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Unitary limit of spin-orbit scattering in two-dimensional s- and d-wave superconductors

Claudio Grimaldi
École Polytechnique Fe´dérale de Lausanne, De´partement de Microtechnique IPM, CH-1015 Lausanne, Switzerland
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Nonmagnetic impurities affect the paramagnetic response of superconductors via the associated spin-orbit
interaction that, when the nonmagnetic impurity is close to the unitary limit, must be treated beyond the
classical Born approximation. Here the Zeeman response of two-dimensionals- andd-wave superconductors is
calculated within the self-consistentT-matrix formulation for both impurity and spin-orbit scatterings. It is
shown that at the unitary limit, for which the spin-orbit scattering is maximum, the spin-up and spin-down
channels become decoupled implying full Zeeman splitting of the quasiparticle excitations. These results could
be used to test the unitary scattering hypothesis in high-Tc superconductors.
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I. INTRODUCTION

The response of a superconductor to defects and/or im
rities brings important information on the nature of the s
perconducting state and it has been the subject of an e
mous amount of theoretical and experimental research.1 The
effect of impurities on the superconducting state depe
crucially on the nature of the impurity~magnetic or nonmag
netic! and on the symmetry of the order parameter. For i
tropic s-wave superconductors, the response to a nonm
netic impurity is feeble,2 while the effect of a magnetic one i
dramatic.3,4 Instead when the order parameter is anisotrop
as ind-wave high-Tc superconductor, the response to dis
der is always dramatic,5,6 leading to Kondo-like effects in the
case of magnetic scattering potentials,7 or resonant behavior
for nonmagnetic impurities close to the unitary limit.8 For
high-Tc superconductors, therefore, it is experimentally m
difficult to establish whether the impurity acts effectively
a magnetic or a nonmagnetic scattering potential. For
ample, recent scanning-tunneling-microscope images of
local tunneling conductivity around a Zn impurity i
Bi2SR2CuO2,9 have been fitted by both nonmagnetic10 and
magnetic impurity models.7

A topic that could be helpful to clarify the effective natu
of disorder in high-Tc oxides is the analysis of the respon
to some external applied perturbation. The aim of this pa
is to show some important consequences of having str
nonmagnetic impurities on the Zeeman response of as- or
d-wave superconductor. The way in which nonmagnetic s
tering centers affect the spin degrees of freedom is via
associated spin-orbit interaction as described by the so-ca
Elliott-Yafet theory.11,12 Hence, ifv is the nonmagnetic im-
purity potential,13 the corresponding spin-orbit scattering
proportional tovso5vdg, where dg is the shift of theg
factor. The actual value ofdg depends on the wave-functio
penetration into the ions and the Fermi-surface topology
it is a rather difficult problem.12 For copper oxides the mai
contribution todg should come from thed orbital of Cu
atoms for whichdg.0.1. Within the Born approximation
the spin-orbit scattering rate in the normal state is there
1/tso.(dg)2/t imp!1/t imp , where 1/t imp is the scattering rate
due tov alone. This is also known as the Elliott-Yafet rel
tion. However, when the impurity scattering is close to t
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unitary limit, as often advocated for impurity-doped high-Tc
superconductors, the Elliott-Yafet formula must be gene
ized in order to include multiscattering processes. For a tw
dimensional system with sufficiently diluted impurity con
centrationsni , the solution of the normal stateT-matrix
equations for bothv andvso leads to14

1

tso
52

11c2

11~2c/dg!2

1

t imp
, ~1!

where c51/pN0v, 1/t imp52G/(11c2), G5ni /pN0, and
N0 is the density of states per spin direction at the Fe
level. In the weak scattering limitc@1, Eq. ~1! reproduces
the result of the Born approximation: 1/tso5(dg)2/2t imp
!1/t imp . However forc50.1, that is the value estimated i
Ref. 9, Eq.~1! leads to 1/tso.0.4/t imp whendg50.1, and in
the extreme unitary limit: limc→01/tso52/t imp as long as
dgÞ0. Hence, when the impurity potential is strong,
more generally as long asc;,dg, inevitably the spin-orbit
interaction becomes as important as the spin-indepen
coupling to the impurity.

