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BCS and generalized BCS superconductivity in relativistic quantum field theory: Formulation
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We investigate the BCS and generalized BCS theories in the relativistic quantum field theory. We select the
gauge freedom asU(1), and introduce a BCS-type effective attractive interaction. After introducing the
Gor’kov formalism and performing the group theoretical consideration of the mean fields, we solve the
relativistic Gor’kov equation and obtain the Green’s functions in analytical forms. We obtain various types of
gap equations.
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I. INTRODUCTION

The most important turning point in the history of th
theory of superconductivity is the appearance of the B
~Bardeen-Cooper-Schriefer! theory.1 It is in fact the first suc-
cess at giving an explanation of the superconductivity fr
the microscopic dynamics of the interacting many-ferm
system. From a view point of the condensed matter the
the BCS theory can be interpreted as a simplification of
electron-phonon theory, which reveals the fundamental
gin of the mechanism of the generation of the supercond
ing state. However, the influence of the BCS theory is mu
more wide. It is the famous fact that its influence reached
only to the condensed matter physics, but also to the elem
tary particle physics and the nuclear physics.2–6

The BCS theory succeeded in explaining the superc
ductivity in metals and alloys. But in the development of t
high-Tc and heavy-fermion superconductivities, the BC
theory could not cover them completely. This situati
caused new discussions on the mechanism of the origi
these superconductivities.7 Apart from these discussions o
the mechanism of the origin, various efforts also have b
made to extend~generalized! the BCS theory to understan
these systems.8–15 In the generalized BCS theory, the que
tion of the mechanism of the origin is set aside for a wh
and the emphasis is placed on the symmetries of the pa
interaction and the mean fields. They extended the treatm
of the Cooper pairs, not only to the singlet pairing but also
the triplet pairing, in which the mean fields have the vecto
nature; they have finite angular momenta. The difference
the attitudes between the theories of the mechanisms o
perconductivities and the generalized BCS approach ha
important meaning in the theory of superconductivity.

Until now, almost all the theories of condensed mat
physics are constructed on the nonrelativistic quant
theory. On the other hand, in the electronic structure ca
lations based on the band theory, it is obvious that, in
cases of heavy elements, we have to take into account
eral relativistic effects for correct descriptions even qual
tively. For example, even in the case of slow electrons si
lar to the ones with a kinetic energy of 100 eV~the electron
mass is about 0.511 MeV!, we need the four-componen
Dirac equation for a qualitatively correct description of t
system.16 Needless to say, the targets of condensed ma
theory are more or less to include the relativistic effe
However, the study on the relativistic effects in condens
0163-1829/2001/65~2!/024512~13!/$20.00 65 0245
S

y,
e
i-
t-
h
ot
n-

n-

of

n

-
,
ng
nt

o
l

of
u-
an

r

-
e
v-
-
i-

er
.
d

matter is not so much performed, except the considerat
of the spin-orbit coupling.17

Under this situation, recent papers which assert the ne
sity of the relativistic treatment for superconductivity in co
densed matter were published by Capelle and Gross.18–24

The heavy elements such as Au, Pb, Ir, or I become su
conducting states,25 and simultaneously they are under stro
relativistic effects. The high-Tc or heavy-fermion supercon
ductors normally contain heavy elements such as La, Ce,
U. Especially in the heavy-fermion superconductors, thf
electrons which are under strong relativistic effects, beco
the superconducting state. In principle, the description of
electronic structure for these systems requires the relativ
treatment. It is also a well known fact that, the spin-or
effect plays a role in the NMR spectra~the Knight shift! and
also in the impurity effects in superconductors.17 Naturally it
becomes interesting to treat these physics with the str
relativistic effects, beyond making a small corrections. Th
are no reasons that those systems which have strong re
istic effects do not show relativistically distinct supercondu
tivity than the nonrelativistic one. In the works of Capel
and Gross,18,19 the necessity of the relativistic treatment
the theory of superconductivity in solid state physics w
argued in the same context given above. They introduced
Dirac type Bogoliubov–de Gennes Hamiltonian and d
cussed the group theoretical aspects of the Cooper pair
mean fields. They also discussed the response of super
ductors to circularly polarized light.22 Strange discussed th
gap equation based on the works of Capelle-Gross.26 There-
fore, we wish to extend their theory to a more general for
and discuss various aspects of the relativistic supercon
tivity.

Recently, the relativistic superfluid theory is developed
quantum hadrodynamics~the theory for the system of pro
tons, neutrons and mesons!.27,28 Also recently, in the quark
matter in quantum chromodynamics~QCD!, the possibility
of the formation of the Cooper pair~the color superconduc
tivity ! is discussed.29,30These theories treat the supercondu
tivity and/or superfluidity in relativistic many-body system
The neutron stars31 may become a subject of these theorie
The superconductivity in the high-density plasma should a
be treated in relativistic theory, though we do not find any
this attempt in literature.

With these tendencies of recent theoretical physics,
considerations given above, we investigate the BCS and g
©2001 The American Physical Society12-1
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eralized BCS theories in relativistic quantum field theory
this paper. Needless to say, the most important approac
the theory of superconductivity is the BCS and generali
BCS schemes. The essential idea of the BCS theory is
structed on an effective model Lagrangian, like the Nam
Jona-Lasinio model or the Gross-Neveu model.6 In our work,
we introduce the relativistic BCS Lagrangian, and study
dynamical U(1)-gauge symmetry breaking. The attracti
interaction should arise from some physical processes
matter, as discussed in the theory of the mechanism of
origin of the superconductivity. Here we obey the attitude
the generalized BCS theory, and construct the BCS and
eralized BCS theory in the relativistic framework for stud
ing various systems. Since we select the gauge freedom
U(1), our main subject is many-electron-positron system
We try to keep a close relation with condensed matter the
Namely, we select the simplest formalism and intend to st
a general theory for the relativistic superconductivity. B
our formalism can also be applied to the color supercond
tivity in QCD. In this work, we are mainly interested in th
methodological aspect. We want to present how the rela
istic theory of the superconductivity is constructed and w
characteristics it has. We intend to construct a unified
proach about the superconductivity in the systems un
strong relativistic effects, from solid state physics to t
nuclear and particle physics. Due to the standing on the
tude of the BCS and generalized BCS theory, we can rea
this purpose.

This paper is organized as follows. In Sec. II, the Gor’k
formalism32 is introduced from a Lagragian as a starti
point. We regard that this Lagrangian gives nonrelativis
BCS theory in its nonrelativistic limit. In Sec. III, we pe
form the group theoretical consideration of the mean field
complete manner. In Sec. IV, especially for treating the s
triplet pairing, the generalized BCS theory is constructed
the basis of the previous results. In Sec. V, we solve
Gor’kov equations which have several different types of
mean fields, and obtain the Green’s functions in analyt
forms. In Sec. VI, we give the gap equations for vario
states and discuss their features. Finally, in Sec. VII we g
a summary of this work, and also give a plan about com
works in the near future. The numerical part will be pu
lished as part II of this study.

