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We develop an optimized perturbation theory for the Ginzburg—Landau description of thermal fluctuations
effects in the vortex liquids. Unlike the high temperature expansion which is asymptotic, the optimized
expansion is convergent. Radius of convergence on the lowest Landau layel is3 in two dimensiong2D)
anda;=—5 in three dimension§3D). It allows a systematic calculation of magnetization and specific heat
contributions due to thermal fluctuations of vortices in strongly type-1l superconductors to a very high preci-
sion. The results are in good agreement with existing Monte Carlo simulations and experiments. Limitations of
various nonperturbative and phenomenological approaches are noted. In particular we show that there is no
exact intersection point of the magnetization curves both in 2D and 3D.
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[. INTRODUCTION have been consideréd.Tesanovic and co-workers devel-
oped a method based on an approximate separation of the
Thermal fluctuations play a much larger role in hip  two energy scalédin both 2D and 3D. The larger contribu-
superconductors than in the low temperature ones becau$en (98%) is the condensation energy, while the smaller one
the Ginzburg parameter Gi characterizing fluctuations ig2%) describes motion of the vortices. The theory explains
much larget- In addition the presence of magnetic field andthe intersection of the magnetization curves. This question
strong anisotropy in superconductors like BSCCO effectivelyhas been tackled in 2D by rather phenomenological approach
reduces their dimensionality thereby further enhancing efin Ref. 14. Some Monte Carlo simulations are availdBi€.
fects of thermal fluctuations. Under these circumstances théleantime experimental precision increased dramatically.
mean field line separating Abrikosov lattice from “normal” New methods like measurement of magnetization using the
phase becomes a phase transition between vortex lattice aht@ll probes were invented. One can achieve a precision that
liquid far below the mean field phase transition fidelearly ~ allows clearly to see a tiny magnetization jumps of only 0.1
seen in both magnetizatidand specific heat experimerits. Oe in BSCCO and a sharp peak in specific heat in YBCO.
Between the mean field transition line and the melting point In this paper we apply optimized perturbation theory
physical quantities like the magnetization, conductivity, and(OPT) first developed in field theoty~*°to both the 2D and
specific heat depend strongly on fluctuations. Several exper8D LLL model. It allows to obtain a convergent serieather
mental observations call for a refined precise theory. For exthan asymptotic and therefore to calculate magnetization
ample, a striking feature of magnetization curves intersectingnd specific heat of vortex liquids with definite precision.
at the same poinﬂ'(* ,H*) was observed in a wide rage of The pI'ECiSiOI’] for various values of the LLL scaled tempera-
magnetic fields in both layere@D or quasi-2® materials ~ turear are given in Tables Ill and IV. The radius of conver-
and more isotropic onésTo develop a quantitative theory of gence isar=—3 in 2D anda;= —5 in 3D. One the basis of
these fluctuations even in the case of the lowest Landau levéis one can make several definitive qualitative conclusions.
(LLL) corresponding to regions of the phase diagramlhe intersection of the magnetization lines in only approxi-
“close”to H,, is a very nontrivial task and several different mate not only in 3D(the result already observed in Monte
approaches were developed. Carlo simulation'®) but also in 2D. The theory by Tesanovic
A long time ago Thouless and Rugdé}’proposed a per- et al’®in 2D describes the physics remarkably well in high
turbative expansion around a homogenegiggiid) state in  temperatures, but deviates on the 5-10% precision level at
which all the “bubble” diagramgsee Fig. 5 are resummed. ar=—2. Part of these resultghe 2D has been briefly pre-
Unfortunately they proved that the series are asymptotic an@ented in Ref. 20.
although the first few terms provide accurate results at very The paper is organized as follows. The models are defined
high temperatures, the series become inapplicable for LLLN Sec. Il and the general OPT described in Sec. Ill. The 2D
dimensionless temperatura; ~ (T—Tn(H))/(TH)¥2  and the 3D calculations are described in Sec. IV. Results and
smaller than 2 in 2D quite far above the melting lite- ~ comparison with other theories and experiments are given in
lieved to be located arouray= —12). Generally attempts to Sec. V. We conclude in Sec. VI.
extend the theory to lower temperatures by the Borel trans-
form or Pade extrapolation were not succesS$f@everal Il. MODELS
nonperturbative methods have been also attempted.
Originally the RG method was propogeshd developetd
although, since the transition is first order, no solutions of the To describe fluctuations of order parameter in thin films or
RG equations can been found. The set of perturbative “parlayered superconductors one can start with the Ginzburg—
quet” diagrams! have been resummed and the lagémit Landau free energy:

