor samples are usually employed with the appliednodel current distribution. For comparing the relative mag-
field B, along a symmetry direction. Consequently, theoreti-nitudes of parallel and perpendicular components of satura-
cal studies in the literature invariably assume ats along ~ tion magnetization and to check its dependence on sample
a sample symmetry-axis, and this is also taken to be one @¥symmetry about the field orientation, a sample with a larger
the coordinate axes. In all these cases the magnetization &Pect ratio has been analyzed. The last section summarizes
anti-parallel to the applied field. In a realistic sample, mag-these results with a discussion.
netization would acquire a perpendicular component due to

inherent anisotropy of the material as well as due to sample Il. THE SURFACE CURRENT DENSITY
shape. Even in an isotropic specimen there is a possibility of o )
a misorientation between the direction®f and the sample For a cylindrical conductor the surface current density

symmetry axis. A theoretical investigation of samples sub&l0ng thez-axis producing uniform transverse interior field
jected to oblique fields would be helpful in estimating the Bo alongx-direction is given by’
geometric contributiolt to the perpendicular magnetization )
in both the cases. We are thus led to examine the CSM for rods=2yBosingl|f'(#)]. (1)
samples subjected to an external magnetic field in an oblique
direction. Our solution is based on the idea that a given vol- Here ¢ is the angle between the direction of the fiélg
ume current distribution can be broken into infinitesimaland the vector representing the location of the current den-
shells and that each current shell can be considered assdy, and {=f(u) represents the conformal mapping that
surface current densily.We restrict to cylindrical samples maps the exterior of the boundafy of the cross-section of
in a transverse geometry because the required expression ftie cylinder under consideration to the exterior of a unit
the surface current density producing uniform interior fieldcircle. The parametey stands for the limit off (u)/u asu
can be easily obtained from our earlier resglt. —o0, The quantity|f' ()| is to be understood as the deriva-
The paper is organized as follows. We begin the nextive of f(u) evaluated ati=exp(¢). In Ref. 13 the param-
section with a generalization of our result on surface curreneter y was assumed to be real. # is complex, say,y
density producing uniform transverse interior field. Essen=p exp(g), then the above formula gets modified and the
tially, we develop an expression for surface current densityurrent density has the form
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wods=2pBysin(p+ B)/|T'(p)]. B. Description of flux-fronts by their conformal map

For analytical description of the family of flux-fronts we
Now let a be the angle between the direction Bf, the ~ conceive of a one to one correspondence between members
transverse magnetic field produced by the current densitgf the family of flux-fronts and a family of conformal map-
and thex-axis. Resolving the field into its andy compo- ~ Pings characterized by the parametieiVe require that the -
nents, viz.Box=Bo cose andBy, = By sina, we see that the conformal mapping associated with a given flux-front map it
net current density can be obtained as a superposition &fto a unit circle and itexterior onto theexterior of the
appropriate current densities resulting from the repeated agame unit circle. Let the cross-section of the cylinder be in
plication of Eq.(1). Since both flow in the same direction the {-plane ¢=x+1y). For symmetric samples, the family
they will simply add up and we get of conformal mappings can be represented by the following

series:

tods=2pBo[cosa sin(¢+ B) —sina cog ¢+ B)1/|f' (¢)]

_ {=f(uh)=2 au @3, 3)
=2pBysin(¢+B—a)l|f'(¢)] 2 =1

where the coefficient§a,,,n=1,2, ...} are in general com-
as the surface current density producing uniform transversplex functions of théreal parameteh. These will be chosen
interior field along the direction inclined at an anglego the in the form a,=p,explea,). Clearly, if we setu
x-axis. The above result can also be derived from first prin=exp(¢), (—m<¢<m), Eq. (3) provides an analytical rep-

ciples by following the procedure outlined in Ref. 13. resentation of the flux-front. The initial values of these coef-
ficients viz.,a;(0), a,(0), a3(0), ... etc. are obtained by