II. RELATIVISTIC GOR’KOV EQUATION

The purpose of this section is to introduce the basis of
theory of the relativistic BCS superconductivity by using t
field theoretical Green’s function method. For this procedu
following the nonrelativistic theory, we use the canonic
formalism. In particular, we select the Gor’kov formalism32

because it is the most fundamental formalism in superc
ductivity, and also because we want to obtain the Gree
function which increases the ability of the applications. A
other purpose is to construct the theory which will be refe
to in the generalized BCS formalism.

First, we introduce the following Lagrangian as our sta
ing point
02451
in
d
n-
-

e

a
he
f
n-

as
.
y.
y
t
c-

v-
t
-

er

ti-
ze

c

n
n
n
r

e
l

s
e
g
-

e

,
l

n-
’s
-
d

-

L~x!52
1

4
Fmn~x!Fmn~x!1c̄~x!igm@]m2 ieAm~x!#c~x!

2mc̄~x!c~x!1
g0

2
@c̄~x!c~x!#2, ~1!

where the first term is the kinetic term of the electromagne
field, Fmn is the antisymmetric electromagnetic tensor, a
Am is the electromagnetic potential. The second term is
kinetic term of the Dirac field, the third is the Dirac ma
term, c and c̄ are the four-component bispinors describi
the Dirac fields. We selectg0†5g0, g i†52g i( i 51,2,3).
We use the metric convention asgmn5diag(1,21,21,21)
and hencegmgn1gngm52gmn. The main object of our
theory is electron-positron gas. Since generally we treat
system in which the numbers of electrons and positrons
different ~finite density!, we have to add the next term to ou
Lagrangian,

Jm~x!Am~x!, ~2!

as the fifth term. This term is the background to neutral
and stabilize the system.Jm is a classical current. This term
however, is not used to describe the physics hereafter.
fourth term of the Lagrangian is the four-body contact int
action at the same space-time point. It will describe attrac
interaction between fermions with the coupling constantg0
.0. This term can be called the relativistic BCS interactio
and we take here the simplest form. We regard this Lagra
ian involves the usual BCS theory in its nonrelativistic lim
To make it clear, we here take the standard representati

c5S f

x
D . ~3!

Here,f is the large component whilex is the small compo-
nent. The small component becomes negligible at the n
relativistic limit, and therefore the interaction (g0/2)(c̄c)2

becomes (g0/2)(f†f)2. From the view point of the con-
densed matter physics, this Lagrangian is not completly
croscopic, such as the electron-phonon theory, but shoul
regarded as a phenomenological effective Lagrangian. H
ever, if once we introduce this Lagrangian, the dynamics
the system is completely determined from it. This theory
of course, unrenormalizable, and we have to introduce a
off. This Lagrangian itself has symmetries of Poincare´ in-
variance,U(1)-gauge invariance, charge-conjugation inva
ance, spatial inversion, and time-reversal invariance.

Now we obtain the field equations from the Lagrangi
by the action principle

05
]L
]c̄

2]m

]L
]~]mc̄!

5 igm~]m2 ieAm!c2mc1g0~ c̄c!c,

~4!

05
]L
]c

2]m

]L
]~]mc!

52 i ~]m1 ieAm!c̄gm2mc̄1g0~ c̄c!c̄, ~5!
2-2
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and the Hamiltonian becomes

H5E d3xc̄~2 igW •¹W 1m2egmAm2g0m!c

2
g0

2 E d3x~ c̄c!2. ~6!

Here the second term will give the attractive interaction
g0.0. Because we consider a many-body problem, we
troduce the chemical potentialm in the above Hamiltonian. It
describes the finite density atmÞ0 as the conjugate of th
particle number minus antiparticle number. Throughout t
study, we treatm as a parameter introduced from the outs
of the system. Thus we setm5eF ~Fermi level!. Now, to
obtain the Gor’kov equation, we use the equations of mot
@Eqs.~4! and ~5!# of the following form:

igm~]m2 ieAm!c2mc1g0~ c̄c!c1mg0c50, ~7!

2 i ~gm!T~]m1 ieAm!c̄T2mc̄T1g0~ c̄c!c̄T1m~g0!Tc̄T50,
~8!

whereT means the transposition, and the second equatio
obtained from Eq.~5! by taking the transposition.

Now we employ the canonical quantization about t
Dirac fields to switch to the quantized fields. Namely, w
demand the anticommutation relations

$ĉa~x0 ,x!,ĉb
†~x0 ,y!%5dabd (3)~x2y!, ~9!

$ĉa~x0 ,x!,ĉb~x0 ,y!%5$ĉa
†~x0 ,x!,ĉb

†~x0 ,y!%50. ~10!

Herea andb are the spinor indices. We do not quantizeAm
but treat it as a classical field.
r

ta
q

o
an
rb
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Next, we make some preparations to study the theory
superconductivity. First, we introduce various propagato
We use the eight-component Nambu notation33

Ĉ~x![S ĉ~x!

ĉ̄T~x!
D , Ĉ̄~x![@ĉ̄~x!,ĉT~x!#. ~11!

Herec andc̄ are in the Heisenberg representation. The d
nition of the generalized one-particle propagator is

G~x,y![2 i ^TĈ~x!Ĉ̄~y!&

5S 2 i ^Tĉa~x!ĉ̄b~y!& 2 i ^Tĉa~x!ĉb
T~y!&

2 i ^Tĉ̄a
T~x!ĉ̄b~y!& 2 i ^Tĉ̄a

T~x!ĉb
T~y!&

D
5S SF~x,y!ab 2 iF ~x,y!ab

2 i F̄ ~x,y!ab 2SF~y,x!ba
D . ~12!

This is a 838 matrix.T means the time-ordered product, an
^•••& means the sum over the expectation value betw
states coupled through the superconducting pair correlat
SF is the Feynman propagator for quasiparticle,2 iF and
2 i F̄ are the anomalous propagators. Next, we obtain
equations of motion for the propagators~12!, in a similar
way as the nonrelativistic case. We employ the Gor’kov fa
torization in Eqs.~7! and ~8!, taking account of only the
superconducting pair correlation by introducing the me
field approximation. Then we obtain the relativistically ge
eralized Gor’kov equation written down as an 838 matrix
equationL (x)GGor’kov(x,y)51̂d (4)(x2y), namely,
S igm~]m2 ieAm!2m1g0m D~x!

D̄~x! igmT~]m1 ieAm!1m2g0Tm D S SF~x,y! 2 iF ~x,y!

2 i F̄ ~x,y! 2SF~y,x!TD 5S d (4)~x2y! 0

0 d (4)~x2y!
D .