A. The 2D model
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) 72 5 ) b’ . (=f) and will mainly_study only the rescaled partition func-
F:sz d X2mab|D¢| —alyl*+ EM : @ tion Z,(a7)= Dy, Dy exp(—f)=2/J, whered is a Jacobian.
. o Consequently to obtain, for example, the free energy density
whereA=(By,0) describes a constant magnetic fid®n-  from the corresponding quantity in the rescaled moigl

sidered nonfluctuatingin Landau gauge and covariant de- _ —4mlogZ, V', one should use the following relation:
rivative is defined byD=V —i(27/dy)A,dy=hc/e*. For

strongly type Il superconductors like the high cuprates TlogZz T V' (—4wlogZJd)

(k~100) and not too far fromH, (this is the range of RV 2577

interest in this paper, for the detailed discussion of the range

of applicability see Ref. 21magnetic field is homogeneous T [b)2 8raT b

to a high degree due to superposition from many vortices. = —(—) 0g A\ /—)

For simplicity we assume&(T)=aT.(1-1),t=T/T,, al- 2m\ ¢ b'T 4

though this temperature dependence can be easily modified Nk

to better describe the experimenkdl,(T). The thickness of _<_) . (8)
a layer isL, . aml &) °°

Throughout most of the paper will use the coherence-rom now on we work with rescaled quantities only and
length ¢=h®/(2mapaTc) as a unit of length and (g|ate them to measured quantities in Sec. V.
[dH(T)/dT]T=®y/27&? as a unit of magnetic field. Af-

ter the c,)rdezr para_lmeter_ field is rescaled af B The 3D model
—(2aT./b") 4", the dimensionless free ener@he Boltz- ) ) .
mann factoy is For 3D materials with asymmetry along thexis the GL
model takes a form
F 1 ) 1 5 1-t 5 1 4
=== [ @ Slou- Sl el @ W[ et | J?
T o 2 2 2 — 3 _
F d Xom \% ﬁcA v
The dimensionless coefficient describing the strength of fluc- ab
tuations is h? ) , b
+5—[d.4°+aly|*+ 5[4 C)
/ 2 2.2+ \2 2m; 2
2 Gimtt= M i 1(32778 “CTe) 3 which can be agai led int
w= = C=g |l ———— |, which can be again rescaled into
2124l 2\ ez, ¢

where Gi is the Ginzburg number in 2D . When 1 f_E_EJ' d3x
—b)/12b<1, the lowest Landau level approximation can be T o

1 1 1-t 1
- 24 2_ " 24, 4

used?! The model then simplifies due to the LLL constraint, (10
—(D*12)y=(bl2)y to by X— &x,y— &y,z— &zl vy y?— (2aT./0") 2, where y
=m./my, is anisotropy. The Ginzburg number is now given
f_F_lfdz 1-t-b ., 1 o by
=g=| I -l 5l @
. - . . 1 32me?k?ET M2\ 2
This reduced model exhibits the LLL scaling. Rescaling GiE_(we;;—iCy . (11
againx—x/\b,y—y/\b, and|y|?>—|¢|?>Vbwl4m, one ob- 2 ch
tains Within the LLL approximation,
1 1
— | g2 24 Z1ul? F 1 1 1-t—b 1
(=7 an{arduit+ 510 } R I L Bl U IV
where the 2D LLL reduced temperature (12
I l—t—b It also possesses an LLL scaling different from the
ar=— /b_w > (6) 2D one. After a rescaling x—x/yb,y—y/\b,z
w

—7[ (bwl/4m\2)] R y?—[(bwldm\2)]?3y?, the dimen-
is the only parameter in the thed®’ In total, we have done Sionless free energy becomes
the rescaling

