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Quantum dimer models are believed to capture the essential physics of antiferromagnetic phases dominated
by short-ranged valence bond configurations. We show that these models arise as particular limits B)sing (
gauge theories, but that in these limits the system develops a larger I@ainMariance that has different
consequences on different lattices. Conversely, we note that the stafyaalige theory is a generalized
guantum dimer model, in which the particular relaxation of the hardcore constraint for the dimers breaks the
U(1) down toZ,. These mappings indicate that at least one realization of the Senthil-Fisher proposal for
fractionalization is exactly the short ranged resonating valence RN®&) scenario of Anderson and of
Kivelson, Rokhsar and Sethna. They also suggest that other realizations will require the identification of a local
low energy, Ising link variablend a natural constraint. We also discuss the notion of topological ord2j in
gauge theories and its connection to earlier ideas in RVB theory. We note that this notion is not central to the
experiment proposed by Senthil and Fisher to detect vortices in the conjeZiugalige field.
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[. INTRODUCTION ery of stripes these “defects” seem less compelling although
the problem of describing the collapse of the spin gap with

The question posed by high-temperature superconductivdoping is still unsolved in this approach as is the still basic
ity is how a Mott insulator becomes superconducting uporproblem of solving for the physics of a finite density of
doping! As the insulator is itself, at low energies, also andopants.
antiferromagnet hostile to the motion of holes, much work In contrast the long-ranged RVB versions are harder to
has been based on the notion that the doped state is beftscribe in the language of valence bonds and have therefore
approached from a “nearby” insulating state that lacks longreceived gauge theoretic treatments based @y &hd SU2)
range order, i.e., a spin liqufdThe doped spin liquid is then reformulations of the Heisenberg model that can give rise to
argued to become superconducting. a gapless mean-field spinon spectiiithile the broad simi-

The simplest such scenario casts the resonating valendarity between the mean-field phase diagrams constructed
bond(RVB) state proposed in 1973 by Anderédn the role  early on, and the phase diagram of generic cuprate supercon-
of the spin liquid. Pairs of electrons form singletalence  ductors is striking, assessing the impact of fluctuations has
bonds, a superposition of which yields a liquidlike, non-Neelbeen difficult. In particular, the general belief that such gauge
ground state. Holes doped into this state undergo spin-chargbeories cannot give rise to deconfined phases -1l 2di-
separation. The charge degrees of freedom, able to moweensions is at odds with the program of finding a proximate
freely through the spin-liquid, become superconducting uporiractionalized spin liquid.

Bose condensation. The spin excitations are understood as Recently, Senthil and Fishg/SP,° building on earlier
composites of spif-spinons and the decay of the electronwork by Balentset al,'° have proposed to get around this by
into holon and spinon provides a natural explanation of theeformulating the problem as an Ising gauge thébrs
broad quasiparticle spectra seen over much of the normdsing gauge theorieslo have deconfined phases in+24
state of the cuprates. dimensiong?!® this seems quite promising. What is not

RVB scenarios themselves cover a broad range of possclear from their work, is exactly what microscopic degrees of
bilities. The short-range@SR) flavor of RVB stays close to freedom are described by the Ising gauge fiéfdSF have
Anderson’s original vision by including valence bonds only offered two separate justifications for the presence of Ising
between electrons located in a small neighborhood of ongauge fields. First, that a four fermion Heisenberg interaction
another leads to gapped spindriss low energy dynamics is can be decoupled by means of an Ising gauge field and sec-
believed to be most directly captured by the quantum dimeond, that in models with separate electronic and supercon-
model (QDM) introduced in Ref. 6, where a VB is repre- ducting degrees of freedom, the latter can screen the charge
sented by a dimer linking the two electrons which form it. of the former up to a sign ambiguity in defining the needed
Historically, the short-ranged RVB was abandoned when thequare root of the cooper pair operator. The former seems to
QDM failed to lead to a spin liquid on the square lattice—it us to be an interesting and exact microscopic statement, but
typically leads to a columnar state—and was considered sugconclusive regarding the nature of the low energy theory;
pect for building in a spin gafi.e., a gap to triplet excita- this point has also been made recently by Hasthasd we
tions) that was not in evidence at optimal doping; subsequenwill give a trivial example to illustrate this point later in the
to the identification of the pseudogap regime and the discovpaper. The second justification builds in the physics invoked
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in earlier work, namely the capacity of a superconductingvalues of the spinand competing interactions that frustrate
condensate to screen charge and turn quasiparticles intmy Neel ordering that would be deduced from a semiclassi-
spinons'® but it does appear puzzling that it holds into insu-cal analysis. In the extreme case where any residual order is
lating phases as hypothesized by SF. In addition SF havextremely short ranged, there is a reasonable expectation that
argued that a deconfined phase involving Ising gauge fieldghe system will construct its ground state from configurations
must be characterized by the notion of topological order inin \which all spins are paired in nearest neighbor valence
voked in studies of the quantum Hall efftct®and that this  ponds. By continuity, we expect that there will be nearby
order can be directly detected in an experiment. _ Hamiltonians for which valence bonds of finite length will

In this paper we attempt to further the understanding 0 tfice and these are expected to share their basic physics
Fhe RvVB complex of ideas b_y showmg that at Iegst one reali/vith the purely nearest neighbor c&#8eAs there is still a
Iszr?(glg-r;a?]fgles(ljn%\?su\?vee SVTI)I/ ﬂgsth?s(%?l}/ot?rﬁu?ggsécfhgf(;rlljeM large number of short-ranged valence bond states possible,
description of the latter as an odd Ising gauge theory, a term V" with the restriction to th!s secto_r_there IS a nc_)ntrlylal

problem remaining—that of diagonalizing the Hamiltonian

we will explain in Sec. Ill below. In this we will offer a * .-~ o . L
variation 0?1 previous work by Fradkin and Kivelson who within this highly degenerate manifold—which is the prob-
lem of “resonance.” Depending on the details of the

mapped the problem onto &1) gauge theory instead.This e ! ) -
builds on a completely differently motivated stream of work Hamiltonian, several phases might be realized. This set of
of two of us (with P. Chandraon frustrated quantum Ising Phases are what we caBhort-rangegivalence bond domi-
model$® which has included a recent demonstration that theéhated phases and, by hypothesis, they are all characterized by
guantum dimer model on a triangular lattice supports ar® SPIn gap.
RVB phasé*! This connection will allow us to interpret vari- ~ There are two primary obstacles to investigating the phys-
ous statements about Ising gauge theories in the language o6 of valence bond dominated phases which we will restrict,
valence bonds—it will turn out that the Ising varialidethe  in the remaining, to those with purely nearest neighbor
number of valence bonds—and, we hope, make them easibonds. The first is basic, namely the large degeneracy cited
to grasp and evaluate. We should note that alternative iderbefore, e.g., on the square and triangular latticesl #2
tifications of spin liquid physics with Ising gauge theories inthere aree®™ (a>0) states on ai site lattice. The second
different limits have been made previously implicitly by is technical in that different valence bond configurations are
Read and Chakra?_c:zrgfr, and explicitly by Read, Sachdev, not orthogonal, although their overlap is effectively exponen-
Jalabert, and Vojt&;~*Wen?® and Mudry and Fradkify tially small in the number of dimers in which they differ. In

A second benefit of this exploration is that it focuses at-some cases, there is also a proof that they are linearly
tention on what it take; to get an Ising gauge desgnpnon %fndependen%‘?
the low energy dynamics, namely a binary link variable and 1o qea| with the second problem it is convenient to for-

a local constraint. If SF are correct and the Ising description.,nulate an expansion that can include the nonorthogonality

has general applicability, it should be possible to make com- : X . . .
parable identifications in other contexts. perturbatively. As the parent configurations are in one-to-one

In the balance of the paper, we will review the QDM correspondence with hard core dimer coverings of the vari-

description of valence bond phases, describe the reformul@&4S Iatuqes, such a tack Ieads to a quantum d'm?r mode_l.
tion of the QDM as an Ising gauge theory and of general The sites the electrons reside on define the direct lattice.

