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Short-ranged resonating valence bond physics, quantum dimer models, and Ising gauge theorie
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Quantum dimer models are believed to capture the essential physics of antiferromagnetic phases dominated
by short-ranged valence bond configurations. We show that these models arise as particular limits of Ising (Z2)
gauge theories, but that in these limits the system develops a larger local U~1! invariance that has different
consequences on different lattices. Conversely, we note that the standardZ2 gauge theory is a generalized
quantum dimer model, in which the particular relaxation of the hardcore constraint for the dimers breaks the
U~1! down to Z2 . These mappings indicate that at least one realization of the Senthil–Fisher proposal for
fractionalization is exactly the short ranged resonating valence bond~RVB! scenario of Anderson and of
Kivelson, Rokhsar and Sethna. They also suggest that other realizations will require the identification of a local
low energy, Ising link variableand a natural constraint. We also discuss the notion of topological order inZ2

gauge theories and its connection to earlier ideas in RVB theory. We note that this notion is not central to the
experiment proposed by Senthil and Fisher to detect vortices in the conjecturedZ2 gauge field.
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I. INTRODUCTION

The question posed by high-temperature supercondu
ity is how a Mott insulator becomes superconducting up
doping.1 As the insulator is itself, at low energies, also
antiferromagnet hostile to the motion of holes, much wo
has been based on the notion that the doped state is
approached from a ‘‘nearby’’ insulating state that lacks lo
range order, i.e., a spin liquid.2 The doped spin liquid is then
argued to become superconducting.3

The simplest such scenario casts the resonating val
bond~RVB! state proposed in 1973 by Anderson4 in the role
of the spin liquid. Pairs of electrons form singlet~valence!
bonds, a superposition of which yields a liquidlike, non-Ne
ground state. Holes doped into this state undergo spin-ch
separation. The charge degrees of freedom, able to m
freely through the spin-liquid, become superconducting up
Bose condensation. The spin excitations are understoo
composites of spin-1

2 spinons and the decay of the electr
into holon and spinon provides a natural explanation of
broad quasiparticle spectra seen over much of the nor
state of the cuprates.

RVB scenarios themselves cover a broad range of po
bilities. The short-ranged~SR! flavor of RVB stays close to
Anderson’s original vision by including valence bonds on
between electrons located in a small neighborhood of
another leads to gapped spinons.5 Its low energy dynamics is
believed to be most directly captured by the quantum dim
model ~QDM! introduced in Ref. 6, where a VB is repre
sented by a dimer linking the two electrons which form
Historically, the short-ranged RVB was abandoned when
QDM failed to lead to a spin liquid on the square lattice—
typically leads to a columnar state—and was considered
pect for building in a spin gap~i.e., a gap to triplet excita-
tions! that was not in evidence at optimal doping; subsequ
to the identification of the pseudogap regime and the disc
0163-1829/2001/65~2!/024504~16!/$20.00 65 0245
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ery of stripes these ‘‘defects’’ seem less compelling althou
the problem of describing the collapse of the spin gap w
doping is still unsolved in this approach as is the still ba
problem of solving for the physics of a finite density
dopants.7

In contrast the long-ranged RVB versions are harder
describe in the language of valence bonds and have there
received gauge theoretic treatments based on U~1! and SU~2!
reformulations of the Heisenberg model that can give rise
a gapless mean-field spinon spectrum.8 While the broad simi-
larity between the mean-field phase diagrams constru
early on, and the phase diagram of generic cuprate super
ductors is striking, assessing the impact of fluctuations
been difficult. In particular, the general belief that such gau
theories cannot give rise to deconfined phases in 211 di-
mensions is at odds with the program of finding a proxim
fractionalized spin liquid.

Recently, Senthil and Fisher~SF!,9 building on earlier
work by Balentset al.,10 have proposed to get around this b
reformulating the problem as an Ising gauge theory.11 As
Ising gauge theoriesdo have deconfined phases in 211
dimensions,12,13 this seems quite promising. What is n
clear from their work, is exactly what microscopic degrees
freedom are described by the Ising gauge fields.14 SF have
offered two separate justifications for the presence of Is
gauge fields. First, that a four fermion Heisenberg interact
can be decoupled by means of an Ising gauge field and
ond, that in models with separate electronic and superc
ducting degrees of freedom, the latter can screen the ch
of the former up to a sign ambiguity in defining the need
square root of the cooper pair operator. The former seem
us to be an interesting and exact microscopic statement,
inconclusive regarding the nature of the low energy theo
this point has also been made recently by Hastings15 and we
will give a trivial example to illustrate this point later in th
paper. The second justification builds in the physics invok
©2001 The American Physical Society04-1
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in earlier work, namely the capacity of a superconduct
condensate to screen charge and turn quasiparticles
spinons,16 but it does appear puzzling that it holds into ins
lating phases as hypothesized by SF. In addition SF h
argued that a deconfined phase involving Ising gauge fi
must be characterized by the notion of topological order
voked in studies of the quantum Hall effect17,18 and that this
order can be directly detected in an experiment.

In this paper we attempt to further the understanding
the RVB complex of ideas by showing that at least one re
ization of Ising gauge physics isexactly the physics of the
short-ranged RVB. We will do this by formulating the QDM
description of the latter as an odd Ising gauge theory, a t
we will explain in Sec. III below. In this we will offer a
variation on previous work by Fradkin and Kivelson wh
mapped the problem onto a U~1! gauge theory instead.19 This
builds on a completely differently motivated stream of wo
of two of us ~with P. Chandra! on frustrated quantum Ising
models20 which has included a recent demonstration that
quantum dimer model on a triangular lattice supports
RVB phase.21 This connection will allow us to interpret vari
ous statements about Ising gauge theories in the languag
valence bonds—it will turn out that the Ising variableis the
number of valence bonds—and, we hope, make them ea
to grasp and evaluate. We should note that alternative id
tifications of spin liquid physics with Ising gauge theories
different limits have been made previously implicitly b
Read and Chakraborty,22 and explicitly by Read, Sachdev
Jalabert, and Vojta,23–25 Wen,26 and Mudry and Fradkin.27

A second benefit of this exploration is that it focuses
tention on what it takes to get an Ising gauge description
the low energy dynamics, namely a binary link variable a
a local constraint. If SF are correct and the Ising descript
has general applicability, it should be possible to make co
parable identifications in other contexts.

In the balance of the paper, we will review the QD
description of valence bond phases, describe the reform
tion of the QDM as an Ising gauge theory and of gene
Ising gauge theories as generalized dimer models~GDMs!,
collate the known results on these models, discuss the no
of topological order in their context and conclude with
brief summary. As much of the interest of the paper lies
the connection between QDMs and Ising gauge theories
have felt it useful to review a number of known results
both. It is useful perhaps to list the results that are new to
paper. These are the formulation of the QDM as an Is
gauge theory~Sec. III!, the introduction of the odd Ising
gauge theory and its QDM limit~Sec. IV! and its identifica-
tion with the action including a Polyakov loop~PL! term
written down by SF~Sec. IV B and Appendix B!, the ~el-
ementary! treatment of Ising gauge theories ind51 includ-
ing the presence of fractionalization in the odd case, the
tionalization of the QDM results on the square and triangu
lattices via the absence or presence of charge-2 Higgs fi
~Sec. V B! and the discussion of topological order in Isin
gauge theories~Sec. VI!.

II. VALENCE BOND PHASES AND QUANTUM DIMER
MODELS

Consider an insulating magnet with enhanced quan
fluctuations~as is the case withS51/2 and other ‘‘small’’
02450
g
to

ve
s
-

f
l-

m

e
n

of

ier
n-

-
f

d
n
-

la-
l

on

n
e

is
g

a-
r

lds

m

values of the spin! and competing interactions that frustra
any Neel ordering that would be deduced from a semicla
cal analysis. In the extreme case where any residual ord
extremely short ranged, there is a reasonable expectation
the system will construct its ground state from configuratio
in which all spins are paired in nearest neighbor valen
bonds. By continuity, we expect that there will be near
Hamiltonians for which valence bonds of finite length w
suffice and these are expected to share their basic phy
with the purely nearest neighbor case.28 As there is still a
large number of short-ranged valence bond states poss
even with the restriction to this sector there is a nontriv
problem remaining—that of diagonalizing the Hamiltonia
within this highly degenerate manifold—which is the pro
lem of ‘‘resonance.’’4 Depending on the details of th
Hamiltonian, several phases might be realized. This se
phases are what we call~short-ranged! valence bond domi-
nated phases and, by hypothesis, they are all characterize
a spin gap.