determining the initial conformal mapping of the exterior of

ll. FORMULATION OF CSM FOR CYLINDERS the boundaryC of the cross-section of the cylinder onto the

exterior of a unit circle. These coefficients evolve as func-
. _ o tions ofh. The solution consists in obtaining the evolution of
Let us consider a zero field cooled cylindrical sample subthe coefficients . The magnetization of the sample is express-

jected to a uniform transverse field. As per the CSM thejple in terms of these coefficients and hence can be obtained.
sample responds to changes in the external field by setting up

an induced current density, starting from the surface. The

extent of penetration of flux as well as that of induced cur- ) )
rent density in the sample is limited by the flux-front. In We have seen that the current carrying region of the
other words, during the virgin curve, in the region interior to S@MPple can be the build up of several infinitesimal current
the flux-front bothB=0 and J=0. In this region the field shells, thereby enabling us to view vo!ume current densny_ as
generated by induced currents exactly cancels the appliedj Succession of surface current density. We will now explic-

field. The fieldB, may be reached by sequentially applying altly accomplish this l_)y studying the ex_pression for the_field
large number infinitesimally small steps @B, starting 9€nerated by the given current density. Let us consider a
from zero field. At each of these stepB, a new(infinitesi- ~ Slightly more general situation yvhen/ th,e cylindrical sample
mally smal) current shell would be set up within the sample C&'Ties a(volume current densityd(x’,y’) parallel to the
generating field in its interior that exactly annuls the changéis Of the cylinder. As in Ref. 13 we obtain the fief}
8B, . An infinitesimal current shell may be viewed as a sur-9enerated byl from a complex functiorB(¢) defined as
face current. Thus the shielding volume current density can L
be broken up into an effective succession of surface currents. B,({)= @f f Jix'y )dx’ dy’ @)
Since each of these current shelts the equivalent surface J 2 Iy ’
current densitygenerates uniform interior field, it must have
the general form given above. wher_e§:x+ Iy and{’ =x’+1y’. The components C$J are

A given flux-front would be characterized b§,, the obtained asB,,=7B,({) and B, =MB,({). Effecting a
magnitude of the applied field. Thus, flux-fronts form a onechange of variables fromx(, y’) to (h, u’=exp(¢’) by
parameter family of surfaces. At zero field, the flux-front Writing £’=f(u’,h), where the functioris as defined in Eq.
coincides with the sample surface. Bs is increased mono- (3)- The integral in Eq(4) can be expressed in the form
tonically the volume enclosed by the flux-front shrinks in
size and more flux penetrates the sample. Eventually at some B({)= r“Of f Iy [x(h.¢")| ,
i ()=%5—=| dh ds'. (5)
field By, the flux completely penetrates the sample. The mag- 2 (2= |f'(h,u’)|
nitude of B, depends on the critical current density and ) , .
sample dimensions, and is deduced from the solution of thilerex(h,¢")=xy,, =Xy} is the Jacobean of transforma-
model. We shall use the symbhlto denote the flux-front tion andds’=|d¢’|=|f’(h,u’)|d¢’. The netB({) is clearly
parameter. Consequently, the sample surface correspondsgeen as produced by a succession of current shells of thick-
h=0, and the innermost flux-front would be identified by nessdh. Each current shell carries a surface current density
h=h,=B,/uyJ:b, where b is one of the semi-axes of the J;=J|x|/|f'(h,u’)|dh. Since this surface current density
elliptical cross-section of the cylinder. produces uniform interior field, canceling the chardig, in

A. Current density, current shells, and flux-fronts

C. Division of current carrying region into current shells
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the applied field, it should have the same form as in[)). sides must also be equal. A comparison of the coefficients of
(with B replaced byéBy= — 6B,). This condition leads to cos k¢ and sink¢ for k=0,1,2,3. .., appearing on the

the relation right hand sides of Eq97) and (8) we get a system of
) ordinary differential equations fgy, and«,,. The equations
uod dh=26Bgpy sin(¢p+ ay— a)/|x|. (6)  can be expressed in a compact form as a system of two

matrix equations:

D. Determination of the conformal maps
_ _ Ap’'+Bqg=c, (9)
To determine the conformal maps that consistently pro-
vide the evolution of flux-fronts from the sample surface, we Cp’+Dg=d. (10
chooseugJ:.b dh=6By= — 6B, in Eq. (6) and sefJ|=J, | ith el d
as implied by the CSM. This leads to the equatigd  H€'® P. g are column vectors with elements, and qp

—2p,b|sin(@+a,—a)l. We choose x=2p;b|sin(p+a; =pnay,, respectively, and the column vzectarsandd have
—a)| which is consistent with the above equation and als!€ments ¢,=—8p,b cos 22k(01—a1)/[77(4k —1)] and d,=
consistent with the explicit expression fgrderived below, — 8P1P Sin X(a—ay))/[7(4k"—1)]. The elements of the ma-

To get this expression we return to E) and use the ex- tricesA, B, C, andD are functions op, and«, and can be
plicit form a,= p, exp(a,). Separating into real and imagi- ©Ptained as

nary parts, gives the transformation equationsxfandy in
terms ofh and ¢. Using these equations we obtain the re-
quired partial derivatives and subsequently get the expres- —(2m—2K—3)pm—_k COY am— am—) O (M—K),
sion for y. The foregoing condition provides the starting

point to determine the evolution of flux-fronts. Carrying out By, =(2m+2K—3) Pk SIN( &= &)

some simplifications and rearrangement of terms in the ex- i

pression fory we cast it as a Fourier series +(2m=2k—=3)pm-k Sin(@m— am-1) O (M—k),

Agm=—(2m+2k—3) Pk COL m— am k)

- Cnr=(2M+ 2k~ 3)Prye kSN @t~ )
x(4)= 2 {Ucos Kt Visin2kg}, (D ~(2M= 2k 3) Py Sin ) O(M—K),
where Dkm=(2m+2k—3) P+ k COL @m— @m+k)

—(2m—2k—3)pp-k CoOL vy~ am—) O (M—k),

where the function @®(m—k)=0, form=<k,and
= lotherwise . Equation®) and(10) can be formally solved

uk=m§=‘,l (2m+2K—3)Prmsk

X{Pmatm Sin(am = am-i) ~ P COS @t = ek} to obtain the derivativep’ and &', however, possibility of
o an exact solution appears very remote. A humerical solution
+ 2 (2M—2k—3)Pm_id Pm@pm SIN(@m— @) can be obtained by approximating the infinite dimensional
m=k+1 matrices by truncation and performing numerical integration

of the differential equations. We will now calculate virgin

~ P COS @~ -}, magnetization in terms of the coefficients.

oo

Vk:m§_:1 (2m+2K—3)Prmsk IV. MAGNETIZATION CURVES
- A. Virgin magnetization
X{Pmam COL @ = amyi) + P SINam— @) } The magnetization associated with a cylindrical current
o distribution is given by
= 2, (2m=2k=3)pp Pt COS 1)
m mU=(1/2A)f f (r'xJ)ydx’ dy’, (12)

+ P Sin(am—am_1)}-
" o whereA is the cross-sectional area of the sample. Changing

In the above equations the prime @R, and oy denotes  the variables of integration td(¢'), noting that the current
derivative with respect th. We also have the Fourier series density is along-axis and using Eq(6), we get

expansion

ha (7 : Sty ’
. 2 4 mv=(H*/A)fO fﬁ pisin(¢’—a)(iy’'—jx")dh d¢’,
|Slﬂ(¢+al—a)|=;—k§=:l mCOSZ((d)-Fal—a’). (12