1 1
SlapPradyl?+Slvl*. (19

1
f=——| d%
2aT bw 4 ZJ
|2 =9 TC ( VE)' x— &x1\b,y— gyl \b. ™2
@ The 3D reduced temperature is
-2/3
We will be interested in thermodynamic propertiEs of the A= _( bw ) 1-t-b (14)
model determined by partition functiod= [D /D exp T 47r\/§ 2
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The re]ation betyveen the original and scaled quar(\ﬁtg_ 3D f = min?n[G]. (19)
Jacobian contains an ultraviolet divergent term which can-
cels the corresponding one loop divergence and is not written

here is The leading order of this expansion, the Gaussian approxi-
mation, has been used since early days of quantum mechan-
TIogZ T V[ 477\/§|°9er) ics and in particular was popularized by Feynmamhe
\% 47.,\/5 V2 V& higher orders however were defined and explored only more
recently. Until now the method has been applied and com-
T Jyb[ bw v prehensively investigated in quantum mechanics dRlgf.
= 3 eff (15 19 and references therginlthough attempts in field theory
T A4x & 477\/—
have been mad€
Ill. GENERAL IDEA OF THE OPTIMIZED GAUSSIAN
PERTURBATION THEORY FOR SCALAR FIELDS IV. OPT IN THE GINZBURG —LANDAU MODEL
We will use a variant of OPT, the optimized Gaussian A. 2D

series® to study the vortex liquid. It is based on the “prin-  Due to the translational symmetry of the vortex liquid

ciple of minimal sensitivity” idea’ first introduced in quan-  there is only one variational parameter, in the free energy
tum mechanics. Any perturbation theory starts from dividingdefined by

the Hamiltonian into a solvable “large” part and a perturba-

tion. Since we can solve any quadratic Hamiltonian we have

a freedom to choose “the best” such quadratic part. Quite K= i|¢|2
generally such an optimization converts an asymptotic series

into a convergent onésee a comprehensive discussion, ref-

erences and a proof in Ref. 1Here we describe the imple- o 1
mentation of the OPT idea using a simple model of a real v=14—/|auyl®+ |y (20)
scalar fielde, 4m 2

f=3¢D 1p+V(¢), (16) whereay=ar—e¢. It is convenient to use the quasimomen-

tum eigenfunctions similar to those used extensively in the

-1_ __ g2 2 H I I .
where D™ "=—-V<“+m- is considered as a matrix in the"vortex lattice:

function space. The free energy is divided into the “large
quadratic part and a perturbation introducing variational pa-

rameter functiorG~!: 27 7-rI(I— 1) Zw(x—ky)
\/_ 2 ex 5 - | —xk,
f=K+av, maal= A
1 -1 1 -1 277 2
K=32¢G “dv=Ff-346G "¢. (17) Y+k—aA Lo, (21
up

Here the auxiliary parameter was introduced to generate a

perturbation theory. It will be set to one at the end of thewherea, = JamlJ3. We expand
calculation. Expanding the logarithm of the statistical sum to

ordera"*?, 0
@
wo0= [ 22 0. (22
sz Do exp(—K)exp(— av) (V2m)
1 _ Then the propagator in the quasimomentum basis is
=J D¢, 7 (av) exp—K),
)= 2T skt 23
7 [G]=—logZ (W g(1))=—=lk+1). (23
n+1
—log fqu exp—K) |- E ( <U " In the coordinate space
(18 —_— X >
where ( )k denotes the sum of all the connected Feynman (@) (o) .

diagrams withG as a propagator and then taking-1, we
obtain a functional ofG. To define thenth order OPT ap- FIG. 1. Feynman rules for OPEa), (b), (c) are propagator, the

proximantf, one minimize&n[G] with respect taG: four-line vertex and the mass insertion, respectively.
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FIG. 2. Feynman diagrams for Gaussiam=()0 free energy
T,[G] prior to minimization.
(" (X1,Y1) ¥(X2,Y2))
The Feynman rules are given in Fig. 1. We have a propagator
denoted by a directed line, Fig(d), connecting two points
(X1,y1) to (X2,Y,). For the first term irv, we have a vertex Cm