There are two primary obstacles to investigating the ph
ics of valence bond dominated phases which we will restr
in the remaining, to those with purely nearest neighb
bonds. The first is basic, namely the large degeneracy c
before, e.g., on the square and triangular lattices ind52
there areeaN (a.0) states on anN site lattice. The second
is technical in that different valence bond configurations
not orthogonal, although their overlap is effectively expone
tially small in the number of dimers in which they differ. I
some cases, there is also a proof that they are line
independent.28

To deal with the second problem it is convenient to fo
mulate an expansion that can include the nonorthogona
perturbatively. As the parent configurations are in one-to-o
correspondence with hard core dimer coverings of the v
ous lattices, such a tack leads to a quantum dimer mode

The sites the electrons reside on define the direct latt
The Hilbert space of the QDM thus consists of all hardco
dimer coverings of the direct lattice. The QDM Hamiltonia
for the insulating case~half-filling! consists of two parts, a
kinetic (T̂) and a potential (V̂) one. The former is off-
diagonal and generates the resonance plaquette move
tween different dimer configurations, whereas the latter,
agonal one, counts the number of plaquettes able
participate in such resonance moves.

For the square lattice we find the Hamiltonian6

~1!

where we have kept only the simplest kinetic and poten
energy terms with coefficientst andv, and the sum(h runs
over all plaquettes. In what follows, we refer to the QD
with vÞ0 as the extended QDM, whereas QDM on its ow
refers to the casev50. On other latticesT̂ will take the form
of a sum of resonance moves on the shortest even
4-2
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~which is a plaquette in this case! and V̂ will be count the
number of such possible moves in a given configuratio
e.g., on the honeycomb lattice both will involve three dime

There are two main paths for obtaining a quantum dim
model from a magnetic system. The first is based directly
an SU~2! Heisenberg magnet, the second on ‘‘large-N’’ ge
eralizations thereof. The former6 uses the above-mentione
small overlap to generate a perturbation expansion. The
lence bond states can be labeled by orthogonalized d
configurations, the quantum dynamics of which is captu
by the leading order dimer plaquette resonance move,T̂. The
leading order diagonal term is given byV̂. The second path29

generalizes the SU~2!;Sp~1! to SU(N) on bipartite lattices
or Sp(N) generally. The latter method essentially generali
the Schwinger boson representation for the spins by in
ducing a large number of additional boson flavors. In
limit N→`, taken at a fixed number of bosons per site,
ground states at leading order can be labeled by dimer
figurations. It is the next order, 1/N, terms which generate
the above-mentioned dimer resonance move.

III. THE QUANTUM DIMER MODEL AS AN ISING
GAUGE THEORY

In the following, we discuss the relationships betwee
number of different models of interest in the context of hig
temperature superconductivity and quantum magnetism.
naming conventions for them are depicted in Fig. 1. Our fi
mapping—of the QDM toan Ising gauge theory~IGT!—
proceeds as follows. The naive Hilbert space~inclusive of
gauge equivalent states! of any IGT is defined by an Ising
variables561 on each link of the lattice; each variable w
be taken to be the eigenvalue of an operatorŝx on the cor-
responding link. We can identify the link variable with th
presence or absence of a dimer on the link, i.e., the num
of dimers on each link is now given byn5(11s)/2 and the
dimer number operators aren̂5 1

2 (11ŝx), where we have
suppressed the link index.

Evidently, the naive Hilbert space is too big and we m
identify the physical subspace that corresponds to allow
hardcore dimer coverings, which is done by imposing a c
straint at every site that only one link emanating from it
occupied by a dimer. This is expressed as an operationĜ,
which leaves invariant only the physical states,uphys&, those
fulfilling the hardcore condition. In terms of the operato

FIG. 1. Naming conventions used in this paper. Theories w
out matter are referred to as pure, with matter as doped. The
IGT is dual to a ferromagnetic transverse field Ising model, the
IGT to a fully frustrated one~see Appendix A!, with theG→` limit
corresponding to a projection onto the magnetic ground state~s! of
the dual Ising models.
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ŝx, the hardcore constraint becomes

(
1

ŝxuphys&5~2nc12!uphys&, ~2!

where the sum is over all the links emanating from a giv
site i, andnc is the coordination of that site. This implies

Ĝauphys&5uphys&, ~3!

where

Ĝa[expS ia(
1

~ ŝx1122/nc! D ~4!

for any a at eachsite.
To write the Hamiltonian at half-filling,ĤI , in a form

such that@Ĝ,ĤI #50, we define the usual spin-half raisin
and lowering operatorsŝ65ŝy6 i ŝz, which, respectively,
add and remove a dimer on a link. We obtain

ĤI52tT̂1vV̂52t(
h

~ ŝ1ŝ2ŝ1ŝ21h.c.!

1
v
4 (

h
~~11ŝ1

x!~11ŝ3
x!1~11ŝ2

x!~11ŝ4
x!!, ~5!

where the sites in the last term are labeled sequenti
around the plaquette,h. The generalization to other lattice
follows the prescription for writing down QDMs outline
earlier.

Invariance ofĤI under local Ising gauge operations
easily checked. In fact a larger, U~1!, symmetry arises be
causeĜa

21ŝ6Ĝa5exp(6ia)ŝ6 so that the phases picked u

by the products inT̂ cancel. As we will discuss further be
low, this local U~1! is a consequence of local dimer numb
conservation. So we have the situation that while the Hilb
space is that of an Ising gauge theory, the physical states
Hamiltonian are invariant under a set of continuous lo
gauge transformations that have the form of a U~1! gauge
theory. This is a local gauge theory version of the more
miliar quantumS51/2 XY-model, which also lives in an
Ising Hilbert space.

When holes are doped into the valence bond manifold,
need to worry about the comparison of the~potentially! large
hole hopping energyt to the existing magnetic scales that a
responsible for the triplet gap. In the spirit of RVB theory, w
assume that one can approach the problem from small va
of t and that it is therefore sufficient to keep states in wh
the spins pair up into valence bonds except at the sites f
which they have been removed. The effect of the hole kine
energy is to move a hole and a dimer in ways that ke
within this manifold.19

In the Ising gauge language, we have to add a ma
~Higgs! part, Ĥm , to the Hamiltonian. Let the Ising Higg
field be denoted by an operatort̂x its eigenvalues61 denot-
ing the presence/absence of a hole. Since each site has e
a dimer ending on it or is occupied by a hole, the constra
equation is modified to

-
en
d
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Ĝuphys&5expS iaS t̂x1(
h

~ ŝx1121/nc! D D uphys&

5uphys&, ~6!

and the full Hamiltonian is given byĤ5ĤI1Ĥm , with

Ĥm52m(
~ i jk !

~ t̂ i
2ŝ i j

1ŝ jk
2 t̂k

11h.c.!, ~7!

and the sum on~ijk! running over triplets of neighboring
sites.

IV. ISING GAUGE THEORIES AS GENERALIZED DIMER
MODELS

We now review the converse logic of starting with th
more familiar action of the standard IGT~referred to as even
IGT from hereon! and ending up with a Hamiltonian formu
lation. The resulting theory is a generalized dimer mo
~GDM! which features dimers on links that obey a gener
ized dimer constraint—in the even case this requires an e
number of dimers to emanate from each site. We also s
that the addition of the Polyakov loop termSP to the stan-
dard action introduced by SF leads to a Hamiltonian form
lation that is a GDM with the constraint of an odd number
dimers per site and that in a special limit, it reduces to p
cisely a quantum dimer model with the hard core dimer c
straint.

A. Hamiltonian vs Lagrangian formulation

Consider the action of the standard IGT, hereafter refer
to as the even IGT,

S52Kt(
h

szszszsz2Ks(
h

szszszsz ~8!

made anisotropic by choosing a coupling,Kt, for plaquettes
containing links in the imaginary time~temporal! direction,
different from that for purely spatial plaquettes,Ks.12 This is
necessary to take the time continuum limit needed in
derivation of the Hamiltonian.

We can now choose a gauge wherein allsz in the time
direction are11, so that the first term in Eq.~8! becomes a
simple bilinear,2Kt(hszsz, involving only the links in the
space directions.~Strictly speaking, it is not possible to d
this as it would have the effect of modifying the gauge
variant products ofsz along temporal loops. However thi
obstruction is not important in the time continuum limit
the case of the even IGT atT50.! One then establishes th
equivalence to an appropriate Hamiltonianand set of con-
straints in one dimension less by comparing the expressi
for the partition function generated by this action to th
arising from a Trotter–Suzuki decomposed path integral
mulation generated by the Hamiltonian

ĤGDM5G(
2

ŝx2k(
h

ŝzŝzŝzŝz, ~9!
02450
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where the first sum runs over all links and the Hilbert spa
is limited by constraints~below!. One finds an equivalenc
of the partition functions in the limitKt→`, with Ks

5k exp(22Kt) fixed.
The Hamiltonian defined in Eq.~9! retains a gauge invari

ance under flipping all spins~in thesz basis! emanating from
one site. This transformation is generated byĜIGT5P1ŝx.
To reproduce the physics of the even IGT we need to imp
ĜIGT51 at every site.

While the Hamiltonian and Hilbert space are natura
derived in thesz basis, the meaning of these constrain
becomes transparent by considering the system in thesx

basis. ForĜIGT( i )uphys&51uphys&, an even number of links
emanating from sitei hassx51. Identifying, as we did in
Sec. III, the presence~absence! of a dimer withsx561, we
see that the constraintĜIGT511̂ implies the presence of a
evennumber of dimers emanating from each site—when
our label ‘‘even’’ for the IGT under consideration.

