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Andreev reflection through a quantum dot coupled with two ferromagnets and a superconductor

Yu Zhu, Qing-feng Sun, and Tsung-han Lin*
State Key Laboratory for Mesoscopic Physics and Department of Physics, Peking University, Beijing 100871, China
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We study the Andreev reflection~AR! in a three-terminal mesoscopic hybrid system, in which two ferro-
magnets (F1 and F2) are coupled to a superconductor~S! through a quantum dot. By using nonequilibrium
Green function, we derive a general current formula which allows arbitrary spin polarizations, magnetization
orientations, and bias voltages inF1 andF2. The formula is applied to study both zero bias conductance and
finite bias current. The current conducted by crossed AR involvingF1 , F2, andS is particularly unusual, in

which an electron with spins incident from one of the ferromagnets picks up another electron with spins̄
from the other one, both enterS and form a Cooper pair. Several special cases are investigated to reveal the
properties of AR in this system.

DOI: 10.1103/PhysRevB.65.024516 PACS number~s!: 74.50.1r, 73.40.Gk, 75.70.Pa
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I. INTRODUCTION

Electrons have spin as well as charge. The application
the electron-spin property opens a fruitful field in the tran
port of ferromagnetic materials, such as the discovery of
ant magnetoresistance~GMR! and tunnel magnetoresistanc
~TMR! effects.1 On the other hand, there is growing intere
in the mesoscopic normal-metal/superconductor (N/S) hy-
brid system,2 in which Andreev reflection~AR! at theN/S
interface plays an important role in the low bias volta
regime.3 In the AR process, an electron incident with ener
E and spins picks up another electron with energy2E and
spin s̄, both enterS and form a Cooper pair, leaving a
Andreev reflected hole in theN side. One may expect tha
the interplay of the spin property of the AR process and
spin-dependent transport in ferromagnetic materials will a
new physics to mesoscopic hybrid systems, and to the fu
applications of spintronics.

Several works have been devoted to this issue. In
pioneering work of de Jonget al.,4 the transport of a
ferromagnet/superconductor (F/S) junction was studied by
scattering matrix formalism. The conductance of AR
shown to be strongly affected by the spin polarization ofF.
The idea was verified by recent experiments inF/S thin-film
nanocontact5 andF/S metallic point contact.6 Especially, in
Ref. 6, Soulenet al. successfully determined the spin pola
ization at the Fermi energy for several metals by measu
the differential conductance ofF/S metallic point contact.
Further calculations7 implied that the Fermi velocity mis
match betweenF andS also affects the AR conductance
F/S contact, and the conductance may even be enhance
the presence of spin polarization. In addition to simpleF/S
junction, F/S contact with S in d-wave symmetry,7,8 F/S
nanostructure with giant proximity effect,9,10 and more
complicated structures such asFSF double junctions,11–13

SFS double junctions,14–16S/F superlattices,17 and (NF)nS
multilayer structures18,19 were also investigated.

In this paper, we propose an idea that two sources of s
polarized electrons with different orientations are injec
into a superconductor, which can be achieved by a th
terminal mesoscopicF/S hybrid structure shown in Fig. 1. In
this system, a central quantum dot~QD! is coupled via tunnel
0163-1829/2001/65~2!/024516~9!/$20.00 65 0245
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barriers to two ferromagnetic electrodes (F1 andF2) and a
superconducting electrode~S! @hereafter, the system is sim
ply referred as to (F1 ,F2)-QD-S#. F1 andF2 are assumed to
have arbitrary magnetization orientations, spin polarizatio
and bias voltages. The bias voltage ofS is set to zero as the
ground. QD is designed to provide a link betweenF1 , F2,
and S, so that AR can take place through discrete ene
states of QD. Consider the special case thatF1 and F2 are
fully polarized, AR only involvingF1 andS or only involv-
ing F2 and S are completely suppressed, while the cros
AR involving F1 , F2, andS depends strongly on the mag
netization orientations ofF1 andF2, being suppressed if the
are in ferromagnetic alignment, enhanced in antiferrom
netic alignment. In this paper, we will derive a current fo
mula by using the nonequilibrium Green-function metho
and investigate several special cases to illustrate the pro
ties of AR’s in this system.