~13!
or-
her
ca-

e
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-
r
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D(x) andD̄(x) are 434 matrix mean fields, so called orde
parameters. The definitions are

D~x0 ,x!ab[g0F~x0
1 ,x;x0 ,x!ab5g0^ĉa~x0

1 ,x!ĉb
T~x0 ,x!&,

~14!

D̄~x0 ,x!ab[g0F̄~x0
1 ,x;x0 ,x!ab5g0^ĉ̄a

T~x0
1 ,x!ĉ̄b~x0 ,x!&.

~15!

This gives the self-consistency conditions. Equation~13! is
determined self-consistently. Needless to say, we can ob
infinite order series of the Dyson-type equation from E
~13!. In the superconducting state~or under the critical tem-
perature!, the mean fields have finite values, and we stand
the theory which does not conserve the particle number
charge; we attain different representation in a nonpertu
in
.

n
d

a-

tive way. In general, the mean field clearly violates the L
entz symmetry, as well as the gauge symmetry. In ot
words, the mean field involves quantities other than the s
lar. In the case of ‘‘superconductivity’’ theory in particl
physics, the object is the vacuum: They treat only the sc
value^c̄c&Þ0 ~the Hartree fields! and they discuss the chi
ral symmetry breaking.2,5 These points are different from ou
theory. We would like to mention the relation between o
Gor’kov equation~13! and the relativistic Bogoliubov–de
Gennes equation which was given in Ref. 18. If we explici
write the Coulomb potential of nuclei forAm of Eq. ~13!, our
theory becomes essentially the same as the relativ
Bogoliubov–de Gennes theory.

We will also obtain the Fourier transform of the Gor’ko
equation for the homogeneous system. We set the exte
field Am50, and then obtain it in the matrix form
2-3
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S k”2m1g0m D

D̄ k”T1m2g0Tm D S SF~k! 2 iF ~k!

2 i F̄ ~k! 2SF~2k!TD
5S 1 0

0 1D . ~16!

Herek”T means the transpose ofk” . The self-consistency con
dition now becomes

D5g0E d4p

~2p!4
F~p!, ~17!

D̄5g0E d4p

~2p!4
F̄~p!. ~18!

Because of the homogeneity, the mean field has only
internal degrees of freedom. In the nonrelativistic BC
en

o
e

e-
ns

02451
e

theory, the mean field has no internal degree of freedom
the case of the relativistic theory, there is a possibility
obtain much more complicated states.

The finite-temperature theory of the Matsubara formali
can be obtained in the same way. We introduce imagin
time t5 i t . The temperature Green’s functions are defined

G~x,y![2^TtĈ~x!Ĉ̄~y!&

5S 2^Ttĉa~x!ĉ̄b~y!& 2^Ttĉa~x!ĉb
T~y!&

2^Ttĉ̄a
T~x!ĉ̄~y!b& 2^Ttĉ̄a

T~x!ĉb
T~y!&

D
5S S~x,y!ab 2F~x,y!ab

2F̄~x,y!ab 2S~y,x!ba
D , ~19!

where ^•••& means the statistical average. From the eq
tions of motion of the temperature Green’s functions, t
Gor’kov equation becomes
S 2g0S ]

]t
2m D1 igk]k2m D~x!

D̄~x! 2g0TS ]

]t
1m D1 igkT]k1m

D S S~x,y!ab 2F~x,y!ab

2F̄~x,y!ab 2S~y,x!ba
D

5S d (4)~x2y! 0

0 d (4)~x2y!
D . ~20!
e-

s to
tion
Here the definition of the mean fields are the simple ext
sion of those for the zero temperature

D~t,x!ab[g0F~t1,x;t,x!5g0^ĉa~t1,x!ĉb
T~t,x!&,

~21!

D̄~t,x!ab[g0F̄~t1,x;t,x!5g0^ĉ̄a
T~t1,x!c̄b~t,x!&.

~22!

Fourier transform for the homogeneous system are also
tained, and the Gor’kov equation in the matrix form becom

S g0~ ivn1m!2gW •k2m D

D̄ g0T~ ivn2m!2gW T
•k1mD

3S S~vn ,k! 2F~vn ,k!

2F̄~vn ,k! 2S~2vn ,2k!TD 5S 1 0

0 1D . ~23!

Here b[1/kBT (kB ; the Boltzmann constant!, vn5(2n
11)p/b is a fermion discrete frequency. Solving the finit
temperature Gor’kov equation, we will obtain the solutio
of the same form, except that we need to substitutek0
-

b-
s

→ivn . The solutions of the Gor’kov equation for homog
neous system are discussed in Sec. V.

III. GROUP THEORETICAL CONSIDERATION OF THE
MEAN FIELDS

We proceed the group theoretical consideration so a
treat the mean fields more easily. From the anticommuta
relation for Fermi fields, the mean fields obey

D~x!ab52D~x!ba , D̄~x!ab52D̄~x!ba . ~24!

Note thatD̄ is not the Hermitian conjugate ofD:

D̄~x!5g0^c̄
T~x!c̄~x!&

5g0g0T^c†~x!c†~x!&g05g0D†~x!g0, ~25!

but rather,g0D̄ is the Hermitian conjugate ofg0D. On the
other hand, from the gauge transformation:

c~x!→c8~x!5eia(x)c~x!, c̄~x!→c̄8~x!5c̄~x!e2 ia(x),
~26!

the one-body propagator is transformed as
2-4
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S SF~x,y! 2 iF ~x,y!

2 i F̄ ~x,y! 2SF~y,x!TD→S ei [a(x)2a(y)]SF~x,y! ei [a(x)1a(y)]~2 i !F~x,y!

e2 i [a(x)1a(y)]~2 i !F̄~x,y! e2 i [a(x)2a(y)]~2 !SF~y,x!TD , ~27!
t
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and the mean fields are transformed as

D~x!ab→e2ia(x)D~x!ab , D̄~x!ab→e22ia(x)D̄~x!ab .
~28!

Under the spatial inversion,

c~x0 ,x!→
P

g0c~x0 ,2x!, c̄~x0 ,x!→
P

c̄~x0 ,2x!g0,
~29!

the mean fields are transformed as

D~x0 ,x!5^ccT&→
P

g0^ccT&g05g0D~x0 ,2x!g0,
~30!

D̄~x0 ,x!5^c̄Tc̄&→
P

g0^c̄Tc̄&g05g0D̄~x0 ,2x!g0.
~31!

Under the proper Lorentz transformation$emn52enm , smn

5( i /2)@gm,gn#%,

c8~x8!5Sc~x!, c̄8~x8!5c̄~x!S21, ~32!

S5expS 2
i

4
emnsmnD , S215g0S†g0, ~33!

the mean fields are transformed as

D8~x8!5^c8cT8&

5^SccTST&

5SD~x!ST

>S 12
i

4
emnsmnDD~x!S 12

i

4
emn~smn!TD

>D~x!2
i

4
emn@smn,D~x!ig0g2# ig2g0, ~34!