Ising gauge theories as generalized dimer mod8BMSs), T_he Hilbert space of the_ QDM tr_]us consists of all h_ardc;ore
collate the known results on these models, discuss the notigiimer coverings of the direct lattice. The QDM Hamiltonian
of topological order in their context and conclude with afor the insulating caséhalf-filling) consists of two parts, a
brief summary. As much of the interest of the paper lies inkinetic (T) and a potential {¥) one. The former is off-
the connection between QDMs and Ising gauge theories, weiagonal and generates the resonance plaquette moves be-
have felt it useful to review a number of known results ontween different dimer configurations, whereas the latter, di-
both. It is useful perhaps to list the results that are new to thiagona| one, counts the number of plaquettes able to
paper. These are the formulation of the QDM as an |Sinq:)articipate in such resonance moves.

gauge theory(Sec. Il, the introduction of the odd Ising ~ For the square lattice we find the Hamiltorfian

gauge theory and its QDM limi{Sec. 1V) and its identifica-

tion with the action including a Polyakov loofiPL) term - -

written down by SF(Sec. IVB and Appendix B the (el- Hopy = —tT +vV =

ementary treatment of Ising gauge theoriesdr=1 includ- -

ing the presence of fractionalization in the odd case, the ra-y_g {—t (|=){({ {| + He.) + v (|2)(Z] + [L D))},
tionalization of the QDM results on the square and triangular

lattices via the absence or presence of charge-2 Higgs fields @
(Sec. VB and the discussion of topological order in Ising
gauge theoriesSec. V). where we have kept only the simplest kinetic and potential
energy terms with coefficientsandv, and the sun® runs
Il. VALENCE BOND PHASES AND QUANTUM DIMER over all plaquettes. In what follows, we refer to the QDM
MODELS with v #0 as the extended QDM, whereas QDM on its own
Consider an insulating magnet with enhanced quantumefers to the case= 0. On other latticed will take the form
fluctuations(as is the case witls=1/2 and other “small” of a sum of resonance moves on the shortest even loop
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G=l_> even IGT—""°> even QDM %, the hardcore constraint becomes
GDM
G=1 > odd IGT “Ta oo (odd) QDM R
r >, &|phyg=(—ne+2)|phys, ©l
potential | term +
extended QDM where the sum is over all the links emanating from a given

FIG. 1. Naming conventions used in this paper. Theories with—S'te I, andn, is the coordination of that site. This implies

out matter are referred to as pure, with matter as doped. The even ~
IGT is dual to a ferromagnetic transverse field Ising model, the odd G, phys = | phys, ()]
IGT to a fully frustrated onésee Appendix A with thel"— o limit
corresponding to a projection onto the magnetic ground (Sjabé
the dual Ising models.

where

éaEexp(iaE (6%+1—2/n,) (4)
+

(which is a plaquette in this casand V will be count the .

number of such possible moves in a given configurationsfor any « at eachsite. A

e.g., on the honeycomb lattice both will involve three dimers. To write the Hamiltonian at half-fillingH,, in a form
There are two main paths for obtaining a quantum dimeigych that G,H,]=0, we define the usual spin-half raising

model from a magnetic SyStem. The first is based dil’eCtly Oiénd |Owering operator@-i = &Yi i 6’2, WhiCh, respective'y,

an SU2) Heisenberg magnet, the second on “large-N" gen-add and remove a dimer on a link. We obtain

eralizations thereof. The fornfeuses the above-mentioned

small overlap to generate a perturbation expansion. The va- . A - T

lence bond states can be labeled by orthogonalized dimer le_tTJFUVZ_t% (670 0 0 +hce)

configurations, the quantum dynamics of which is captured

by the leading order dimer plaquette resonance mov&he

leading order diagonal term is given By The second patf
generalizes the S@)~Sp(1) to SU(N) on bipartite lattices ) . :
or Sp(N) generally. The latter method essentially generalizeé/a"rr:)irne q ttrr]iz ;Ilquuelz?t éheTLaesgéﬁ;Taliﬁigibge(g[hi?:t‘aggi"y
h hwi ion for th i intro? N " .

the Schwinger boson representation for the spins by Introfollows the prescription for writing down QDMs outlined

ducing a large number of additional boson flavors. In the ="
earlier.

limit N—cc, taken at a fixed number of bosons per site, the ) R ) ) .
ground states at leading order can be labeled by dimer con- Invariance ofH, under local Ising gauge operations is

figurations. It is the next order, N/ terms which generate €asily checked. In fact a larger,(l, symmetry arises be-

v
72 (LHFDA+59+(1+55)(1+57), (6

the above-mentioned dimer resonance move. causeé;1{ri(§a=exp(iioz)&t so that the phases picked up
by the products ifl' cancel. As we will discuss further be-
IIl. THE QUANTUM DIMER MODEL AS AN ISING low, this chal Ul is a consequence of local dlmer nun"_nber
GAUGE THEORY conservation. So we have the situation that while the Hilbert

space is that of an Ising gauge theory, the physical states and

In the following, we discuss the relationships between aHamiltonian are invariant under a set of continuous local
number of different models of interest in the context of high-gauge transformations that have the form of @)Ugauge
temperature superconductivity and quantum magnetism. Thiaeory. This is a local gauge theory version of the more fa-
naming conventions for them are depicted in Fig. 1. Our firsimiliar quantum S=1/2 XY-model, which also lives in an
mapping—of the QDM toan Ising gauge theorfIGT)— Ising Hilbert space.
proceeds as follows. The naive Hilbert spageclusive of When holes are doped into the valence bond manifold, we
gauge equivalent statesf any IGT is defined by an Ising need to worry about the comparison of {ipetentially large
variableo= =1 on each link of the lattice; each variable will hole hopping energyto the existing magnetic scales that are
be taken to be the eigenvalue of an operditbron the cor-  responsible for the triplet gap. In the spirit of RVB theory, we
responding link. We can identify the link variable with the assume that one can approach the problem from small values
presence or absence of a dimer on the link, i.e., the numbef t and that it is therefore sufficient to keep states in which
of dimers on each link is now given by=(1+ ¢)/2 and the the spins pair up into valence bonds except at the sites from
dimer number operators afe=3%(1+ &%), where we have which they have been removed. The effect of the hole kinetic
suppressed the link index. energy is to move a hole and a dimer in ways that keep

Evidently, the naive Hilbert space is too big and we mustwithin this manifold*®
identify the physical subspace that corresponds to allowed In the Ising gauge language, we have to add a matter
hardcore dimer coverings, which is done by imposing a con¢Higgs) part, |2|m, to the Hamiltonian. Let the Ising Higgs
straint at every site that only one link emanating fron:n it befield be denoted by an operatey its eigenvalues:1 denot-
occupied by a dimer. This is expressed as an opera@on, ing the presence/absence of a hole. Since each site has either
which leaves invariant only the physical stat@hys, those a dimer ending on it or is occupied by a hole, the constraint
fulfilling the hardcore condition. In terms of the operatorsequation is modified to
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. where the first sum runs over all links and the Hilbert space
G|phys)=ex;{ia Tt > (574 1—1/nc)) ) lphys is limited by constraintgbelow). One finds an equivalence
- of the partition functions in the limitKk™—o, with K*
=|phys, (6) =k exp(—2K") fixed.
The Hamiltonian defined in E9) retains a gauge invari-
and the full Hamiltonian is given bii=H,+H,,, with ance under flipping all spin@n the o basig emanating from
one site. This transformation is generatedfbgéT=H+&X.
|:|m= _ mz (3 a_;j,&j_k%; +he), 7) To reproduce the physics of the even IGT we need to impose

(7% Gisr=1 at every site.