During the preparation of this paper, we became aw
that in the recent publication of Deutscheret al.20 a device
consisting of two point contacts between two ferromagne
tips and a superconductor was proposed. For the two
with fully but opposite spin polarizations, they suggested t
‘‘mixed’’ Cooper pair made of electrons coming one fro
each tip can be injected into the superconductor, leadin
unusual properties of such a device. Section IV of this pa
is partially stimulated by their work.

The rest of this paper is organized as follows: In Sec.
we present the model Hamiltonian and a general current
mula for the hybrid system (F1,F2)-QD-S by nonequilib-
rium Green-function method. In Sec. III, we study the ze

FIG. 1. Schematic drawing of the three-terminal system un
consideration.F1 and F2 represent two ferromagnetic electrod
with different magnetization orientations and bias voltages, QD
quantum dot, andS is a superconductor with zero voltage as t
ground.
©2001 The American Physical Society16-1
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bias conductance, assumingV15V2501. The explicit forms
of the conductance are presented and numerically studie
Sec. IV, we study the finite bias current withF1 and F2 in
antiferromagnetic alignment, and the fully spin polariz
case is discussed in detail. Finally, a brief summary is gi
in Sec. V.

II. MODEL AND FORMULATION

The system under consideration can be described by
following Hamiltonian:

H5H11H21Hdot1Hs1HT , ~1!

H15(
ks

~ek2sh12m1!aks
† aks ,

H25(
ks8

~ek2s8h22m2!bks8
† bks8 ,

Hdot5E0(
s

cs
†cs ,

Hs5(
ps

epdps
† dps1(

p
@Ddp↑

† d2p↓
† 1H.c.#,

HT5(
ks

@ t1saks
† cs1H.c.#1(

ks
@ t2sbks

† cs1H.c.#

1(
ps

@ tsdps
† cs1H.c.#.

H1 andH2 are the Hamiltonians ofF1 andF2 in the mean-
field approximation, with different magnetization orient
tions and chemical potentials. The spin bands ofF1(F2) are
split by 2h1(2h2) due to the exchange energy. The magn
tization orientation ofF1 is set as thez axis, while the ori-
entation ofF2 as thez8 axis which has an angleu with
respect to thez axis. The operators with the spin-quantizati
axisz and the operators with the spin-quantization axisz8 are
related by theD1/2 matrix as

S bk↑8
†

bk↓8
† D 5S cos

u

2
2sin

u

2

sin
u

2
cos

u

2

D S bk↑
†

bk↓
† D . ~2!

Hdot describes the quantum dot, in which only one spin
generate level is considered and the intradot interactio
ignored for simplicity.Hs is the Hamiltonian for a BCS su
perconductor with the chemical potential fixed to zero as
ground.HT depicts the tunneling between QD andF1 , F2,
andS, coupling different parts of the system together.

By introducing a 434 matrix representation and using th
nonequilibrium Green-function technique~see the Appendix
for details!, we derive the formula of the current flowin
from F1 to the QD as
02451
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I 15
e

hE dv@A11~ f 12 f̄ 1!1A12~ f 12 f̄ 2!

1Q1s~ f 12 f s!1Q12~ f 12 f 2!#, ~3!

in which

A115G1↑~G1↓uG12
r u21G1↑uG14

r u2!

1G1↓~G1↑uG34
r u21G1↓uG32

r u2!, ~4!

A125G1↑@~c2G2↓1s2G2↑!uG12
r u21~c2G2↑1s2G2↓!uG14

r u2#

1G1↓@~c2G2↑1s2G2↓!uG34
r u21~c2G2↓1s2G2↑!uG32

r u2#

1sc~G2↑2G2↓!2 Re~G1↑G12
r G14

r* 1G1↓G32
r G34

r* !, ~5!

Q1s5G1↑Gsr̃F uG11
r u21uG12

r u21uG13
r u21uG14

r u2

12 ReS 2
D

v
G11

r G12
r* 1

D

v
G13

r G14
r* D G

1G1↓Gsr̃F uG31
r u21uG32

r u21uG33
r u21uG34

r u2

12 ReS 2
D

v
G31

r G32
r* 1

D

v
G33

r G34
r* D G , ~6!

Q125G1↑@~c2G2↑1s2G2↓!uG11
r u21~c2G2↓1s2G2↑!uG13

r u2#

1G1↓@~c2G2↓1s2G2↑!uG33
r u2

1~c2G2↑1s2G2↓!uG31
r u2#

1sc~G2↑2G2↓!2 Re~G1↑G11
r G13

r* 1G1↓G33
r G31

r* !, ~7!

with r̃(v)[(uvu/Av22D2)u(uvu2D) being the ordinary
BCS density of states,s and c for the short notations of
sinu/2 and cosu/2. f 1 , f̄ 1 , f 2 , f̄ 2, and f denotef (v2V1),
f (v1V1), f (v2V2), f (v1V2), and f (v), respectively,
where f (v) is the Fermi distribution function.

