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BCS and generalized BCS superconductivity in relativistic quantum field theory: Formulation
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We investigate the BCS and generalized BCS theories in the relativistic quantum field theory. We select the
gauge freedom a¥J(1), andintroduce a BCS-type effective attractive interaction. After introducing the
Gor’kov formalism and performing the group theoretical consideration of the mean fields, we solve the
relativistic Gor’kov equation and obtain the Green’s functions in analytical forms. We obtain various types of
gap equations.
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[. INTRODUCTION matter is not so much performed, except the considerations

The most important turning point in the history of the of the spin-orbit coupling’
theory of superconductivity is the appearance of the BCS Under this situation, recent papers which assert the neces-
(Bardeen-Cooper-Schriefieheory? It is in fact the first suc-  sity of the relativistic treatment for superconductivity in con-
cess at giving an explanation of the superconductivity frondensed matter were published by Capelle and Gifvgs.
the microscopic dynamics of the interacting many-fermionThe heavy elements such as Au, Pb, Ir, or | become super-
system. From a view point of the condensed matter theongonducting state®,and simultaneously they are under strong
the BCS theory can be interpreted as a simplification of theelativistic effects. The higf-, or heavy-fermion supercon-
electron-phonon theory, which reveals the fundamental oriductors normally contain heavy elements such as La, Ce, and
gin of the mechanism of the generation of the superconductd. Especially in the heavy-fermion superconductors, fthe
ing state. However, the influence of the BCS theory is muctelectrons which are under strong relativistic effects, become
more wide. It is the famous fact that its influence reached nothe superconducting state. In principle, the description of the
only to the condensed matter physics, but also to the elememlectronic structure for these systems requires the relativistic
tary particle physics and the nuclear physics. treatment. It is also a well known fact that, the spin-orbit

The BCS theory succeeded in explaining the superconeffect plays a role in the NMR spect(dne Knight shifj and
ductivity in metals and alloys. But in the development of thealso in the impurity effects in superconductodf$Naturally it
high-T. and heavy-fermion superconductivities, the BCShecomes interesting to treat these physics with the strong
theory could not cover them completely. This situationrelativistic effects, beyond making a small corrections. There
caused new discussions on the mechanism of the origin aire no reasons that those systems which have strong relativ-
these superconductiviti€sApart from these discussions on istic effects do not show relativistically distinct superconduc-
the mechanism of the origin, various efforts also have beetivity than the nonrelativistic one. In the works of Capelle
made to extendgeneralizefithe BCS theory to understand and Gross®!° the necessity of the relativistic treatment of
these systenfs:™® In the generalized BCS theory, the ques-the theory of superconductivity in solid state physics was
tion of the mechanism of the origin is set aside for a while,argued in the same context given above. They introduced the
and the emphasis is placed on the symmetries of the pairinQirac type Bogoliubov—de Gennes Hamiltonian and dis-
interaction and the mean fields. They extended the treatmegtssed the group theoretical aspects of the Cooper pair, the
of the Cooper pairs, not only to the singlet pairing but also tomean fields. They also discussed the response of supercon-
the triplet pairing, in which the mean fields have the vectorialductors to circularly polarized lightt Strange discussed the
nature; they have finite angular momenta. The difference ofap equation based on the works of Capelle-Gtb3ere-
the attitudes between the theories of the mechanisms of stere, we wish to extend their theory to a more general form,
perconductivities and the generalized BCS approach has and discuss various aspects of the relativistic superconduc-
important meaning in the theory of superconductivity. tivity.

Until now, almost all the theories of condensed matter Recently, the relativistic superfluid theory is developed in
physics are constructed on the nonrelativistic quantunguantum hadrodynamioghe theory for the system of pro-
theory. On the other hand, in the electronic structure calcutons, neutrons and mesor$28 Also recently, in the quark
lations based on the band theory, it is obvious that, in thenatter in quantum chromodynami¢®CD), the possibility
cases of heavy elements, we have to take into account sewf the formation of the Cooper paithe color superconduc-
eral relativistic effects for correct descriptions even qualita+ivity) is discussed®*°These theories treat the superconduc-
tively. For example, even in the case of slow electrons simitivity and/or superfluidity in relativistic many-body systems.
lar to the ones with a kinetic energy of 100 étie electron  The neutron staf$ may become a subject of these theories.
mass is about 0.511 MeVwe need the four-component The superconductivity in the high-density plasma should also
Dirac equation for a qualitatively correct description of the be treated in relativistic theory, though we do not find any of
system'® Needless to say, the targets of condensed mattehis attempt in literature.
theory are more or less to include the relativistic effect. With these tendencies of recent theoretical physics, and
However, the study on the relativistic effects in condenseaonsiderations given above, we investigate the BCS and gen-
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eralized BCS theories in relativistic quantum field theory in 1 _

this paper. Needless to say, the most important approach inf(x) == 7 F,,0)F* () + ()i y*[d,— 1€ A, (X) J¢h(x)

the theory of superconductivity is the BCS and generalized

BCS schemes. The essential idea of the BCS theory is con- — Jo — 5

structed on an effective model Lagrangian, like the Nambu- ~MyX) () + S [P P ], @
Jona-Lasinio model or the Gross-Neveu mddel.our work, ] ) o ]
we introduce the relativistic BCS Lagrangian, and study thé/yhere the.flrst term is the kmguc term of the e[ectromagnenc
dynamical U(1)-gauge symmetry breaking. The attractive f|elq, F., is the antlsym_metrlc el_ectromagnetlc tensor,l and
interaction should arise from some physical processes in Bu IS the eIectromagl_’letlc .potent|al. The _second term is the
matter, as discussed in the theory of the mechanism of th inetic term_of the Dirac field, the third is the Dirac mass
origin of the superconductivity. Here we obey the attitude oft€m, ¢ and ¢ are the four-cgppogenthispinors describing
the generalized BCS theory, and construct the BCS and geff?e Dirac fields. We selecy™'=y", y''=—7'(i=1,2,3).
eralized BCS theory in the relativistic framework for study- W& USe the metric convention g ,=diag(1,-1,—1,~1)

ing various systems. Since we select the gauge freedom 4§d hencey*y"+y”"y*=2g*". The main object of our
U(1), our main subject is many-electron-positron systems.theory is eIegtron—posﬂron gas. Since generally we treat the
We try to keep a close relation with condensed matter theory?YStém in which the numbers of electrons and positrons are
Namely, we select the simplest formalism and intend to studyliferent (finite density, we have to add the next term to our
a general theory for the relativistic superconductivity. But-agrangian,
our formalism can also be applied to the color superconduc- JLOA(X) )
tivity in QCD. In this work, we are mainly interested in the MAT
methodological aspect. We want to present how the relativas the fifth term. This term is the background to neutralize
istic theory of the superconductivity is constructed and whatnd stabilize the systend* is a classical current. This term,
characteristics it has. We intend to construct a unified aphowever, is not used to describe the physics hereafter. The
proach about the superconductivity in the systems undefourth term of the Lagrangian is the four-body contact inter-
strong relativistic effects, from solid state physics to theaction at the same space-time point. It will describe attractive
nuclear and particle physics. Due to the standing on the attinteraction between fermions with the coupling consggt
tude of the BCS and generalized BCS theory, we can realize-0. This term can be called the relativistic BCS interaction,
this purpose. and we take here the simplest form. We regard this Lagrang-
This paper is organized as follows. In Sec. II, the Gor’kovian involves the usual BCS theory in its nonrelativistic limit.