While the Hamiltonian and Hilbert space are naturally
derived in thec?* basis, the meaning of these constraints
becomes transparent by considering the system inothe

basis. FoiG,g(i)|phys = + |phys, an even number of links
emanating from sité has¢*=1. Identifying, as we did in
Sec. lll, the presenc@bsencgof a dimer witho*=*1, we

We now review the converse logic of starting with the see that the constrai@gr= + 1 implies the presence of an
more familiar action of the standard IGTeferred to as even evennumber of dimers emanating from each site—whence
IGT from hereom and ending up with a Hamiltonian formu- our label “even” for the IGT under consideration.
lation. The resulting theory is a generalized dimer model
(GDM) which features dimers on links that obey a general- B. The odd IGT and the Polyakov loop term Sp
ized dimer constraint—in the even case this requires an even : - . . .
number of dimers to emanate from each site. We also show, 1° obtain a Hamiltonian prqblem in which the physical
that the addition of the Polyakov loop ter8p to the stan- states have andd number of dimers at each sifthe odd .
dard action introduced by SF leads to a Hamiltonian formu-IGT)’ \_Ne need to add the Polyakov loop term o the aciion
lation that is a GDM with the constraint of an odd number ofabove.
dimers per site and that in a special limit, it reduces to pre-

and the sum or{ijk) running over triplets of neighboring
sites.

IV. ISING GAUGE THEORIES AS GENERALIZED DIMER
MODELS

cisely a quantum dimer model with the hard core dimer con- eSp= H ol, (10)
straint. t
- _ _ where the product runs over all temporal links. This is
A. Hamiltonian vs Lagrangian formulation equivalent to assigning signto each space-time configura-
Consider the action of the standard IGT, hereafter referre§fon which is the product of Polyakov looffn the temporal
to as the even IGT, direction that wrap around the system for each spatial site. It

can be showrisee Appendix Bthat this is equivalent, in the
time continuum limit, to choosings,gr=—1 in picking
S=- KT% o’ototo’~ KS% o*oto’o” ) physical states for the action of the Hamiltonian E2). We
should note, that even with isotropic couplings in the action
made anisotropic by choosing a couplit, for plaquettes Ed. (8), Sp breaks the symmetry between space and time
containing links in the imaginary timéemporal direction,  (lattice Euclidean invariange Consequently one may need
different from that for purely spatial plaquett¢€®.’? Thisis ~ to be careful about distinguishing the behavior of Wilson
necessary to take the time continuum limit needed in thdoOps in space and those in tinf@olyakov loopsin distin-

derivation of the Hamiltonian. guishing confined and deconfined phases—the latter are then
We can now choose a gauge whereinddlin the time ~ the correct quantity to calculate. S
direction are+1, so that the first term in Eq8) becomes a For the square lattice, the inclusion $§ (which arises in

simple bilinear,— K™S 50?0, involving only the links in the the work by SF for a Mott insulator with an odd number of
space directions(Strictly speaking, it is not possible to do €lectrons per sitethus represents a mbdure of dimeiane

this as it would have the effect of modifying the gauge in-link occupied and tetramersthreg.”™ Whereas the dimers
variant products ofr? along temporal loops. However this are amenable to an obvious physical interpretation as valence
obstruction is not important in the time continuum limit in Ponds, we are not aware of any similar interpretation of more

the case of the even IGT @t=0.) One then establishes the cOmplicated polymers. _
equivalence to an appropriate Hamiltoniand set of con- We thus see that the somewhat unconventional form of
straintsin one dimension less by comparing the expressiondn€ kinetic term in Eq.(5), which consists of raising and
for the partition function generated by this action to that!owering operators, rather than simdilg*, arises from the
arising from a Trotter—Suzuki decomposed path integral fordesire to preserve the hardcore dimer constraint manifestly.
mulation generated by the Hamiltonian

C. QDM limit of odd IGT

Aeom=I>, &*— k>, 676%620%, (9 One can nonetheless retrieve the hardcore constraint by
= 0 explicitly removing the supernumerary dimers by hand,
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erally, it seems to us that in order to make the case for an
IGT description in other phases, it would be extremely useful
to have a comparable identification of the link variable and
the constraint(even in some appropriate coarse grained

a
m
L el
il

(@) ®) ©

D. Duality to Ising models ind=2+1

It is well known that IGTs ind=3 are dual to Ising
FIG. 2. (a) Top: Allowed hardcore dimer configuration. Bottom: 0dels!?13 |n the Hamiltonian formulation ind=2+1,

Allowed configuration in an odd IGT but not QDMb) Hopping  there s a simple, geometrical, way of seeing this which dem-
process of holddenoted by squayegenerated byH,,, which does  gnstrates how the standard constraint + 1 translates into
not conserve dimer number. Two applicationsHf yield an al-  a dual ferromagnetic transverse field Ising model while the
lowed final QDM configuratioric); the net hop is generated directly galternative constrainG=—1 translates into a fully frus-

by . trated Ising model in a transverse field. An account of this
. S mapping is given in Appendix A.
through a very large coupling constalit In this limit (the Evidently, it is most economical to study these dual Ising

I'—oe limit), the termIl56* becomes equivalent to the ki- models. An extensive study of frustrated Ising modelslin
netic term of Eq(5); itis in this limit that the IGT of Senthil =2+1 is reported in Ref. 20.

and Fisher including th&p terms is equivalent to our QDM.
In this context, it is interesting to note that the originally
gauge theory of Fradkin and Kivelsbris close in spirit to V. PHASE STRUCTURE AND QUASIPARTICLE
the above construction. There, the presence of a dimer is FRACTIONALIZATION

encoded by an angular momentum variable on each link,

Lij . which lis re%tricteld PI')(] an 8_‘”_5"09 0; tlhe transverse fiEanterest is whether they possess a dimer liquid or RVB phase.
term to vajues 0 or 1. The raising and lowering operatorsy, .y 4 phase automatically leads to free spin-1/2 excitations
(conjugate to the.;;) appear in the kinetic terr. (spinons and to the decay of an ejected electron into a

In the presence of doping, there is an additional differencgpinon and a spinless charged héelon) which provides
between the two theories which lies in the nature of the alan examp|e of Spin-charge Separati(jn an insu|at0)' in

lowed hopping terms. The GDM admits terms of the form general dimensions.

The physical arguments leading to the above conclusions
A +H,=—u> (7657, +hc)+ N> 7, (1) o are simple in the valence bond language. A valence bond can
- . be broken up into two neighboring spins 1/2. In a valence
bond liquid the cost of separating these two objects to infi-
nite separation will be finite—hence the existence of a
spinon spectrum above the triplet gap. Further, at large sepa-
X s rations one can remove one of the spinons to obtain a
manqatgs the use Gf* opergtors ra@her _thamz. In the I spinon—holon pair that has the quantum numbers of a miss-
— e limit, this term bfecomes ineffective since one of the tWOing electron, or hole. Hence in a photoemission experiment
configurations whicfH, connects is projected out. However, one will see a fractionalized spectrum above the charge gap.
for I' large but not infinite we generate the teky, [Eq. (7)] Within the framework of the dimer models both spinons
with m~u?/T" to obtain dynamic holetsee Fig. 2 and holons are represented by monomers and the issue is one
Quite generally, extended QDMs thus arise as limits ofof computing the free energy of the system as a function of
odd IGTs with additional couplings. From the perspective ofmonomer separation. In a liquid phase this will be finite. This
IGTs, this is a simplification which focuses attention on thethus provides one resolution of the puzzle of what screens
existence of larger local @) invariance, but not much more. the charge of the quasiparticle in the insulator, where the
However from the perspective of the physics of antiferro-condensate is absent: in the liquid, the dimers can rearrange
magnets the QDM along with its associated conservation ofo move the charge away, leaving behind a neutral
the number of dimergévalence bondsper site appears to be spinon—as was originally envisioned by Anderson.
the more natural construction. It also has the appeal that it It is worth digressing a bit and noting the translation be-
allows two question basic to setting up a gauge theory to béwveen the standard gauge theory lore and the above state-
answered transparentlgt) what is the link variable? an@) ments. The standard diagnostic of confinement in a pure
what is the local constraint? As we have noted, in the QDMgauge theory is the Wilson loop. In a Lorentz invariant
limit this leads to an Ising link variable which is simply the theory its orientation does not matter and hence we may
number of valence bonds but a constraint on their numbecompute the expectation value of a spatial loop as well as a
more appropriate to a () theory. At the very least, short- temporal loop which is directly related to the energy of two
ranged RVB theory is an example of an IGT of a stronglyseparated quarks. In dimer models one does not have Lorentz
correlated system and we will use it to examine some of thénvariance—trivially for we are in the time, but not space,
observations made by SF about IGTs in general. More genzontinuum limit and less trivially because the Polyakov loop

