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Nonmagnetic impurities affect the paramagnetic response of superconductors via the associated spin-orbit
interaction that, when the nonmagnetic impurity is close to the unitary limit, must be treated beyond the
classical Born approximation. Here the Zeeman response of two-dimensi@mald-wave superconductors is
calculated within the self-consistefitmatrix formulation for both impurity and spin-orbit scatterings. It is
shown that at the unitary limit, for which the spin-orbit scattering is maximum, the spin-up and spin-down
channels become decoupled implying full Zeeman splitting of the quasiparticle excitations. These results could
be used to test the unitary scattering hypothesis in fiighuperconductors.
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[. INTRODUCTION unitary limit, as often advocated for impurity-doped high-
superconductors, the Elliott-Yafet formula must be general-
The response of a superconductor to defects and/or impuized in order to include multiscattering processes. For a two-
rities brings important information on the nature of the su-dimensional system with sufficiently diluted impurity con-
perconducting state and it has been the subject of an enotentrationsn;, the solution of the normal stat€é-matrix
mous amount of theoretical and experimental resehiidie  equations for botly andv, leads td*
effect of impurities on the superconducting state depends
crucially on the nature of the impurifynagnetic or nonmag- 1 1+c? 1
netic and on the symmetry of the order parameter. For iso- 7_22—2 o @
- so  1+(2c/69)° Timp
tropic swave superconductors, the response to a nonmag-
netic impurity is feeblé,while the effect of a magnetic one is where c=1/7Nv, Urimp=2T1(1+¢?), I'=n;/aN,, and
dramatic®* Instead when the order parameter is anisotropicN, is the density of states per spin direction at the Fermi
as ind-wave highT, superconductor, the response to disor-level. In the weak scattering limit>1, Eq.(1) reproduces
der is always dramatit® leading to Kondo-like effects inthe the result of the Born approximation: T%A=(59)2/27imp
case of magnetic scattering potentiats, resonant behaviors <1/7jmp. However forc=0.1, that is the value estimated in
for nonmagnetic impurities close to the unitary lifiEor  Ref. 9, Eq.(1) leads to 1#¢~0.4/7,, whensg=0.1, and in
high-T. superconductors, therefore, it is experimentally morethe extreme unitary limit: i 1/7s,= 2/7ymp as long as
difficult to establish whether the impurity acts effectively as sg+0. Hence, when the impurity potential is strong, or
a magnetic or a nonmagnetic Scattering potential. For €Xmore genera”y as |0ng as-v<5g, inevitab|y the Spin_orbit
ample, recent scanning-tunneling-microscope images of thyteraction becomes as important as the spin-independent
local tunneling conductivity around a Zn impurity in coupling to the impurity.
Bi,SR,Cu0,,” have been fitted by both nonmagnétiand The above discussion suggests, therefore, that if nonmag-
magnetic impurity models. netic impurities in high¥, superconductors are close to the
AtOpiC that could be helpful to Clarify the effective nature unitary limit, the effect of spin-orbit Coup”ng should be
of disorder in hight oxides is the analysis of the responsearge. In particular, the Zeeman response to an applied mag-
to some external applied perturbation. The aim of this papegetic field should be deeply altered by the spin-mixing pro-
is to show some important consequences of having strongesses associated with,, and eventually, for sufficiently
nonmagnetic impurities on the Zeeman response sf@  strong spin-orbit scattering, the Zeeman splitting should van-
d-wave superconductor. The way in which nonmagnetic scatish. Here it is shown that for two-dimensional systems this
tering centers affect the spin degrees of freedom is via thgonclusion is actually wrong: the Zeeman splitting resulting
associated spin-orbit interaction as described by the so-callggom the solution of theT-matrix equation is much more
Elliott-Yafet theory:'? Hence, ifv is the nonmagnetic im- robust than that obtained within the Born approximation, and
purity potential’® the corresponding spin-orbit scattering is at the unitary limit €/ 8g=0) boths- andd-wave supercon-

proportional tovs,=v ég, where og is the shift of theg  ductors are fully Zeeman splitted by an applied in-plane
factor. The actual value afg depends on the wave-function magnetic field.
penetration into the ions and the Fermi-surface topology and

itis a rat.her difficult problent? For copper OX|d_es the main Il SPIN-ORBIT T MATRIX
contribution to g should come from theal orbital of Cu
atoms for whichég=0.1. Within the Born approximation, For quasi-two-dimensional systems the Zeeman response