D̄8~x8!>D̄~x!1
i

4
emnig0g2@ ig2g0D̄~x!,smn#. ~35!

Here we useC21gmC52gmT, C21smnC52smnT and
charge conjugation matrixC5 ig2g0. Then, taking accoun
of the parity, we find we may take scalar asg1g35
2g5C (g55 ig0g1g2g3) and pseudoscalar asg0g2. We ex-
pand the 434 matrix mean field into the 16-dimension
complete set ofg matrices:19,34

Dab5$DS11Dm
Vgm1Dmn

T smn1Dm
Ag5gm1DPig5%~2g5C!.

~36!

In this expansion, we take a notation thatS denotes the sca
lar, V denotes the vector,T denotes the two-rank antisymme
ric tensor,A denotes the axial vector andP denotes the pseu
doscalar. It is clear from our derivation that each set of t
02451
s

expansion is linearly transformed into themselves. T
structure of the mean fields in the relativistic theory is one
the essential differences from that of the nonrelativis
theory, as discussed in Ref. 19.

Here we have to mention about the matrix structure
each term given in Eq.~36!. The scalar, pseudoscalar, an
vector are antisymmetric with respect to transposition, wh
other cases are symmetric. These matrix structures have
related to the Pauli principle, as given in Eq.~24!. If we want
to treat the cases of the axial vector and two-rank antisy
metric tensor, we have to extend our treatment, and the m
fields have to possess finite angular momentum with o
parity. This can be treated by introducing the generaliz
BCS scheme, which will be given in the next section.

Under the charge conjugation,c andc̄ are transformed as

c→
C

Cc̄T, c̄→
C

2cTC21, ~37!

and henceD and D̄ are transformed as

D5^ccT&→
C

C^c̄Tc̄&C215CD̄C21, ~38!

D̄5^c̄Tc̄&→
C

C^ccT&C215CDC21. ~39!

Under the time reversal,T5 ig1g3, with the relation

c~x0!→
T

Tc~2x0!, c̄~x0!→
T

c̄~2x0!T, ~40!

together with the rule of taking the complex conjugate ab
c numbers, we obtain

D5^c~x0!cT~x0!&→
T

2T^c~2x0!cT~2x0!&* T52TD* T,
~41!

D̄5^c̄T~x0!c̄~x0!&

→
T

2T^c̄T~2x0!c̄~2x0!&* T52T~D̄ !* T. ~42!

This transformation is related to the concept of ‘‘unitary’’ o
the mean field.14 Throughout this study, we will treat only
unitary pairing state.

Chiral transformation can also be treated in the same w

c~x!→c8~x!5eig5a(x)c~x!,

c̄~x!→c̄8~x!5c̄~x!eig5a(x), ~43!

then (g5
T5g5) we obtain

D8~x!5^c8~x!cT8~x!&

5eig5a(x)^c~x!cT~x!&eig5a(x)5eig5a(x)D~x!eig5a(x),

~44!
2-5
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D̄8~x!5^c̄T8~x!c̄8~x!&

5eig5a(x)^c̄T~x!c̄~x!&eig5a(x)5eig5a(x)D̄~x!eig5a(x).

~45!

Thus we will find that, by using the expanded form of t
mean field@Eq. ~36!#, the vector and the axial vector ar
invariant under the chiral transformation. In short, in case
the scalar and pseudoscalar,D85e2ig5a(x)D holds, in case of
the vector and axial vector,Dm8 5Dm holds, and in case of the
antisymmetric tensor,Dmn8 5e2ig5a(x)Dmn holds.

IV. THE GENERALIZED BCS THEORY

In this section, to treat especially the spin triplet Coop
pair states, we investigate the method of the generalized B
approach in the relativistic theory. Like the nonrelativis
theory, our starting point of studying the generalized B
theory is a Gor’kov equation with generalized pairin
scheme. We introduce next generalized Gor’kov equatio

~ igm]m2m1g0m!xSF~x,y!2 i E d4zV~x,z!F~x,z!F̄~z,y!

5d (4)~x2y!, ~46!

~ igm]m2m1g0m!xF~x,y!2 i E d4zV~x,z!F~x,z!SF~y,z!

50, ~47!

~ igmT]m1m2g0Tm!xF̄~x,y!

1 i E d4zV~x,z!F~x,z!SF~z,y!T50, ~48!

~ igmT]m1m2g0Tm!x~2 !SF~y,x!T

2 i E d4zV~x,z!F̄~x,z!F~z,y!5d (4)~x2y!. ~49!

In the Fourier transform in a matrix form, they are express
as

S k”2m1g0m D~k!

D̄~k! k”T1m2g0Tm D S SF~k! 2 iF ~k!

2 i F̄ ~k! 2SF~2k!TD
5S 1 0

0 1D , ~50!

where the definition of the mean fields are

D~k!5E d4p

~2p!4
V~k,p!F~p!, ~51!

D̄~k!5E d4p

~2p!4
V~k,p!F̄~p!. ~52!

Here V(k,p) is an effective attractive interaction which
assumed to give rise to superconducting states. Here we
02451
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sider V(k,p) as a scalar function. We can assume it as
Feynman propagator for a scalar field. The definite form
the functionV(k,p) is related to the symmetry of the Coop
pair; different symmetries correspond to the different for
of V(k,p). Since the matrix structure of Eq.~50! is same as
Eq. ~16!, the Green’s function obtained by solving Eq.~50!
gives the same matrix structure. It is also clear that this
be extended to the finite-temperature Matsubara formalis

Next, we decompose the interaction and the mean fie
into each channel. When we denote the total momentum
Cooper pair asPm5(P0 ,P),P25P0

22P2, and whenP2.0,
we can always stand on a rest frame which satisfies the
dition P50. We treat our problem under the conditionP0
.0,P50. Our mean fields have the translation invariance.
that time the Wigner little group of the Poincare´ group be-
comesO(3) rotation.34 It should be enough to use the irre
ducible representation ofO(3), i.e., the three-dimensiona
spherical harmonics, for the channel decomposition. It is a
related to the fact that our theory will mainly treat the finit
temperature Matsubara formalism, which selects a spe
time-coordinate. In this formalism, the theory allows on
O(3) rotational symmetry. Under such consideration, we
sume that the interaction depends only on the angle betw
k andp, expanding it by using the addition theorem,

V~k,p!5(
l

(
ml

~2l 11!Vl~k0 ,uku;p0 ,upu!Ylml
~ k̂!Ylml

* ~ p̂!