For all the purgundoped QDMs, the question of primary

corresponding to the processes depicted in Fig).AThe
sumX runs over all sites of the lattigeNote that a notion of
charge conservation and hence a global)Uinvariance,
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D Summg  Gumm@ ._E_. have carried out an estimat.e for a grqund state wave function
— spread equally over all dimer configurations—such states
[ O Q@ | @ arise at the so-called Rokhsar—Kivelson poisese below—
but this will be qualitatively correct everywhere in a liquid

FIG. 3. Top: Neutral quark—antiquark pair. Bottom: Charge-2

hase.
pair. A square denotes a hole. P

We should note that the above considerations are for static
vaatter interacting via fluctuating gauge fields or dimers.
: hile it is entirely reasonable that a deconfined phase at zero
one should really compute the temporal Wilson loope doping will continue into a deconfined phase at finite doping,

Polyakov loop. Nevertheless, as the following calculation the finite doping problem is logically distinct and needs to be
shows, liquidity implies a perimeter law for the spatial Wil- Ping prot gically )
treated carefully on its own. We note, for instance, the well-

son I.OOD' and as explalned above, liquidity in the dimer mOd'known result that dynamic matter does not permit an area
els signals deconfinement.

A second caveat is that in the dimer model it is the twolaw phase for the Wilson loop, even at arbitrarily weak cou-

monomer free energy that has a clear meaning. As this is %Img on account of the screening of the gauge fdfce.

state with physical charge-2 relative to the ground state, its In_ the remainder of this section, we _dlscuss the prope_rtles
free energy cannot be computed as a neutral vacuum co(r)—f dimer models on a number of lattices and for varying

gy omp . dimensionality. Besides presenting a number of new results,
relator(uniike a quark/anthuqu potent)_arl'he SF”Ct analog especially ind=1, we collate several results from the litera-
of the quark/anthu_ark potenhal Is the Interaction between fure, several of V\;hiCh are in the guise of stacked magnets or
monomer and a site with two valence bon@sg. 3). Pre- ’

sumably the long distance interactions in the two cases W”}ransverse_ field Ising magnets, which therefore need translat-
track one another. ing. We will also refer to results on the GDMs or IGTs out-

With these comments, consider the spatial Wilson loop inSlde the QDM limit in places.

the dimer limit. The product

term is not Lorentz invariant, as already noted. Consequentl

A d=1

While d=1 is special, it is instructive in that doespro-
vide an example of fractionalization that though distinct
. from the higher dimensional versions, fits nicely into the
reduces to the strings QDM description. This point was overlooked by SF in their
analysis of IGTs.

Consider first the pure even IGT. In this case there are

of dimer creation and destruction operators. In taking thé®nly two states in the Hilbert space, those with=1 for
expection value ofr,, we select pieces of the ground state® — — 1 on all links. The Hamiltonian can only count the
wave function that contain precisely the dimer strings in Fig.number of dimers, as there is no local resonance move,
4 along the selected loop. To estimate this fraction we appeal

to the extensive entropy of dimer configurations and to a |3|=1“2 o, (15)
healing length¢ in a dimer liquid. In the liquid we therefore -
obtain an estimate

LC
mw=11 o (12)
i=1

WWZ(UIUE---UfC,lo'[C-i- h.c) (13

whence theos*= —1 state is always the ground state. Con-
o e C(E)Le (14) sider intrqducing two hqles at a separatRRnThe constraint
w ' now requires that the links between the holes carfy-1
that exhibits a perimeter law consistent with the lore for awhich leads to an energy cost linearRend hence confine-
deconfined phas®.Here, c(¢) is some numerical constant ment. This is the well-known result on the purely confining
depending on the correlation length. Strictly speaking wecharacter of thel=1 (even IGT.

Interestingly, the odd IGT behaves very differently. There
are still two states in its Hilbert space, but they consist of
states with alternating values of'=—1 and ¢*=1, i.e.,
dimers and no dimers—evidently there are two such states
related by a translation. These states are degenerate in en-
ergy. Consequently the introduction of a hole still produces a
domain wall between the two phases, but two domain walls
do not attract—the charge carriers are deconfined solitons.
This is, of course, the familiar mechanism of solitonic frac-

FIG. 4. Evaluation of a Wilson loop, taken around the circum-?ionanzaﬁon from studies of conducting ponmé?sWhat 'is .
ference of the displayed region. The string of operatejsannini-  Interesting is that the odd IGT captures this mechanism in
lates the state unless it encounters an alternating sequence of oc&= 1 automatically.
pied and empty bonddeft pane). The links occupied by dimers This is a good place to give a trivial example of the dif-
after the action ofm,, are denoted by empty rectangles. Flipping ference between microscopic rewritings and effective gauge
only one plaquettgmarked by a plus, right paneleads to the theories. Consider the one-dimensional Heisenberg chain
configuration being annihilated by, . with first J; and second neighbdy, antiferromagnetic inter-
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actions. This can be rewritten as an IGT with two Ising QDM, has been advanced by Sachdev and ¥®jino find a
gauge fields—one for each bond. As is well known, for suf-set of striped states followed bydawave superconductor. A
ficiently largeJ, the chain is in the dimerize@Majumdar—  direct treatment of the doped QDM has not been carried out
Ghosh phase where the effective theory clearly involves justexcept for an early mean-field theory by Fradkin and
one Ising gauge field. Kivelson!® which led to answave superconducting saddle
point, but which treats electron hopping terms which lack
B.d=2 crucial phase factors stemming from the microscopics. Fur-
dher work on the doped QDM would certainly be desirable.
Triangular lattice: The standard IGT on the triangular lat-
Jice (defined by taking products of* around elementary
Jriangles is dual to the ferromagnetic transverse field Ising
odel on the honeycomb latti¢®.Consequently, it has a

Two dimensions is the case of maximum interest in th
context of theories of cuprate superconductivity.

Square lattice: A general analysis of the even IGT couple
to Ising matter has been given a while back by Fradkin an
Shenker? They showed that two phases exist: a deconfined" = ) )
phase with free charges in the spectrum and a confined/Higd¥@S€ transition identical to thqt of the square lattice IGT,
phase. The phase diagram of the odd theory is not known iRétween a confined and deconfined phase. While we do not
as much detail. What is known is that the undoped odd IGTKNOWn of a detailed analysis of the problem with Ising mat-
has a confinement transition accompanied by translationdf" coupled to the Ising gauge field, we expect that the
symmetry breaking as the QDM limit is approached. ThisFradkin—Shenker analysis applies.

result follows from analyses of the dual transverse field Ising{ The odd IGT is dual to the fully frustrated Ising model on
modef® as well as from a map from the QDM to a height he honeycomb latticésee Appendix A which has been

model3* Consequently, the purely kinetic QDM on the studied by Chandra and ourselfwith some evidence for
square lattice gives rise to a valence bond crystal with conVeak ordering involving the breaking of translational sym-
fined spinons. metry in a confining phase. It is also possible that the con-

The extended QDMEGQ. (1)] has been studied in detail in fining phase is absent altogethgr. Ind.et_ad, in t.he.extended
and found to be ordered for all values of except for a QDM we have shown that there is definitely a liquid phase

transition at the Rokhsar—KivelsdRK) pointu =t between [OF @ finite range of parameters, 2{3/t<1, in which

a staggeredy(>t) and a fourfold degenerate state<(t)  SPInons aré deconfinédThis is the only known example of
which is likely a plaquette state close to the RK point and® deconfined phase in an IGT In th_e QDM limit. We n?te that
then gives way by a first order transition to a columnar staté €Nt neutron scattering experiment on a triangular mag-

at large negative .51°35-3%¢ the RK point, the ground state net, albeit a spatially anisotropic one, appears to have de-