The above discussion suggests, therefore, that if nonm
netic impurities in high-Tc superconductors are close to th
unitary limit, the effect of spin-orbit coupling should b
large. In particular, the Zeeman response to an applied m
netic field should be deeply altered by the spin-mixing p
cesses associated withvso and eventually, for sufficiently
strong spin-orbit scattering, the Zeeman splitting should v
ish. Here it is shown that for two-dimensional systems t
conclusion is actually wrong: the Zeeman splitting resulti
from the solution of theT-matrix equation is much more
robust than that obtained within the Born approximation, a
at the unitary limit (c/dg50) boths- andd-wave supercon-
ductors are fully Zeeman splitted by an applied in-pla
magnetic field.

II. SPIN-ORBIT T MATRIX

For quasi-two-dimensional systems the Zeeman respo
to an external magnetic fieldH should be best observe
whenH is directed parallel to the conducting plane~for ex-
ample, the Cu-O plane in copper oxides!, since in this case
the coupling ofH to the orbital motion of the electrons i
©2001 The American Physical Society07-1
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CLAUDIO GRIMALDI PHYSICAL REVIEW B 65 024507
minimized.15 Hence, the total Hamiltonian isH5H01Himp
1Hso, where

H05(
k,a

e~k!cka
† cka2h(

k,a
acka

† cka

2(
k

D~k!~ck↑
† c2k↓

† 1c2k↓ck↑!, ~2!

wheree(k) is the electron dispersion measured with resp
to the chemical potential,a is a spin index,h5mBH, andmB
is the Bohr magneton. In the following it is assumed that
charge carriers are confined to move in thex-y plane so that
k[(kx ,ky) and that the spins are directed along and oppo
to the direction of the magnetic field, fixed to lie along thex

direction: H5Hx̂. For s-wave superconductorsD(k)5D
while for d-wave superconductorsD(k)5D cos(2f), where
f is the polar angle in thekx-ky plane. Without loss of gen
erality, hereD is used as an input parameter although
should be calculated self-consistently from a suitable
equation. Moreover, for simplicity, local variations of th
order parameter are neglected. The impurity and spin-o
Hamiltonians,Himp andHso, are given by

Himp5v (
k,k8,i

(
a

exp@2 i ~k2k8!•Ri #cka
† ck8a , ~3!

Hso5 i
dgv

kF
2 (

k,k8,i

exp@2 i ~k2k8!•Ri #~@k3k8#• ẑ!

3~ck↑
† ck8↓1ck↓

† ck8↑!, ~4!

whereRi denotes the random positions of the impurities a
kF is the Fermi momentum. Note that due to two dimensio
ality, the spin-orbit matrix element of Eq.~4! is proportional
to sz and, since the spins are quantized along thex direction,
the spin-orbit scattering is, therefore, always accompanied
spin-flip processes. The Zeeman response forHimp50 and
Hso50 has already been considered in Ref. 16 ford-wave
superconductors and in Ref. 17 for mixed symmetries of
order parameter. The inclusion ofHimp , which, however,
does not mix the spin states, has been studied in Ref. 18.
total HamiltonianH5H01Himp1Hso for d-wave symmetry
has been considered in Ref. 19 within the Born approxim
tion for both impurity and spin-orbit scatterings. Here, i
stead, the problem is generalized beyond the Born appr
mation by solving the self-consistentT-matrix equation for
both Himp andHso.

The generalized Matsubara Green’s functionG(k,n) in
the particle-hole spin space resulting from Eqs.~2!–~4! sat-
isfies the Dyson equationG21(k,n)5G0

21(k,n)2S(k,n),
where G0

21(k,n)5 ivn2r3e(k)2r2t2D(k)2hr3t3 is the
propagator resulting fromH0. The Pauli matricesr i and
t i ( i 51,2,3) act on the particle-hole and spin subspac
respectively. Within the self-consistentT-matrix approach,
the self energy isS(k,n)5niT(k,k,n), where theT matrix
is the solution of the following equation:
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T~k,k8,n!5u~k,k8!1(
k9

u~k,k9!G~k9,n!T~k9,k8,n!,

~5!