→(
l

(
ml

4pglYlml
~ k̂!Ylml

* ~ p̂!, ~53!

where we also introduce the weak coupling approximat
Vl(k0 ,uku;p0 ,upu)'gl .35 This approximation neglects the re
tardation of the interaction and also neglects the depende
on the magnitude of each momentum. We may call this
‘‘anisotropic contact’’ interaction. If one of these channels
attractive, the Fermi sea can be unstable and it can beco
superconducting state.

Later we will find that the gap equations which can ha
nontrivial solutions are those for the scalarDS, the 0th com-
ponent of vectorD0

V , the spacelike components of axial ve
tor DA, the axial-vector-like components of two-rank an
symmetric tensorD(A)

T . We have to discuss here only the
mean fields. To satisfy the Pauli principle, for the case
spin singlet pairing, we select the parity-even part of t
expansion of the interaction~53!,

V(e)~k,p!5g01g2 (
m52

22

Y2m~ k̂!Y2m* ~ p̂!1•••. ~54!

Here the first term corresponds to the interactiong0(c̄c)2/2.
The mean field is also expanded in the same way,

D15D01 (
m52

22

D2mY2m~k!1•••. ~55!

On the other hand, for the spin triplet pairing, we have
select the parity-odd part of the expansion. As for the int
action, we have
2-6
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V(o)~k,p!5g1 (
m51

21

Y1m~ k̂!Y1m* ~ p̂!1g3 (
m53

23

Y3m~ k̂!Y3m* ~ p̂!

1•••. ~56!

We need some consideration for the treatment of the s
triplet mean fields. Because of the relativistic nature of
theory, spin and orbital degrees of freedom cannot be tre
separately. The spin projection to the space-fixedz axis is not
conserved. Now the good quantum numbers are the t
angular momentumj, its projectionmj and helicity l. We
will treat the spin triplet Cooper pair state as an axial vec
boson, with even internal parity. The basis for the expans
of the triplet mean field then becomes the helicity states.
define the space-fixed coodinate as thekxkykz system, while
the body-fixed coordinate moving with the boson as thejhz

system. We choose the directionk̂ along thez axis. The
helicity is the projection to this axis,l521,11 ~trans-
verse!, l50 ~longitudinal!. Here we take the phase conve
tion after the textbook of Landau and Lifshitz.36 Then the
basis becomes

c jml~ k̂!5 i j 21A2 j 11

4p
e(l)D lm

( j ) ~ k̂!, ~57!

wheree(l) is the spherical unit vector of thejhz system,

e(61)57
i

A2
~ ĵ6 i ĥ !, e(0)5 i ẑ. ~58!

As for the Wigner rotation matrix, we determine the relati
between the Eulerian angles and spherical angles of
kxkykz system as

D lm
( j ) ~a,b,g!5D lm

( j ) ~f,u,0!5eimfdlm
( j ) ~u!. ~59!

The orthonormal relation is given from the equations

e(l1)*
•e(l2)5dl1l2

, ~60!

E
0

p

sinuduE
0

2p

dfD l1m1

( j 1)* ~ k̂!D l2m2

( j 2)
~ k̂!5

4p

2 j 111
d j 1 j 2

dm1m2
,

~61!

as

E
0

p

sinuduE
0

2p

dfc j 1m1l1
* ~ k̂!•c j 2m2l2

~ k̂!

5d j 1 j 2
dm1m2

dl1l2
. ~62!

About the inversiona[f→f1p, b[u→p2u, g→p
2g, each function is transformed as

D lm
( j ) ~ k̂!5~21! j 2lD 2lm

( j ) ~2 k̂!, ~63!

e(l)~ k̂!5~21!12le(2l)~2 k̂!. ~64!

Thus the parity eigenstates become
02451
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c jm0~ k̂!5 i j 21A2 j 11

4p
e(0)D 0m

( j ) ~ k̂!, ~65!

c jmulu
(1) ~ k̂!5 i j 21A2 j 11

8p
„e(1)D 1m

( j ) ~ k̂!1e(21)D 21m
( j ) ~ k̂!…,

~66!

c jmulu
(2) ~ k̂!5 i j 21A2 j 11

8p
„e(1)D 1m

( j ) ~ k̂!2e(21)D 21m
( j ) ~ k̂!….

~67!

Each parity is given asc jm0 :(21) j 11, c jmulu
(1) :(21) j 11,

c jmulu
(2) :(21) j . Thus the odd-parity states becomesc000 for

the monopole (j 50), c1m1
(2) for the dipole (j 51), c2m0

and c2m1
(1) for the quadrepole, etc. Since in this wor

we treat only the unitary states of the mean fields, a
(D•s)(D* •s)5D•D* 1 i (D3D* )•s, we have the unitary
condition D3D* 50.14 The ‘‘longitudinal’’ c jm0 is itself
unitary, but as for the ‘‘transverse’’c jm1

(6) , we have to add the
complex conjugate to itself. This means we have to tak
linear combination with the time-reversal state in order
obtain a unitary state. Using the relations

c jm1
(1)* 5~21! j 2mc j 2m1

(1) ,

c jm1
(2)* 5~21! j 2m11c j 2m1

(2) , ~68!

we obtain the following bases that we use for the expans

c jm0 , ~69!

1

A2
@c jm1

(1)1~21! j 2mc j 2m1
(1) #, ~70!

1

A2
@c jm1

(2)2~21! j 2mc j 2m1
(2) #. ~71!

In the ‘‘longitudinal’’ basis, the direction of the mean fiel
vector coincides withk̂, while in the ‘‘transversal’’ basis, it is
orthogonal tok̂. Finally the spin triplet mean fields are ex
panded in the following form:

D~k!5(
jmj

D jmj

(0) c jmj0
~ k̂!, ~72!

D~k!5(
jmj

D jmj

(1) 1

A2
@c jmj1

(1) ~ k̂!1~21! j 2mjc j 2mj1
(1) ~ k̂!#,

~73!

D~k!5(
jmj

D jmj

(2) 1

A2
@c jmj1

(2) ~ k̂!2~21! j 2mjc j 2mj1
(2) ~ k̂!#,

~74!

where we have to select only the parity-odd part of the
pansion, for satisfing the Pauli principle. Here we also ta
the so-called weak coupling approximationD jmj

(k0 ,uku)
'D jmj

.35
2-7
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V. THE SOLUTIONS FOR THE HOMOGENEOUS SYSTEM

Now using the definitionC21gmC52gmT and the nota-
tion k̃[(k01m,k), ǩ[(k02m,k), our Gor’kov equation be-
comes

~k”̃2m!SF~k!2 iDF̄~k!51, ~75!

~k”̃2m!F~k!2 iDSF~2k!T50, ~76!

2C21~k”̌2m!CF̄~k!1 i D̄SF~k!50, ~77!

2C21~k”̌2m!C~2 !SF~2k!T2 i D̄F~k!51. ~78!

First, SF(k) and F̄(k) satisfy the relation

F̄~k!5 iC21
k”̌1m

ǩ22m2
CD̄SF~k!. ~79!