, - " : - tected deconfined spinofs.
is an equal amplitude superposition of all dimer configura- .
d P berp g Other lattices: The results for the QDM can be general-

tions. Spinons are deconfined precisely at the transition only, ; . .
and confined elsewheféThe unusual feature that a critical '2€d t0 other lattices. The behavior of quantum dimer models

point intervenes between two crystals, finds an elegant el bipartite lattices follows that of the square lattice. This is

planation in terms of height representations: the effective acd consequence of the equivalence of the classical dimer mod-

tion in the proximity of the RK point has the form conjec- €!S 10 @ height modéf** which in d=2 implies critical
tured most completely by Henl&) correlations which result in an ordering transition when

quantum fluctuations are switched @hin particular, this
class includes the hexagonal lattice quantum dimer nftidel.
S~f d?x d7[(9,h)%+ po(Vh)?+ps(V?h)?]  (16) For QDMs on nonbipartite models, no such general result
is known. Typically, one expects QDMs to be disordered and
with —pp>(v/t)+1 changing sign precisely at the RK gapped at the RK point=t, and we suspect that this will
point. This action accounts for the crystal fort whichisa  result in an extended disordered phase det with spin
flat state of the hEIght Variable, the critical correlations andcharge Separation in ana|ogy to the triangu|ar lattice case.
resonon spectrum~k? at the RK point, and the staggered For some interesting results on depleted lattices see Ref. 42.
state forv >t which Corl’esponds to the maximum tilt of the Charge_z H|ggs scalars: The difference between the re-
height variable. It also accounts for two other nontrivial fea-sults for bipartite lattice and the triangular lattice can be ra-
tures of the RK point, namely that it has degenerate groungonalized by a mechanism that has been invoked several
states in all winding number sectothe RK point action is  times in previous work on the subject. In the QDM limit, we
insensitive to gradients of heightand that its equal time gptain a theory with a (1) gauge symmetry as we noted
height correlations are logarithmic and precisely those of thearlier, albeit one that lives in an IGT Hilbert space.
classical dimer problem—uwhich follows from the observa- A celebrated result of Polyak&Y showed that the pure
tion, compact W1) gauge theory confines at all values of its cou-
pling in 2+ 1 dimensions. This theory, defined by the Max-
J' do 1 1 well Lagrangian in the continuum, is naturally formulated on
w’+ pak? \/Ekz. the bipartite square lattice—the plaquette product naturally
translates into the former Lagrangian. It was argued by Frad-
Less is known about the doped QDM, or the odd IGTkin and Kivelsod® that the Polyakov argument goes through
coupled to charged matter. A plausible scenario, based onfar the IGT with theS, term. It follows then that we should
different largeN limit than the one that gives rise to the expect the QDM limit of the odd IGT to be confining. Evi-
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dently, such an argument does not by itself rule out a decon- VI. TOPOLOGICAL ORDER AND FLUX DETECTION
fined phase in the extended QDM and one needs the more EXPERIMENTS AT FINITE DOPING
detailed height representation analysis to show that.

A second important result on(ll) gauge theories is due to
Fradkin and Shenker who studied their phase structure wh
coupled to mattet’ They showed that a coupling to charge-1
matter fields does not allow a deconfined phase to exist bu[
that a coupling to charge-2 scaladgl allow a deconfined . S A o618 )
phase to exist. Deep in this deconfined phase the low energ{'es of spin I|_qU|d§ by Wen and co-lworkers. We examine
states are precisely that of an Ising gauge theory. This resu ese assertions in the context of dimer 'models, In reverse
provides a rationalization of the triangular lattice results: toorc:\«/avr. n g]ar_tlc_lélar we ;wllhbe |nte|re§tec|j In tlhe_cor;necltlon
make contact with the standard results on the square Iattic’ggn de;gtegg,z'zf?zsl and the topological analysis of valence
one must treat the triangular lattice as a square lattice wit ’
additional diagonal bonds. These additional bonds, which
connect sites with like charges in the electrodynamic A. Topological order in the quantum Hall effect

interpretationt? suggest the presence of a charge-2 scalar Quantum Hall states do not break any obvious symmetry

field coupled to the gauge field in the low energy theory,caniyred by a local operator: this excludes cases, such as
which then opens up the possibility of a deconfined phasequantum Hall ferromagnets, where a symmetry may be bro-

The reduction in the number of topologically distinct sectorsyean in addition. There are two alternative approaches to char-
to that characteristic of an Ising gauge theory is further eVi'acterizing quantum Hall states which can both be derived

dence for this identification. That said, we note that this iSfom the rewriting of the electron dynamics in terms of

not too precise in that the process in which a square latticgogons coupled to one or more fluctuating Chern—Simons
dimer disappears to be replaced by a diagonal one still ngyage field$8-%°In the first, one focuses on the bosons and
ively involves a charge-1 coupling—one unit of electric flux characterizes their condensation via an infinite particle elec-
removed along with a terminating charge. tron operator which works everywhere in the quantum Hall
The general attractiveness of the Fradkin—Shenker resulihase that grows out of the ideal quantum Hall state in a
to workers on two dimensional quantum magnetism is eVigisordered systert. In the second approach, one integrates
dent. Heisenberg models are easily reformulated &) U oyt the bosons to obtain a purely gauge action, which then
gauge theorles but in the search for spin liquids with deconggniains the Chern—Simons term as its leading piece.
fined spinons this is an embarrassment. Consequently it has The Chern—Simons term is topological, i.e., it is insensi-
been suggested by manyﬁ\%vorkers: Read and S_ac?ﬁdaa/, tive to the metric of the manifold it is defined on. The pure
well as Mudry and Fradkin that the condensation of an chern—Simons theory, which describes the strict infrared be-
appropriate charge-2 scalar field would allow a spin liquid ton4yior of the quantum Hall system, has a finite dimensional

exist. JJ“ his work on the Sp{() analysis of the triangular jpert space with a set of degenerate states whose number
lattice,™ which exhibits a disordered phase, Sachdev agaigjepends on the topology of the manifSfd.

argued that fluctuations about _the saddle point solution had This |eads to the notion of topological order—the idea that
the structure of a U) gauge field coupled to a charge-2 5 quantum Hall state can be characterized by its “response”
sc_:alar, for essentially the same reason we invoked _abo_v% the topology of the underlying manifold. Operationally,
Finally, Sachdev and Vojta have constructed a generalizatiog,e imagines computing the exact spectrum in finite volumes
of dimer models which plausibly des_cribe spiss1, and. and looking for a low-lying cluster of states clearlie.,
have shown that the same mechanism can be operationghrametrically in system sizeeparated from all other states.
there: This works perfectly for clean quantum Hall systems on the
torus—e.qg., there arg exactly degenerate states at filling
factor 14. In this case it is also possible to construct opera-
In d>2, little is known about the properties of dimer tors, corresponding to the adiabatic insertion of one quantum
models, even in the classical case. Formally, the Pfaffianf flux through the holes that have the effect to transforming
methods used id=2 to gain information about the classical one ground state into another. As these operators commute
models break down due to the overwhelming increase in thgith the Hamiltonian, their failure to leave the ground state
number of terms to be evaluated in higher dimensf6ns. invariant was interpreted by Wen and Niu as the breaking of
Within the framework of dimer models, it is likely that a topological symmetrythe symmetry algebra itself being
spin-charge separation becomes prevalent because dim@ependent on the topology of the manifpold
models should become more disordered in high dimensions. To summarize: Topological order in clean quantum Hall
This can be rationalized as the hardcore constraint cannot tsystems at the ideal filling factors involvéa) a ground state
spread out but number of possible orientations increases. multiplet, separated from other states by an amount para-
However, the usefulness of quantum dimer models fometrically larger than the splitting between them, and with a
describing the physics of Mott insulators/Heisenberg modelslegeneracy that increases with the gemgu®f the manifold
decreases in higher dimensions as it becomes increasinghsq®, (b) a topological symmetry algebra containing opera-
hard energetically to stabilize valence-bond dominated contors that move the system between different members of the
figurations against the Neel state. ground state multiplet(c) a long wavelength actiorithe

Senthil and Fisher have proposed an experiment to test
etrqe" ideas on a fractionalized phase in the cuprate phase
diagram and have explicitly linked this experiment to the
otion of topological order invoked previously in studies of
e fractional quantum Hall effetand of mean field theo-