represented by a dot on a line, Figiclwith a value of
(al4m)ay . The second term is a four line vertex, Figb), _
with a value of @/4m)3. To calculate the effective energy U 0
density feg= —4mInZ, we draw all the connected vacuum  F|G. 4. Additional(to those in Figs. 2 and)Feynman diagrams
diagrams. Then one of the coordinates is fixed, and all thg,, n=> free energyf,[ G] prior to minimization.
others are integrated out. We calculated directly diagrams up
to the three loop order shown on Figs. 2, 3, and 4 with theqowever to take advantage of the existing long series of the
following result: nonoptimized Gaussian expansion, we found a relation of the
OPE to these series. Originally Thouless and Ruggeri calcu-
2 ay € lated these seriek,; to sixth order, but it was subsequently
;+?+|Og4wz ' extended to 12th by Hikanet al?* and to 13th by Hu and
MacDonald?® It can be presented using variabletroduced
by Thouless and Ruggeti,

:_2 =—(aT+ Jas+16), (26)

2 i
= gexp{ - E(Xl_XZ)(y1+y2)

1
xexp{ - Z[(xl—xz)2+(y1—yz)2]]- (24)

?0:2*

1 2.2
flzfo__4(18+8aH8+aH8 ),
&

-~ ~ 2 .
fo=1fi+ F(6GZ+ 324a,¢e+54a%c?+3a’e%). (25) @S follows:
&

fa=2 log— +2f5(X), 27
O OO )
fZD(x)znZl cx". (28)

The coefficients are given in Table. I. We can obtain all the
C) (v) OPT diagrams which do not appear in the Gaussian theory

by insertions of bubbles and vertex Figcilinsertions from

the diagrams contributing to the nonoptimized theory.

Bubbles or “cacti” diagrams, see Fig. 5 are effectively in-
m serted in Eq(27) by technique known in field theof,

for=210g— +2f5(x),
41

©) » (d)
FIG. 3. Additional(to those [1 Fig. 2 Feynman diagrams for X= % :_(82+ ‘/82_;_ 16a). (29
post-Gaussiann(=1) free energyf,[ G] prior to minimization. €1
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TABLE I. Coefficientsc,, andz, in 2D. oscillatorr®) the best root is the real root with the smallest
absolute value. The rootg, for n=0 ton=12 are given in
n Cn Zn-1 Table. 1.
1 9 _y We then obtaine(ar)=(as+ \/aT2—4zn)/2 solving z,
2 -1 _6 =g-ay=car—e2. Forzo=—4, we obtain the Gaussian re-
3 38 12239721 181 139 888 sult, dashed line marked “T0O” on Fig. 1 of Ref. 20.
) .
4 -39-2 —7.508 888 400 035 477
5 471.39659451659446  —7.349933383 279474 B. 3D
6 —6471.5625749551446  —14.152 646 217 045 422 In the 3D, the LLL Ginzburg—Landau model, we set
7 101 279.327 84597063 —9.961 364 397 930 787
8 —1779798.787 594 7522 —9.174960576 928 443 ) 1 )
9 34709019.614363678  —15.232548 389 083844 K=oz elyl*+ 5lo41%],
10 —744093435.66822231  —11.629924 499110 746
11 17 399 454 123.559 521 —10.839 981 752 5306 1
_ _ o
12 440863989 257.285 10 15.936 692 766 1989 v=+ aH| ¢|2+§| w|4} , (33
13 12 035432 945 204.531 —12.753 308 785 106 007 472
whereay=at—e¢ and

Summing up all the insertions of the mass vertex is achieved
by exfizk,]ey(X)

¢(X)=f fﬁlﬁ(k)- (34

e,=e+taay. (30 kgl (V2m)

We then expand 4 to ordera™"1, and then takingg=1,to  The propagator is
obtainf,,. Calculatingf,, that way, we checked that indeed

the first three orders agree with the calculation performed by 42
a direct calculation. Here a few more terms are displayed, (p(K)p(1))= 2 o(k+1), (35
e+ —
v 8133 2643, 182 16a% af; 2
3772 g8 ge7 K &5 24 or in the coordinate space
_ . 218943 13012.8 ((X1,Y121) ¥(X2,Y2,22))
fu=Tat
AR & V2 [ exdik,(z1—25)] i
= ?fk e 5 (X1=X2)(y1+Y2)
3089.3%% 360a% 20a) 0.4a} 2 g4 2
+ Tt t—t—. (3D 2
& & € &
1
Thenth OPT approximant,, is obtained by minimization of X exp[ — Z[(xl—x2)2+(y1—y2)2]] . (36)