The current formula is composed of four contributio
from different conducting processes:~i! A11( f 12 f̄ 1) repre-
sents the Andreev reflection throughF1-QD-S, i.e., an elec-
tron of F1 is reflected byS into a hole ofF1, which can be
judged by the thermal factor (f 12 f̄ 1). The probabilityA11

has four terms, in whichG1↑G1↓uG12
r u2 is for the subprocess

that an electron with spin↑ is Andreev reflected into a hole
with spin↓; G1↑G1↑uG14

r u2 is for an electron with spin↑ first
flips its spin in QD due toF2, then Andreev reflected into a
hole with spin↑; while the other two terms are for the simila
subprocesses involving the electron incident with spin↓ @see
Eq. ~A2! for the physical meaning of the elements ofG#. ~ii !
A12( f 12 f̄ 2) represents the crossed Andreev reflect
through (F1 ,F2)-QD-S, i.e., an electron ofF1 is reflected by
S into a hole ofF2, judged by the thermal factor (f 12 f̄ 2).
The probability A12 is much more complicated thanA11,
since the polarization orientation ofF2 has an angleu to the
chosen spin-quantization axis. The first four terms can
6-2
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ANDREEV REFLECTION THROUGH A QUANTUM DOT . . . PHYSICAL REVIEW B 65 024516
interpreted similarly to those ofA11, by ‘‘projecting’’ the
spin polarization ofF2 to the chosen axis, while the last fou
can be viewed as their interference terms.~iii ! Q1s( f 12 f s)
represents the single-particle tunneling throughF1-QD-S,
judged by the thermal factor (f 12 f s). The probabilityQ1s
can be divided into two subgroups, corresponding to the p
cesses involving electron with spin↑ and spin↓, respectively.
Each subgroup contains four subprocesses and their inte
ence terms.~iv! Q12( f 12 f 2) represents the single-partic
tunneling throughF1-QD-F2, and the probabilityQ12 can be
analyzed similarly to the above three.~A similar physical
interpretation can be found in Refs. 21 and 22.!

One can obtain the current flowing fromF2 simply by
exchanging the indices 1 and 2 in the above formula, and
current flowing fromScan be deduced by the relation of th
current conservation,I 11I 21I s50. The current formulas
Eqs.~3!–~7! are the central result of this work, which can b
applied to ferromagnetic electrodesF1 andF2 with arbitrary
spin polarizations, magnetization orientations, and bias v
ages.

In the following numerical studies, we assume th
ueV1u, ueV2u,D, andkBT!D. The Q1s process will vanish
because of the factorr̃ and the Fermi function differenc
( f 12 f s). The Q12 process will be ruled out in two specia
cases:F1 andF2 are either equally biased~Sec. III! or fully
but oppositely polarized~Sec. IV!. We will concentrate on
AR processesA11 ~direct AR throughF1-QD-S) and A12
@crossed AR through (F1 ,F2)-QD-S#, and investigate sev
eral special cases to illustrate the properties of these
AR’s.

FIG. 2. The zero-bias conductanceG vs P for F-QD-S, whereP
is the spin polarization ofF. r[GR /GL is the ratio of coupling
strengths, withr>1 for ~a! and r<1 for ~b!.
02451
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III. ZERO-BIAS CONDUCTANCE

In this section, we study the zero-bias conductance
taking V15V2501. Since there is no bias voltage betwe
F1 and F2, there is no net single-particle current flowin
between them. ForkBT!D, the single-particle current from
F1 or F2 to S is also negligible. Therefore only AR’s
contribute to the conductance. For simplicity, we setkBT
50 and E050, introduce the spin polarizationPb[(Gb↑
2Gb↓) /(Gb↑1Gb↓) , and the spin-averaged couplin
strengthGb[ 1

2 (Gb↑1Gb↓), with b51,2 for F1 and F2, re-
spectively.

First consider the simplest case in whichG250,
G1[GL ,P1[P,Gs[GR . Then the three-terminal system
(F1 ,F2)-QD-S reduces to a two-terminal systemF-QD-S,
and the conductance is easily obtained from the current
mula as

GFDS5
4e2

h

~12P2!r 2

~12P21r 2!2
, ~8!