B. The odd IGT and the Polyakov loop termSP

To obtain a Hamiltonian problem in which the physic
states have anodd number of dimers at each site~the odd
IGT!, we need to add the Polyakov loop term to the act
above:

eSP5)
t

s t
z , ~10!

where the product runs over all temporal links. This
equivalent to assigning asign to each space-time configura
tion which is the product of Polyakov loops30 in the temporal
direction that wrap around the system for each spatial site
can be shown~see Appendix B! that this is equivalent, in the
time continuum limit, to choosingĜIGT521̂ in picking
physical states for the action of the Hamiltonian Eq.~9!. We
should note, that even with isotropic couplings in the act
Eq. ~8!, SP breaks the symmetry between space and ti
~lattice Euclidean invariance!. Consequently one may nee
to be careful about distinguishing the behavior of Wils
loops in space and those in time~Polyakov loops! in distin-
guishing confined and deconfined phases—the latter are
the correct quantity to calculate.

For the square lattice, the inclusion ofSP ~which arises in
the work by SF for a Mott insulator with an odd number
electrons per site! thus represents a mixture of dimers~one
link occupied! and tetramers~three!.31 Whereas the dimers
are amenable to an obvious physical interpretation as vale
bonds, we are not aware of any similar interpretation of m
complicated polymers.

We thus see that the somewhat unconventional form
the kinetic term in Eq.~5!, which consists of raising and
lowering operators, rather than simplyPŝz, arises from the
desire to preserve the hardcore dimer constraint manifes

C. QDM limit of odd IGT

One can nonetheless retrieve the hardcore constrain
explicitly removing the supernumerary dimers by han
4-4
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through a very large coupling constantG. In this limit ~the
G→` limit !, the termPhŝz becomes equivalent to the k
netic term of Eq.~5!; it is in this limit that the IGT of Senthil
and Fisher including theSP terms is equivalent to our QDM
In this context, it is interesting to note that the original U~1!
gauge theory of Fradkin and Kivelson19 is close in spirit to
the above construction. There, the presence of a dime
encoded by an angular momentum variable on each l
Li j , which is restricted by an analog of the transverse fi
term to values 0 or 1. The raising and lowering operat
~conjugate to theL̂ i j ! appear in the kinetic termT̂.

In the presence of doping, there is an additional differe
between the two theories which lies in the nature of the
lowed hopping terms. The GDM admits terms of the form

Ĥu1Ĥl52u(
2

~ t̂ i
1ŝ i j

z t̂ j
21h.c.!1l(

.
t i

x , ~11!

corresponding to the processes depicted in Fig. 2~b!. ~The
sum( . runs over all sites of the lattice.! Note that a notion of
charge conservation and hence a global U~1! invariance,
mandates the use oft̂6 operators rather thant̂z. In the G
→` limit, this term becomes ineffective since one of the tw
configurations whichĤu connects is projected out. Howeve
for G large but not infinite we generate the termĤm @Eq. ~7!#
with m;u2/G to obtain dynamic holes~see Fig. 2!.

Quite generally, extended QDMs thus arise as limits
odd IGTs with additional couplings. From the perspective
IGTs, this is a simplification which focuses attention on t
existence of larger local U~1! invariance, but not much more
However from the perspective of the physics of antifer
magnets the QDM along with its associated conservation
the number of dimers~valence bonds! per site appears to b
the more natural construction. It also has the appeal th
allows two question basic to setting up a gauge theory to
answered transparently:~1! what is the link variable? and~2!
what is the local constraint? As we have noted, in the QD
limit this leads to an Ising link variable which is simply th
number of valence bonds but a constraint on their num
more appropriate to a U~1! theory. At the very least, short
ranged RVB theory is an example of an IGT of a strong
correlated system and we will use it to examine some of
observations made by SF about IGTs in general. More g

FIG. 2. ~a! Top: Allowed hardcore dimer configuration. Bottom
Allowed configuration in an odd IGT but not QDM.~b! Hopping

process of hole~denoted by square! generated byĤu , which does

not conserve dimer number. Two applications ofĤu yield an al-
lowed final QDM configuration~c!; the net hop is generated direct

by Ĥm .
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erally, it seems to us that in order to make the case for
IGT description in other phases, it would be extremely use
to have a comparable identification of the link variable a
the constraint~even in some appropriate coarse grain
sense!.

D. Duality to Ising models in dÄ2¿1

It is well known that IGTs ind53 are dual to Ising
models.12,13 In the Hamiltonian formulation ind5211,
there is a simple, geometrical, way of seeing this which de
onstrates how the standard constraintG511 translates into
a dual ferromagnetic transverse field Ising model while
alternative constraintG521 translates into a fully frus-
trated Ising model in a transverse field. An account of t
mapping is given in Appendix A.

Evidently, it is most economical to study these dual Isi
models. An extensive study of frustrated Ising models ind
5211 is reported in Ref. 20.

V. PHASE STRUCTURE AND QUASIPARTICLE
FRACTIONALIZATION

For all the pure~undoped! QDMs, the question of primary
interest is whether they possess a dimer liquid or RVB pha
Such a phase automatically leads to free spin-1/2 excitat
~spinons! and to the decay of an ejected electron into
spinon and a spinless charged hole~holon! which provides
an example of spin-charge separation~in an insulator! in
general dimensions.

The physical arguments leading to the above conclusi
are simple in the valence bond language. A valence bond
be broken up into two neighboring spins 1/2. In a valen
bond liquid the cost of separating these two objects to i
nite separation will be finite—hence the existence of
spinon spectrum above the triplet gap. Further, at large s
rations one can remove one of the spinons to obtain
spinon–holon pair that has the quantum numbers of a m
ing electron, or hole. Hence in a photoemission experim
one will see a fractionalized spectrum above the charge g

Within the framework of the dimer models both spino
and holons are represented by monomers and the issue i
of computing the free energy of the system as a function
monomer separation. In a liquid phase this will be finite. T
thus provides one resolution of the puzzle of what scre
the charge of the quasiparticle in the insulator, where
condensate is absent: in the liquid, the dimers can rearra
to move the charge away, leaving behind a neu
spinon—as was originally envisioned by Anderson.

It is worth digressing a bit and noting the translation b
tween the standard gauge theory lore and the above s
ments. The standard diagnostic of confinement in a p
gauge theory is the Wilson loop. In a Lorentz invaria
theory its orientation does not matter and hence we m
compute the expectation value of a spatial loop as well a
temporal loop which is directly related to the energy of tw
separated quarks. In dimer models one does not have Lor
invariance—trivially for we are in the time, but not spac
continuum limit and less trivially because the Polyakov lo
4-5
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term is not Lorentz invariant, as already noted. Conseque
one should really compute the temporal Wilson loop~the
Polyakov loop!. Nevertheless, as the following calculatio
shows, liquidity implies a perimeter law for the spatial W
son loop, and as explained above, liquidity in the dimer m
els signals deconfinement.

A second caveat is that in the dimer model it is the t
monomer free energy that has a clear meaning. As this
state with physical charge-2 relative to the ground state
free energy cannot be computed as a neutral vacuum
relator~unlike a quark/antiquark potential!. The strict analog
of the quark/antiquark potential is the interaction betwee
monomer and a site with two valence bonds~Fig. 3!. Pre-
sumably the long distance interactions in the two cases
track one another.

With these comments, consider the spatial Wilson loop
the dimer limit. The product

pW[)
i 51

Lc

sz ~12!

reduces to the strings

pW5~s1
1s2

2
¯sLc21

1 sLc

2 1h.c.! ~13!

of dimer creation and destruction operators. In taking
expection value ofpW , we select pieces of the ground sta
wave function that contain precisely the dimer strings in F
4 along the selected loop. To estimate this fraction we app
to the extensive entropy of dimer configurations and to
healing lengthj in a dimer liquid. In the liquid we therefore
obtain an estimate

pW;e2c~j!Lc, ~14!

that exhibits a perimeter law consistent with the lore fo
deconfined phase.12 Here, c(j) is some numerical constan
depending on the correlation length. Strictly speaking

FIG. 3. Top: Neutral quark–antiquark pair. Bottom: Charge
pair. A square denotes a hole.

FIG. 4. Evaluation of a Wilson loop, taken around the circu
ference of the displayed region. The string of operatorspW annihi-
lates the state unless it encounters an alternating sequence of
pied and empty bonds~left panel!. The links occupied by dimers
after the action ofpW are denoted by empty rectangles. Flippin
only one plaquette~marked by a plus, right panel! leads to the
configuration being annihilated bypW .
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have carried out an estimate for a ground state wave func
spread equally over all dimer configurations—such sta
arise at the so-called Rokhsar–Kivelson points~see below!—
but this will be qualitatively correct everywhere in a liqu
phase.