T.() with respect tce,
Thus the propagator in the coordinate space factorizes into a
. (c,a4)=0. (32 function of c_oordinates>(,y) p_erpendicular to r_nagnetic field
Mo and a function of the coordinate parallel to it. The mass
insertion vertex, Fig. (t), now has a value ofd/47\2)ay,
while the four line vertex is ¢/87+/2). The calculation is
basically the same as in 2D, the only difference being extra

conformal map(see Sec. IV C belowin Ref. 27 even for . ¢ i Ko H . th tor fact
more general cases. This property simplifies greatly the tasiliiegrations ovek,. However since the propagator factor-
izes, these integrations can be reduced to corresponding in-

one has to find roots of polynomials rather than solving tran- ) . han £ th h :
scendental equations. There ar@eal or complexsolutions ~ t€9rations in- quantum mechanics of the anharmonic

H 7
for g,(2)=0. However (as in the case of anharmonic oscnlat_or. - .
Again we can take an advantage of existing long series of

the nonoptimized Gaussian expansidfiThe results to sev-

O . m enth order are
= +
foir=2e +4\/ef34(x),

fap(X)=2 cX", X= "l (37

de &aH

The above equation is equal toe??*® times a polynomial
gn(2) of ordern in z=¢-a,. This was proved using the

FIG. 5. Summing all bubble diagrams.
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TABLE Il. Coefficientsc, andz, in 3D.

228.833506 941 7501 151.166 666 6686,

?3:?2
n Ch Zh 1 Velt g®
1 -2 —4 37.187%% 4a’ 0.1562%,
2 -05 -5 . .
11 4 7

3 1.583 333333 —8.803178 648 215 79 Ve & Ve
4 —12.667361111 —6.187603657880674 g OpTnth order resultf,(a7) is obtained optimizingf ,
5 125.595 526 19 ~5.960012621 607176 |, T

y varyinge:
6 —1430.592 8959 —9.472127 468171 98
7 18 342.765 997 —7.430 474107 869 646 9 9 \o
8 —261118.67703 —6.907 260 317 913 621 95 oan fn(e,ay)=0. (43
9 4084 812.307 —9.819535 1835546

Similarly to Eg. (320 in 2D this is equal to
(1/e®M2+2)g (7), where nowz=ay e andg,(z) is a rank
where Je is given by a solution of the cubic gap equation n polynomial. Solvingg,(z) and choosing a real root with
(Ve)i—are—4=0, the smallest absolute valdgwe obtainz, listed in Table Il
up to n=8. Then we solve fon/s the equationz=ay s

Ve =ar(54+3/324—3a3) "R+ L(54+3,/324- 3a3) 1?3 =(ar—¢)e. The solution is
(39
Ve=2%(—27z+ - 1083+ 72%2) ~1°

and coefficientc, are listed in Table Il. Similarly the OPT
formula for the effective energy density can be obtained by

1
using the generational function + 3?/3( —27z+ - 1083+ 72%%) . (44)
(64
fer=4\e1+4Verfap(x), x= 3! (39 C. Rate of convergence of OPE
2(Vey)
o ) ) The remarkable convergence of OPE in simple models
and s is given by a solution of equation was investigated in numerous works’ It was found that at
5 high orders the convergence of partition function of simple
(Ver)®—exe;—4a=0 (400 integrals(similar to the “zero-dimensional GL” studied in
. . . Ref. 9,
with e,=¢+ aay . The solution of Eq(40) can be obtained 9
perturbatively ine, - ) 4
Z:J d(pe_(a“’ +e7)
20 6a® 32a° 210" 15362° -
Ver=eo+ P E“L FE T * o7 is exponentially fast. The remainder in bound#3/
2 2 2 2

12012(6 98304,17 rN:|Z_ZN|<CleXF[_C2N].

o 1712 * 510 For anharmonic oscillatofboth positive and negative qua-
2 2 dratic term it is just a bit slower:

831402° 720896@°

P R 13
€2 €2

(41) RN:|E_EN|<Clqu_CQNl/3],

whereE is the ground state energy. We follow here the con-
Expandingf ¢ in « to ordern+1, then one then sets=1 to  vergence proof of Ref. 27. The basic idea is to construct a
obtainf,. conformal mag® from the original couplingg to a coupling
We list here the first few OPT approximarfts of bounded range and isolate a nonanalytic prefactor. Sup-
' pose we have a perturbative expansiasually asymptotic,
sometimes non-Borel summable

~ 2a 4
foz 4\/24‘ TH + E' -
&
E(9)= 2> cyg™
n=0
fi=To— =(17+8ay Je+ale), (42)  One defines a set of conformal maps dependent on parameter
Ve? p of couplingg onto new coupling3:
T,=T,+ ! (907+ 5108, /& + 9632 + 6a%\/e3) g(B.p)=p .
246 S s

024513-6



OPTIMIZED PERTURBATION THEORY IN THE VORTEX.. .. PHYSICAL REVIEW B5 024513

While range ofg is the cut complex plane, the range @fis TABLE Ill. Free energyf, at different orders(a constant
compact and has an apple like shégee Fig. 1 of the second —2 log 4n” was subtracted
paper in Ref. 2. The value of parameter for each approx-

imant will be defined later. Then one defines a scaled energyr -2 -15 -1 —-05

— fo —2.19416 —1.42941 —0.749027 —0.146255
— _ g
¥ (B.p)=(1=B)"E(Q(B.p)). f, —277516 —1.80556 —0.988706 —0.297222
where the prefactor (2 8)“ is determined by strong cou- f; —2.53854 —1.68294 —0.925643 —0.264857
pling limit so that¥ (3,p) is bounded everywhere. Approxi- f, —2.55889 —1.69143 —0.92912 —0.266258
mants toV are expansion tdlth order ing, fg —2.70076 —1.74015 —0.945544 —0.271734
N . fs —2.62447 —1.71822 —0.939384 —0.270031
— —  — f —251533 —-1.6923 —0.933365 —0.268653
= J— — a 9

Vn(B:p) =on! 07’3”[(1 B)"E(9(B.p))]. fo  —259943 —1.70944 —0.936772 —0.269318
fio —2.72613 —1.73113 —-0.940395 —0.269915

with parametep substituted by

the fact that above;=2 first few approximants provide a
quite precise estimate consistent with OPT. Abaye- 4 the
The energy approximant becomes liquid becomes_e_ssentially_ a normal metal and _fluctuations
effects are negligibl¢see Fig. 2 of Ref. 20 and Fig) and
¥y (B) are hard to measure. Therefore the information the OPT pro-
En(B)= NP vides is essential to compare with experiments on magneti-
(1-8)7 zation and specific heat.
If precision is defined as f(,—f0)/f19, we obtain
4.87%,1.27%,0.387%,0.222%,0.032% at=-—2,—1.5,
9_ 1,—0.5,0, respectively. We choose approximants
=0,1,3,4,6,7,9,10,12 because they are “the best roots” in a
sense defined in Ref. 19, Chapt. 5. For comparison with
other theories and experiments on Fig. 2 of Ref. 20 and Fig.
7 we use the 10th approximant.
In 3D the picture is much the same, see Fig. 6. The series

p=5(1-B)".

>™@

Two exponentss=3 and k=3, for example, anharmonic

oscillator and 3D GL model. OPE is equivalent to choosin
B which minimizesEy(8). It can be shown quite generally
(see Appendix C of second paper in Ref. 27 and Refti&
the minimization equation is a polynomial onegn This is
in line with our observation in previous sections that mini-
mization equations are polynomial iwith p identified as

— 1. converge abovea;=-—4.5 and diverge belowa;=—-5.5
The remaindeRy=|E—Ey| using dispersion relation is ge aboverr= — 4. 9 T o
bounded by The nonoptimized series are useful only abaye- —1.

We define the precision agA(—f,)/f,;. f, andf, are the
best roots among the sequences. Then we obtain
6.55%,2.94%,0.0247%,0.007 79222%, a@t=—5—3,
—1.5-1, respectively.