the spin-orbit scattering rate in the normal state is thereforéo an external magnetic fieléti should be best observed
1Urs=(59)% Timp<UTimp, Where 1fn,, is the scattering rate whenH is directed parallel to the conducting platfer ex-

due tov alone. This is also known as the Elliott-Yafet rela- ample, the Cu-O plane in copper oxiglesince in this case
tion. However, when the impurity scattering is close to thethe coupling ofH to the orbital motion of the electrons is
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minimized!® Hence, the total Hamiltonian &= H,+ H;
+Hgo Where O Tk m=u(k,k)+ 2 u(k,k)G(K",mT(K" k' ,n),

kH
(5

Ho= ;1 €(K)C,Cra™ h% ACoCia andu(k,k’) = psv +idgv[kxk’'],7;. Giving to the momen-
tum dependence of the spin-orbit partugk,k”’), the T ma-

trix can be splitted into the impurity and spin-orbit contribu-

tions for both s- and d-wave symmetries of the order

parameter. Hencd,(k,k’,n) =Tiny(n) + Tsok,k",n), where

wheree(k) is the electron dispersion measured with respectlimp(n) = p3v + p3v =G (K,n) Ting(n) is the usual impurity

to the chemical potentiak is a spin indexh=ugH, andug T Matrix, and

is the Bohr magneton. In the following it is assumed that the

charge carriers are confined to move in g plane so that Tk, k’,n)=isgv[kxk'],

k=(ky,ky) and that the spins are directed along and opposite

to the direction 91‘ the magnetic field, fixed to lie along the +i5gvz [RXR"],7G(K",n)Tof K" k' ,n)

direction: H=Hx. For s-wave superconductora (k)=A K"

while for d-wave superconductors(k)=A cos(2p), where (6)

¢ is the polar angle in thk,-k, plane. Without loss of gen-

erality, hereA is used as an input parameter although itis the spin-orbitT matrix. The solution of Eq(6) is of the

should be calculated self-consistently from a suitable gagorm*

equation. Moreover, for simplicity, local variations of the

order parameter are neglected. '_I'he impurity and spin-orbit Tok,k',n) =i gu[Kxt(K’,n)]ry, @)

Hamiltonians,H;y, andHs,, are given by

—; Ak)(cliel +eoy e, 2

where
Himp=0v > > exg—i(k—k')-Rilcl,Coa, (3 i i ) o
ki@ t(k,n)=k+isgv >, k' ,G(k’,n)[Kk’ xt(k,n)],. (8)
k/
. 6gv _ , - : _ _
Her=i —5 E exd —i(k—k")-R]([kxk']-2) The above quanon can b? easily solved in terms of the
Fokk'i componentst,(k,n) and t,(k,n) of the vector operator
t(k
X (Cl;Cr | +CF Cr ), (4) (kn),

whereR; denotes the random positions of the impurities and P y—a—1 Lo L Y /

ke is the Fermi momentum. Note that due to two dimension- Bk =Aq () kx+légvky§ (k" G(K".n)

ality, the spin-orbit matrix element of E¢4) is proportional ) -9

to o, and, since the spins are quantized alongxtbdeection,

the spin-orbit scattering is, therefore, always accompanied by ~ M ~ . T

spin-flip processes. The Zeeman responseHg,=0 and ty(k,n)=A )| ky—isguk,> (ky)?mG(k’,n)|,

H<=0 has already been considered in Ref. 16 dewave L K’ J

superconductors and in Ref. 17 for mixed symmetries of the (10

order parameter. The inclusion 6f;,,, which, however,

does not mix the spin states, has been studied in Ref. 18. T

total Hamiltonian = Hy+ Himp+ Hs, for d-wave symmetry

has been considered in Ref. 19 within the Born approxima-

tion for both impurity and spin-orbit scatterings. Here, in- Axy(n)zl_(ggv)Z[E (k) 27,G(k,n)

stead, the problem is generalized beyond the Born approxi- k

mation by solving the self-consisteftmatrix equation for

both Hiyp, and H,. X
The generalized Matsubara Green’s functi@ik,n) in

the particle-hole spin space resulting from E(@—(4) sat-

isfies the Dyson equatio® ~*(k,n)=G, *(k,n) -2 (k,n),

where G, (k,n)=iw,— pse(k) — p,mA(K) —hpss is the

propagator resulting front,. The Pauli matricep; and

7 (i=1,2,3) act on the particle-hole and spin subspaces,

respectively. Within the self-consistefitmatrix approach,

the self energy i (k,n)=n;T(k,k,n), where theT matrix

is the solution of the following equation: Finally, from Eq.(7), Ts(k,k,n) reduces to

whereA}(n) andA_;'(n) are the inverse of the following
4 matrices:

; (ky)2mG(k,n) |, (11)

Ayx(n): 1_(5911)2

g (ky)271G(k,n)

X . (12

; (k) 271G (k,N)
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Tod k. k,n) =i dgukek, [AH(n) = A (N ]y where w.=w=*ih, A,=Axi and g.=iw./
o VA.+02%, f.=A./JA.+w%. To display the spin-
+(8gv)2> [AL(n)(keky)? mixing effect of the spin-orbit interaction, Eq4.5) and(16)

k/

are more conveniently rewritten in termswf =w_ /A ,

+A (M) (k)T G(K' N7y, (19 oo tih F(C)z

Ui = - | T~
Further analysis of th&-matrix problem requires the explicit A Aldg
inclusion of the symmetry of the order parameter. This is U —u
done in the following sections, where Ed.3) is solved for o TE
boths- andd-wave symmetries. (1+u2)?
1. 2c)4+2(20 2 1+u.u-
A. swave symmetry 59 59 (1+u2i)1/2(1+u21)1/2

The usual procedure to evaluate self-consistently the elec-
tron propagator is to guess the form Gik,n) that, after 17)
being substituted intdl;n,(n) and Tg(k,k,n), generates Apart for the trivial limitu. = (w,*ih)/A that holds true in
only combinations op; and 7; matrices already contained in the absence of spin-orbit interactioag=0), the two spin
G(k,n). The direct substitution dBy(k,n) into Tim(n) and  channelsu, andu_ are coupled together. Within the Born
Tso(k,k,n) is a practical way to guess the correct form of approximation, c/6g>1, Eq. (17) reduces to the two-
G(k,n) via the Dyson equation. When this is done, it is easydimensional version of thei. formula found in classic
to realize that when the symmetry of the order parametsr is literature!>?!
wave, A(k)=A, the two matricesA,, and Ay, defined in
Egs. (11) and (12) become equal. Hence, the form of the _wntih N 1F(5g 2 u.—u

2

¥

(1+u%)M 19

electron propagator for aswave symmetry of the order Ur =—3— S
parameter reduces to

The characteristic feature displayed by the more general ex-
1 e PN pression(17) is that, as the unitary limit/6g=0 is ap-
G (ki) =i[w=ihps7s] = psl e(k) =i Apa7s] proachedu, andu_ becomes decoupled and the full Zee-
_ X—iT , 14 man splittingu, —u_=2ih/A is recovered. In such a limit
P27l paTs] (A4 therefore, thes-wave superconductor is fully Zeeman splitted
as if the spin-orbit scattering would be spin conserving. The

where the frequency dependence of the til uantities i . ) )
ere the frequency depe ¢ ded g Same conclusion can be obtained by calculating the zero-

implicit. The tilded quantities are obtained by substitutingtemperature spin susceptibility, as inferred by the linear-
S

Eq. (14) into the equations for the impurity and spin-orfit i In fact. by including th ) tox f
matrices and requiring self-consistency via the Dyson equa{__esponse_ : e?ry.'thnth%(': ' %/_m;: u mlgt' € _tspln-ver_a( ;Jnc-
tion. In general, the solution is very complicated, but a con-0n consistent wi -matrix formulation it1s possible to

siderable simplification arises if infinite electron bandwidth show that
and particle-hole symmetry of the normal-state electron dis-

; : : ! Xs 7T 1 1
persion are assumed. In this case, in fact, several integrals 25_1_ ~_ ,
over k average to zer®® leading to the following self- Xn A T 14 (w, /A2 [1+(w,/A)2]Y%+ pg,
consistent equations: (19

where XnZZME;No, T is the temperature andpg,
~ _ =(T'/A)(8g/c)?/[1+(8g/2c)?]%. At zero temperature and
lw.=i(wy*ih)+ 1129 for ps,<1, Eq.(19) reduces to

(2¢/89)°g++9- Xs_, 1|m arccosps)

) _ 2
1+(2¢/ 89)*+2(2¢/59)2(f . f_—g,g_) Xn Pso| 2 1-p5,

(15) For 8g/c<1, ps,=(I'/A)(8g/c)? and Eq.(20) becomes
equal to the two-dimensional version of the Abrikosov-
Gorkov expression based on the Born approximatfoim-
stead, for c/8g<1, ps=(I'/A)(2¢c/5g)? and xs/xn

1+4¢2 © =2m(I'/A)(2¢/ 8g)?<1 that vanishes whea/ 5g=0.