® whereH* = uyJ.b andh,=B,/H*. In this case the cross-
As noted earlier, the conditiof)|=J. implies equality of sectional are@ = 7rab. Carrying out the integration we get
left hand sides of Eqs.7) and (8). Hence their right hand the components of magnetization as
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0 a=04

ha
IU’Omvx:(WH*/A)J’O p1{p;cog a) 104 a=0 anbs
—pzcod a,—a+ap)idh, (13 057
hy 5 00
MOmvy:(WH*/A)fo p1{pssin(a)
05
—pzsin(az—a-i—al)}dh. (14)
-1.04

We determined the set of poinig(h,) andyq(h,) for a

fixed value of the parametric angle, say=0 on the flux- 04 02 00 02 04
contour labeled byh,. Full penetration fieldB,=H*h, is (@) X

determined as the smallest simultaneous zerm(f,) and

Yo(hy). For a=0°, yqo(h,)=0 and its intersection with 10 =15

When the direction of the change in field is reversed at the

Xo(h,) is obtained by extrapolation of the latter.
054
B. Hysteresis loops

A hysteresis loop can be obtained by following the >
virgin curve upto some fiel@8,=B,, and then reversing the
field direction to reach the fiele- B,,. To complete the loop e
we carry out another field reversal to reach the fiBlg. I —— —

applied field valueB,,,, shielding currents in a certain region o - o - ”
near the surface also reverse direction. Thus the magnetiza- (b) X

tion m|(B,—h) can be obtained as a superposition

ml(Bm_ h)zmv(Bm7JC)_mv(h72‘JC)' 154 o L 75°

Finally, when the direction of the field change is reversed

once again, the magnetization during the field increasing part 07
of the cycle is obtained an{(B,)=—m|(—B,). 054 /%"
0.0

V. RESULTS AND DISCUSSION > /
0.5
We have obtained a general expression for the surface
current density producing uniform transverse interior field in 0
an oblique direction. This result is used to study the problem 54

of flux penetration in a cylindrical sample of a hard super-
conductor subjected to a transverse oblique magnetic field.
The formulation leads to an infinite system of nonlinear first
order ordinary differential equation$9),(10. We have FIG. 1. Flux-contours for an elliptic cylindrical sample with the
solved these differential equations numerically, and detersemi-axesa=0.4 andb=1.0 are shown. The outermost curve cor-
mined the values op,’s and a,'s for a set of values 0B,  responds to the sample surfadg,&0). Successive contours cor-
starting from zero value uptB,=B,, the field for full pen-  respond to a changéB,=0.04H*. Results are shown for three
etration. The number of coefficients retained in the presentrientions of the applied magnetic field) «=0°, (b) «=15°, (c)
calculation is 14. We found that retaining a larger numbere=75° measured from the-axis. The arrowheaded line in the
does not significantly alter final results. We can then condigures shows the direction of the applied field.
struct the various flux-contours as the field penetrates the
sample at a definite angle of orientatianwith a sample curved near the sample surface and is almost linear other-
symmetry axis. We have presented in Fig. 1 flux-contours fowise. The curve generated by the movement of the apex as
three differentx values for the elliptic cylindrical samplgd  the field penetrates the sample divides the current carrying
= 0.4, b= 1.0). Itis seen in Fig. 1 that the flux-contours all region into ones carrying the current densityJ, and
have a notchiapex. The apex leaves the sample surface as-J.. In the case of an elliptical cylinder far=0° and 90°
the applied field is increased. The result that apex leaves thend for a circular cylinder for allr values, the apex moves
sample surface is in general agreement with other numericalong a straight line parallel to the field direction. The linear
calculations for the case=0 and this feature has also been portion of the curve is, in general, not parallel to the applied
justified on physical ground$:'* field. The angle between the two, however, progressively de-
Apex represents the point on a flux-contour whénean-  creases as the field orientation approaches 90°.
ishes. Figure 2 depicts the movement of the apex for differ- At first sight the result presented in Fig. 2 appears contra-
ent o values. The movement, in general, is along a pattdictory to what one would expect from asymptotic consider-