Then we obtain

~k”̃2m!SF~k!1DC21
k”̌1m

ǩ22m2
CD̄SF~k!51. ~80!

On the other hand,SF(2k)T andF(k) satisfy

F~k!5 i
k”̃1m

k̃22m2
DSF~2k!T, ~81!

then

~k”̌2m!@CSF~2k!TC21#

1CD̄
k”̃1m

k̃22m2
DC21@CSF~2k!TC21#51.

~82!

Therefore, our problem turns out to solve the two 434 ma-
trix equations~80! and ~82!. Unfortunately, it is difficult to
solve these equations completely because of the matrix s
ture of the Dirac operator, particularly in the analytical for
We have to solve the equations assuming the type of
mean field that might be realized. We use the expanded f
of the mean field

D5$DS1DPig51D0
Vg01D0

Ag5g01DV
•gW 1DA

•g5gW

1D(V)
T

• ig0gW 1D(A)
T

•g5g0gW %~2g5C!, ~83!

and put each type of the mean field separately into
Gor’kov equations. In this way, we can treat each case of
mean fields in the same manner. In particular, the case o
vector mean fields, under the unitary assumption, can
treated completely in the same way as the scalar mean
case. We write down the expanded form of the mean fi
@Eq. ~83!# as

DC2152H (
a51

8

Da•GaJ g5 , ~84!
02451
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CD̄52g5H (
a51

8

Da* •GaJ . ~85!

Going back to Eqs.~80! and ~82!, putting one of eight
types of mean fieldsDa under the unitary assumption, (Da

•Ga)(Da* •Ga)5(Da* •Ga)(Da•Ga)56(Da•Da* ) ~where plus
sign corresponds to the scalar, 0th component of vec
spacelike components of axial vector and axial-vector-l
components of two-rank antisymmetric tensor, while min
sign corresponds to the other cases!, and also usingg5Ga5
6Gag5 ~plus sign corresponds to the scalar, pseudosc
and antisymmetric tensor, while minus sign corresponds
the vector and axial vector!, we obtain

~k”̃2m!SF~k!2~Da•Ga!
k”̌2m

ǩ22m2
~Da* •Ga!SF~k!51,

~86!

~k”̌2m!CSF~2k!TC21

2~Da* •Ga!
k”̃2m

k̃22m2
~Da•Ga!CSF~2k!TC2151.

~87!

Solving this equations, we obtain

SF~k!5
1

D~k!
$~ ǩ22m2!~k”̃1m!

2~Da•Ga!~k”̌1m!~Da* •Ga!%,

2 iF ~k!5~6 !
1

D~k!
g5$~k”̃2m!~Da•Ga!~k”̌1m!

2~6 !~Da•Da* !~Da•Ga!%C,

2 i F̄ ~k!5
1

D~k!
C21g5$~k”̌2m!~Da* •Ga!~k”̃1m!

2~6 !~Da•Da* !~Da* •Ga!%,

2SF~2k!T52
1

D~k!
C21$~ k̃22m2!~k”̌1m!

2~Da* •Ga!~k”̃1m!~Da•Ga!%C,

D~k!5~ k̃22m2!~ ǩ22m2!2$k”̃ ~Da•Ga!k”̌ ~Da* •Ga!

1~Da•Ga!k”̌ ~Da* •Ga!k”̃22m2~6 !~Da•Da* !%

1~Da•Da* !2. ~88!

As for the sign forF(k), plus corresponds to the scala
pseudoscalar and antisymmetric tensor, while minus co
sponds to the vector and axial vector. All the eight Gree
functions we have obtained reflect the features of each t
of the mean fields, both in the numerator and denomina
We can confirm that this solution satisfies the Gor’kov eq
2-8
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tion. We can see that when we take the limitDa→0, the
solution gives the Green’s functions of normal state.

We have solved the Gor’kov equations under the assu
tion of specific types of the mean fields in order to ma
them tractable. We have to check the existence of coup
among different types of the mean fields. For this purpo
we take the gap equations

D5g0E d4p

~2p!4
F~p!, ~89!

D~k!5E d4p

~2p!4
V~k,p!F~p!. ~90!

We substitute the expanded form ofD @Eq. ~83!# into the left
hand side, substitute the solutions forF(p) obtained previ-
ously into the right hand side, and take the trace of both s
We find couplings betweenDS andD0

V , DP andD0
A , DV and

D(V)
T , DA andD(A)

T . We should say that the Green’s functio
obtained above are approximate ones by neglecting th
couplings, and also the gap equations obtained by u
these Green’s functions contain these approximations.

In the end of this section, we investigate the factorizat
of the denominators of the Green’s functions. We disc
some features of quasiparticle dispersion. In all of the ca
the denominator given in Eq.~88! becomes the following
form:

D~k!5~ k̃22m2!~ ǩ22m2!22~Da•Da* !~ k̃• ǩ1d!

1~Da•Da* !2. ~91!

This is second order ink0
2 , thus easily factorize it as

D~k!5~k02E1!~k01E1!~k02E2!~k01E2!. ~92!

D(k) is fourth order ink0, but the Gor’kov equation itself is
838 matrix. Like the nonrelativistic1S-BCS theory, the
quasiparticle spectra are doubly degenerate. We will find
the condition for doubly degenerated quasiparticle spectr
the unitary of the mean fields, which implies the time rev
sal symmetry of the mean fields.14 E1 is the branch for the
quasiparticle coming from the positive energy solution, wh
E2 is the branch for quasiparticle coming from the negat
energy solution. The expression for the pole becomes

E6
2 5k21m21m21~Da•Da* !

7A4m2~k21m2!12~Da•Da* !~m21d!, ~93!

whered52m2 for the scalar,d51m2 for the pseudoscalar
d52k22m2 for the 0th component of vectord5
2uk•DVu2/(DV

•DV* )1m2 for the space-like components o
vector d52k21m2 for the 0th component of axial vecto
d52uk•DAu2/(DA

•DA* )2m2 for the spacelike component
of axial vector,d522uk•D(V)

T u2/(D(V)
T

•D(V)
T* )12k21m2 for

the vectorlike components of two-rank antisymmetric ten
and d522uk•D(A)

T u2/(D(A)
T

•D(A)
T )12k22m2 for the axial-

vector-like components of the two-rank antisymmetric te
sor. About thed, the sign beforem2 is coming from the
02451
p-

g
e,

e.

se
g

n
s
s,

at
is
-

e

r

-

parity of the mean fields which is determined byg matrices,
minus for even parity and plus for odd parity. It holds that
the limit m→0, the quasiparticle spectra for the scalar a
pseudoscalar, 0th component of the vector and axial vec
spacelike components of the vector and axial vector, vec
like components, and axial-vector-like components of
two-rank antisymmetric tensor, coincide. We write the qu
siparticle dispersion explicitly. For the scalar case, as
tained in Ref. 18,

E6
2 5~Ak21m27m!21uDSu2. ~94!