C.d>2
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Chern—Simons actigrthat defines a theory with a finite di- the ground state cluster. We do not know of any detailed
mensional Hilbert space with the same degeneracies. examination of whether the ground state splitting continues
In the clean system, quantum Hall states compete with théo be exponential in this limit—it would appear that one
Wigner crystal, or with various charge density wave statescannot merely argue by continuity from the gapped case due

The latter pair of states will lead to a higher ground statet0 the singular closing of the gam route Neither is it clear
degeneracy, indeed an infinite degeneracy in the infinite volthat the operators that move us between states in the clean
ume limit corresponding to the various translations of thecase Will continue to work with randomly localiz¢dr even
crystals as a whole. The same is true for the quasiparticl6'yStallized quasiparticles—here again we do not know if a
Wigner crystals that will form in the close proximity of genera'l|zat|on. is possible. Finally, we note that ms_ulatmg
quantum Hall fillings. In such cases of broken symmetryStates in the disordered system are expected_ to exhibit unique
Wen and Niu have argued that the splitting between differen@round states that are separated from excited states by, at
states will be exponentially small in the area of the systenP€St: Polynomially small gaps coming from localized elec-
(the number of moves it takes to convert one ground statdons.

into anothey instead of in the linear dimension, as would be

expected from tunneling processes involving quasiparticles B. Topological order in IGTs?

that would move the system between different quantum Hall The general idea of SF, following Wéh,is as follows
ground states. Hence it would take either a direct examingRefs. gb) and 9c)]. The deconfined phase possesses Ising
tion of the states or a study of the magnitude of the splittingyortex excitations(visong that cost a finite amount of en-

to decide whether the ground state cluster is due to tOpO'Ogbrgy_ AS in any gauge theory where such excitations are pos-
cal ordering or merely a broken translational symmetrya  sible, in a multiply connected geometry these can be placed
manifold of fixed genus, such as the torus which is what ono that their cores inhabit the holes and we can expect these
is likely to study in practice An alternative approach would configurations to be long lived, and in an appropriate order
be to explicitly lift any degeneracies due to broken symmef |imits they should be truly metastabithat is to say, infi-
tries by the action of small fields. Any residual degeneracyitely long lived local minim# For the purposes of the ex-
would then be topological in origin. For instance the appli-periment proposed by Stee below this is sufficient. To
cation of a commensurate periodic potential would lead tdmake contact with the notion of topological order, SF wish to
the selection of a unique state in the Wigner crystal phasgelate the presence of visons threading holes to an infinite
while it would reveal the underlying degeneracy of the quanvolume limit ground state degeneracy of @an a manifold

tum Hall state in the case of a quasiparticle Wigner crystalwith h holes, that can be interpreted as the breaking of a
(We note such a procedure would seem logically necessamppological symmetry. In the following we explore this idea
for the topological degeneracy to track the off-diagonal longin some detail with cylinders and tori as the manifolds of
range order which survives in the quasiparticle Wigner crysinterest—going beyond those in genus while retaining a lat-
tal if its phonons are stiff enoughSimilarly in SU2) quan- tice is tricky, especially when the gauge theory arises as an
tum Hall ferromagnets the introduction of a Zeeman termeffective theory and so we will not venture that far afield. We
would be required. begin with pure gauge theories.

Our discussion here illustrates two more aspects of topo- Gauge fields alone: As noted by SF, the even IGT on the
logical ordering in quantum Hall system&l) an exponen- cylinder at the poinl’ =0 exemplifies their ideas. There are
tially small splitting with linear dimension can be attributed tyo exactly degenerate states, which can be written irrthe
to the presence of fractionalized quasiparticles that can tunepresentation if one does not worry about the constraint.
nel across a loop and recombine to move the system to a neyhese states have two features of néiethat they exhibit a
ground state(e) it is necessary to break all standard, ad.di'well-defined topological flu¥,=1I1,67, where the product
tional, broken symmetries explicitly to reveal the underlying , . .-

I1, is taken around the circumference of the cylindey.

topological degeneracy. Kes th | in th isonivi i h
Perhaps the “cleanest” as well as the most realistic way tg@kes the value:1 in the no-vison/vison states; atio) that

single out the topological degeneracy is to include the effecthere exists an operatét,=I1_o" where the produdl_ is

of disorder and thereby examine a quantum Hall phase diken along a seam of links, with the seam running along the
finite extent. Wen and Nid have offered arguments that the axis of the cylindersee SF for detai)s F, commutes with
inclusion of disorder splits the degeneracy by an amount thathe Hamiltonian and converts one of the states to the other.
is O(e” ") in the linear dimensioh of the system¢ being  These two operators capture the two ways of looking at the
a disorder correlation length. Their analysis, which holds exdegeneracy, either as a consequence of Ising flux or that of
actly atv=1/q neglects any creation of quasiparticles in thebreaking a “topological symmetry” in which a global opera-
ground state itself, i.e., the quasiparticle spectrum is assumedr ceases to annihilate the vacuum. At issue is whether these
to remain gapped in the presence of disorder. In general thigeneralize beyond this special point and to Ising gauge fields
will not be true, and certainly away from=1/q there will  coupled to matter, especially in the QDM limit.

be localized quasiparticles in the ground state that will give Sticking with the even IGT for the moment, we note that
rise to a gapless spectrum. In a finite volume, this spectrurthe degeneracy isxactfor I'<K in perturbation theory, for
will acquire a gap that is at worst polynomially smalllin  a cylinder of finite width. In contrast, it is clear in the oppo-
and so if the exponentially small splitting of the ground site limit I'>>K that there is a unique ground state. This
states remains, they should not prevent an identification oimplies that even for a finite width cylinder there is a true
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phase transitioen route We note thaf, commutes withH creased at a fixed coupling corresponding to the deconfined

~ g 0 .
at all values ofl /K and thatF, is a natural order parameter phase and a sphttlng qD(L ) be?Wee” a unique ground
state and the first excited state in the confining phase. In

for this transition, being odd under the actionkyf. Hence terms of the winding number analysis, this corresponds to

the distinction between the two phases is indeed captured Qo o, gifferent combinations of even and odd in either

the action ofF, and by the development of an Ising flux. We direction.

should note though that, is measurable only for finite cyl- We turn now to the case of the pure odd IGT. Here it is
inders; being a Wilson loop, it goes to zero exponentially ininstructive to work in ther* representation. By means of the
(at least the width of the cylinder at an}/ # 0. standard device of using a transition graph between a given

These observations should not really surprise for they instate and a reference statene can again assign a conserved
volve a system that is infinite in two space-time directionseven/odd winding number to each configuration. For odd
and finite in one and hence are equivalent to those concerieight cylinders, a horizontal translation by one lattice con-
ing the two-dimensional IGT at finite temperature. Such astant interchanges the two sectors. Assuming that odd and
theory indeed possesses a phase transition in which theven height cylinders converge to the same infinite height
Polyakov loop(a Wilson loop taken in the time directipn limit, it follows then that the ground state must be at least
develops an expectation value. In the dual representation thte/ofold degenerate all I'/K for infinite height cylinders.
is simply thed=2 Ising phase transition in d=3 system As thel'<K analysis in thes” representation is identical to
that is finite in one directior® that of the even IGT except for a different choice of projec-

We return now to the question of working explicitly with tor,
gauge invariant states, i.e., those that satisfy the local con-
straint exactly. Given a stat@) in the o representation, we
can construct a stat®|V) that is gauge invariant by the
action of the projector