© X
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0.0

-0.5
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FIG. 2. Movement of the “apex” of various flux-fronts for dif- ; . )
ferent orientions of the applied field. For the field directierthe 304 | _~— B8 2 — oo B,=0.18 H*
apex follows a curved path, the linear portion of which has a slope 1 R B,=0.10 H*
different froma. N,

ations. At very high applied fieldéeyond the field for full
penetratiof, the whole of sample carries shielding currents
and an increase in the external field does not lead to settin(
up of additional currents. At this stage one would imagine
that the chang&B in the local field is equal to the change
6B, in the applied field. Thus, B, is increased at a constant
rate, it gives rise to an electric fiel that vanishes along the ° — e —

. . . . . . 0 20 40 60 80 100 120
direction of B, . Since current must flow in the direction of I

. . . (b) Orientation Angle of B_ (o)

E, E=0 line must also represent the line of separation be- :
tween the current densitiesJ. . It is to be noted, however, FIG. 3. (a) The virgin magnetization curves for different orien-
that before full penetration it is not the electric field accom-tations of the applied magnetic field are shown By<B,, the
panying 6B, alone, that governs apex movement. One mustield corresponding to full penetration. The elliptical sample has
also consider a contribution coming from thB; generated semi-axesa=0.4 andb=1. (b) Orientation angled of M as a
by the induced currents. A straightforward but detailed calfunction of the orientation angle of the applied field is shown for
culation reveals that the local electric field duedB; gen-  differentB, values. The inset shows the sample geometry. The ori-
erated by the current densitgiready set upcontains a term entations ofM and B, with respect to the coordinate axes are
that exactly cancels that coming from the chardifg. The  shown.
resultingE leads to the apex movement depicted in Fig. 2.

All along the process of field penetratioB, is assumed In Fig. 3@ the virgin magnetization curves for different
to changequasi-statically Thus beyond full penetration an angles of field orientation are plotted for sample 1. The val-
increasesB, would generate a surface current density toues of saturation magnetizatioM¢,) andB, vary between
shield the interior from the change. The surface current derthe maximum for 0° and minimum for 90°. At each stage of
sity would relax into a current shelvolume current densijy  field penetration, we have checked that the field, generated
the net current density would now exceed the critical currenby the induced current distribution, everywhere within the
densityJ.. The relaxation would then continue by transfer- flux-contour indeed cancels the applied field. The direction
ring the excess current on the next current shell and the praf the magnetization is, however, different from that of the
cess would continue until the excess current is transferred oapplied field, implying the existence of a perpendicular com-
to the innermost current shell. Once the chafiBg has been ponent to magnetization. In Fig.(l9 we have plotted the
established all over the samplkjn the innermost shell that orientation angled of M as a function of the orientation
is in excess ofl, would start decaying. The direction Bfin ~ anglea of the applied field, for two fixed field values as
the shells external to the innermost shell does not changeell as at the saturation fiel@,. The geometry of the
during the decay ofl leaving the current distribution there sample is shown as an inset. Figuf®)Xompares well with
unchanged. Fig. 5 of Ref. 11.

The extent of proximity of the slope of the linear portion  To get an estimate of the order of magnitude of these
of the apex movement curve and that of the applied fieldjuantities, we considered a model current distribution as
direction depends on the inherent sample asymmetry about J. on either side of a line through the center, parallel to the
the applied field direction. The more asymmetric the samplepplied field and evaluated expressions for saturation mag-
the more is the deviation of the above-mentioned slope fronmetization M s, and the corresponding fiel® ,. As ex-
the applied field direction. pected, fora=0°,90° the results obtained from the model

Orientaion Angle of M (6)
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Virgin
024 yUyT—esswe | T B,=02H"
N B,=B,= (1.425 H*
or ] ST B,=05H
a=04