1/k
Rny<c19”*(pN®)N+c, ex;{ - N(g) ,
where exponenb is determined by discontinuity d(g) at
small negativey, B. Other theories

We compare with other theoretical treatments of the same
model. A direct method is the Monte Carlo simulation of the
same model. The 2D model was simulated by Moore, Kato,
and Nagaosa, and Hu MacDonald. The circles on Fig. 7 for
specific heat are the results of the Monte Carlo simulation of

const
(—g)tP
whereb=1 for anharmonic oscillator anol=3/4 for 3D GL

model’ For 3DGL model, we found thatRy<c;
x exf —c,NY?] as in the anharmonic oscillator.

DiscE(g)~exr{ -

TABLE IV. Free energyf,, at different orders for 3D.

V. RESULTS AND COMPARISON WITH OTHER ar _5 _3 15 1
THEORIES AND EXPERIMENTS

o fo —4.73313 0 2.657 63 341112

A. Energy, precision of OPT f, —6.493 ~0.375697 253901  3.32829

In Fig. 1 of Ref. 20 we present OPT for ordems=0 f, —6.92585 —0.427 383 2.5287 3.3222
(Gaussian 1,3,4,5,6,8,9,12 together with several ordersf, —5.27595 —0.280923 2.55551 3.338

(TO,...,T12) of the nonoptimized high temperature expan-f, —5.68059 —0.292 936 2.554 55 3.33757

sion in 2D. The values of free energy of 2D and 3D modelsf, —4.68076 —0.265 834 2.556 47 3.33839

for severalar are tabulated in Table Ill and Table IV, respec- f, —7.32654 —0.313048 2.55364 3.33722

tively. One clearly observes that in 2D the OPT series conf, —5.33149 —0.301 797 2.55392 3.33731
verge above;= —2.5 and diverge below;= —3.5. Onthe g, -8.01907 ~0.316175 255359 3.3372

other hand, the nonoptimized series never converge despite
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10
5
0
_5 L
5 FIG. 6. The 3D OPT energy and nonopti-
Eé -10 | mized energy at different order&enoted by
5 numbers and T” plus numbers, respectively
-15 One can see clearly OPT series are convergent,
for example, ab;=—5.
-20 f
_25 L
-10 -8 -6 -4 -2 0 2
SCALED TEMPERATURE
the LLL system by Kato and Nagaosa in Ref. 15 performed a% ar a%
with 256 vortices. In 3D the model was simulated with 100 fef=— §+ - 5Vs +2+2 arcsin+4
vortices by Sasik and Strodimagnetization data are com- 22
pared with our results on Fig. 8.
An analytic theory used successfully to fit the magnetiza- =1-21log 2+2 logar+ i _ Lﬁ ﬁ) (46)
tion and the specific heat datavas developed in Ref. 13. T a2 at 3al

Their free energy density is
On the other hand, the high temperature expansion of the

a2U?2  a;U 4U2a$ Tau optimized Gaussian is
fof=— 7 + 5 7 +2+2 arcsinh——=|,
2.2 4 18 1324
—2|0g4772+2logaT+f2—7+76. (47)
T P S U ] | B 45 oo
-2 J2 \/E an a2 2|\ 2 \/E (45) One observes that the high temperature expansion of two

theories are in remarkable agreement up to the ordﬁ‘r. 1/
The corresponding magnetization and specific heat are
shown as dashed lines in Fig. 2 of Ref. 20 and Fig. 7, re-
spectively. The theory applies not only to the liquid phase,
but also to the solid although the transition is not seen EXperiments on great variety of layered high Tc cuprates
(should be considered as a 2% effect not determined by théi or TI° based show that in 2D, magnetization curves for
theory. At large positivea; neglecting the exponentially different applied field intersect at a single poitt,T*).