formalisn?” is introduced from a Lagragian as a starting To make it clear, we here take the standard representation
point. We regard that this Lagrangian gives nonrelativistic
)
: (€

BCS theory in its nonrelativistic limit. In Sec. Ill, we per-

form the group theoretical consideration of the mean fields in =

complete manner. In Sec. |V, especially for treating the spin X

triplet pairing, the generalized BCS theory is constructed orHere, ¢ is the large component whilg is the small compo-

the basis of the previous results. In Sec. V, we solve ounent. The small component becomes negligible at the non-

Gor’kov equations which have several different types of therelativistic limit, and therefore the interactiomyd/2) (4)?

mean fields, and obtain the Green’s functions in analyticahecomes ¢,/2)(¢'¢)2. From the view point of the con-

forms. In Sec. VI, we give the gap equations for variousdensed matter physics, this Lagrangian is not completly mi-

states and discuss their features. Fina“y, in Sec. VIl we giv%roscopiC, such as the e|ectron_ph0non theory, but should be

a summary of this work, and also give a plan about comingegarded as a phenomenological effective Lagrangian. How-

works in the near future. The numerical part will be pub-ever, if once we introduce this Lagrangian, the dynamics of

lished as part I of this study. the system is completely determined from it. This theory is,
of course, unrenormalizable, and we have to introduce a cut-
off. This Lagrangian itself has symmetries of Poincare

Il. RELATIVISTIC GOR'’KOV EQUATION variance,U(1)-gauge invariance, charge-conjugation invari-

The purpose of this section is to introduce the basis of théance, spatial inversion, and time-reversal invariance.
purp Now we obtain the field equations from the Lagrangian

theory of the relativistic BCS superconductivity by using the : S
field theoretical Green’s function method. For this procedure,by the action principle
following the nonrelativistic theory, we use the canonical

. . ) : oL aL ) i —
formalism. In particular, we select the Gor'kov formalisfn, og=22_, ——iyH(d,—ieA,)b—mi+ go(Pi) b,
because it is the most fundamental formalism in supercon-  d¢ “a(a#zp) a a
ductivity, and also because we want to obtain the Green’s (4)
function which increases the ability of the applications. An-
other purpose is to construct the theory which will be refered 0 L L

to in the generalized BCS formalism.
First, we introduce the following Lagrangian as our start-

ing point = —i(d,+ieA,) Yy —my+go( i) i, )

)
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and the Hamiltonian becomes Next, we make some preparations to study the theory of
superconductivity. First, we introduce various propagators.
H :f d3xZ(—i?-§+m—ey”A#— N We use the eight-component Nambu notatfon
9 3y, 7702 3 ;ﬂ(x) i N T
5 | dx(g)” (6) V(x)= ol V)=[(x), ¢ (x)]. (11
(X

Here the second term will give the attractive interaction for _
go>0. Because we consider a many-body problem, we inHere andy are in the Heisenberg representation. The defi-
troduce the chemical potentialin the above Hamiltonian. It nition of the generalized one-particle propagator is
describes the finite density at#0 as the conjugate of the

particle number minus antiparticle number. Throughout this G(x,y)
study, we treajx as a parameter introduced from the outside

of the system. Thus we set=er (Fermi leve). Now, to

obtain the Gor’kov equation, we use the equations of motion
[Egs.(4) and(5)] of the following form:

~i(TP )W (y))

—Tha () Pa(y)y  — T PHY))

—(TPLOP(Y))  —I(TPLOOBEY))
iy#(d,—1eA,) y—my+go(yp) Yt ny°y=0, (7) SE(X\Y)ap  —IF(XY)ap

. . o . — . (12
—i(y") (9, 1A P~ M+ go(Pi) ¥+ () TP =0, —IF(XY)ap SV X)a

N ~ This is a 8<8 matrix. T means the time-ordered product, and
whereT means the tranSpOSItlon, and the second equaﬂon @ . > means the sum over the expectation value between
obtained from Eq(5) by taking the transposition. states coupled through the superconducting pair correlation.

Now we employ the canonical quantization about thes_ is the Feynman propagator for quasiparticieilF and
Dirac fields to switch to the quantized fields. Namely, We _iE are the anomalous propagators. Next, we obtain the
demand the anticommutation relations equations of motion for the propagatais2), in a similar

- At _ (3)/y_ way as the nonrelativistic case. We employ the Gor’kov fac-
1ha(X0,:X), Y15(X0.Y)} = Bapd (X —Y), ©) torization in Egs.(7) and (8), taking account of only the
- - e ~t _ superconducting pair correlation by introducing the mean-
{¥a(X%0,X),¥5(X0, V)T ={tha(X0, %), ¥5(X0, )} =0. (100 fieq approximation. Then we obtain the relativistically gen-
Herea andg are the spinor indices. We do not quantég eralized Gor’kov equation written down as ax8 matrix

but treat it as a classical field. equationL (x) G (x,y) =15 (x—y), namely,
|
iy*(d,—ieA,)—m+~'u A(X) Se(x,y)  —iF(Xy) (5(4>(x—y) 0
A(x) iy (g, +ieA)+m="Tu/| —iF(xy) —S(yx7/ | 0 S (x—y)/"
(13