We should note that the above considerations are for s
matter interacting via fluctuating gauge fields or dime
While it is entirely reasonable that a deconfined phase at z
doping will continue into a deconfined phase at finite dopin
the finite doping problem is logically distinct and needs to
treated carefully on its own. We note, for instance, the we
known result that dynamic matter does not permit an a
law phase for the Wilson loop, even at arbitrarily weak co
pling on account of the screening of the gauge force.32

In the remainder of this section, we discuss the proper
of dimer models on a number of lattices and for varyi
dimensionality. Besides presenting a number of new resu
especially ind51, we collate several results from the liter
ture, several of which are in the guise of stacked magnet
transverse field Ising magnets, which therefore need tran
ing. We will also refer to results on the GDMs or IGTs ou
side the QDM limit in places.

A. dÄ1

While d51 is special, it is instructive in that itdoespro-
vide an example of fractionalization that though distin
from the higher dimensional versions, fits nicely into t
QDM description. This point was overlooked by SF in the
analysis of IGTs.

Consider first the pure even IGT. In this case there
only two states in the Hilbert space, those withsx51 for
sx521 on all links. The Hamiltonian can only count th
number of dimers, as there is no local resonance move,

Ĥ5G(
2

ŝx, ~15!

whence thesx521 state is always the ground state. Co
sider introducing two holes at a separationR. The constraint
now requires that the links between the holes carrysx51
which leads to an energy cost linear inR and hence confine
ment. This is the well-known result on the purely confinin
character of thed51 ~even! IGT.

Interestingly, the odd IGT behaves very differently. The
are still two states in its Hilbert space, but they consist
states with alternating values ofsx521 and sx51, i.e.,
dimers and no dimers—evidently there are two such sta
related by a translation. These states are degenerate in
ergy. Consequently the introduction of a hole still produce
domain wall between the two phases, but two domain w
do not attract—the charge carriers are deconfined solito
This is, of course, the familiar mechanism of solitonic fra
tionalization from studies of conducting polymers.33 What is
interesting is that the odd IGT captures this mechanism
d51 automatically.

This is a good place to give a trivial example of the d
ference between microscopic rewritings and effective ga
theories. Consider the one-dimensional Heisenberg ch
with first J1 and second neighborJ2 antiferromagnetic inter-

-

cu-
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actions. This can be rewritten as an IGT with two Isi
gauge fields—one for each bond. As is well known, for s
ficiently largeJ2 the chain is in the dimerized~Majumdar–
Ghosh! phase where the effective theory clearly involves j
one Ising gauge field.

B. dÄ2

Two dimensions is the case of maximum interest in
context of theories of cuprate superconductivity.

Square lattice: A general analysis of the even IGT coup
to Ising matter has been given a while back by Fradkin a
Shenker.32 They showed that two phases exist: a deconfin
phase with free charges in the spectrum and a confined/H
phase. The phase diagram of the odd theory is not know
as much detail. What is known is that the undoped odd I
has a confinement transition accompanied by translatio
symmetry breaking as the QDM limit is approached. T
result follows from analyses of the dual transverse field Is
model20 as well as from a map from the QDM to a heig
model.34 Consequently, the purely kinetic QDM on th
square lattice gives rise to a valence bond crystal with c
fined spinons.

The extended QDM@Eq. ~1!# has been studied in detail i
and found to be ordered for all values ofv, except for a
transition at the Rokhsar–Kivelson~RK! point v5t between
a staggered (v.t) and a fourfold degenerate state (v,t)
which is likely a plaquette state close to the RK point a
then gives way by a first order transition to a columnar st
at large negativev.6,19,35–38At the RK point, the ground state
is an equal amplitude superposition of all dimer configu
tions. Spinons are deconfined precisely at the transition o
and confined elsewhere.21 The unusual feature that a critica
point intervenes between two crystals, finds an elegant
planation in terms of height representations: the effective
tion in the proximity of the RK point has the form conje
tured most completely by Henley34

S;E d2x dt@~]th!21r2~“h!21r4~“2h!2# ~16!

with 2r2}(v/t)11 changing sign precisely at the R
point. This action accounts for the crystal forv,t which is a
flat state of the height variable, the critical correlations a
resonon spectrumv;k2 at the RK point, and the staggere
state forv.t which corresponds to the maximum tilt of th
height variable. It also accounts for two other nontrivial fe
tures of the RK point, namely that it has degenerate gro
states in all winding number sectors~the RK point action is
insensitive to gradients of heights! and that its equal time
height correlations are logarithmic and precisely those of
classical dimer problem—which follows from the observ
tion,

E dv
1

v21r4k4 ;
1

Ar4k2
.

Less is known about the doped QDM, or the odd IG
coupled to charged matter. A plausible scenario, based
different largeN limit than the one that gives rise to th
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QDM, has been advanced by Sachdev and Vojta25 who find a
set of striped states followed by ad-wave superconductor. A
direct treatment of the doped QDM has not been carried
except for an early mean-field theory by Fradkin a
Kivelson,19 which led to ans-wave superconducting sadd
point, but which treats electron hopping terms which la
crucial phase factors stemming from the microscopics. F
ther work on the doped QDM would certainly be desirab

Triangular lattice: The standard IGT on the triangular l
tice ~defined by taking products ofsz around elementary
triangles! is dual to the ferromagnetic transverse field Isi
model on the honeycomb lattice.13 Consequently, it has a
phase transition identical to that of the square lattice IG
between a confined and deconfined phase. While we do
known of a detailed analysis of the problem with Ising m
ter coupled to the Ising gauge field, we expect that
Fradkin–Shenker analysis applies.

The odd IGT is dual to the fully frustrated Ising model o
the honeycomb lattice~see Appendix A!, which has been
studied by Chandra and ourselves20 with some evidence for
weak ordering involving the breaking of translational sym
metry in a confining phase. It is also possible that the c
fining phase is absent altogether. Indeed, in the exten
QDM we have shown that there is definitely a liquid pha
for a finite range of parameters, 2/3&v/t<1, in which
spinons are deconfined.21 This is the only known example o
a deconfined phase in an IGT in the QDM limit. We note th
a recent neutron scattering experiment on a triangular m
net, albeit a spatially anisotropic one, appears to have
tected deconfined spinons.39

Other lattices: The results for the QDM can be gener
ized to other lattices. The behavior of quantum dimer mod
on bipartite lattices follows that of the square lattice. This
a consequence of the equivalence of the classical dimer m
els to a height model,40,34 which in d52 implies critical
correlations which result in an ordering transition wh
quantum fluctuations are switched on.20 In particular, this
class includes the hexagonal lattice quantum dimer mod41

For QDMs on nonbipartite models, no such general res
is known. Typically, one expects QDMs to be disordered a
gapped at the RK pointv5t, and we suspect that this wil
result in an extended disordered phase forv&t with spin
charge separation in analogy to the triangular lattice ca
For some interesting results on depleted lattices see Ref

Charge-2 Higgs scalars: The difference between the
sults for bipartite lattice and the triangular lattice can be
tionalized by a mechanism that has been invoked sev
times in previous work on the subject. In the QDM limit, w
obtain a theory with a U~1! gauge symmetry as we note
earlier, albeit one that lives in an IGT Hilbert space.

A celebrated result of Polyakov43 showed that the pure
compact U~1! gauge theory confines at all values of its co
pling in 211 dimensions. This theory, defined by the Ma
well Lagrangian in the continuum, is naturally formulated
the bipartite square lattice—the plaquette product natur
translates into the former Lagrangian. It was argued by Fr
kin and Kivelson19 that the Polyakov argument goes throu
for the IGT with theSP term. It follows then that we should
expect the QDM limit of the odd IGT to be confining. Ev
4-7
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R. MOESSNER, S. L. SONDHI, AND EDUARDO FRADKIN PHYSICAL REVIEW B65 024504
dently, such an argument does not by itself rule out a dec
fined phase in the extended QDM and one needs the m
detailed height representation analysis to show that.

A second important result on U~1! gauge theories is due t
Fradkin and Shenker who studied their phase structure w
coupled to matter.32 They showed that a coupling to charge
matter fields does not allow a deconfined phase to exist
that a coupling to charge-2 scalarsdid allow a deconfined
phase to exist. Deep in this deconfined phase the low en
states are precisely that of an Ising gauge theory. This re
provides a rationalization of the triangular lattice results:
make contact with the standard results on the square lat
one must treat the triangular lattice as a square lattice w
additional diagonal bonds. These additional bonds, wh
connect sites with like charges in the electrodynam
interpretation,19 suggest the presence of a charge-2 sc
field coupled to the gauge field in the low energy theo
which then opens up the possibility of a deconfined pha
The reduction in the number of topologically distinct secto
to that characteristic of an Ising gauge theory is further e
dence for this identification. That said, we note that this
not too precise in that the process in which a square lat
dimer disappears to be replaced by a diagonal one still
ively involves a charge-1 coupling—one unit of electric flu
removed along with a terminating charge.