C. Magnetization, 2D

small contributions tdJ, one obtains The range of magnetic fields is surprisingly laf@®m sev-
1] ees e JRN 0
______ . N [
\
& 08 g -2
= <
O 06 N -4
E — — —  theoryeq.45 E OPE approximants
S04t o theory eq.53 G -6
& ——— OPE 10th order s Monte Carlo
0.2 . Monte Carlo _3
0
-20 -15 -10 -5 0 5 -10 -75 -5 -2.5 0 2.5 5
SCALED TEMPERATURE SCALED TEMPERATURE

FIG. 7. The 2D specific heat. The Monte Carlo data by Kato and FIG. 8. The 3D magnetization plot. The Monte Carlo data by
Nagaosa in Ref. 1§pointg, specific heat from OPT fan=10 (the  Sasik and Stroud in Ref. 1gointg, specific heat from OPT of
solid line), from phenomenological formuléhe dotted ling and  different OPE approximants are denoted by numbers. The best ap-
Tesanovicet al (Ref. 13 theory (the dashed line proximants aran=4,7 (solid line).
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eral hundred Oe to several TeslAssuming this it is easy to estimate the magnetization. The OPE results are consistent
derive the scaled LLL magnetization just from the existencewith the data within the precision range until the radius of
of the point. The dimensionless LLL magnetization is de-convergence;= — 3. It is important to note that deviations

fined as®
dfeﬁ(aT)
m(ar)=— dar (48)
and the measure magnetization is
e*h e*h 2aT bw
= — 2 = — 2 ¢ B —
amM == (A== ol ) iz
(49)

wherey is the order parameter of the original model, afd
is the rescaled one, which is equal[tf.(at)]/dar. Thus

A — e*h [ 2aT,. bw 50
M = cma| b \/Em(aT)- (50
Using the definiton of a;r=—5[(1—t—b)/\bt], 7

=(27%Gi) Y4 b can be written as

20 T a2 (51
Thus Eq.(50) implies that
dmcmyM b' g
m(an)=———— - —
e*h 2aTcx/a
Ad7cymgM b’ 1
etht  2aTe| 1t a2 4
t 47> 27
4mcmyMy b’ 1-t a¢ ar
= —=*—1/. (52
e*h|1—t| 2aT; t 49?2 29

of both the phenomenological formula E§3) and the Te-
sanovic’s are clearly beyond our precision range.

We conclude therefore that although the theory of Te-
sanovicet al. is very good at high temperaturédeviations
only at the order H#) they become of the order 5-10% at
ar=—3. The advantage of this theory is however that it
interpolated smoothly to the solid and never deviates more
than 10%. The coincidence of the intersection of all the lines
at the same pointT(* ,M*) cannot be exact. Like in 3D it is
just approximate, although the approximation is quite good
especially at high magnetic fields.

D. Specific heat, 2D

The specific heat OPE result is compared in Fig. 7 with
Monte Carlo simulation of the same model by Kato and
Nagaos® (black circles, the phenomenological formula fol-
lowing from Eq. (53) (dotted ling, and the theory of Te-
sanovicet al*® (dashed ling The agreement with the direct
MC simulation is very good.

E. Magnetization in 3D

We compare here our results on the LLL scaled magneti-
zation with the Monte Carlo simulation of the LLL system
by Sasik and Stroutf They are actually more precise in 3D.
Figure 8 contains several OPE approximants (
=0,1,2,3,4,7,8) and their data on all three magnetic fields
(representing Z,3T, and 5T in model YBCO. According to
the criterion of the “best root” the best approximant should
ben=7. Clearly up to the radius of convergence the agree-
ment is within the expected precision.

VI. CONCLUSION

In this paper we obtained the optimized perturbation
theory results for both the 2D and the 3DLLL model. It

If we assume that the experimental observation that all th@llows to obtain a convergent serigather than asymptotic

magnetization curves intersect at some
(T* ,M*),m(ar) is
m(ar)=Cy(ar+ C,+a?), (53
_2mcmgM* b’ 1-t*

= . C,o=4n?
Y et 1-t*] 2aT, 2T

tr

pointThe magnetization and specific heat of vortex liquids with

definite precision are calculated. On the basis of this one can
make several definitive qualitative conclusions. The intersec-
tion of the magnetization lines is only approximate not only
in 3D (the result already observed in Monte Carlo
simulatiort®), but also in 2D. The theory by Tesanovit,
which uses completely different ideas, describes the physics
remarkably well in high temperatures and deviates on the

On the other hand, if we require that the first two terms of thes—10% precision level a;=—2 in 2D.

high temperature expansion of EG3) and the high tem-

perature expansion of the magnetization are equal, one finds

that
C]_: %, 02: 16
When we plot this line on Fig. 2 of Ref. 2the dotted ling
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