andu(k,k8)5r3v1 idgv@ k̂3 k̂8#zt1. Giving to the momen-
tum dependence of the spin-orbit part ofu(k,k8), theT ma-
trix can be splitted into the impurity and spin-orbit contrib
tions for both s- and d-wave symmetries of the orde
parameter. Hence,T(k,k8,n)5Timp(n)1Tso(k,k8,n), where
Timp(n)5r3v1r3v(kG(k,n)Timp(n) is the usual impurity
T matrix, and

Tso~k,k8,n!5 idgv@ k̂3 k̂8#zt1

1 idgv(
k9

@ k̂3 k̂9#zt1G~k9,n!Tso~k9,k8,n!

~6!

is the spin-orbitT matrix. The solution of Eq.~6! is of the
form14

Tso~k,k8,n!5 idgv@ k̂3t~ k̂8,n!#t1 , ~7!

where

t~ k̂,n!5 k̂1 idgv(
k8

k̂8t1G~k8,n!@ k̂83t~ k̂,n!#z . ~8!

The above equation can be easily solved in terms of
componentstx( k̂,n) and ty( k̂,n) of the vector operator
t( k̂,n),

tx~ k̂,n!5Axy
21~n!F k̂x1 idgv k̂y(

k8
~ k̂x!

2t1G~k8,n!G ,

~9!

ty~ k̂,n!5Ayx
21~n!F k̂y2 idgv k̂x(

k8
~ k̂y!2t1G~k8,n!G ,

~10!

whereAxy
21(n) andAyx

21(n) are the inverse of the following
434 matrices:

Axy~n!512~dgv !2F(
k

~ k̂x!
2t1G~k,n!G

3F(
k

~ k̂y!2t1G~k,n!G , ~11!

Ayx~n!512~dgv !2F(
k

~ k̂y!2t1G~k,n!G
3F(

k
~ k̂x!

2t1G~k,n!G . ~12!

Finally, from Eq.~7!, Tso(k,k,n) reduces to
7-2
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UNITARY LIMIT OF SPIN-ORBIT SCATTERING IN . . . PHYSICAL REVIEW B65 024507
Tso~k,k,n!5 idgv k̂xk̂y@Ayx
21~n!2Axy

21~n!#t1

1~dgv !2(
k8

@Ayx
21~n!~ k̂xk̂y8!2

1Axy
21~n!~ k̂yk̂x8!2#t1G~k8,n!t1 . ~13!

Further analysis of theT-matrix problem requires the explic
inclusion of the symmetry of the order parameter. This
done in the following sections, where Eq.~13! is solved for
both s- andd-wave symmetries.

A. s-wave symmetry

The usual procedure to evaluate self-consistently the e
tron propagator is to guess the form ofG(k,n) that, after
being substituted intoTimp(n) and Tso(k,k,n), generates
only combinations ofr i andt j matrices already contained i
G(k,n). The direct substitution ofG0(k,n) into Timp(n) and
Tso(k,k,n) is a practical way to guess the correct form
G(k,n) via the Dyson equation. When this is done, it is ea
to realize that when the symmetry of the order parameters
wave, D(k)5D, the two matricesAxy and Ayx defined in
Eqs. ~11! and ~12! become equal. Hence, the form of th
electron propagator for ans-wave symmetry of the orde
parameter reduces to

G21~k,n!5 i @ṽ2 i h̃r3t3#2r3@ ẽ~k!2 i L̃r3t3#

2r2t2@D̃2 i G̃r3t3#, ~14!

where the frequency dependence of the tilded quantitie
implicit. The tilded quantities are obtained by substituti
Eq. ~14! into the equations for the impurity and spin-orbitT
matrices and requiring self-consistency via the Dyson eq
tion. In general, the solution is very complicated, but a co
siderable simplification arises if infinite electron bandwid
and particle-hole symmetry of the normal-state electron
persion are assumed. In this case, in fact, several integ
over k average to zero,20 leading to the following self-
consistent equations:

i ṽ65 i ~vn6 ih !1
G

11c2
g6

12G
~2c/dg!2g71g6

11~2c/dg!412~2c/dg!2~ f 1 f 22g1g2!
,

~15!