A(x) andA(x) are 4x 4 matrix mean fields, so called order tive way. In general, the mean field clearly violates the Lor-
parameters. The definitions are entz symmetry, as well as the gauge symmetry. In other
words, the mean field involves quantities other than the sca-
_ oy T vt T lar. In the case of “superconductivity” theory in particle
A(X0:X) ap=80oF (Xo X X0, X) 5= Go{ Y1alX X) ‘/IB(XOrX()]?‘i) physics, the object is thg vacuum: Thgy treat )cgnly tFr)1e scalar
value( i) #0 (the ngstree fieldsand they discuss the chi-
N e Eivt v STt T ral symmetry breaking> These points are different from our
A(X0:X) ap=GoF (Xo X:X0,X) ap = Gof ¥aXo ’X)wﬁ(xo’i)ﬁé) theory. We would like to mention the relation between our
Gor’kov equation(13) and the relativistic Bogoliubov—de
This gives the self-consistency conditions. Equatid® is  Gennes equation which was given in Ref. 18. If we explicitly
determined self-consistently. Needless to say, we can obtainrite the Coulomb potential of nuclei f&,, of Eq.(13), our
infinite order series of the Dyson-type equation from Eq.theory becomes essentially the same as the relativistic
(13). In the superconducting stater under the critical tem- Bogoliubov—de Gennes theory.
peraturg, the mean fields have finite values, and we stand on We will also obtain the Fourier transform of the Gor’kov
the theory which does not conserve the particle number andquation for the homogeneous system. We set the external
charge; we attain different representation in a nonperturbafield A, =0, and then obtain it in the matrix form
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k—m+ 70,u A Se(k) —iF (k) theory, the mean field has no internal degree of freedom. In
_ T o — T the case of the relativistic theory, there is a possibility to
A Ki+m—y"u/| —iF(k) —Se(=k) obtain much more complicated states.
1 0 The finite-temperature theory of the Matsubara formalism
_ (16) can be obtained in the same way. We introduce imaginary
0 1) time 7=it. The temperature Green’s functions are defined as
Herek™ means the transpose kf The self-consistency con- . A
dition now becomes g(x,y)=—(T, ¥ (x)V(y))
~ - y a7
dp T 0wy T ()
A=g f—F(p), (17) - . .
) 2m? ~(TL0WYg) (T AR
S(XIy)aB _f(xay)aﬁ
A:gof F(p). (18 —F(X,Y)ap (¥:X) ga
(2m)*

where(- - -) means the statistical average. From the equa-
Because of the homogeneity, the mean field has only thdons of motion of the temperature Green'’s functions, the
internal degrees of freedom. In the nonrelativistic BCSGor’kov equation becomes

a
— A0 — —
Y ((97' K S(Xiy)aﬁ _‘F(Xiy)aﬁ

+iy*9—m A(X)
d (—7—‘ —S(Y,X) g
— | +iYTg+m XY)ag SV

A(x) 77" o

(20

_( 5P (x—y) 0 )
- 0 sM(x=-y) )’

Here the definition of the mean fields are the simple exten—iw,. The solutions of the Gor’kov equation for homoge-

sion of those for the zero temperature neous system are discussed in Sec. V.
. .o ~ b AT Ill. GROUP THEORETICAL CONSIDERATION OF THE
A(7,X) 0p=00H (7" X 7,X) = go{ Pal( T -X)lﬂﬁ(TuX»i(Zl) MEAN FIELDS

We proceed the group theoretical consideration so as to
treat the mean fields more easily. From the anticommutation

A(7,X) ag=00F( 7" X, 7) = o Y 7 X) Y5 7,X)). relation for Fermi fields, the mean fields obey
(22
Fourier transform for the homogeneous system are also ob- A ap=—AX)gar AX)ap=—AX)pa- (24

tained, and the Gor’kov equation in the matrix form becomesNote thatA is not the Hermitian conjugate df:

( Y(iwg+u)—7-k—m A A =go(#" () ()
N OT/; _ o
A v lenmp) =y kem =90y (1 (091(0) =T (x)5° (29
" 5(_wn K) — Hwn,K) _ 10 (23 but rather,y°A is the Hermitian conjugate of°A. On the
—Fawp,k) —S(—w,,—KT 0 1) other hand, from the gauge transformation:

Here B=1/kgT (kg; the Boltzmann constant w,=(2n o — i a(X) - ) = T e (%)
+1)x/ B is a fermion discrete frequency. Solving the finite- Y= ()= CHh(x),  PX) =P (x) = g(x)e (Zé)
temperature Gor’kov equation, we will obtain the solutions

of the same form, except that we need to substikkje the one-body propagator is transformed as
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SF(Xiy)
—iF(x,y)

—iF(x,y)
—Sr(y. )"

and the mean fields are transformed as

A(X) =€ " PAMN) 45, AX) g€ 2 IA(X) -
(28)
Under the spatial inversion,

P _ P__
lﬂ(XO,X)—V)/Ol,b(Xo,_X), @b(XO!X)_”/l(XOI_X)'yOy

(29
the mean fields are transformed as
P
A(Xg,X) = TN, .0 Ty 10— ,0A — o
(X0, X) =" )=y Pb ) y"=y"A(Xg,— X) ¥ 30
_ . P I _
A(Xo, )= (¢ ) — ¥ (T by y°= ¥PA (X0, — X) ¥°.
(31
Under the proper Lorentz transformatida,,= —€,,, 0.,
=(@112)[y*,v"1},
P (X)=Sp(x), ¢ (X)=p(x)S (32
S= exp( :16#,,0"”), S~ 1=9s"°, (33
the mean fields are transformed as
A,(X,):<$,¢T,>
=(Syy'ST)
=SA(x)ST
(1—4 WUW)A(x)<1—ZEW(aW)T)
zA(x)—i;ew[of”.Mx)w"yZ]iW’, (39

A'(x)=AX)+ 7€, Y Y LI¥9°A (%), 0] (35)

Here we useC y#C=—y#T, C lg*'C=-0o*"T and
charge conjugation matri€=ivy?y°. Then, taking account
of the parity, we find we may take scalar agy®=
—vsC (ys=iv"y*y?%®) and pseudoscalar 38 y*. We ex-

pand the 4«4 matrix mean field into the 16-dimensional

complete set ofy matrices:®3*

Ag={ASI+AY Y+ AL o+ A ysy+ AP ys}(— yg,(c:)j
36

In this expansion, we take a notation tl@atlenotes the sca-
lar, V denotes the vectoF, denotes the two-rank antisymmet-
ric tensor,A denotes the axial vector afidenotes the pseu-
doscalar. It is clear from our derivation that each set of this

elle-aIg (x,y)
) (e‘”“‘”“‘”l(—i)ﬁx,y)

PHYSICAL REVIEW B5 024512

eleC+ eI —j)F(x,y)

e let)=eMl(— )5 (y,x)T @0

expansion is linearly transformed into themselves. This
structure of the mean fields in the relativistic theory is one of
the essential differences from that of the nonrelativistic
theory, as discussed in Ref. 19.

Here we have to mention about the matrix structure of
each term given in Eq(36). The scalar, pseudoscalar, and
vector are antisymmetric with respect to transposition, while
other cases are symmetric. These matrix structures have to be
related to the Pauli principle, as given in E@4). If we want
to treat the cases of the axial vector and two-rank antisym-
metric tensor, we have to extend our treatment, and the mean
fields have to possess finite angular momentum with odd
parity. This can be treated by introducing the generalized
BCS scheme, which will be given in the next section.

Under the charge conjugatio«jr,and?are transformed as

wi Cy', Zi —y'CcH, (37)
and hence\ andA are transformed as
A=(yyTyC(FTgHC 1 =CAC ™, (39)
Kz@@)icww)c*l:mc*l. (39)
Under the time reversal,=i y'y®, with the relation
T _ T __
P(Xo)—=T(—Xo),  P(Xg)—=h(—Xo)T, (40

together with the rule of taking the complex conjugate about
¢ numbers, we obtain

A=(h(x0) ¥ ( Xo)>—> T(p(—xo) " (— Xo)>*T__TAar)

A= (P (x0) (o))
T . _
— =T (=X P(—X))*T==T(A)*T. (42

This transformation is related to the concept of “unitary” of
the mean field* Throughout this study, we will treat only
unitary pairing state.