FIG. 3. The total conductanceG vs u for (F1 ,F2)-QD-S, where
u is the angle between the orientations ofF1 and F2, with G1

5G2[G, P15P2[P, andr[G0 /(G11G2).
6-3
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wherer[GR /GL is the ratio of the two coupling strength
Analogous to the matching condition of the Fermi velocit
in F/S contact ~i.e., kF↑kF↓5kS

2), here P21r 251 ~i.e.,
GL↑GL↓5GR

2) plays the similar role. Forr .1, the matching

condition can never be satisfied, soGFDS decreases monoto
nously with the increase ofP @Fig. 2~a!#. While for r ,1,
there exists a certain value ofP, say P0, satisfyingP0

21r 2

51, soGFDS first increases withP , reaches its maximum
value 4e2/h at P5P0, then drops to 0 whenP approaches 1
@Fig. 2~b!#. This result warns us to be careful to deduce
spin polarization ofF from AR conductance ofF-QD-S.

Next, consider the general case of the three-terminal
tem (F1 ,F2)-QD-S. Similar to the composition of polarize
light, the total current~or total conductance! of F1 and F2

are equivalent to that of an effective ferromagnetF̃. Intro-
duce the spin-polarization vectorsqW 1 and qW 2, whereqW b has
the magnitude ofGbPb and the direction of the magnetiza
tion direction ofFb , with b51,2. It is easy to test that thes
.

02451
e
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vectors obey the vector composition rule, i.e.,qW 5qW 11qW 2, in
which qW is the spin polarization vector ofF̃. Therefore the
effective parameters ofF̃ are

G̃5G11G2 ,

P̃5
@~G1P1!21~G2P2!212G1P1G2P2cosu#1/2

G11G2
. ~9!

As a result, the total conductance ofF1 and F2 can be ob-
tained as

G[G11G25GFDS~ P̃, r̃ !, ~10!

in which GFDS has the same form as in Eq.~8!, P̃ is the

effective polarization, andr̃ is defined byGs /G̃. Then the
conductance ofF1 and F2 can be expressed by the tot
conductance multiplied by a sharing factor,
G15G
G1

21G1G22~G1
2P1

21G1P1G2P2 cosu!

G1
21G2

212G1G22~G1
2P1

21G2
2P2

212G1P1G2P2 cosu!
, ~11!

G25G
G2

21G1G22~G2
2P2

21G1P1G2P2 cosu!

G1
21G2

212G1G22~G1
2P1

21G2
2P2

212G1P1G2P2 cosu!
. ~12!
ing
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Figure 3 shows the curves ofG vs u ~which also can be
viewed as 2G1 vs u or 2G2 vs u) for the symmetric case, in
which G15G2[G and P15P2[P. For r 51, G increases
with the increase ofu or decrease ofP. For r .1, the curves
of G vs u is qualitatively the same as those ofr 51, but the
conductance is lowered and more sensitive toP. For r ,1,
the variation is more complicated: ifP2,12r 2, G decreases
with the increase ofu or decrease ofP; if P2.12r 2, G has
the maximum 4e2/h at u satisfying @P cos (u/2)#2512r2.

FIG. 4. ARMR vsP in (F1 ,F2)-QD-S, where ARMR[(GAF

2GF)/(GAF1GF), P and r have the same meaning as in Fig. 3
These results are readily understood by the new match
condition P̃21r 251 with the effective spin polarizationP̃
5P cos (u/2).

Two points are noteworthy in the above result:~i! If F1
andF2 are regarded as a whole, the effective polarization
be tuned continuously by changing the angle of the mut
orientations, which is impossible for one chosen ferrom
net. ~ii ! For r>1, the total conductance for the two ferro
magnets in antiferromagnetic alignment is larger than tha
ferromagnetic alignment, which is completely different fro
the effect of GMR or TMR. To describe this interesting effe
of magnetoresistance, define the ratio of Andreev reflec
magnetic resistance~ARMR! in (F1 ,F2)-QD-S by

ARMR[
GAF2GF

GAF1GF
. ~13!