D̃65D1
G

11c2
f 6

12G
~2c/dg!2f 71 f 6

11~2c/dg!412~2c/dg!2~ f 1 f 22g1g2!
,

~16!
02450
s

c-

y
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where ṽ65ṽ6 i h̃, D̃65D̃6 i G̃ and g65 i ṽ6 /

AD̃61ṽ6
2 , f 65D̃6 /AD̃61ṽ6

2 . To display the spin-
mixing effect of the spin-orbit interaction, Eqs.~15! and~16!

are more conveniently rewritten in terms ofu65ṽ6 /D̃6 ,

u65
vn6 ih

D
12

G

D S c

dgD 2

3

u72u6

~11u7
2 !1/2

11S 2c

dgD 4

12S 2c

dgD 2 11u6u7

~11u6
2 !1/2~11u7

2 !1/2

.

~17!

Apart for the trivial limit u65(vn6 ih)/D that holds true in
the absence of spin-orbit interaction (dg50), the two spin
channelsu1 and u2 are coupled together. Within the Bor
approximation, c/dg@1, Eq. ~17! reduces to the two-
dimensional version of theu6 formula found in classic
literature,15,21

u65
vn6 ih

D
1

1

2
GS dg

c D 2 u62u7

~11u7
2 !1/2

. ~18!

The characteristic feature displayed by the more general
pression~17! is that, as the unitary limitc/dg50 is ap-
proached,u1 and u2 becomes decoupled and the full Ze
man splittingu12u252ih/D is recovered. In such a limi
therefore, thes-wave superconductor is fully Zeeman splitte
as if the spin-orbit scattering would be spin conserving. T
same conclusion can be obtained by calculating the z
temperature spin susceptibilityxs as inferred by the linear-
response theory. In fact, by including the spin-vertex fun
tion consistent with theT-matrix formulation it is possible to
show that

xs

xn
512

pT

D (
n

1

11~vn /D!2

1

@11~vn /D!2#1/21rso

,

~19!

where xn52mB
2N0 , T is the temperature andrso

5(G/D)(dg/c)2/@11(dg/2c)2#2. At zero temperature and
for rso,1, Eq. ~19! reduces to

xs

xn
512

1

rso
Fp

2
2

arccos~rso!

A12rso
2 G . ~20!

For dg/c!1, rso.(G/D)(dg/c)2 and Eq. ~20! becomes
equal to the two-dimensional version of the Abrikoso
Gorkov expression based on the Born approximation.22 In-
stead, for c/dg!1, rso.(G/D)(2c/dg)2 and xs/xn
.2p(G/D)(2c/dg)2!1 that vanishes whenc/dg50.

The absence of spin-mixing contributions at the unita
limit can be interpreted as a consequence of the fact
H01Himp commutes withSx while Hso commutes withSz .
Therefore, for weak spin-orbit scattering (c/dg@1) Sx is a
rather good quantum number andHso induces weak spin-flip
7-3
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CLAUDIO GRIMALDI PHYSICAL REVIEW B 65 024507
processes leading to coupledu6 equations. The spin decou
pling at the unitary limitc/dg!1, could be explained by
arguing that for very strong spin-orbit interactionSz rather
than Sx is a good quantum number. The Cooper pairs
then formed by electrons with opposite spins in thez direc-
tion and the spin rigidity of the superconducting condens
is efficient against spin-flip transitions induced by the ma
netic field H5H x̂. In the limiting case of infinitely strong
spin-orbit interaction, therefore,H can only induce polariza
tion of the quasiparticle excitations. Note that, in case
magnetic field is directed along thez direction, the total
Hamiltonian then commutes withSz and the Zeeman re
sponse of as-wave superconductor becomes independen
the spin-orbit interaction for whatever value ofc/dg. Of
course, for a three-dimensional system, the above reaso
does no longer apply because the spin-orbit interaction d
not commute with any component ofS.