The absence of spin-mixing contributions at the unitary
(2¢/6g)%F - +1. limit can be interpreted as a consequence of the fact that
2 2 ) Ho+ Himp COMmutes withS, while H, commutes withsS, .
1+(2cl69)"+2(2c/ 59)*(f.f-—0.9-) Therefor?a, for weak spin-orbit scattering/¢g>1) S, is a
(16)  rather good quantum number ahtl, induces weak spin-flip

+2r (20
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processes leading to coupled equations. The spin decou- d-wave superconductor should exhibit spin-channels decou-
pling at the unitary limitc/5g<1, could be explained by pling asc/6g—0. This is indeed so even if there are quali-
arguing that for very strong spin-orbit interacti® rather tative differences with respect tewave superconductors
than S, is a good quantum number. The Cooper pairs aresince ford-wave symmetry the spin-orbit scattering becomes
then formed by electrons with opposite spins in théirec-  pair breaking Again assuming particle-hole symmetry and
tion and the spin rigidity of the superconducting condensat@n infinite electron bandwidth, for A(k)=A(¢)

is efficient against spin-flip transitions induced by the mag-=A cos(2p) the electron propagator is of the form

netic field H=Hx. In the limiting case of infinitely strong

spin-orbit interaction, thereforé] can only induce polariza- G Y(k,n)=i(w—ihpzr3)— pale(k) —iAps7s]
tion of the quasiparticle excitations. Note that, in case the 3
magnetic field is directed along the direction, the total —po7o[A(P)—iT(P)psras+iT Q)]

Hamiltonian then commutes witls, and the Zeeman re-
sponse of a-wave superconductor becomes independent of
the spin-orbit interaction for whatever value ofsg. Of

course, for a three-dimensional system, the above reasonif§f1€re A(¢)=Acos(2p), T(4)=T cos(@p), and {(¢)
does no longer apply because the spin-orbit interaction does () sin(2¢). The origin of(¢) (absent in the-wave casp

(21)

not commute with any component 8f stems from the fact that, fa-wave symmetry, the two ma-
tricesA,, andA, in Egs.(11) and(12) are no longer equal,
B. d-wave symmetry so that the term proportional gk, =sin(2¢) in Ts((k,k,n),

For the above considerations to be valid, only two dimen- Eq. (13), is nonzero. As for theswave case the self-
sionality and a singlet superconducting condensate are r€onsistent Dyson equation can be expressed in ternas. of
quired. Therefore, in principle, also a two-dimensionalandA . , but now there is an additional equation far

0 (2¢/59)%g=+ (2 —g2)g.
2 0 29i+2r 2 2 2’
c°—(g9x) [(2c/69)°~g+9-—f. f_]"—(g.f_+g_f,)

iw.=i(w,xih)+ (22)

- 2¢/89)%f . —(f2 —g2)f.
A.=A+2r 2( 91t > 91 > (23
[(2c/69)°—g+9-—f f ]°=(g+f_+g_f,)

(2c/69)(g+f-+g-f,)

O=—orT , 24
[(20/69)2—g+g —f f_1P— (g f_+g_f)? 29
_ 2§ sing)? o [0f +E<(K)?]52i(0, — 0 )0(¢) 5

BTN 27 [0 +EL (W[ +E (K2 0()H(@: -0 )2+ [E.()—A (]2
(o 2 5 s’ AL (Pt +E(KF[A.(4)-A_(¢)10(¢)° .

TomNe K 27 (G2 4EL (02[02 +E-(K)2]- () H (0, — o )2+[K () -E ()12}

[
where E..(k)?=e(k)?+A.(¢)%+0(¢)? and g% can be 5 f

obtained from Eq.25) by setting sing)>—1/2. The off- AL=A-2T 55—, (28)

diagonal contributiorf) defined in Eq(24) is responsible for
spin-mixing terms appearing ig. , f. , andg% . However, ~Where
at the unitary limitc/ 5g=0, Q) vanishes and the above self- o~ 5
consistent equations reduce to — d¢ lw.sin(4)
g+=2 (29
27 R ()P +02]"

r
—|(wni|h)—£+21“f2

~ o
B , f¢=21d—¢ A.(¢p)sin(¢) (30

(27) 27 [R.(4)2+ a2 P2
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other. This is in contrast to the Born solution, Figb)l for
which the strong spin-mixing terms lead to a flat density of
states. It should be stressed that before reachingstiie

>1 limit, the Born approximation predicts thdtwave su-
perconductivity is already completely destroyédherefore,
the results foc=0 in Fig. 1(b) should be considered just as
a mathematical limit to be compared with the solutions of the
T-matrix approach of Fig. @®.