Chiral transformation can also be treated in the same way,

P(X)— ' (x) =€ 759N y(x),

YX)— ¢’ (X) = gh(x) & 754, (43)

then (75 vs) we obtain

AT =( (09T (X))
=759 y(x) T (x) ) e 752 = gl 750 A (x) g Y52 ()

(44)
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K’(x)=<ZT/(x)E’(x)> sider V(k,p) as a scalar function. We can assume it as a
Feynman propagator for a scalar field. The definite form of
= e 750y T(x) h(x) ) el 7540 = @l 760 A (x) @l 754X, the functionV(k,p) is related to the symmetry of the Cooper

pair; different symmetries correspond to the different forms
49 of V(k,p). Since the matrix structure of E¢G0) is same as
Thus we will find that, by using the expanded form of the Eq. (16), the Green’s function obtained by solving E§0)
mean field[Eq. (36)], the vector and the axial vector are gives the same matrix structure. It is also clear that this can
invariant under the chiral transformation. In short, in case obe extended to the finite-temperature Matsubara formalism.
the scalar and pseudoscalar,=e? 75*®A holds, in case of Next, we decompose the interaction and the mean fields
the vector and axial vectoA’ =A , holds, and in case of the into each channel. When we denote the total momentum of a
antis i PP ) Cooper pair a® ,= (Py,P),P?=P3—P?, and whenP?>0
ymmetric tensory ,, =e“'7s*A , holds. perp u 0:F)s 0 » al enr ,
we can always stand on a rest frame which satisfies the con-
IV. THE GENERALIZED BCS THEORY dition P=0. We treat our problem under the conditiéy
>0,P=0. Our mean fields have the translation invariance. At
In this section, to treat especially the spin triplet Cooperthat time the Wigner little group of the Poincageoup be-
pair states, we investigate the method of the generalized BC&mesO(3) rotation®* It should be enough to use the irre-
approach in the relativistic theory. Like the nonrelativistic ducible representation dd(3), i.e., the three-dimensional
theory, our starting point of studying the generalized BCSspherical harmonics, for the channel decomposition. It is also
theory is a Gor'kov equation with generalized pairing related to the fact that our theory will mainly treat the finite-
scheme. We introduce next generalized Gor’kov equations temperature Matsubara formalism, which selects a specific
time-coordinate. In this formalism, the theory allows only
(iy*a,—m+ VOM)XSF(X,Y)—if d4zV(x,z)F(x,z)E(z,y) 0(3) rotationa! symmetry. Under such consideration, we as-
sume that the interaction depends only on the angle between
= 5 (x—y), (46) k andp, expanding it by using the addition theorem,

(120, — Mt /o) F () f PV DFxDS(yz  EP=2 2 @+ DVitke Kipo. P) Yim, (K Vi (P

=0. “7) =2 2 479 Yin, (K Yi5, (D), (53

(iy"7d,+m=y"Tu)F(x.y) where we also introduce the weak coupling approximation
V,(Ko,|K|:po.|p|) =g, .3 This approximation neglects the re-
+if d*zV(x,2)F(x,2)Se(z,y)"=0, (49 tardation of the interaction and also neglects the dependence
on the magnitude of each momentum. We may call this as
C T _ 0T _ T “anisotropic contact” interaction. If one of these channels is
(Y50, m=y ) =) Se(y.X) attractiver,)the Fermi sea can be unstable and it can become a
superconducting state.
Later we will find that the gap equations which can have
nontrivial solutions are those for the scals¥, the Oth com-

In the Fourier transform in a matrix form, they are expressecbOnent of vectonY , the spacelike components of axial vec-

—ij d*zV(x,2)F(x,2)F(z,y)= 6 (x—y). (49)

as tor A?, the axial-vector-like components of two-rank anti-
k—m+y%u A(K) S(K) —iF (k) symmetric tensoA(TA). We have to discuss here only these
( _ T or _ . mean fields. To satisfy the Pauli principle, for the case of
A(k) K'+m—y"u/| —iF(k) —Se(=k) spin singlet pairing, we select the parity-even part of the
10 expansion of the interactiofb3),
= ( 0 l) , (50) -2
VOKP) =00tz 2 Yom(K)Yim(P)+---. (54
where the definition of the mean fields are ' M=z o am
d*p Here the first term corresponds to the interactigtwsi)2/2.
A(k)=f 2 )4V(k,p)F(p), (51) The mean field is also expanded in the same way,
a
-2
_ d*p _ A'=Agt 2 ApmYom(K) + - (55)
3= [ = LovikpF(p) 52 =2
(2m)*

On the other hand, for the spin triplet pairing, we have to
Here V(k,p) is an effective attractive interaction which is select the parity-odd part of the expansion. As for the inter-
assumed to give rise to superconducting states. Here we coaetion, we have
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-1 -3

v<°><k,|o>=glmz1 Yim(K)YE m<p>+932 Y 3m(K) Y3m(P)

+... (56)

We need some consideration for the treatment of the spi

triplet mean fields. Because of the relativistic nature of the
theory, spin and orbital degrees of freedom cannot be treated

separately. The spin projection to the space-fixedis is not

conserved. Now the good quantum numbers are the total

angular momentunj, its projectionm, and helicity\. We
will treat the spin triplet Cooper pair state as an axial vector,

boson, with even internal parity. The basis for the expan5|on

of the triplet mean field then becomes the helicity states. Wi
define the space-fixed coodinate as kkle k, system, while
the body-fixed coordinate moving with the boson as§hé
system. We choose the directid?nalong the axis. The
helicity is the projection to this axis\=—1,+1 (trans-
versg, A =0 (longitudina). Here we take the phase conven-
tion after the textbook of Landau and Lifshitz Then the
basis becomes

2j+1 A
Ui (R) =171\ =5 —eVD (),

wheree™ is the spherical unit vector of thén{ system,

(57)

e*1) =I\/_(§+|77) =iz (58

As for the Wigner rotation matrix, we determine the relation

between the Eulerian angles and spherical angles of the

kikyKk, system as
D@ B.7)=D)($,6,0=em*d{(0). (59

The orthonormal relation is given from the equations

eM)* . dh2) = 5)\1)\2, (60
sm 6d0 D(”)*(k)D(JZ) K=5—= i 1 901029
¢ ( 2] J1lp¥myimy»
(61)
as
j sinod @ dd"ﬁmﬁx (k) wjzmz)\ (k)
=9 11'25”‘1’“2 5*1’\2' (62)