T b=1.0

;= 0.0 - ’\\

= S \'\ B N \\ \

-0.1 4 \\ ‘\\
™ \\\ ) \\
0.2 ) kY
0.0 T T T T d T T T T T T T T T T T
0 20 40 50 80 100 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8
o. (in degrees) (a) B,/H
FIG. 4. The variation of saturation magnetizatibh, and the oo Virgin
field for full penetrationB,,, as a function ofx is shown. We have R B U B, =02H"
also plotted the quantitieB , and M s, as a function ofa for a 0.03 LT B, =B, =0425H"
model current distribution(see text 0.024 \ LT B,=05H"

. 001l a=04
current distribution coincide with exact resultsbtained by = N b=10
our numerical proceduyeFor intermediate values af the ' * S SRS
model current distribution leads to results close to the exact= ©01
results. It is clear, however, that the true valuedvf; and -0.02 1 \ \\_

B, depend on the detailed description of field-penetration. 4, ] I X
Further, as per the model calculation, the directions of both 000 AW
B, and M ¢, are not along the applied field direction. We ' — ———

have shown the angle dependenceBgf, Mgy, B, and

M ¢ in Fig. 4. The mismatch between the model and the () a

exact values of these quantities is apparent. The true separa-
tion between the regions carryingJ at full penetration is M, components of sample magnetization are shown for various

depicted in Fig. 2. . reversal fields. The elliptic cylinder has semi-ax®es 0.4 andb
We have also presented a set of hysteresis loops for the

orientation anglex=15° for different reversal fields. In Fig.
5(a) we have shown the loops for the parallel component of
magnetizaion, while in Fig. (6) we have depicted the per-
pendicular component. These show the familiar behavior a=0.05
well-known for case oflx=0°. We may mention in passing B,
that the hysteresis loop for the perpendicular component art I T

75°

FIG. 5. Virgin curve and Hysteresis loops in tte M; and(b)

unimportant as far as the ac loss is concerned. This is entirel'  os} 1
governed by the parallel component.
To get a comparison of the effect of inherent sample

asymmetry about the applied field direction we have plotted>
in Fig. 6 the flux-contours fow=75° for sample 2a = |
0.05, b= 1.0). A comparison with Fig. @) shows the dif- 05 -
ference in the angular position of the point where the apex :
leaves the sample surface (89.2° for sample 2 and 83.5° fo ;L toos
8 . -0.|06 .

sample 1. This angle can be calculated by noting that the
pole of the current density on the sample surface is at the = -00
parametric anglep=«. For an elliptic cylinder the corre- X

sponding polar angle?zarctal{(b/a)tana}. Thus itis clear FIG. 6. Flux-contours for the field orientatian=75° are shown

that the deviation of the path of the apex from the appliedforasample with semi axes=0.05 andb=1. The outermost is the

field direction is more for more asymmetric samples. Wesample surface B,=0), successive flux-fronts correspond to a

have compared the ratid(, /M) of saturation magnetiza- changesB,=0.0084*. The shift in the orientations of the flux-
tions for perpendicular and parallel components for the samgontours compared to the earlier sample may be noted. The direc-
angle a. This turns out to be~0.468 for sample 1 and tion of B, is shown by an arrowheaded line. The dimensions of the
~2.503 for sample 2, indicating a relatively larger value for cross-section of the real sample and the field orientation with re-
the perpendicular component of magnetizaion for the seconshect to the sample symmetry axis are qualitatively shown in the
sample. inset.

-0.04 -0.02 0.00 0.02 0.04 0.06
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Finally, we have found that for the samples analyzed inmethod presented is applicable to cylinders of arbitrary
this paper, a misorientation of up to 5° about the direction ofcross-section.
the thinner dimension “a” does not lead to any significant
corrections for the quantitieB, andM,;. However, there is
a significant change in the magnetization if the misorienta- ACKNOWLEDGMENT
tion is about the direction of the thicker dimension “b.”
Lastly, we must emphasize that although we have considered The authors are grateful to Dr. G. Ravikumar for discus-
only cylindrical samples of elliptical cross-section, the sions and for providing some earlier references.
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