the curves of ARMR vsP for variousr are shown in Fig. 4.
Figure 5 shows the curves ofG1 vs u for an asymmetric

case, in whichP151, P2 is arbitrary, andG15G25Gs/2.
SinceF1 is fully polarized, the conductance ofF1 is sensi-
tive to the spin polarization and orientation ofF2. For P2
50, G1 does not depend onu; while for P251, G1 strongly
depends onu, with G150 at u50 andG154e2/h at u5p.
We suggest that this effect can be applied to measure the
polarization ofF2. In practice, one may choose a half me
material asF1, the ferromagnetic material to be measured
6-4
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ANDREEV REFLECTION THROUGH A QUANTUM DOT . . . PHYSICAL REVIEW B 65 024516
F2, and changing the spin orientation ofF1 by applying an
external magnetic field, then the spin polarization ofF2 can
be deduced from the weak/strong dependence ofG1 on u.

IV. FINITE BIAS CURRENT

Now we turn to investigate the nonequilibrium transp
of (F1 ,F2)-QD-S. For simplicity, we only consider the an
tiparallel orientation ofF1 andF2 ~i.e.,u5p!, with finite but
small bias voltages~i.e., ueV1u,D and ueV2u,D). Notice
that the self-energy becomes block diagonal due tou5p,
and the expression of currentI 1 can be simplified as

I 15
e

hE dv@A11~ f 12 f̄ 1!1A12~ f 12 f̄ 2!

1Q1s~ f 12 f s!1Q12~ f 12 f 2!#, ~14!

A115G1↓G1↑uG12
r u21G1↑G1↓uG34

r u2,

A125G2↑G1↑uG12
r u21G2↓G1↓uG34

r u2,

Q1s5G1↑Gsr̃F uG11
r u21uG12

r u212 ReS 2
D

v
G11

r G12
r* D G

1G1↓Gsr̃F uG33
r u21uG34

r u212 ReS 1
D

v
G33

r G34
r* D G ,

Q125G2↓G1↑uG11
r u21G2↑G1↓uG33

r u2.

At zero temperature and in the low bias regime, the c
rent of theQ1s process vanishes. Further assuming that b
F1 and F2 are fully polarized, bothQ12 and A11 processes
are also forbidden. Only the process ofA12, i.e., crossed
AR’s involving F1 , F2 andS, contributes to the current.I 1
and I 2 are derived as

I[I 15I 25
e

hE dvG2↑G1↑uG12
r u2~ f 12 f̄ 2!. ~15!

FIG. 5. The conductanceG1 vs u for different P2, with P151
andr 51. G1 has strong/weak dependence onu for large/smallP2,
which can be applied to measure the spin polarization ofF2.
02451
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Notice that I 15I 2 holds even ifG1ÞG2 and V1ÞV2, be-
causeI 1 is pure spin↑ current andI 2 is pure spin↓ current
while I 11I 2 is required to be non-spin-polarized current
the superconductor. For simplicity, we further assume t
G1↑5G2↑[GL (G1↓5G2↓50 due to P15P251) and Gs
[GR , then the system (F1 ,F2)-QD-S is similar to a special
N-QD-S one, in which the two spin bands ofN have differ-
ent chemical potentials controlled byV1 andV2. Define the
transmission probability of crossed AR’s byTAR(v)
[GL

2uG12
r u2, the current can be expressed as

I 5
e

hE2V2

V1
TAR~v!dv. ~16!

Notice thatTAR(v) is an even function ofv, the above
current formula implies that the sign ofI 1 or I 2 is not deter-
mined byV1 or V2 but by 1

2 (V11V2). This is quite unusual
because it contains the case thatV1.0 and V2,0 but I 1
5I 2.0 ~this unusual property was previously addressed
Ref. 20!. Generally, for a three-terminal system, one m
expect that current flows out of the terminal with highe
voltage and into the terminal with lowest voltage. But for t
current conducted by crossed AR’s, the sign of current
each ferromagnetic terminal is linked to the averaged che
cal potential of the two, because two ferromagnets coope
with each other in this process, with total energy balanc
Figure 6 illustrates the conducting process correspondin
the case ofI 15I 2.0 with m1.0 and m2,0 but 1

2 (m1
1m2).0.