The general attractiveness of the Fradkin–Shenker re
to workers on two dimensional quantum magnetism is e
dent. Heisenberg models are easily reformulated as U~1!
gauge theories but in the search for spin liquids with dec
fined spinons this is an embarrassment. Consequently it
been suggested by many workers: Read and Sachdev,23 as
well as Mudry and Fradkin27 that the condensation of a
appropriate charge-2 scalar field would allow a spin liquid
exist. In his work on the Sp(N) analysis of the triangula
lattice,44 which exhibits a disordered phase, Sachdev ag
argued that fluctuations about the saddle point solution
the structure of a U~1! gauge field coupled to a charge
scalar, for essentially the same reason we invoked ab
Finally, Sachdev and Vojta have constructed a generaliza
of dimer models which plausibly describe spinsS>1, and
have shown that the same mechanism can be operat
there.25

C. dÌ2

In d.2, little is known about the properties of dime
models, even in the classical case. Formally, the Pfaf
methods used ind52 to gain information about the classic
models break down due to the overwhelming increase in
number of terms to be evaluated in higher dimensions.45

Within the framework of dimer models, it is likely tha
spin-charge separation becomes prevalent because d
models should become more disordered in high dimensi
This can be rationalized as the hardcore constraint canno
spread out but number of possible orientations increases

However, the usefulness of quantum dimer models
describing the physics of Mott insulators/Heisenberg mod
decreases in higher dimensions as it becomes increas
hard energetically to stabilize valence-bond dominated c
figurations against the Neel state.
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VI. TOPOLOGICAL ORDER AND FLUX DETECTION
EXPERIMENTS AT FINITE DOPING

Senthil and Fisher have proposed an experiment to
their ideas on a fractionalized phase in the cuprate ph
diagram and have explicitly linked this experiment to t
notion of topological order invoked previously in studies
the fractional quantum Hall effect17 and of mean field theo-
ries of spin liquids26,18 by Wen and co-workers. We examin
these assertions in the context of dimer models, in reve
order. In particular we will be interested in the connecti
between their ideas and the topological analysis of vale
bond states.46,6,22,47,21

A. Topological order in the quantum Hall effect

Quantum Hall states do not break any obvious symme
captured by a local operator; this excludes cases, suc
quantum Hall ferromagnets, where a symmetry may be b
ken in addition. There are two alternative approaches to c
acterizing quantum Hall states which can both be deriv
from the rewriting of the electron dynamics in terms
bosons coupled to one or more fluctuating Chern–Sim
gauge fields.48–50 In the first, one focuses on the bosons a
characterizes their condensation via an infinite particle e
tron operator which works everywhere in the quantum H
phase that grows out of the ideal quantum Hall state i
disordered system.51 In the second approach, one integrat
out the bosons to obtain a purely gauge action, which t
contains the Chern–Simons term as its leading piece.

The Chern–Simons term is topological, i.e., it is insen
tive to the metric of the manifold it is defined on. The pu
Chern–Simons theory, which describes the strict infrared
havior of the quantum Hall system, has a finite dimensio
Hilbert space with a set of degenerate states whose num
depends on the topology of the manifold.52

This leads to the notion of topological order–the idea t
a quantum Hall state can be characterized by its ‘‘respon
to the topology of the underlying manifold. Operational
one imagines computing the exact spectrum in finite volum
and looking for a low-lying cluster of states clearly~i.e.,
parametrically in system size! separated from all other state
This works perfectly for clean quantum Hall systems on
torus—e.g., there areq exactly degenerate states at fillin
factor 1/q. In this case it is also possible to construct ope
tors, corresponding to the adiabatic insertion of one quan
of flux through the holes that have the effect to transform
one ground state into another. As these operators comm
with the Hamiltonian, their failure to leave the ground sta
invariant was interpreted by Wen and Niu as the breaking
a topological symmetry~the symmetry algebra itself bein
dependent on the topology of the manifold!.

To summarize: Topological order in clean quantum H
systems at the ideal filling factors involves,~a! a ground state
multiplet, separated from other states by an amount p
metrically larger than the splitting between them, and with
degeneracy that increases with the genus,g, of the manifold
asqg, ~b! a topological symmetry algebra containing ope
tors that move the system between different members of
ground state multiplet,~c! a long wavelength action~the
4-8
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SHORT-RANGED RESONATING VALENCE BOND . . . PHYSICAL REVIEW B65 024504
Chern–Simons action! that defines a theory with a finite d
mensional Hilbert space with the same degeneracies.

In the clean system, quantum Hall states compete with
Wigner crystal, or with various charge density wave sta
The latter pair of states will lead to a higher ground st
degeneracy, indeed an infinite degeneracy in the infinite
ume limit corresponding to the various translations of
crystals as a whole. The same is true for the quasipar
Wigner crystals that will form in the close proximity o
quantum Hall fillings. In such cases of broken symme
Wen and Niu have argued that the splitting between differ
states will be exponentially small in the area of the syst
~the number of moves it takes to convert one ground s
into another! instead of in the linear dimension, as would
expected from tunneling processes involving quasipartic
that would move the system between different quantum H
ground states. Hence it would take either a direct exam
tion of the states or a study of the magnitude of the splitt
to decide whether the ground state cluster is due to topol
cal ordering or merely a broken translational symmetry~on a
manifold of fixed genus, such as the torus which is what o
is likely to study in practice!. An alternative approach would
be to explicitly lift any degeneracies due to broken symm
tries by the action of small fields. Any residual degenera
would then be topological in origin. For instance the app
cation of a commensurate periodic potential would lead
the selection of a unique state in the Wigner crystal ph
while it would reveal the underlying degeneracy of the qu
tum Hall state in the case of a quasiparticle Wigner crys
~We note such a procedure would seem logically neces
for the topological degeneracy to track the off-diagonal lo
range order which survives in the quasiparticle Wigner cr
tal if its phonons are stiff enough.! Similarly in SU~2! quan-
tum Hall ferromagnets the introduction of a Zeeman te
would be required.

Our discussion here illustrates two more aspects of to
logical ordering in quantum Hall systems:~d! an exponen-
tially small splitting with linear dimension can be attribute
to the presence of fractionalized quasiparticles that can
nel across a loop and recombine to move the system to a
ground state,~e! it is necessary to break all standard, ad
tional, broken symmetries explicitly to reveal the underlyi
topological degeneracy.

Perhaps the ‘‘cleanest’’ as well as the most realistic way
single out the topological degeneracy is to include the ef
of disorder and thereby examine a quantum Hall phase
finite extent. Wen and Niu17 have offered arguments that th
inclusion of disorder splits the degeneracy by an amount
is O(e2L/j) in the linear dimensionL of the system,j being
a disorder correlation length. Their analysis, which holds
actly atn51/q neglects any creation of quasiparticles in t
ground state itself, i.e., the quasiparticle spectrum is assu
to remain gapped in the presence of disorder. In general
will not be true, and certainly away fromn51/q there will
be localized quasiparticles in the ground state that will g
rise to a gapless spectrum. In a finite volume, this spect
will acquire a gap that is at worst polynomially small inL
and so if the exponentially small splitting of the groun
states remains, they should not prevent an identification
02450
e
s.
e
l-
e
le

y
t

te

s
ll
a-
g
i-

e

-
y
-
o
e
-
l.
ry
g
-

o-

n-
ew
-

o
ct
of

at

-

ed
is

e
m

of

the ground state cluster. We do not know of any detai
examination of whether the ground state splitting continu
to be exponential in this limit—it would appear that on
cannot merely argue by continuity from the gapped case
to the singular closing of the gapen route. Neither is it clear
that the operators that move us between states in the c
case will continue to work with randomly localized~or even
crystallized! quasiparticles—here again we do not know if
generalization is possible. Finally, we note that insulat
states in the disordered system are expected to exhibit un
ground states that are separated from excited states b
best, polynomially small gaps coming from localized ele
trons.

B. Topological order in IGTs?

The general idea of SF, following Wen,26 is as follows
@Refs. 9~b! and 9~c!#. The deconfined phase possesses Is
vortex excitations~visons! that cost a finite amount of en
ergy. As in any gauge theory where such excitations are p
sible, in a multiply connected geometry these can be pla
so that their cores inhabit the holes and we can expect th
configurations to be long lived, and in an appropriate or
of limits they should be truly metastable~that is to say, infi-
nitely long lived local minima!. For the purposes of the ex
periment proposed by SF~see below! this is sufficient. To
make contact with the notion of topological order, SF wish
relate the presence of visons threading holes to an infi
volume limit ground state degeneracy of 2h on a manifold
with h holes, that can be interpreted as the breaking o
topological symmetry. In the following we explore this ide
in some detail with cylinders and tori as the manifolds
interest—going beyond those in genus while retaining a
tice is tricky, especially when the gauge theory arises as
effective theory and so we will not venture that far afield. W
begin with pure gauge theories.