P=H (12)[Giar(i)—1] (17)

there is a twofold degeneracy in that region. Unlike in the
. . case of the even IGT, there is a large degeneracy in the
P:H (UD[Ger(i) +1] extreme opposite limitk =0, where any dimer covering of
the cylinder is a ground state. For infinite width cylinders,

which commutes with the Hamiltonian. Evidenﬂy, all gaugei:e., in the two-dimensional I|m|t, there is a fourfold CrySta|-
invariant observables have the same value before and aftéf€ degeneracy as noted earlier. How this degeneracy is
the projection. While this indicates that our earlier descrip-modified by finite cylinder widths is not clear to us at this
tion is correct, it hides a subtlety of some interest in makingP0int. A preliminary analysis of the QDM on cylinders indi-
contact with earlier work on the topology of RVB states. Tocates that it will exhibit a twofold degenerate liquid phase
uncover this, note that a state written explicitly in th¢ ~ that does not break any symmetries as well as a twofold
basis is automatically gauge invariant if it involves only evendegenerate columnar phase in which the columns run along
numbers of dimers at each site. All such configurations cafe cylinder axis. Consequently at different cylinder widths
be classified by winding numbers—one simply asks howtheK/I'—0 limit may behave differently. We expect that the
many loops of dimers cross a fixed line bisecting a set ofarge circumference limit will be characterized by symmetry
horizontal bonds. For a finite height cylinder, this number isPreaking which may either preserve the twofold degeneracy
either odd and even and the action of the Hamiltonian preof the lowest lying clustefthe case if the ground state re-
serves th|s number' Hence the true ground states must b‘@a"’]s |IQUId fOI‘ a" f|n|te W|dth$ or Increase It by a further
purely even or odd. Now the vison and no-vison states, whefgctor of 2 (the case if the ground state becomes columnar
projected, contain both sectors—they correspond to taking/ready or finite widths In the former case one would have
the linear combinationever) + |odd). Hence, although they [0 €xamine the nature of the degenerate states to decide what
correspond to a different choice of basis in the space of thehase they correspond to. _
two degenerate states, it is clear that the physical choice for On the torus the deconfined phase has again a fourfold
the standard Hamiltonian is that of purely even and oddoW lying cluster with a splitting 0fO(e ") while the con-
states which were what were invoked in earlier studies ofining phase will exhibit a cluster of four low lying states
RVB states. On the other hand, if we were to allow Wilsonwith a splitting of O(e™ "), corresponding to the necessity
loops of arbitrary length in the Hamiltonigbut with expo-  of altering the state over its entire volume instead of just
nentially suppressed coefficients to preserve effective localalong a line in the liquid casélt is worth noting that our
ity) we would mix these states and obtain the vison/no-visormprevious argument about translations implementing winding
linear combinations split by an amount exponentially smallnumber sector changes implies that there is an exact twofold
in the cylinder circumference. In this case what descriptiordegeneracy due to transnational symmetry breaking on odd
one would take to be the correct topological decompositiorby even tori) So on the torus one would need to examine the
in the infinite volume limit would appear to be a matter of size dependence of the splitting or the correlations in the
taste. ground states to distinguish the two fourfold degeneracies
On the torus, there is no true phase transition even for th&om each other. Alternately, as in the quantum Hall case one
standard IGT. Instead we find an exponentially small split-could turn on symmetry breaking fields that would lift the
ting between four states when the linear dimendiois in-  degeneracy in the crystalline phase but not in the liquid,
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deconfined, phase. We note that in the context of the cuturbed|®,) to the perturbatively admixed components of

prates, this is the case of maximum interest. |®2). For this reason, we have not written out the perturbed
To summarize: The behavior of Ising gauge fields alonevave function to second order i as this piece does not

does display a “family resemblance” to the quantum Hall contribute to the vison expectation value in this order.

case with regards to pointa), (b), (d), and(e) made earlier. The crucial step of this calculation consists of noting that

With respect to(c) the fundamentally discrete character of the operators; of the kinetic term and thé;; of the thread-

this problem makes it unlikely that there is an analog. Thaﬁn operationE. do not commute for thé{ links contained
being said we should note that in the QDM limit it does not, g op X &t

really go beyond the previous analysis of RVB wavefunc-" the produc'_[ forFy.
tions in terms of winding number sectors—the latter is an One thus finds

analysis in terms of electric fluxéthe momenta conjugate to oA a2 )
the gauge fields (<D1|FX|CI>O)=exp(—Zv H), (19

In this regard the really interesting claim of SF is that the,\nhere we have exponentiated the linear answer that pertur-
phase obtained at finite dopingatso characterized by topo- pation theory actually produces. General random walk argu-
logical order. As the even/odd classification breaks downyens indicate that the exponential dependence on the height
upon doping, this would be a feature not obtained by thg exact though the coefficient will be modified at higher
previous analysis. In the language of the IGT we must aslggers in perturbation theory. In sum, the degeneracy is re-
what happens when we add matter to the problem. _covered in the infinite system size limit but the topological

_Gauge fields with mgtter: We note at the outset that th'%ymmetry operation no longer takes us between ground
might be expected to differ from the quantum Hall case. Ingiates. Of course, there does exist an operator which gener-
the latter the states differ, in a sense, by the insertion ofeg 5 vision state out of the ground state, but it will depend
integer numbers of flux quanta through the holes. By contrasy, getajl on the precise Hamiltonian under consideration, a

in the IGT problem, the vision will be seen by matter fields te41re one would hope to be absent from a topological op-
ashalf a flux quantum. eration.

Nevertheless, the effect of the additional flux can be ex- The case of greatest interest is that of charged matter

ponentially attenuated if the matter fields are gapped on the'k'foupled to Ising gauge fields. SF have suggested that spinon
own. The simplest such case is that of the even IGT withyq holon fields coupled to an Ising gauge field are the cor-
Ising matter. WhileF, no longer commutes withi, pertur-  rect low energy theory of a variety of strongly correlated
bative considerations indicate that in the deconfined phasgystems and have argued that anomalous nonsuperconduct-
there are two low lying states with a splitting that¢e ")  ing phases would be characterized by topological degenera-
at largeL, which goes away on leaving this phase. So in thiscies that could, in principle, be used to search for such
case it is indeed possible to relate the deconfined phase tophases in numerical studies or variational studies.
twofold degeneracy. Having identified the two “ground”  In the QDM framework, we are concerned with adding
states, one can test them for the presence of flux. With mattefolons to a dimer liquid. If the dimers remain liquid, then we
present, the even and odd sectors are now connected and th&ve a doped phase that might be expected to inherit topo-
states will exhibit(smal) expectation values of the Wilson |ogical degeneracies from the parent insulating state. It
loop consistent with the presence and absence of a vision.would appear that there are three possibiliti@sthe holons
One might wonder if it is possible to relate the two low localize, (b) the holons are bosonic and condense thereby
lying states by the action d¥,. It turns out that the attempt giving rise to a superconductdk) the holons are fermionic
to create one from the other by its action will yield a vanish-and produce a gapless spectréfm.
ing overlap in the limit of infinitely long cylinders. This re-  In case(a) one has perhaps the strongest argument for a
sult can be obtained perturbatively near the trivial pointsurviving topological classification and associated degen-
I'/k=0, u/\=0. At this point, the ground state witk, eracy. Certainly if the holons are truly immobile, one can
=0, |®y) hase?=1 and =—1, whereas the stateb,) define even and odd sectors for that given configuration. If
=F,|®,) differs in that the horizontab® are flipped along they are localize on some length scale, the classification is no
one seam along the axis of the cylinder of heighthat the longer strict but it seems plausible that for system sizes much
lattice resides on. Carrying out perturbation theory to secon§!99€r than their localization length, the degeneracy is recov-

. . : d.
order inu/\ yields the perturbed wave functigd?) and ere . .
|q>§>, respectively. For these, In case(b) the system ends up with a superconducting

vortex threading it and so the question is moot.
In case(c) we would truly have a non-Fermi liquid but
MD2)=|d )+ > vol |D,;(i] ))+0(v?). (18  metallic phase. Unfortunately in such a system it would ap-
- pear that all gaps are polynomially small and so it will not be
) o possible to select a ground state multiplet in an operational
Here,_c_yzo,l,/\/ is a normallzagon constant, = u/é})\’ an_d sense. From the point of view of the QDM, all states involve
|®,;(ij)) denotes statéd ) with the 7s on sitesi andj,  holons and dimers in correlated motion around the torus and
flipped. The Sum_ runs over the “nkf{'J)- no topological character is evident. As we were unable to
To computg(®4|F,|®3), we note thaF, only acts on the  construct use the topological symmetry operator of the pure
os and not on thers, so that it does not connect the unper- gauge theory in the case of Ising matter, we will not succeed
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here eitheP* It would appear then than in this case the non- However, we also found that the phase structure of gen-
Fermi liquid character will not give rise to a meaningful eralized quantum dimer models depends on how the local

topological degeneracy. U(1) symmetry is realized. Superficially, a(1) gauge sym-
metry may seem to rule out deconfined phases since it is
C. Flux trapping experiments quite well known that the vacuum sector ofl) gauge theo-