In the pseudoscalar case,

E6
2 5k21m21m21uDau272A~k21m2!m21m2uDPu2,

~95!

and these spectra coincide atm→0, E6
2 5(uku7m)21uDu2.

In the case of the 0th component of the vector pairing

E6
2 5k21m21m21uD0

Vu272A~k21m2!m21uD0
Vu2k2,

~96!

and in the limit m→0, E6
2 5(uku7Am21uD0

Vu2)2. In the
case of the spacelike components of the vector pairing,
obtain

E6
2 5k21m21m21~DV

•DV* !

72A~k21m2!m21m2~DV
•DV* !1uk•DVu2.

~97!

In the case of the 0th component of the axial vector pairi

E6
2 5~Ak21m27Am21uD0

Au2!2, ~98!

and in the limitm→0, the cases of the 0th component of t
vector and axial vector coincide with each other. The case
the spacelike components of the axial vector pairing, we
tain

E6
2 5k21m21m21~DA

•DA* !72A~k21m2!m21uk•DAu2,
~99!

and form→0, this also coincides with the case of the spa
like components of the vector pairing. About the vectorli
components of the two-rank antisymmetric tensor, we obt

E6
2 5k21m21m21~D(V)

T
•D(V)

T* !

7A~k21m2!~m21D(V)
T

•D(V)
T* !2uk•D(V)

T u2,

~100!

and the axial-vector-like components of the two-rank an
symmetric tensor becomes

E6
2 5k21m21m21~D(A)

T
•D(A)

T* !

72A~k21m2!m21k2~D(A)
T

•D(A)
T* !2uk•D(A)

T u2.

~101!

These spectra also coincide with each other in the limitm
→0.
2-9



o
a
th
a
th
n
g

he
al
p
pi
n

u
ite
te
ti
th

n
ct
f
nk

e

po

f

ith

re
g

n.
. In
rent

rgy

the

iring
ua-

TADAFUMI OHSAKU PHYSICAL REVIEW B 65 024512
The dispersion of the quasiparticle includes a gap top
ogy, and it reflects orbital part of the mean field. It is cle
that the complexity of the dispersion in relativistic case is
result of the matrix structure of the Dirac operator. We c
make an assertion that these situations manifest the fact
in the relativistic theory, we cannot decouple the spin a
orbital degrees of freedom. The dispersion and also the
topology reflect the density of states and then affect the t
modynamics such as the specific heat. They influence
the collective modes. Spin part of the mean field gives s
symmetry of the Cooper pair, and it is reflected to the s
susceptibility or the Knight shift. In all the cases give
above, we obtainE6

2 5(Ak21m27m)2 in the limit Da→0.

VI. THE GAP EQUATIONS

In this section, we will obtain gap equations by using o
Green’s functions obtained previously. We use the fin
temperature Matsubara formalism. The gap function de
mines the thermodynamic properties of the superconduc
ity as direct consequences. The gap equation itself is
stationary condition of the free energy.10

Under the Pauli principle, and with the conditiongl.0,
we will find that we have nontrivial solutions for the mea
fields in the case of the scalar and 0th component of ve
for even-parity interactionV(e), the spacelike components o
axial vector, and axial-vector-like components of two-ra
antisymmetric tensor for odd-parity interactionV(o). Other
cases give the gap equation of the form ‘‘15negative value,’’
thus undergl.0, there is no nontrivial solution. Thus in th
interactiong0(c̄c)2/2 with g0.0, it can give nontrivial so-
lutions only in the case of the scalar pairing and 0th com
nent of vector pairing.

First, we deal with the interactiong0(c̄c)2/2. The self-
consistency condition becomes

D5g0(
n

1

bE d3k

~2p!3
F~vn ,k!, ~102!

D̄5g0(
n

1

bE d3k

~2p!3
F̄~vn ,k!. ~103!

Substitute F for scalar or 0th component o
vector into Eq. ~102!, deal with the g matrices and
take trace of both sides. Hereafter we only deal w
the nontrivial caseDaÞ0. In the denominatorD(vn ,k)
5( ivn2E1)( ivn1E1)( ivn2E2)( ivn1E2) @substitute
k0→ ivn in Eq. ~92! for the Matsubara formalism#, we per-
form the partial fraction decomposition and discrete f
quency summation. For the scalar case, we obtain the
equation of the same form as derived by Strange26

15
g0

2 E
2L

L d3k

~2p!3 S 1

2E1
tanh

b

2
E11

1

2E2
tanh

b

2
E2D ,

~104!
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E65A~Ak21m27m!21uDSu2. ~105!

Here we introduce the cutoff for the momentum integratio
Of course, this cutoff scheme cannot be a covariant form
the high-energy physics, there are problems that a diffe
cutoff scheme gives different physical quantities.4,5 But we
do not treat these problems here. Equations~104! and ~105!
give simple extension of the nonrelativistic1S-BCS theory.
The second term of the integrand in Eq.~104! is the contri-
bution of the quasiparticle coming from the negative ene
solution.

In the case of the 0th component of the vector pairing,
gap equation is given in the following form:

15
g0

2 E d3k

~2p!3

3S H 12
k2

A~k21m2!m21uD0
Vu2k2J 1

2E1
tanh

b

2
E1

1H 11
k2

A~k21m2!m21uD0
Vu2k2J 1

2E2
tanh

b

2
E2D ,

~106!

E65Ak21m21m21uD0
Vu272A~k21m2!m21uD0

Vu2k2.
~107!

On the other hand, in the case of the pseudoscalar pa
and 0th component of the axial vector pairing, the gap eq
tions become

215
g0

2 E d3k

~2p!3

3S H 12
m2

A~k21m2!m21uDPu2m2J 1

2E1
tanh

b

2
E1

1H 11
m2

A~k21m2!m21uDPu2m2J 1

2E2
tanh

b

2
E2D ,

~108!

E65Ak21m21m21uDPu272A~k21m2!m21uDPu2m2,
~109!

and

215
g0

2 E d3k

~2p!3 S 2
1

2Am21uD0
Au2

tanh
b

2
E1

1
1

2Am21uD0
Au2

tanh
b

2
E2D , ~110!
2-10
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E65Ak21m27Am21uD0
Au2. ~111!

We find that the right hand side of each of the equations
positive. Hence, we do not obtain nontrivial solutions
these cases. Due to the same reason, the cases for the s
like components of the vector pairing and the vectorl
components of the two-rank antisymmetric tensor pair
also have no nontrivial solutions forgl.0.