Gauge fields alone: As noted by SF, the even IGT on
cylinder at the pointG50 exemplifies their ideas. There ar
two exactly degenerate states, which can be written in thesz

representation if one does not worry about the constra
These states have two features of note:~a! that they exhibit a
well-defined topological fluxF̂z5P0ŝz, where the product
P0 is taken around the circumference of the cylinder.F̂z
takes the values61 in the no-vison/vison states; and~b! that
there exists an operatorF̂x5P5ŝx where the productP5 is
taken along a seam of links, with the seam running along
axis of the cylinder~see SF for details!. F̂x commutes with
the Hamiltonian and converts one of the states to the ot
These two operators capture the two ways of looking at
degeneracy, either as a consequence of Ising flux or tha
breaking a ‘‘topological symmetry’’ in which a global opera
tor ceases to annihilate the vacuum. At issue is whether th
generalize beyond this special point and to Ising gauge fie
coupled to matter, especially in the QDM limit.

Sticking with the even IGT for the moment, we note th
the degeneracy isexactfor G!K in perturbation theory, for
a cylinder of finite width. In contrast, it is clear in the opp
site limit G@K that there is a unique ground state. Th
implies that even for a finite width cylinder there is a tru
4-9
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phase transitionen route. We note thatF̂x commutes withH
at all values ofG/K and thatF̂z is a natural order paramete
for this transition, being odd under the action ofF̂x . Hence
the distinction between the two phases is indeed capture
the action ofF̂x and by the development of an Ising flux. W
should note though thatF̂z is measurable only for finite cyl
inders; being a Wilson loop, it goes to zero exponentially
~at least! the width of the cylinder at anyGÞ0.

These observations should not really surprise for they
volve a system that is infinite in two space-time directio
and finite in one and hence are equivalent to those conc
ing the two-dimensional IGT at finite temperature. Such
theory indeed possesses a phase transition in which
Polyakov loop~a Wilson loop taken in the time direction!
develops an expectation value. In the dual representation
is simply thed52 Ising phase transition in ad53 system
that is finite in one direction.53

We return now to the question of working explicitly wit
gauge invariant states, i.e., those that satisfy the local c
straint exactly. Given a stateuC& in thesz representation, we
can construct a statePuC& that is gauge invariant by th
action of the projector

P5)
i

~1/2!@ĜIGT~ i !11#

which commutes with the Hamiltonian. Evidently, all gau
invariant observables have the same value before and
the projection. While this indicates that our earlier descr
tion is correct, it hides a subtlety of some interest in mak
contact with earlier work on the topology of RVB states.
uncover this, note that a state written explicitly in thesx

basis is automatically gauge invariant if it involves only ev
numbers of dimers at each site. All such configurations
be classified by winding numbers—one simply asks h
many loops of dimers cross a fixed line bisecting a set
horizontal bonds. For a finite height cylinder, this number
either odd and even and the action of the Hamiltonian p
serves this number. Hence the true ground states mus
purely even or odd. Now the vison and no-vison states, w
projected, contain both sectors—they correspond to tak
the linear combinationsueven&6uodd&. Hence, although they
correspond to a different choice of basis in the space of
two degenerate states, it is clear that the physical choice
the standard Hamiltonian is that of purely even and o
states which were what were invoked in earlier studies
RVB states. On the other hand, if we were to allow Wils
loops of arbitrary length in the Hamiltonian~but with expo-
nentially suppressed coefficients to preserve effective lo
ity! we would mix these states and obtain the vison/no-vi
linear combinations split by an amount exponentially sm
in the cylinder circumference. In this case what descript
one would take to be the correct topological decomposit
in the infinite volume limit would appear to be a matter
taste.

On the torus, there is no true phase transition even for
standard IGT. Instead we find an exponentially small sp
ting between four states when the linear dimensionL is in-
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creased at a fixed coupling corresponding to the deconfi
phase and a splitting ofO(L0) between a unique groun
state and the first excited state in the confining phase
terms of the winding number analysis, this corresponds
the four different combinations of even and odd in eith
direction.

We turn now to the case of the pure odd IGT. Here it
instructive to work in thesx representation. By means of th
standard device of using a transition graph between a g
state and a reference state,6 one can again assign a conserv
even/odd winding number to each configuration. For o
height cylinders, a horizontal translation by one lattice co
stant interchanges the two sectors. Assuming that odd
even height cylinders converge to the same infinite hei
limit, it follows then that the ground state must be at lea
twofold degenerate atall G/K for infinite height cylinders.
As theG!K analysis in thesz representation is identical to
that of the even IGT except for a different choice of proje
tor,

P5)
i

~1/2!@ĜIGT~ i !21# ~17!

there is a twofold degeneracy in that region. Unlike in t
case of the even IGT, there is a large degeneracy in
extreme opposite limit,K50, where any dimer covering o
the cylinder is a ground state. For infinite width cylinde
i.e., in the two-dimensional limit, there is a fourfold crysta
line degeneracy as noted earlier. How this degenerac
modified by finite cylinder widths is not clear to us at th
point. A preliminary analysis of the QDM on cylinders ind
cates that it will exhibit a twofold degenerate liquid pha
that does not break any symmetries as well as a two
degenerate columnar phase in which the columns run a
the cylinder axis. Consequently at different cylinder widt
theK/G→0 limit may behave differently. We expect that th
large circumference limit will be characterized by symme
breaking which may either preserve the twofold degener
of the lowest lying cluster~the case if the ground state re
mains liquid for all finite widths! or increase it by a further
factor of 2 ~the case if the ground state becomes colum
already or finite widths!. In the former case one would hav
to examine the nature of the degenerate states to decide
phase they correspond to.

On the torus the deconfined phase has again a four
low lying cluster with a splitting ofO(e2L) while the con-
fining phase will exhibit a cluster of four low lying state
with a splitting of O(e2L2

), corresponding to the necessi
of altering the state over its entire volume instead of j
along a line in the liquid case.~It is worth noting that our
previous argument about translations implementing wind
number sector changes implies that there is an exact two
degeneracy due to transnational symmetry breaking on
by even tori.! So on the torus one would need to examine
size dependence of the splitting or the correlations in
ground states to distinguish the two fourfold degenerac
from each other. Alternately, as in the quantum Hall case
could turn on symmetry breaking fields that would lift th
degeneracy in the crystalline phase but not in the liqu
4-10
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SHORT-RANGED RESONATING VALENCE BOND . . . PHYSICAL REVIEW B65 024504
deconfined, phase. We note that in the context of the
prates, this is the case of maximum interest.

To summarize: The behavior of Ising gauge fields alo
does display a ‘‘family resemblance’’ to the quantum H
case with regards to points~a!, ~b!, ~d!, and~e! made earlier.
With respect to~c! the fundamentally discrete character
this problem makes it unlikely that there is an analog. T
being said we should note that in the QDM limit it does n
really go beyond the previous analysis of RVB wavefun
tions in terms of winding number sectors—the latter is
analysis in terms of electric fluxes~the momenta conjugate t
the gauge fields!.

In this regard the really interesting claim of SF is that t
phase obtained at finite doping isalsocharacterized by topo
logical order. As the even/odd classification breaks do
upon doping, this would be a feature not obtained by
previous analysis. In the language of the IGT we must
what happens when we add matter to the problem.

Gauge fields with matter: We note at the outset that
might be expected to differ from the quantum Hall case.
the latter the states differ, in a sense, by the insertion
integer numbers of flux quanta through the holes. By cont
in the IGT problem, the vision will be seen by matter fiel
ashalf a flux quantum.

Nevertheless, the effect of the additional flux can be
ponentially attenuated if the matter fields are gapped on t
own. The simplest such case is that of the even IGT w
Ising matter. WhileF̂x no longer commutes withH, pertur-
bative considerations indicate that in the deconfined ph
there are two low lying states with a splitting that isO(e2L)
at largeL, which goes away on leaving this phase. So in t
case it is indeed possible to relate the deconfined phase
twofold degeneracy. Having identified the two ‘‘ground
states, one can test them for the presence of flux. With ma
present, the even and odd sectors are now connected an
states will exhibit~small! expectation values of the Wilso
loop consistent with the presence and absence of a visio

One might wonder if it is possible to relate the two lo
lying states by the action ofF̂x . It turns out that the attemp
to create one from the other by its action will yield a vanis
ing overlap in the limit of infinitely long cylinders. This re
sult can be obtained perturbatively near the trivial po
G/k50, u/l50. At this point, the ground state withFz
50, uF0& has sz[1 and tx[21, whereas the stateuF1&
[F̂xuF0& differs in that the horizontalsz are flipped along
one seam along the axis of the cylinder of heightH that the
lattice resides on. Carrying out perturbation theory to sec
order in u/l yields the perturbed wave functionuF0

2& and
uF1

2&, respectively. For these,

NuFa
2&5uFa&1(

2
vs i j

z uFa ;~ i j !&1O~v2!. ~18!

Here, a50,1,N is a normalization constant,v5u/4l, and
uFa ;( i j )& denotes stateuFa& with the ts on sitesi and j,
flipped. The sum(2 runs over the links~ij !.

To computê F1
2uF̂xuF0

2&, we note thatF̂x only acts on the
ss and not on thets, so that it does not connect the unpe
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turbed uFa& to the perturbatively admixed components
uFa

2&. For this reason, we have not written out the perturb
wave function to second order inv as this piece does no
contribute to the vison expectation value in this order.