We ignore the energy structure of QD in Fig. 6 for sim
plicity, however, the currentI[I 15I 2 depends strongly on
the transmission probability of QD. In fact,I is the integral
of TAR(v) over the range of (2V2 ,V1). Figure 7 shows the

FIG. 6. Schematic diagram of nonequilibrium transport
(F1 ,F2)-QD-S. F1 and F2 are in antiferromagnetic alignmen
marked by left- and right-slanted shadows, respectively.S is marked
by crossed shadowing, with the energy gap region6D with respect
to the chemical potential; QD is between the two barriers, and
energy structure is ignored for simplicity. The diagram illustrates
unusual property of the current conducted by crossed AR involv
F1 , F2, and S: the signs of I 1 or I 2 are determined by1

2 (m1

1m2) rather thanm1 or m2.
6-5
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FIG. 7. The currentI[I 15I 2 vs the bias voltages (V1 ,V2) for three typical cases:~a! GL!GR ; ~b! GL5GR ; and ~c! GL@GR . The
surface ofI (V1 ,V2) has a close relationship to the spectrumTAR(v), which can be used to extract the latter.
024516-6
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ANDREEV REFLECTION THROUGH A QUANTUM DOT . . . PHYSICAL REVIEW B 65 024516
surfaces ofI (V1 ,V2) and correspondingTAR(v) spectrum
for three typical cases ofGL and GR . In Fig. 7~a!, GL

!GR , the spin degenerate level of QD is hybridized to tw
Andreev bound states due to coupling withS, while the cou-
pling with F1 andF2 provides the small broadening to the
bound states.TAR has two peaks with the maximum of unit
at each of the Andreev bound states. Correspondingly,
surface ofI (V1 ,V2) has five steps: the highest step cor
sponds to (2V2 ,V1) covering both of the peaks; the seco
step~including two patches! corresponds to (2V2 ,V1) cov-
ering one of the peaks; the third step~including three
patches! corresponds to (2V2 ,V1) or (V1 ,2V2) covering
none of the peaks; the fourth step~including two patches!
corresponds to (V1 ,2V2) covering one of the peaks; and th
lowest step corresponds to (V1 ,2V2) covering both of the
peaks. In Fig. 7~b!, GL5GR , the Andreev bound states a
sufficiently broadened so that the two peaks inTAR merge
into one. The one peak structure ofTAR spectrum corre-
sponds to three step pattern inI (V1 ,V2) surface. In Fig. 7~c!,
GL@GR , the resonant level of QD is significantly broadene
as a result,TAR is small and flat with tails atv56D. The
structurelessTAR spectrum corresponds to a plain
I (V1 ,V2) surface, proportional to12 (V11V2). In short, the
TAR spectrum can be extracted from the measurement of
I (V1 ,V2) surface.

V. CONCLUSIONS

In this paper, we have investigated the Andreev reflect
in a (F1 ,F2)-QD-S system. By using the nonequilibrium
Green function, a general current formula is derived, allo
ing arbitrary spin polarizations, magnetization orientatio
and bias voltages inF1 and F2. The formula is applied to
several special cases, revealing some interesting properti
this system:~i! Analogous to the Fermi velocity mismatch
F/S contact, the zero-bias conductance inF-QD-S reaches
its maximum 4e2/h if the matching conditionGL↑GL↓5GR

2

is satisfied. ~ii ! For total current ~conductance! of
(F1 ,F2)-QD-S with V15V2, the two ferromagnetsF1 and
F2 are equivalent to an effective ferromagnetF̃, and the
effective polarizationP̃ can be tuned by the angle betwe
the spin orientations ofF1 andF2. ~iii ! There is a different
effect of magnetoresistance in (F1 ,F2)-QD-S ~named
ARMR!, in which the conductance forF1 andF2 in antifer-
romagnetic alignment is larger than that in ferromagne
alignment. Based on this effect, a possible way to meas
the spin polarization of ferromagnetic material is propos
~iv! The nonequilibrium transport of this system is qu
unusual. Especially ifF1 and F2 are fully but opposite po-
larized, the signs of the current throughF1 and F2 is de-
termined by1

2 (V11V2) rather thanV1 or V2. Furthermore,
the surface ofI (V1 ,V2) depends strongly on the AR tran
mission probability, which can be applied to extract the l
ter. Finally, we believe that the suggested (F1 ,F2)-QD-S
system is accessible with up-to-date nano technology, and
are eager to see relevant experiments on such an appe
system.
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APPENDIX

In this Appendix, we present the detailed derivation of t
formulas~3!–~7! by using the nonequilibrium Green functio
and introducing a 434 matrix representation.