B. d-wave symmetry

For the above considerations to be valid, only two dime
sionality and a singlet superconducting condensate are
quired. Therefore, in principle, also a two-dimension
lf-
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d-wave superconductor should exhibit spin-channels dec
pling asc/dg→0. This is indeed so even if there are qua
tative differences with respect tos-wave superconductor
since ford-wave symmetry the spin-orbit scattering becom
pair breaking.23 Again assuming particle-hole symmetry an
an infinite electron bandwidth, for D(k)[D(f)
5D cos(2f) the electron propagator is of the form

G21~k,n!5 i ~ṽ2 i h̃r3t3!2r3@ ẽ~k!2 i L̃r3t3#

2r2t2@D̃~f!2 i G̃~f!r3t31 i t1Ṽ~f!#,

~21!

where D̃(f)5D̃ cos(2f), G̃(f)5G̃ cos(2f), and Ṽ(f)
5Ṽ sin(2f). The origin ofṼ(f) ~absent in thes-wave case!
stems from the fact that, ford-wave symmetry, the two ma
tricesAxy andAyx in Eqs.~11! and~12! are no longer equal
so that the term proportional tok̂xk̂y5sin(2f) in Tso(k,k,n),
Eq. ~13!, is nonzero. As for thes-wave case the self
consistent Dyson equation can be expressed in terms ofṽ6

and D̃6 , but now there is an additional equation forṼ,
i ṽ65 i ~vn6 ih !1
G

c22~g6
0 !2

g6
0 12G

~2c/dg!2g71~ f 7
2 2g7

2 !g6

@~2c/dg!22g1g22 f 1 f 2#22~g1 f 21g2 f 1!2
, ~22!

D̃65D12G
~2c/dg!2f 72~ f 7

2 2g7
2 ! f 6

@~2c/dg!22g1g22 f 1 f 2#22~g1 f 21g2 f 1!2
, ~23!

Ṽ522G
~2c/dg!~g1 f 21g2 f 1!

@~2c/dg!22g1g22 f 1 f 2#22~g1 f 21g2 f 1!2
, ~24!

g65
2

pN0
(

k

sin~f!2

2p

i ṽ6@ṽ7
2 1E7~k!2#72i ~ṽ12ṽ2!Ṽ~f!2

@ṽ1
2 1E1~k!2#@ṽ2

2 1E2~k!2#2Ṽ~f!2$~ṽ12ṽ2!21@D̃1~f!2D̃2~f!#2%
, ~25!

f 65
2

pN0
(

k

sin~f!2

2p

D̃6~f!@ṽ7
2 1E7~k!2#7@D̃1~f!2D̃2~f!#Ṽ~f!2

@ṽ1
2 1E1~k!2#@ṽ2

2 1E2~k!2#2Ṽ~f!2$~ṽ12ṽ2!21@D̃1~f!2D̃2~f!#2%
, ~26!
where E6(k)25e(k)21D̃6(f)21Ṽ(f)2 and g6
0 can be

obtained from Eq.~25! by setting sin(f)2→1/2. The off-

diagonal contributionṼ defined in Eq.~24! is responsible for
spin-mixing terms appearing ing6 , f 6 , andg6

0 . However,

at the unitary limitc/dg50, Ṽ vanishes and the above se
consistent equations reduce to

i ṽ65 i ~vn6 ih !2
G

g6
0

12G
g6

f 6
2 2g6

2
, ~27!
D̃65D22G
f 6

f 6
2 2g6

2
, ~28!

where

g652E df

2p

i ṽ6sin~f!2

@D̃6~f!21ṽ6
2 #1/2

, ~29!

f 652E df

2p

D̃6~f!sin~f!2

@D̃6~f!21ṽ6
2 #1/2

. ~30!
7-4
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The two spin channels1 and 2 in Eqs. ~27! and ~28! are
now completely decoupled in analogy therefore with t
s-wave case treated before. However, now even atT50 the
spin susceptibility is expected to remain nonzero~as long as
GÞ0). This is due to the fact that, although there are
spin-mixing processes atc/dg50, the pair-breaking effec
of both impurity and spin-orbit scatterings leads to a fin
density of states at the Fermi level.24 In this situation, there-
fore, the Zeeman-splitted density of states is a more di
evidence for the spin-decoupling effect atc/dg→0. This is
shown in Fig. 1 where the two spin channels density
states,N6(v), are plotted forG50.1, dg50.1, h50.2 and
for different values ofc. N6(v) is calculated numerically
from

N6~v!