The crucial step of this calculation consists of noting th
the operatorsŝ i j

z of the kinetic term and theŝ i j
x of the thread-

ing operationF̂x do not commute for theH links contained
in the product forF̂x .

One thus finds

^F1
2uF̂xuF0

2&5exp~22v2H!, ~19!

where we have exponentiated the linear answer that pe
bation theory actually produces. General random walk ar
ments indicate that the exponential dependence on the he
is exact though the coefficient will be modified at high
orders in perturbation theory. In sum, the degeneracy is
covered in the infinite system size limit but the topologic
symmetry operation no longer takes us between gro
states. Of course, there does exist an operator which ge
ates a vision state out of the ground state, but it will depe
in detail on the precise Hamiltonian under consideration
feature one would hope to be absent from a topological
eration.

The case of greatest interest is that of charged ma
coupled to Ising gauge fields. SF have suggested that sp
and holon fields coupled to an Ising gauge field are the c
rect low energy theory of a variety of strongly correlat
systems and have argued that anomalous nonsupercon
ing phases would be characterized by topological degen
cies that could, in principle, be used to search for su
phases in numerical studies or variational studies.

In the QDM framework, we are concerned with addin
holons to a dimer liquid. If the dimers remain liquid, then w
have a doped phase that might be expected to inherit to
logical degeneracies from the parent insulating state
would appear that there are three possibilities:~a! the holons
localize, ~b! the holons are bosonic and condense ther
giving rise to a superconductor,~c! the holons are fermionic
and produce a gapless spectrum.22

In case~a! one has perhaps the strongest argument fo
surviving topological classification and associated deg
eracy. Certainly if the holons are truly immobile, one c
define even and odd sectors for that given configuration
they are localize on some length scale, the classification i
longer strict but it seems plausible that for system sizes m
bigger than their localization length, the degeneracy is rec
ered.

In case~b! the system ends up with a superconducti
vortex threading it and so the question is moot.

In case~c! we would truly have a non-Fermi liquid bu
metallic phase. Unfortunately in such a system it would a
pear that all gaps are polynomially small and so it will not
possible to select a ground state multiplet in an operatio
sense. From the point of view of the QDM, all states invol
holons and dimers in correlated motion around the torus
no topological character is evident. As we were unable
construct use the topological symmetry operator of the p
gauge theory in the case of Ising matter, we will not succe
4-11
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here either.54 It would appear then than in this case the no
Fermi liquid character will not give rise to a meaningf
topological degeneracy.

C. Flux trapping experiments

We are however, still left with the possibility that th
states of the doped QDM are characterized by finite~if ex-
ponentially small! Ising flux measured by the Wilson loop.
such a state has a net vison content in a nonsupercondu
phase, it would seem likely that it would nucleate a vortex
the parameters are changed to condense the holons.
would then realize the SF scenario.55

From our considerations in the last section, we conclu
that a flux trapping experiment that cycles between pha
with the holons localized and then superconducting would
the most robust while that between the latter and the stra
metal is hard to predict without a more detailed theory of
metal. In either case, the issue appears quite delicate from
QDM viewpoint, in which the system is required to remem
ber rather delicate phase relationships between diffe
components as the parameters change. Of course one o
strengths of the vison viewpoint is, that by focusing attent
on the relevant collective coordinate, it suggests that thi
an artifact of looking too microscopically. Further studies
the doped dimer model could be very instructive in this
gard.

VII. DISCUSSION

In this paper we have established and discussed se
important connections existing between short-range R
phases, quantum dimer models, and Ising gauge theo
which have significant implications for the problem of spi
charge separation in strongly correlated systems.

To begin with, we showed that there exists a natu
physical interpretation of the Hilbert space of RVB phas
and that its Ising character follows directly from the nature
the states themselves: short-ranged RVB states are natu
described in terms of short range spin singlets which
either present or absent. Thus, from the point of view of
space of states, a description of the dimer Hilbert sp
should have a natural description in terms of Ising variab
living on the links of the lattice. As a naive description
this form is seriously overcomplete, it is clearly necessary
impose constraints at each site which then generate a fa
of local gauge transformations that leave the Hamilton
invariant. An Ising constraint would be sensitive only to t
number of valence bonds modulo two. However, since
number of valence bonds~dimers! is conserved, the effective
Hamiltonians associated with these states must have a n
ral local conservation law and consequently a local U~1!
symmetry, instead of theZ2 ‘‘natural’’ symmetry of an Ising
Hilbert space. We further showed that quantum dimer mod
can indeed be realized as~odd! Ising gauge theories with
additional couplings which project out forbidden configur
tions of dimers~valence bonds!. Thus, while the Isingvari-
ables provide a natural and economical description of t
Hilbert space, the native symmetry to the physics of sh
ranged RVB states is actually U~1! and notZ2 .
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However, we also found that the phase structure of g
eralized quantum dimer models depends on how the lo
U~1! symmetry is realized. Superficially, a U~1! gauge sym-
metry may seem to rule out deconfined phases since
quite well known that the vacuum sector of U~1! gauge theo-
ries are confining in 211 dimensions. It turns out that fo
the case of the gauge theoretic description of quantum di
models the situation is more subtle. For instance, on
square lattice the ground state is generically confining,
thus it is not a spin liquid. In contrast, on nonbipartite lattic
the situation can be quite different. Indeed in such ca
dimers connecting sites on the same sublattice plausibly
rise to matter fields that carry two units of the U~1! gauge
charge. In this case the deconfinement mechanism of Re
~derived for the even IGT! can be expected to apply and bo
a confining and a deconfined phase may exist. On the tr
gular lattice, such a phasedoesexist. In the deconfined phas
the effective remaining ‘‘unbroken’’ local symmetry is re
duced toZ2 with a low energy structure characteristic of th
latter. Thus, this mechanism of spin-charge separation re
on the existence of a deconfined phase in the Ising ga
theory. A localZ2 symmetry is also central to the work o
SF9 although their point of departure is a superconduct
state with Cooper pairs. We have noted that their start
Hamiltonian has more degrees of freedom than the sin
bandt –J type models that we have in mind so their iden
fication of the Ising variable is not as microscopic. Howev
valence bonds are sufficiently akin to Cooper pairs2 that one
is tempted to guess that both approaches describe the
physics.

The considerations presented above assume that
confinement–deconfinement structure of the phase diag
of even Ising gauge theories holds also for theodd Ising
gauge theories. Although this is not rigorously establish
there is substantial evidence, including the results reporte
this paper, that the main difference between even and
theories is to associate confinement with phases in wh
translation and/or rotational invariance are spontaneou
broken, such as valence bond crystals and stripe state
contrast, deconfined phases are always liquids. The ex
tion to this is the case ofd51. Here the even IGT, whos
ground state is translationally invariant, confines at all co
plings while the odd IGT whose ground state breaks tran
tional symmetry, and hence would be expected to be con
ing by our previous remarks, allows test charges to
separated at a finite cost in energy. This peculiar feature is
course, the topological mechanism of spin-charge separa
in d51 wherein the charges are accommodated on a pa
solitons interpolating between the two ground states.

A conclusion that emerges from this line of argument,
that there is a fundamental difference behind the mechan
of spin-charge separation in one-dimensional and tw
dimensional systems. Indeed, in one dimension holons
spinons are actuallytopological solitons, and spin-charge
separation is a topological phenomenon, peculiar to the
nematics of one-dimensional systems. In contrast, in two
mensions~and higher! spin-charge separation relies on th
existence ofdeconfinementin the sense of liquidity, which is
a property of the spectrum of states in a particularphaseof
4-12
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SHORT-RANGED RESONATING VALENCE BOND . . . PHYSICAL REVIEW B65 024504
matter, and as such it does not hold in general; deconfi
ment takes place in some cases, such as the triangular la
which can have a spin liquid ground state,21 whereas con-
finement is naturally realized on the square lattice.19,25

The question of the existence of a deconfinement mec
nism of gauge theories with dynamical matter at finite d
sity has a long history in high energy physics which is rat
similar to the quest for a spin-charge separated state in
densed matter physics. The difficulties of defining order
rameters and other tests of confinement has been a ce
theme in that field since the late seventies. In fact it has l
been recognized in that field that no such tests can exis
terms of gauge invariant local operators~such as order pa
rameters! or Wilson loops, if the dynamical matter field
carry the fundamental gauge charge. A related and impor
current question is if hadronic matter at finite density is g
erally and smoothly connected to conventional nuclear m
ter, or if a genuine quark–gluon plasma exists as a stat
matter with unique measurable signatures. This latter ph
is indeed precisely the equivalent of the spin-charge se
rated phase discussed here.