IIl. CONCLUSIONS

In summary, it has been shown that when the nonmag-
netic impurity scattering is close to the unitary limit, the
associated spin-orbit interaction is not small provided
c~<dg, and it must be treated beyond the simple Born
approximation. Within the self-consistefimatrix approach,
it has been demonstrated that the Zeeman splitting of $oth
andd-wave two-dimensional superconductors is much more
0 i 00 1o 20 20 o o0 10 ac™ robust than that obtained by the Born approximation. At the

w/A WA unitary limit ¢/6g=0, for which the spin-orbit coupling is

FIG. 1. Zeeman-split quasiparticle density of stafeq w)/Ng maximum, a two-_(jlmgn_8|oned—wave superconductor does
(dashed lingsand N _(w)/Nq (solid lineg for a d-wave supercon- not show any spin-mixing processes and the Zeeman re-
ductor withh=H/A=0.2,['=0.1, 5g=0.1, and different values of SPONSe coincides with that of a pure s_uperconductor. Also for
the scattering parameter (a): solution of the completd-matrix ~ d-wave superconductors the spin-orbit coupling becomes ef-
equations(b): solution for the Born approximation to the spin-orbit fectively spin conserving at/6g=0, but, in addition, it in-

coupling. duces pair-breaking effects that must be added to those
caused by the scalar impuriti&b.
The two spin channels- and — in Egs. (27) and (28) are Let us comment now on the possible limitations of the

now completely decoupled in analogy therefore with thepresent theory. The calculation method used here is a stan-
swave case treated before. However, now evefi-ad the dard one based on @&-matrix approximation for diluted
spin susceptibility is expected to remain nonzéas long as  impurities>®?® However, when it is applied to two-
I'#0). This is due to the fact that, although there are nodimensional systems, such as, the copper oxides, this stan-
spin-mixing processes at 5g=0, the pair-breaking effect dard procedure is complicated by the appearance of singu-
of both impurity and spin-orbit scatterings leads to a finitelarities in the electron self-energy.Contrary to the results
density of states at the Fermi levélIn this situation, there- based on theT-matrix solution and self-consistent ap-
fore, the Zeeman-splitted density of states is a more dired®roaches to deal with the singulariti€snonperturbative
evidence for the spin-decoupling effectadg—0. This is ~Methods suggest that the density of states @ive super-
shown in Fig. 1 where the two spin channels density oftonductor actually vanishes nonanalytically at the Fermi
statesN. (), are plotted fol’ =0.1, 5g=0.1, h=0.2 and level** The low-energy behavior appears to be heavily modi-
for different values ofc. N. () is calculated numerically fied by the level spacing of a localization volume that leads
from to the opening of a pseudogap in the low-lying single-
electron excitationd! It should, however, be noted that dis-
N+(w 0 crepancies between different approaches affect only the very
Ng —sgnw)Im{g: ()], (8D Jow-energy excitations, while for energies not much smaller
thanA the T-matrix approach is quite reliabléor finite but
where g% (o) is the analytic continuation on the real axis small impurity concentrationsin this respect, the main re-
(iwy—w+i8) of Eq. (25 (with sin($)>—1/2)%° In Fig.  sult of Fig. 1a) (i.e., the persistence of the Zeeman splitting
1(a), N.(w) is calculated from the solution of the general of the coherence peaks in the density of states even when
equationg22)—(24), while, for comparison, the result for the c/8g is zerg should not be an artificial feature of the
Born approximation applied to the spin-orbit part of Egs.T-matrix approximation. This conclusion is also sustained by
(22—(24) is shown in Fig. 10).? Uptoc=0.1 (Sg/c=1) the quite general physical explanation of the Zeeman-
the generalT-matrix solution and the Born approximation splitting persistence at the unitary limit proposed in Sec. Il A
agree quite well, while already far=0.05 (6g/c=2) the and from an analysis of the single spin-orbit impurity prob-
splitted coherence peaks afA=*(1*h) are still quite lem not reported here. Note that, for these same reasons,
visible in Fig. 1a and completely suppressed in Figbll  some standard simplifications employed in the present calcu-
Since, at the unitary limit/ 5g=0, the spins are completely lations (infinite bandwidth, particle-hole symmetric electron
decoupled, Eq927) and(28), the two spin density of states dispersion and absence of local suppressions of the order
are identical and shifted by-h, one with respect to the parametershould not affect too seriously the main result.
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