Next, we treat the spin triplet states by using the gene
ized BCS formalism. Adopting the Green’s functions of t
spacelike components of the axial vector or the axial-vec
like components of the two-rank antisymmetric tensor for
self-consistency condition, and manipulating theg matrices,
we obtain a three-vector gap equation
In
n

h
s

ap

02451
re

ace-

g

l-

r-
e

D~k!5(
n

1

bE d3p

~2p!3
V(o)~k,p!

1

D~vn ,p!
$D~p!@p0

27p2

2m22m22D~p!•D* ~p!#62p@D~p!•p#%. ~112!

Here the upper sign corresponds to the case of the a
vector while the lower sign corresponds to the case of
axial-vector-like components of the two-rank antisymmet
tensor. We take the expansions of the interaction and m
fields as discussed previously. Throughout our study, we t
only l 51 p-wave interaction into account. For the mea
fields, we treatj 50,1,2 states. We can consider coupl
states with differentj ,mj ,l, but hereafter we only treat defi
nite values ofj ,mj ,l, because of simplicity. In the genera
form
of

e gap
D jmj

(l) c jmjl
~ k̂!5E d3p

~2p!3 (
n

1

b
4pg1(

m
Y1m~ k̂!Y1m* ~ p̂!

1

D~vn ,p!
$D jmj

(l) c jmjl
~ p̂)@p0

27p22m22m2

2uD jmj

(l) u2c jmjl
* ~ p̂!•c jmjl

~ p̂!#6p„D jmj

(l) @c jmjl
~ p̂!•p#…%, ~113!

we multiply both sides withc jmjl
* ( k̂) from the left, and perform angular integration with respect to the spherical anglek̂.

After a lengthy manipulation, we obtain 18 gap equations, and all of them have the forms of the following two-typ
equations, either type~i! or type ~ii !.

Type ~i!

15ag1E d3p

~2p!3
c~u!H S 12

p2

A~p21m2!m21buD jmj

(l) u2p2c~u!D 1

2E1
tanh

b

2
E1

1S 11
p2

A~p21m2!m21buD jmj

(l) u2p2c~u!D 1

2E2
tanh

b

2
E2J , ~114!

E65Ap21m21m21buD jmj

(l) u2c~u!72A~p21m2!m21buD jmj

(l) u2p2c~u!. ~115!
ital
ua-

t

ite
of

ity

ua-
rms
he
f

r

Type ~ii !

15ag1E d3p

~2p!3
c~u!S 1

2E1
tanh

b

2
E11

1

2E2
tanh

b

2
E2D ,

~116!

E65A~Ap21m27m!21buD jmj

(l) u2c~u!. ~117!

In the above equations,a, b, and c(u) depend on specific
c jmjl

. All of the 18 gap equations are listed in Table I.
this table, we also list the node structure of the gap functio

About c000 cases, there is no angular dependence bot
the eigenvalues and gap equations. The condensation i
j 5 l 1s50 pairs.c000 state ofD(A)

T corresponds to the BW
~Balian-Werthamer! state in our theory.9,35 The gap is isotro-
pic like the nonrelativistic BW state. The structure of this g
equation is the same as theDS given above@Eqs.~104! and
s.
in
for

~105!#. c101
(2) state of DA can be regarded as the ABM

~Anderson-Brinkman-Morel! state in our theory.8,35 In this
case, the spin vector is orthogonal to the vector of orb
motion. The angular dependence of this gap in the gap eq
tion is the same asY161, such as the nonrelativistic ABM. I
has nodes at two pointsu50,p. There is no state ofj 51
which has a line node structure. It is interesting that, in sp
of the spin triplet pairing, the structures of the gap nodes
j 52 states are like that ofd wave,Y2m . This feature arises
from our relativistic treatment, i.e., the use of the helic
state.

In the spin-triplet pairing states discussed above, the q
siparticle dispersion and the gap equation take simple fo
like the case ofDS except the angular dependences of t
gaps@type ~ii !#, for the axial vector when the orientation o
the mean fields is perpendicular tok̂ ~helicity 61, the
‘‘transversal’’!, and for the two-rank antisymmetric tenso
when the direction of the mean fields is parallel withk̂ ~he-
2-11
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TABLE I. The coefficients in the gap equations of theDA andD(A)
T pairings.~i! and~ii ! correspond to the

use of the gap equations of type~i! and type~ii !, in Eqs.~114!,~115! and~116!,~117!, respectively.a, b, and
c(u) in this table are the coefficients in these equations.

type

state DA D(A)
T a b c(u) node

c000 ~i! ~ii ! 1
2

1

4p
1 no node

c200 ~i! ~ii ! 1
4

5

16p
~3 cos2u21!2 cosu56

1

A3

c210 ~i! ~ii ! 3
2

15

8p
sin2u cos2u u50,

p

2
,p

c220 ~i! ~ii ! 3
8

15

32p
sin4u u50,p

c101
(2) ~ii ! ~i! 3

4
3

8p
sin2u u50,p

1

A2
~c111

(2)2c1211
(2) ! ~ii ! ~i! 3

8
3

16p
cos2u11 no node

c201
(1) ~ii ! ~i! 9

4
15

8p
sin2u cos2u u50,

p

2
,p

1

A2
~c211

(1)2c2211
(1) ! ~ii ! ~i! 3

8
5

16p
4 cos4u23 cos2u11 no node

1

A2
~c221

(1)1c2221
(1) ! ~ii ! ~i! 3

8
5

16p
12cos4u u50,p
nd

e

. I
th
e

st
ie

C
an
n
s

y to
the
ed
to

on-
ous
, we
ory.
e
of

lds.
in

-
.

licity 0, the ‘‘longitudinal’’!. Other cases, the eigenvalue a
the gap equation have complicated structure in type~i!, and
they are similar to that of theD0

V . These are clear from th
form of the functions~99!, ~101!, and ~112!. Thus in the
relativistic theory, the difference in the helicity~it gives the
orientation of the mean field vector! gives rise to a quite
different form for both the dispersion and gap equation
might be interesting if the relative orientation between
mean field andk gives large effects to the solutions of th
gap equations, thermal properties or response of the sy
to the external fields. These gap equations will be stud
numerically in part II of this paper.

VII. SUMMARY

In this paper, we have performed the investigation of B
and generalized BCS superconductivity in relativistic qu
tum field theory. We have introduced the Gor’kov equatio
and given the group theoretical considerations about the
02451
t
e

em
d

S
-
,
u-

perconducting mean fields in complete manner. Especiall
treat the spin triplet Cooper pairs, we have investigated
generalized BCS formalism in our theory. We have solv
the Gor’kov equations completely under the assumption
have the specific types of the mean fields with unitary c
dition. We have constructed the gap equations in the vari
states and discussed their details. Throughout this paper
have discussed various characteristic features of the the

As a next work, we will present the results of solving th
gap equations numerically. We will also give some results
the thermodynamics, or response to the external fie
Preparation for the presentation of these results is now
progress, and will be published as part II of this study.
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