Finally, we have also discussed the question of topolo
cal degeneracy of the deconfined spin liquid states, and t
possible detection which we argue is not contingent upon
former in any precise sense. We have discussed in some
tail the set ofdesiderataassociated with the notion of a to
pological degeneracy by reviewing the case of clean qu
tum Hall systems at the ideal filling fractions. We ha
discussed the applicability of these to disordered quan
Hall systems and then to the case of Ising gauge theories
find that while there is certainly a sense in which IGTs
their deconfined phases exhibit a finite ground state deg
eracy in the thermodynamic limit, in general there is no
cessible operational test for this degeneracy short of a
solution of the spectrum of states. In particular we find t
the overlap of a test state with one naive vison wrapp
around a noncontractable loop is orthogonal to any gro
state in the thermodynamic limit, and therefore it does
connect distinct degenerate states. This behavior stand
contrast with what happens in ideal quantum Hall fluids a
chiral spin states, although it may be generic in more reali
cases.
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APPENDIX A: DUALITY OF IGTs WITH ISING MODELS
IN dÄ2¿1

We show that the GDM with the Hamiltonian given b
ĤGDM @Eq. ~9!# in d5211 is dual to an Ising model with the
Hamiltonian:

G511: H152k(
2

Ŝi
zŜj

z1g(
.

Ŝi
x , ~A1!

G521: H252(
2

ki j Ŝi
zŜj

z1g(
.

Ŝi
x , ~A2!

where the sums(2 run over the links of the dual lattice an
the ( . over the sites. TheŜ are Pauli spin operators define
on sites of the dual lattice,k.0 and uki j u5k. The case of
G521 is known as a fully frustrated Ising model~FFIM!
since each plaquetteh has to have at least one frustrate
bond:)h(ki j /k)521, whereas the caseG511 is a ferro-
magnetic Ising model~FIM!.

The starting point of the duality is the identification of
frustrated bond in the Ising model with a dimer in the GDM
One can easily convince oneself that each plaquette in
FIM ~FFIM! has to have an even~odd! number of frustrated
bonds, which takes care of the constraintG511(21).

Conversely, each dimer state corresponds to a unique
state ~up to a global Ising reversal!. This can be seen by
taking a reference spin configuration, for exampleŜz[1,
which corresponds to a reference configurations of dim
namely one without dimers (G511), or to a columnar
dimer state (G521). Any other dimer configuration can
then be used to generate a transition graph~see Ref. 6!, ob-
tained by superimposing that dimer configuration with t
reference dimer configuration. The resulting transition gra
contains only closed loops. To fix the overall Ising redu
dancy, an arbitrary reference spin is chosen to point u56

The orientation of any other spin is then obtained by cou
ing the number of dimers in the transition graph any li
connecting that spin to the reference spin crosses. If
number is even, the spins are aligned, otherwise they
antialigned.

To construct the equivalence between the Hamiltonia
we only need to note two facts. First, the presence of a
isfied bond gains an energyk, whereas a frustrated bon
costs the same amount of energy. Translating this int
statement about the absence, presence of a dimer, we o
the identificationG5k for the first pair of coupling con-
stants. Second, note that flipping a spinSi implies exchang-
ing all its satisfied bonds for frustrated ones and vice ve
This is equivalent to exchanging occupied and empty dim
links of the plaquettei, at the center of whichSi is located.
This immediately yields the identification of the spin fl
effected by theŜx operator with the plaquette term inĤGDM ,
together withg5k. This completes the demonstration
duality.
4-13
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APPENDIX B: THE POLYAKOV LOOP TERM IN THE
ACTION

In order to see the connection between the constrain
the Hamiltonian formalism and the role of the Polyakov lo
in the path integral,30,57 it is useful first to recollect the ap
propriate construction for the electromagnetic gauge fie
The Lagrangian density for the free electromagnetic field

L@A, j #5 1
2 ~EW 22BW 2!2A0 j 0 ,

where

Ei5]0Ai1] iA0 ,

Bi5e i jk] jAk ,

and j 0 is a static charge distribution, say

j 0~z!5d~z2x!2d~z2y!

for two static charges atz5x,y ~with charge61, respec-
tively!. The path integral inD space-time dimensions is

Z@ j #5E DAm ei *dDx L@A, j #5E DAm ei *dDx@L@A,0#2A0 j 0#.

Thus,

Z@ j #

Z@0#
5^e2 i *dx0 A0~xW ,x0!e1 i *dx0 A0~yW ,x0!&,

namely, the expectation value of the product of two Polyak
loops.

It is easy to show that in the Hamiltonian picture t
Polyakov loops become static sources in the Gauss’
constraint.30 Let us rewrite the path integral by using th
coherent state representation, which is a integral over b
the vector potentialAi , the conjugate momenta, the electr
field Ei , and the Lagrange multiplier fieldA0 . Glossing over
issues related to gauge fixing, gauge copies, and Fadd
Popov determinants, one writes,

Z@ j #5E DEi DAi DA0ei *dDx L@Ai ,Ei ,A0, j #,

where

L@Ai ,Ei ,A0 , j #52Ei]0Ai2
1
2 ~EW 21BW 2!1A0~] iEi2 j 0!.

Thus, we see that the role ofA0 is of a Lagrange multiplier
that forces Gauss’ law,

@¹W •EW 2 j 0#uPhys&50

as a constraint on the physical Hilbert space. Thus,
Polyakov loops are equivalent to static sources. Notice
this is really the Hamiltonian picture since we get that t
momentum canonically conjugate toAW is EW , as we should.

We now turn to the case of the Ising gauge theory. C
sider the Hamiltonian of Eq.~9!. For convenience, we defin
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m̂x5(12ŝx)/2, so that the Hamiltonian is written, up to
constant,

ĤGDM52G(
2

m̂x2k(
h

ŝzŝzŝzŝz. ~B1!

It turns out to be convenient to rewrite the constraint o
erator Ĝ5 t̂x)1sx as follows. Let L̂( i )5 n̂( i )x1(1m̂x,
where n̂x( i )5(12 t̂x( i ))/2. Then the projector enforcing
Ĝ( i )uphys&5Y( i )uphys& at sitei is given by

P̂~ i !5~1/2!@11~21!~ L̂~ i !1j~ i !!#. ~B2!

Here,j( i )5(11Y( i ))/2 is 0 for an even site and21 for an
odd site. In the absence of matter, all sites of the even~odd!
theory are even~odd!, but the addition of a hole at a sit
changes it from even to odd and vice versa, so that the
lowing treatment is appropriate for static matter.

We now Trotterize the partition functionZ(b) at tempera-
ture 1/b and obtain

Z~b!5Tr~exp~2bĤ !P̂!

5 lim
e→0

)
z50

N21

^$sz11
z %uexp~2eĤ !P̂u$sz

z%&, ~B3!

where the greek letterz labels the~imaginary! time slices,
ande5b/N, and thesz are eigenstates ofŝz.

Consider a single term in the product, which we evalu
by inserting a complete set of eigenstates ofŝx:

^$sz11
z %uexp~2eĤ !P̂u$sz

z%&

5Tr$sz
x% (

$lz~ i !50,1%
~1/2!NsexpS 2ek(

h
szszszszD

3expS 22eG(
2

mxD
3)

i
expF iplz~ i !S (

1
mx1j~ i ! D G

3^$sz11
z %u$sz

x%&^$sz
x%u$sz

z%&.

Here,Ns is the number of sites, andNb the number of bonds
We have rewritten the projector as an exponential and tur
the operators into numbers by letting them act on th
appropriate eigenstates. Note that^$sz

x%u$sz
z%&522Nb/2

3exp(ip(2mz
xnz

z), where the sum runs over all links i
timeslicez.

Collecting together the terms involving thesx, we obtain

(
$sz

x%
)
iD

1

2
exp$mz

x~ i D!@22eG1 ip~lz~ i !

1lz~ i 1D!1mz
z~ i D!1mz11

z ~ i D!!#%. ~B4!

Here,i D labels the bond connecting sitei with its neighbor in
a spatial direction labeled byD.

The term in parentheses in the foregoing equation can
turned into a plaquette product by definingsz5(11l)/2 on
the temporal links, so that this expression becomes
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)
iD

1

2 H 11exp~2eG!)
h

szJ 5)
iD

exp~Kt)hsz!

2 coshKt .

~B5!

In the last step, we have used the fact the product o
plaquetts containing temporal bonds occurring in this exp
sion,)hsz, can only take on values61. The equality holds
for a temporal couplingKt5tanh(22eG).

Putting this result back into Eq.~B3!, using 2 coshKt

→exp(Kt) for e→0, and substituting forl in terms of tem-
poral sz, we obtain
e

ui
tio
ue
tt.
d

clu
ath

.

lid

.
g

B

tio
s

02450
er
s-

Z~b!5~1/2!Ns Tr$s%F)
u

s~ i !j~ i !G
3expF2Ks(

h
ssss2Kt(

h
ssssG , ~B6!

where Ks5ek, the first sum in the second line runs ov
spatial plaquettes, the second over temporal plaquettes.
trace now runs over all thes, both in spatial and tempora
directions.

Crucially the product) u runs over the temporal links—
this is the Polyakov loop term. It contributes a nontrivi
phase for all the odd sites. This is what we set out to sh
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