About the inversiona=¢—¢+m, B=0—7—0, y—=
— v, each function is transformed as

D) (ky=(-1) DY (—k), (63)

eM(k)=(—1)1 e N(—k). (64)

Thus the parity eigenstates become

PHYSICAL REVIEW B5 024512

A 2j+1 A
o=\ T DR, (65)
w}gml‘o:ij-lVﬂ—“(é”@%(b+e<—1>1>9>1m<f<>),
n s
(66)
Uik =i \/ (e“)D“’<R>—e<-1>D<_">1m(|2>).
(67)

Each parity is given ashjme:(—1)*%, ¢iih:(=1)"2,
Jme (—1)). Thus the odd-parity states becomgs,, for

the monopolej( 0), ¢4} for the dipole (=1), mo
and y&') for the quadrepole, etc. Since in this work,
we treat only the unitary states of the mean fields, and
(A-0)(A*-0)=A-A* +i(AXA*). o, we have the unitary
condition AXA*=02* The “Iongltudlnal” Pimo IS itself
unitary, but as for the * transversef/ =), we have to add the
complex conjugate to itself. This means we have to take a
linear combination with the time-reversal state in order to
obtain a unitary state. Using the relations

gl = (=i mylt

Ud" = (=1 (69
we obtain the following bases that we use for the expansion:
l//ijI (69)
1 (+) j—m (+)
E[d/]ml—i_( 1) ‘r/fj ml] (70
L (-1 ] (7D
\/— jml j—mld-

In the “longitudinal” basis, the direction of the mean field
vector coincides witrfx, while in the “transversal” basis, it is

orthogonal tok. Finally the spin triplet mean fields are ex-
panded in the following form:

A(k) = 2 AR Gim oK), (72)

A(k) = EAJ‘;’[ Ym0+ (= 1)y, 1 (0],
(73)

k=2 Afm)f[w, L) = (= 1)y (R,

(74)

where we have to select only the parity-odd part of the ex-
pansion, for satisfing the Pauli principle. Here we also take
the so-called weak coupling apprommaﬂcﬁnJm (Ko, |K|)

35
NAJm
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V. THE SOLUTIONS FOR THE HOMOGENEOUS SYSTEM

Now using the definitiorC~*y#C=— y*T and the nota-
tion k= (ko+ k), Rz(ko—,u,k), our Gor’kov equation be-
comes

(k—m)Se(k)—iAF(k)=1, (75)
(k—m)F(k)—iAS:(—k)T=0, (76)
—C Y(k—m)CF(K)+iAS:(k)=0, (77)
—C Hk—m)C(—)S(—K)T—iAF(k)=1. (79
First, Sg(k) andE(k) satisfy the relation
— o krm
F(k)=iC Rz_mZ(:ASF(k). (79
Then we obtain
~ k+m
(k—m)Sp(k)+AC 1 CASc(k)=1. (80
k2_m2
On the other handS:(— k)T andF (k) satisfy
CK+m .
F(k)ZImASF(—k) , (81)

then
(k—=m)[CS(—k)TC™Y]

_F%+m

+CA~k2_ AC Y CS(—k)TC1]=1.

m2
(82

Therefore, our problem turns out to solve the twa 4 ma-
trix equations(80) and (82). Unfortunately, it is difficult to

PHYSICAL REVIEW B 65 024512

8

C =—75[ 2, A r} (85)

=
Going back to Eqs.(80) and (82), putting one of eight
types of mean fielda , under the unitary assumptionA {
T (AL - T =(A% -T?) (A, T?¥)==x(A,-A%) (where plus
sign corresponds to the scalar, Oth component of vector,
spacelike components of axial vector and axial-vector-like
components of two-rank antisymmetric tensor, while minus
sign corresponds to the other casesd also usingysI'®=
+T'?y: (plus sign corresponds to the scalar, pseudoscalar
and antisymmetric tensor, while minus sign corresponds to
the vector and axial vectprwe obtain

k—m
2

(Tﬁ—l”ﬂ)SF(|<)—(Aa-1“‘)R

(A3-THSH(K)=1,
(86)

_m2

(k—=m)CS:(—k)TC™?
T(_
2

(A} T

T (A THCS(—K)TCI=1,
m

(87

Solving this equations, we obtain
S (k)zi{(RZ—mz)(Tu m)
- D(k)

—(Ag T (k+m)(A%-T3)},

1 ~ -
—iF(k)=(i)WVs{(k—m)(Aa-Ta)(k+ m)
—(+)(8a- A7) (A, TH}C,

_ 1 y ~
—iF(k)=WC_lvs{(k— m)(AZ - I'%)(k+m)

solve these equations completely because of the matrix struc-
ture of the Dirac operator, particularly in the analytical form.
We have to solve the equations assuming the type of the
mean field that might be realized. We use the expanded form
of the mean field

—(F)(Aa-AZ)(AZ- T},

1 ~ .
=Sk == g C MR =) (k- m)

A={AS+APiys+ ATy +AGysy+ AV y+ AN yey —(A* . T3 HE+m) (A, THC,

+AL) 1Yy ALy 57 Y= ¥50), (83

and put each type of the mean field separately into the
Gor’kov equations. In this way, we can treat each case of the
mean fields in the same manner. In particular, the case of the 2
vector mean fields, under the unitary assumption, can be +(Aa-A3)% (88)
treated completely in the same way as the scalar mean _fiellgs for the sign forF(k), plus corresponds to the scalar,
case. We write down the expanded form of the mean fielgygedoscalar and antisymmetric tensor, while minus corre-
[Eq. (83)] as sponds to the vector and axial vector. All the eight Green’s

D (k)= (k2—m?)(k?—m?)—{K(A, THK(A% -T?)

+ (A THRAL - THR—2m2(£) (A, A%)}

(84

a=1

8
AC‘lz—[ > Aa.ra] s,

functions we have obtained reflect the features of each type
of the mean fields, both in the numerator and denominator.
We can confirm that this solution satisfies the Gor’kov equa-
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tion. We can see that when we take the limift—0, the parity of the mean fields which is determined fymatrices,
solution gives the Green’s functions of normal state. minus for even parity and plus for odd parity. It holds that in
We have solved the Gor’kov equations under the assumghe limit m—0, the quasiparticle spectra for the scalar and
tion of specific types of the mean fields in order to makepseudoscalar, Oth component of the vector and axial vector,
them tractable. We have to check the existence of couplingpacelike components of the vector and axial vector, vector-
among different types of the mean fields. For this purposelike components, and axial-vector-like components of the

we take the gap equations two-rank antisymmetric tensor, coincide. We write the qua-
siparticle dispersion explicitly. For the scalar case, as ob-
d*p tained in Ref. 18,
=90 | ——3F(P), (89)
(2m) E2 = (JIZT m?F )2 +|AS2. (94)
d*p In the pseudoscalar case,
A= [ = LovikpF() (90
) = K24+ m2+ w2+ | A 4|27 2(K2+ m?) w2+ m2[AP?,
We substitute the expanded form®f Eq. (83)] into the left (95)

hand side, substitute the solutions féfp) obtained previ-  ang these spectra coinciderat-0, E2 = (|| F x)2+|A|2.
ously into the right hand side, and take the trace of both sidgp, the case of the Oth component of the vector pairing
We find couplings betweenS andAy, A? andAS, AV and