N0
52sgn~v!Im@g6

0 ~v!#, ~31!

where g6
0 (v) is the analytic continuation on the real ax

( ivn→v1 id) of Eq. ~25! ~with sin(f)2→1/2).25 In Fig.
1~a!, N6(v) is calculated from the solution of the gener
equations~22!–~24!, while, for comparison, the result for th
Born approximation applied to the spin-orbit part of Eq
~22!–~24! is shown in Fig. 1~b!.26 Up to c50.1 (dg/c51)
the generalT-matrix solution and the Born approximatio
agree quite well, while already forc50.05 (dg/c52) the
splitted coherence peaks atv/D.6(16h) are still quite
visible in Fig. 1~a! and completely suppressed in Fig. 1~b!.
Since, at the unitary limitc/dg50, the spins are completel
decoupled, Eqs.~27! and~28!, the two spin density of state
are identical and shifted by6h, one with respect to the

FIG. 1. Zeeman-split quasiparticle density of statesN1(v)/N0

~dashed lines! andN2(v)/N0 ~solid lines! for a d-wave supercon-
ductor withh5H/D50.2, G50.1, dg50.1, and different values o
the scattering parameterc. ~a!: solution of the completeT-matrix
equations.~b!: solution for the Born approximation to the spin-orb
coupling.
02450
o

ct

f

.

other. This is in contrast to the Born solution, Fig. 1~b!, for
which the strong spin-mixing terms lead to a flat density
states. It should be stressed that before reaching thedg/c
@1 limit, the Born approximation predicts thatd-wave su-
perconductivity is already completely destroyed.27 Therefore,
the results forc50 in Fig. 1~b! should be considered just a
a mathematical limit to be compared with the solutions of
T-matrix approach of Fig. 1~a!.

III. CONCLUSIONS

In summary, it has been shown that when the nonm
netic impurity scattering is close to the unitary limit, th
associated spin-orbit interaction is not small provid
c;,dg, and it must be treated beyond the simple Bo
approximation. Within the self-consistentT-matrix approach,
it has been demonstrated that the Zeeman splitting of bots-
andd-wave two-dimensional superconductors is much m
robust than that obtained by the Born approximation. At
unitary limit c/dg50, for which the spin-orbit coupling is
maximum, a two-dimensionals-wave superconductor doe
not show any spin-mixing processes and the Zeeman
sponse coincides with that of a pure superconductor. Also
d-wave superconductors the spin-orbit coupling becomes
fectively spin conserving atc/dg50, but, in addition, it in-
duces pair-breaking effects that must be added to th
caused by the scalar impurities.14

Let us comment now on the possible limitations of t
present theory. The calculation method used here is a s
dard one based on aT-matrix approximation for diluted
impurities.5,6,20 However, when it is applied to two
dimensional systems, such as, the copper oxides, this s
dard procedure is complicated by the appearance of sin
larities in the electron self-energy.28 Contrary to the results
based on theT-matrix solution and self-consistent ap
proaches to deal with the singularities,29 nonperturbative
methods suggest that the density of states of ad-wave super-
conductor actually vanishes nonanalytically at the Fe
level.30 The low-energy behavior appears to be heavily mo
fied by the level spacing of a localization volume that lea
to the opening of a pseudogap in the low-lying sing
electron excitations.31 It should, however, be noted that dis
crepancies between different approaches affect only the
low-energy excitations, while for energies not much sma
thanD the T-matrix approach is quite reliable~for finite but
small impurity concentrations!. In this respect, the main re
sult of Fig. 1~a! ~i.e., the persistence of the Zeeman splitti
of the coherence peaks in the density of states even w
c/dg is zero! should not be an artificial feature of th
T-matrix approximation. This conclusion is also sustained
the quite general physical explanation of the Zeem
splitting persistence at the unitary limit proposed in Sec. I
and from an analysis of the single spin-orbit impurity pro
lem not reported here. Note that, for these same reas
some standard simplifications employed in the present ca
lations ~infinite bandwidth, particle-hole symmetric electro
dispersion and absence of local suppressions of the o
parameter! should not affect too seriously the main result.
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