Since the current through QD can be expressed in te
of the Green functions of QD, we first derive the retard
and distribution Green functions by the Dyson equation a
the Keldysh equation. To include the physics of Andre
reflections and the spin-flip processes in a unified formu
tion, we introduce a 434 matrix representation, in which th
Green function is defined as

G[K K S c↑
c↓

†

c↓
c↑

†

D U ~c↑
† c↓ c↓

† c↑!L L . ~A1!

The physical meaning of the elements ofG is illustrated in
the following:

~A2!

in which e↑←h↓ represents the process that a hole w
spin↓ is converted into an electron with spin↑, etc.

Let Gr denote the Fourier transformed retarded Gre
function of QD, andGr can be solved by the Dyson equatio

Gr5gr1grSrGr , ~A3!

in which gr is the retarded Green function of an isolated Q
andSr is the self-energy due to couplings between QD a
leads.gr can be easily obtained as
6-7
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gr51
1

v2E01 i01
0 0 0

0
1

v1E01 i01
0 0

0 0
1

v2E01 i01
0

0 0 0
1

v1E01 i01

2 , ~A4!

while Sr consists of three parts,

Sr5S1
r 1S2

r 1Ss
r . ~A5!

S1
r is the self-energy from the coupling between QD andF1, given by

S1
r 52

i

2 S G1↑ 0 0 0

0 G1↓ 0 0

0 0 G1↓ 0

0 0 0 G1↑

D , ~A6!

in which G1↑ andG1↓ are the spin-dependent coupling strengths defined byG1s[2pN1sut1su2, with N1s being the density of
states of spins band ofF1. S2

r is the self-energy from the coupling between QD andF2, given by

S2
r 52

i

2 S c2G2↑1s2G2↓ 0 sc~G2↑2G2↓! 0

0 c2G2↓1s2G2↑ 0 sc~G2↑2G2↓!

sc~G2↑2G2↓! 0 c2G2↓1s2G2↑ 0

0 sc~G2↑2G2↓! 0 c2G2↑1s2G2↓

D , ~A7!
s

q.

en
h

are
ed
in which s[sin (u/2), c[cos (u/2), G2↑ , and G2↓ are de-
fined similarly toG1↑ andG1↓ . Ss

r is the self-energy from the
coupling between QD andS, given by

Ss
r52

i

2
Gsr~v!S 1 2

D

v
0 0

2
D

v
1 0 0

0 0 1
D

v

0 0
D

v
1

D , ~A8!

in which Gs[2pNsutsu2, with Ns being the density of state
when the superconductor is in the normal state,r(v) is the
modified BCS density of states defined by

r~v![5
uvu

Av22D2
uvu.D

v

iAD22v2
uvu,D.

~A9!
02451
ThusGr can be obtained by solving the Dyson equation, E
~A3!.

Let G, denote the Fourier transformed distribution Gre
function of QD, andG, can be obtained by the Keldys
equation

G,5GrS,Ga. ~A10!

Notice that the advanced Green function and self-energy
the Hermitian conjugations of the corresponding retard
Green function and self-energy. AndS, can be obtained by
applying the fluctuation-dissipation theorem to each ofS1

, ,
S2

, , andSs
, ,

S,5S1
,1S2

,1Ss
, ,

S1
,5F1~S1

a2S1
r !,

S2
,5F2~S2

a2S2
r !,

Ss
,5Fs~Ss

a2Ss
r !, ~A11!

in which
6-8
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F15S f 1 0 0 0
0 f̄ 1 0 0
0 0 f 1 0
0 0 0 f̄ 1

D , ~A12!

F25S f 2 0 0 0
0 f̄ 2 0 0
0 0 f 2 0
0 0 0 f̄ 2

D , ~A13!

Fs5S f 0 0 0
0 f 0 0
0 0 f 0
0 0 0 f

D , ~A14!
a

m
a

h

e

e

02451
where f 1 , f̄ 1 , f 2 , f̄ 2, and f denote f (v2V1), f (v1V1),
f (v2V2), f (v1V2), andf (v), respectively, in whichf (v)
is the Fermi distribution function.

Then, the current flowing fromF1 to the QD can be ex-
pressed in terms ofGr andG, as

I 15I 1↑1I 1↓5
e

hE dv@~GS1!,1H.c.#11133, ~A15!

in which we have used the compact notations@AB#,

[ArB,1A,Ba and@ #11133[@ #111@ #33. After some al-
gebraic manipulations, the current can be divided into c
tributions from four conducting processes, as shown and
terpreted in Sec. II.
s.
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