Al . A" andA[, . We should say that the Green’s functions  E2 =k?+m?+ u2+|AY[2F 2(K2+ m?) w2+ |AY 2K,
obtained above are approximate ones by neglecting these (96)

li Iso th ti tai i
couplings, and also the gap equations obtained by usmgnd in the limitm—0, E2t=(|k|1\/mg|_2 2 In the

these Green'’s functions contain these approximations. . L
In the end of this section, we investigate the factorizatiorc@S€ of the spacelike components of the vector pairing, we

of the denominators of the Green’s functions. We discus@Ptain
some features of quasiparticle dispersion. In all of the cases, 2 _ 2 2, 2 V AV
the denominator given in Eq88) becomes the following EL=k"+m+u+(A%-ATF)
form:

F2J(K+m?) w2+ m?(AV- AV*) + k- AV]2.

D (k)= (K2—m?) (K2~ m?)— 2(A,- A% ) (K- k+d) 97)
In the case of the Oth component of the axial vector pairing,
+(Aa-A7)% (91)

2 _ 2 2— 2 A|2\2
This is second order ikZ, thus easily factorize it as B = (IP+m*F Ju?+[Ag)H?, (98)

and in the limitm— 0, the cases of the Oth component of the
D(k)=(ko—E;)(kotE4)(ko=E_)(kotE_). (92 vector and axial vector coincide with each other. The case for
D(K) is fourth order inky, but the Gor’kov equation itself is the spacelike components of the axial vector pairing, we ob-
8x 8 matrix. Like the nonrelativistic!S-BCS theory, the t@iN
uasiparticle spectra are doubly degenerate. We will find that
'?he cgndition fgr doubly degengratgd quasiparticle spectra i L=k mP p? 4 (A% AN T2 (K m?) P k- AN,
the unitary of the mean fields, which implies the time rever- (99)
sal symmetry of the mean field$ E., is the branch for the and form— 0, this also coincides with the case of the space-
quasiparticle coming from the positive energy solution, whilelike components of the vector pairing. About the vectorlike

- is the branch for quasiparticle coming from the ne’élt'ﬂltiVecomponents of the two-rank antisymmetric tensor, we obtain
energy solution. The expression for the pole becomes

2 =K+ mP+ u?+ (A *)
2 =12+ mP+ 2+ (Ay-AY) A0

F AR+ (2 + Ay - AL — k- Al %,
(100

and the axial-vector-like components of the two-rank anti-
symmetric tensor becomes

T4+ m?) +2(Ay- AF)(MP+d),  (93)

whered= —m? for the scalard=+m? for the pseudoscalar,
d=2k?—m? for the Oth component of vectord=
2|k- AV)%/(AY-AV*)+m? for the space-like components of

vector d=2k?+m? for the Oth component of axial vector, E2 =12+ m2+ 2+ (Al - ATH)

d=2|k- A*%/(A*- A**)—m? for the spacelike components - AR

of axial vector,d=—2k-Af)|*/ (A, AR) +2k*+m? for F 2K+ m?) w2+ K2 (A AR — k- Ay |2

the vectorlike components of two-rank antlsymmetrlc tensor

and d=—2|k- AT, |2/(A],, - ATy) +2k2—m? for the axial- (103

vector-like components of the two-rank antisymmetric ten-These spectra also coincide with each other in the Imit
sor. About thed, the sign beforem? is coming from the —0.
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The dispersion of the quasiparticle includes a gap topol- E.= \/( VK2 +m2% )% +|AS2, (105)
ogy, and it reflects orbital part of the mean field. It is clear -

that the complexity of the dispersion in relativistic case is theHere we introduce the cutoff for the momentum integration

result of the matrix structure of the Dirac operator. We can course. this cutoff scheme cannot be a covariant form. In
make an assertion that these situations manifest the fact th tf . ' ; e
e high-energy physics, there are problems that a different

in the relativistic theory, we cannot decouple the spin an ; . . .
orbital degrees of freedom. The dispersion and also the ga&umff scheme gives different physical quantifiésBut we

topology reflect the density of states and then affect the thef° NOt treat these problems here. Equatii®) and (109
mgdynggmics such as theyspecific heat. They influence al jve simple extension of_ the nonrglauwsﬂ@_BCS theory.
the collective modes. Spin part of the mean field gives spi he second term of the integrand in K04 is the contri-
symmetry of the Cooper pair, and it is reflected to the Spi;butlo_n of the quasiparticle coming from the negative energy
susceptibility or the Knight shift. In all the cases given solution.

e —_ . - In the case of the Oth component of the vector pairing, the
above, we obtaife’, = (vk“+m?+ u)”in the imit A;—0. 5 00 ation is given in the following form:

VI. THE GAP EQUATIONS

go [ d3k
In this section, we will obtain gap equations by using our 12;[

Green’s functions obtained previously. We use the finite- (2m)?
temperature Matsubara formalism. The gap function deter- K2 B
mines the thermodynamic properties of the superconductiv- X ( [ 1— ] tanhf E.
ity as direct consequences. The gap equation itself is the VKR +m?) w2+ [Ag[%k2 ) 2B+
stationary condition of the free enertfy.

Under the Pauli principle, and with the conditignp>0, e k? tan 'BE
we will find that we have nontrivial solutions for the mean VIR +mP?) w2+ | AY|2Kk2 2E hf )
fields in the case of the scalar and Oth component of vector
for even-parity interactioiv(®, the spacelike components of (106

axial vector, and axial-vector-like components of two-rank
antisymmetric tensor for odd-parity interactia®fi®. Other
cases give the gap equation of the form=hegative value,”

E. = VK2+m?+ 2+ |AY[2F 2 (K2+ m?) w2+ | Ay |22,

thus undeig,>0, there is no nontrivial solution. Thus in the (1079
interactiongy(y)?/2 with go>0, it can give nontrivial so- On the other hand, in the case of the pseudoscalar pairing
lutions only in the case of the scalar pairing and Oth compoand 0th component of the axial vector pairing, the gap equa-

nent of vector pairing. tions become

First, we deal with the interactiogy(y)2/2. The self-
consistency condition becomes 3
do J' d°k
—1==
2) (2m)?

A= Elf dSk}" k (102

9% B) G x| {1- m* antl E
J(KZ+m?) 2+ [APPPm2) 2E, BE:

_ 1 d% — m? 1 B

A=go2 EJ(Zw)af(wn,k). (103 +[1+ \/(k2+m2)/_L2+|AP|2m2] g tanf; E |,

Substitute F for scalar or Oth component of (108

vector into Eq. (102, deal with the y matrices and
take trace of both sides. Hereafter we only deal with
the nontrivial caseA,#0. In the denominatoD(w,,K)
=(iop—Ey)(iwy+E ) (iw,—E_)(iwy+E_) [substitute
ko—iw, in Eq. (92 for the Matsubara formalisinwe per-
form the partial fraction decomposition and discrete fre-and

guency summation. For the scalar case, we obtain the gap

equation of the same form as derived by Str&fge gof d3k

1 EE
= — tan
2) mp | 2 agr e

E. = Vke+m+ 2+ |AP125 2(K2+ m?) w2+ |APPm?,
(109

gofAd3k<ltBE+ltﬁE 1

== ——=|5=tan s——tanh; E_ |,

2J)-n(2m)3\ 2B BEE M +ﬂtanh§E_), (110
(104 2\ u?+|Ag]
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E. =K+ m?F u?+|Af2. (112 d3p 1
- V(O) k, __— JIA 2— 2

1
a0-3 5|
n B
We find that the right hand side of each of the equations are s
positive. Hence, we do not obtain nontrivial solutions in —m°—u—A(p)-A*(p)]=2p[A(p)-p]}. (112
these cases. Due to the same reason, the cases for the spagere the upper sign corresponds to the case of the axial
like components of the vector pairing and the vectorlikevector while the lower sign corresponds to the case of the
components of the two-rank antisymmetric tensor pairingaxial-vector-like components of the two-rank antisymmetric
also have no nontrivial solutions fg;>0. tensor. We take the expansions of the interaction and mean
Next, we treat the spin triplet states by using the generalfields as discussed previously. Throughout our study, we take
ized BCS formalism. Adopting the Green'’s functions of theonly |=1 p-wave interaction into account. For the mean
spacelike components of the axial vector or the axial-vectorfields, we treatj=0,1,2 states. We can consider coupled
like components of the two-rank antisymmetric tensor for thestates with differenf,m; ,\, but hereafter we only treat defi-
self-consistency condition, and manipulating thenatrices,  nite values ofj,m; ,\, because of simplicity. In the general
we obtain a three-vector gap equation form

. dp 1 . - 1 -
AN Ui (= | ——= 2 247912, Yim(K)Yin(P) s—— AN tim A (D[ P5T PP — m?—
i (2m)3 " B m D(wn,p) S

~ AR P AP i a (P 1= PAK) [ n () -PD, (113

we multiply both sides withp}‘mjk(f() from the left, and perform angular integration with respect to the spherical anfle of

After a lengthy manipulation, we obtain 18 gap equations, and all of them have the forms of the following two-type gap
equations, either typé) or type (ii).

Type (i)
d°p p* 1 B
1=a f c(o 1- tanh; E
%) 2wy ( )[( VPP +m?) u?+ bl AR [PpPe(0) | 2B+ BE
2
P 1 B
+| 1+ tanh-E_ }, 114
( \/(p2+m2)/-L2+ b|A](I{\n)J|2p2C(6)> 2E_ hZ_ ] ( )
Etz\/p2+m2+u2+b|A};3j|2c(e):2\/(p2+m2)M2+b|A§§3]|2p2c(a). (115
|
Type (ii) (105]. i, state of A* can be regarded as the ABM

(Anderson-Brinkman-Morglstate in our theor§> In this
%p 1 B 1 B case, the spin vector is orthogonal to the vector of orbital
1=aglf (277)3(:( 9)( 2E+tanh5 E.+ ftanhf E), motion. The angular dependence of this gap in the gap equa-
(116 tion is the same a¥,..;, such as the nonrelativistic ABM. It
has nodes at two point8=0,7. There is no state of=1
which has a line node structure. It is interesting that, in spite
E.= \/( P2+ m2F )2+ blAj(,ﬁq)jlzc( 6). (1170  of the spin triplet pairing, the structures of the gap nodes of
j =2 states are like that af wave,Y,,,. This feature arises
In the above equations, b, andc(6) depend on specific from our relativistic treatment, i.e., the use of the helicity
lﬂjmjx- All of the 18 gap equations are listed in Table I. In state. o N _
this table, we also list the node structure of the gap functions. [N the spin-triplet pairing states discussed above, the qua-
About oo Cases, there is no angular dependence both iﬁlpartlcle dlspersus)n and the gap equation take simple forms
the eigenvalues and gap equations. The condensation is € the case ofA™ except the angular dependences of the
j=1+s=0 pairs. g State OfA'(I'A) corresponds to the BW gaps|type (ii)], for the axial vector wAhen the orientation of
(Balian-Werthamerstate in our theory:>®* The gap is isotro- the mean fields is perpendicular to (helicity =1, the
pic like the nonrelativistic BW state. The structure of this gap‘transversal’), and for the two-rank antisymmetric tensor
equation is the same as thé given abovg Egs.(104 and  when the direction of the mean fields is parallel wktithe-

024512-11



TADAFUMI OHSAKU PHYSICAL REVIEW B 65 024512

TABLE I. The coefficients in the gap equations of thé andA(TA) pairings.(i) and(ii) correspond to the
use of the gap equations of tyfi¢ and type(ii), in Egs.(114),(115 and(116),(117), respectivelya, b, and
c(0) in this table are the coefficients in these equations.

type
state AR Aly a b c(6) node
oo 0] (i) : 1 1 no node
4ar
. ) 5 1
Y200 (i) (ii) i — (3 co€9—1)? COSf=+—
167 \/§
Yto o @3 2 sir29cogo 9-02 7
ar
Voo M ;. sirfo 6=0m
327
} } . 3
Yol (ii) 0) : = sir2o =0,
8
L - i 0 i 2 cogo+1 no node
\/E 111 1-1 167
} . 15
Yhod (if) (i) : = sirffcogo 0=0—
8 2
1 } . 5
E(w(ﬁ{— 5 (i) (i) 2 Ton 4 coé6-3 cogh+1 no node
1 } . s 5 -
Ew&;ﬁ Y (ii) 0] : = 1—codo =0,

licity 0, the “longitudinal”). Other cases, the eigenvalue and perconducting mean fields in complete manner. Especially to
the gap equation have complicated structure in fifpeand  treat the spin triplet Cooper pairs, we have investigated the
they are similar to that of thA},’. These are clear from the generalized BCS formalism in our theory. We have solved
form of the functions(99), (101), and (112). Thus in the the Gor’kov equations completely under the assumption to
relativistic theory, the difference in the helicitit gives the  have the specific types of the mean fields with unitary con-
orientation of the mean field vectogives rise to a quite dition. We have constructed the gap equations in the various
different form for both the dispersion and gap equation. Itstates and discussed their details. Throughout this paper, we
might be interesting if the relative orientation between thehave discussed various characteristic features of the theory.
mean field andck gives large effects to the solutions of the  As a next work, we will present the results of solving the
gap equations, thermal properties or response of the systeg@p equations numerically. We will also give some results of
to the external fields. These gap equations will be studiethe thermodynamics, or response to the external fields.
numerically in part 1l of this paper. Preparation for the presentation of these results is now in
progress, and will be published as part Il of this study.

VIl. SUMMARY

. . L ACKNOWLEDGMENTS
In this paper, we have performed the investigation of BCS

and generalized BCS superconductivity in relativistic quan- The author would like to thank Profs. H. Akai, K. Higash-
tum field theory. We have introduced the Gor’kov equation,ijima, Y. Hosotani, K. Ishikawa, Y. Nambu, H. Toki, and K.
and given the group theoretical considerations about the si¥amaguchi for many helpful discussions.

1J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. R@g, 3E. Farhi and R. JackiwDynamical Gauge Symmetry Breaking

1175(1957. (World Scientific, Singapore, 1982
2Y. Nambu and G. Jona-Lasinio, Phys. R&22, 345(1961); 124, 4K. Higashijima, Prog. Theor. Phys. SupftD4, 1 (1991).
246 (1961). 5S. P. Klevansky, Rev. Mod. Phy84, 649 (1992.

024512-12



BCS AND GENERALIZED BCS SUPERCONDUCTIVITY ...

PHYSICAL REVIEW B5 024512

6V. A. Miransky, Dynamical Symmetry Breaking in Quantum Field 2°P. StrangeRelativistic Quantum Mechanics with Applications in

Theories(World Scientific, Singapore, 1993

"For example, T. Moriya, Y. Takahashi, and K. Ueda, J. Phys. Soc.
274, Kucharek and P. Ring, Z. Phys.389, 23(199)); F. B. Guima-

Jpn. 56, 2905 (1990; T. Moriya and K. Uedajbid. 63, 1871
(19949.

8P. W. Anderson and P. Morel, Phys. R&23 1911(196J.

R. Balian and N. R. Werthamer, Phys. R&@1, 1553(1963.

10A. J. Leggett, Rev. Mod. Phyg7, 331(1975.

M. Ozaki, K. Machida, and T. Ohmi, Prog. Theor. Phyd, 221
(1985.

12G. E. Volovik and L. P. Gor’kov, Sov. Phys. JEBR, 843(1985.

13p, J. Hirschfeld, P. Wile, and D. Einzel, Phys. Rev. B7, 83

(1988; P. J. Hirschfeld, P. We, J. A. Sauls, D. Einzel, and W.

O. Putikka,ibid. 40, 6695(1989.

M. Sigrist and K. Ueda, Rev. Mod. Phy&3, 239 (1991).

15D, F. Agterberg, T. M. Rice, and M. Sigrist, Phys. Rev. L&8,
3374(1997; K. Miyake and O. Narikiyojbid. 83, 1423(1999;

Y. Hasegawa, K. Machida, and M. Ozaki, cond-mat/9909316

(unpublishegt H. Y. Kee, Y. B. Kim, and K. Maki, Phys. Rev. B
62, 5877(2000.

18R, Feder, F. Rosicky, and B. Ackermann, Z. Phys. B: Condens.

Matter 52, 31 (1983.
YA, A. Abrikosov and L. P. Gor'kov, Sov. Phys. JETES, 752
(1962; J. Appel, Phys. Revl39 A1536(1965.
18K, Capelle and E. K. U. Gross, Phys. Lett.188 261 (1995.
9k, Capelle and E. K. U. Gross, Phys. Rev5B, 7140(1999.
20K, Capelle and E. K. U. Gross, Phys. Rev5B, 7155(1999.

Condensed Matter and Atomic Physic@ambridge University
Press, Cambridge, 1998

raes, B. V. Carlson, and T. Frederico, Phys. Rev54 2385
(1996; F. Matera, G. Fabbri, and A. Dellafioréid. 56, 228
(1997; B. V. Carlson, T. Frederico, and F. B. Guimasaibid.
56, 3097(1997.

283, Sugimoto, K. Sumiyoshi, and H. Toki, Phys. Rev. &g,

054310(2007).

29D, Bailin and A. Love, Nucl. PhysB190, 175(1981); B190, 751

(1981); B205, 751(1982; Phys. Lett.107B, 377 (1981); Phys.
Rep.B107, 325(1984).

30, A. Kondratyuk, M. M. Giannini, and M. I. Krivoruchenko,

Phys. Lett. B269, 139 (1991); Z. Phys. A344, 99 (1992; M.

Iwasaki and T. lwado, Phys. Lett. 850, 163(1995; M. Alford,

K. Rajagopal, and F. Wilczekbid. 422, 247(1998; R. Rapp, T.
Schder, E. V. Shuryak, and M. Velkovsky, Phys. Rev. Leit,

53(1998; T. Schder and F. Wilczekijbid. 82, 3956(1999; K.

Rajagopal, hep-ph/9908360(unpublishest F. Wilczek,

hep-ph/990848Qunpublishegt M. Alford, J. Berges, and K.
Rajagopal, hep-ph/9910254inpublished N. Evans, S. D. H.
Hsu, and M. Schwetz, hep-ph/9808444unpublisheg

hep-ph/9810514unpublished

3IM. Hoffberg, A. E. Glassgold, R. W. Richardson, and M. Ruder-

man, Phys. Rev. LetR4, 777 (1970; P. Muzikar, J. A. Sauls,
and J. W. Serene, Phys. Rev.2b, 1494(1980; J. A. Sauls, D.
L. Stein, and J. W. Sereniaid. 25, 967(1982; D. Pines and M.

2K. capelle, M. A. L. Marques, and E. K. U. Gross, Physica C  Ali Alper, Nature (Londor) 316, 27 (1985.

317, 508 (1999.
22K. Capelle, E. K. U. Gross, and B. L. Gifty, Phys. Rev. Lett.
78, 3753(1997); Phys. Rev. B58, 473(1998.

32, A. Abrikosov, L. P. Gor'kov, and I. E. Dzyaloshinsk¥ethods

of Quantum Field Theory in Statistical Physi®over, New
York, 1963.

23K, Capelle, Phys. Rev. B3, 052503(2001). 33y, Nambu, Phys. Revl17, 648(1960.

24K. Capelle, M. A. L. Marques, and E. K. U. Gross, 3*N. Nakanishi, Prog. Theor. Phys. Supg8, 1 (1969.
cond-mat/010140%unpublishedl 35D, Vollhardt and P. Wile, The Superfluid Phases of Helium 3

25T, Tsuneto Superconductivity and Superfluiditiyvanami, Tokyo, (Taylor and Francis, London, 1990
1997 (in Japanese [English version(Cambridge University 3®V. B. Belestetskii, E. M. Lifshitz and L. P. PitaevskRelativistic
Press, Cambridge, 1998ranslated by M. Nakahara. Quantum TheoryPergamon Press, Oxford, 197Pt. 1.

024512-13