We are however, still left with the possibility that the ries are confining in 21 dimensions. It turns out that for
states of the doped QDM are characterized by fififtex- the case of the gauge theoretic description of quantum dimer

ponentially small Ising flux measured by the Wilson loop. If Models the situation is more subtle. For instance, on the
such a state has a net vison content in a nonsuperconductifguare lattice the ground state is generically confining, and
phase, it would seem likely that it would nucleate a vortex ifthus it is not a spin liquid. In contrast, on nonbipartite lattices

the parameters are changed to condense the holons. TH{ Situation can be quite different. Indeed in such cases
would then realize the SF scena’. dimers connecting sites on the same sublattice plausibly give

From our considerations in the last section, we concluddiS€ to matter fields that carry two units of the1l) gauge
that a flux trapping experiment that cycles between phasegﬁar_ge. In this case the deconfinement mechanism of Ref. 32
with the holons localized and then superconducting would béderived for the even IGJican be expected to apply and both
the most robust while that between the latter and the strang €Onfining and a deconfined phase may exist. On the trian-
metal is hard to predict without a more detailed theory of thedular lattice, such a phasesexist. In the deconfined phase
metal. In either case, the issue appears quite delicate from th€ effective remaining “unbroken” local symmetry is re-
QDM viewpoint, in which the system is required to remem- duced toZ, Wlth a low energy structure characterlstlc_: of th(_a
ber rather delicate phase relationships between differerfgt€r- Thus, this mechanism of spin-charge separation relies
components as the parameters change. Of course one of tA8 the existence of a deconfined phase in the Ising gauge
strengths of the vison viewpoint is, that by focusing attentionfh€0ry. A localZ; symmetry is also central to the work of
on the relevant collective coordinate, it suggests that this iSF although their point of departure is a superconducting
an artifact of looking too microscopically. Further studies of State with Cooper pairs. We have noted that their starting

the doped dimer model could be very instructive in this re-Hamiltonian has more degrees of freedom than the single
gard. bandt-J type models that we have in mind so their identi-

fication of the Ising variable is not as microscopic. However,
valence bonds are sufficiently akin to Cooper painsit one
is tempted to guess that both approaches describe the same
In this paper we have established and discussed sevenahysics.
important connections existing between short-range RVB The considerations presented above assume that the
phases, quantum dimer models, and Ising gauge theoriespnfinement—deconfinement structure of the phase diagram
which have significant implications for the problem of spin- of evenlsing gauge theories holds also for tbed Ising
charge separation in strongly correlated systems. gauge theories. Although this is not rigorously established,
To begin with, we showed that there exists a naturalthere is substantial evidence, including the results reported in
physical interpretation of the Hilbert space of RVB phasesthis paper, that the main difference between even and odd
and that its Ising character follows directly from the nature oftheories is to associate confinement with phases in which
the states themselves: short-ranged RVB states are naturatlgnslation and/or rotational invariance are spontaneously
described in terms of short range spin singlets which aréroken, such as valence bond crystals and stripe states. In
either present or absent. Thus, from the point of view of thecontrast, deconfined phases are always liquids. The excep-
space of states, a description of the dimer Hilbert spacéon to this is the case ad=1. Here the even IGT, whose
should have a natural description in terms of Ising variableground state is translationally invariant, confines at all cou-
living on the links of the lattice. As a naive description of plings while the odd IGT whose ground state breaks transla-
this form is seriously overcomplete, it is clearly necessary tdional symmetry, and hence would be expected to be confin-
impose constraints at each site which then generate a famiing by our previous remarks, allows test charges to be
of local gauge transformations that leave the Hamiltoniarseparated at a finite cost in energy. This peculiar feature is, of
invariant. An Ising constraint would be sensitive only to thecourse, the topological mechanism of spin-charge separation
number of valence bonds modulo two. However, since thén d=1 wherein the charges are accommodated on a pair of
number of valence bondslimers is conserved, the effective solitons interpolating between the two ground states.
Hamiltonians associated with these states must have a natu- A conclusion that emerges from this line of argument, is
ral local conservation law and consequently a loc&l)U that there is a fundamental difference behind the mechanism
symmetry, instead of th&, “natural” symmetry of an Ising of spin-charge separation in one-dimensional and two-
Hilbert space. We further showed that quantum dimer modelgimensional systems. Indeed, in one dimension holons and
can indeed be realized dedd Ising gauge theories with spinons are actuallyopological solitons and spin-charge
additional couplings which project out forbidden configura-separation is a topological phenomenon, peculiar to the ki-
tions of dimers(valence bonds Thus, while the Isingrari- nematics of one-dimensional systems. In contrast, in two di-
ables provide a natural and economical description of themensions(and highey spin-charge separation relies on the
Hilbert space, the native symmetry to the physics of shortexistence ofleconfinemerin the sense of liquidity, which is
ranged RVB states is actually(l) and notZ,. a property of the spectrum of states in a particylaaseof

VII. DISCUSSION
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matter, and as such it does not hold in general; deconfineAPPENDIX A: DUALITY OF IGTs WITH ISING MODELS
ment takes place in some cases, such az{the triangular lattice IN d=2+1
which can have a spin liquid ground statewhereas con- . o .
finement is naturaIIyF;eaIi(zqed 0?1 the square lathit®. R We show that the GD'_VI with the Hamltoman g'Ye” by
The question of the existence of a deconfinement mechddcom [Ed. (9)]in d=2+1 is dual to an Ising model with the
nism of gauge theories with dynamical matter at finite denHamiltonian:
sity has a long history in high energy physics which is rather
similar to the quest for a spin-charge separated state in con-
densed matter physics. The difficulties of defining order pa-
rameters and other tests of confinement has been a central
theme in that field since the late seventies. In fact it has long
been recognized in that field that no such tests can exist in
terms of gauge invariant local operatdsich as order pa-
rameters or Wilson loops, if the dynamical matter fields G=—1: H.=—-> k;§5+y> §, (A2)
carry the fundamental gauge charge. A related and important - :
current question is if hadronic matter at finite density is gen-

erally and smoothly connected to conventional nuclear mat-

t . .
ter, or if a genuine quark—gluon plasma exists as a state a/yhere the sum§_, run over the Imk_s of_the dual lattice gnd
matter with unique measurable signatures. This latter phadg€ =, over the sites. Th& are Pauli spin operators defined
is indeed precisely the equivalent of the spin-charge sepdn Sites of the dual lattic&s>0 and|k;;|=k. The case of
rated phase discussed here. G=-1 is known as a fully frustrated Ising mod@tFIM)

Finally, we have also discussed the question of topologiSince each plaquette] has to have at least one frustrated

cal degeneracy of the deconfined spin liquid states, and theffond:Il5(k;; /k) = — 1, whereas the case= +1 is a ferro-
possible detection which we argue is not contingent upon th&agnetic Ising mode(FIM).
former in any precise sense. We have discussed in some de- The starting point of the duality is the identification of a
tail the set ofdesiderataassociated with the notion of a to- frustrated bond in the Ising model with a dimer in the GDM.
pological degeneracy by reviewing the case of clean quarfone can easily convince oneself that each plaquette in the
tum Hall systems at the ideal filling fractions. We have FIM (FFIM) has to have an evefodd) number of frustrated
discussed the applicability of these to disordered quanturRonds, which takes care of the constraw +1(—1).
Hall systems and then to the case of Ising gauge theories. We Conversely, each dimer state corresponds to a unique spin
find that while there is certainly a sense in which IGTs instate (up to a global Ising reversalThis can be seen by
their deconfined phases exhibit a finite ground state degerniaking a reference spin configuration, for exampfe=1,
eracy in the thermodynamic limit, in general there is no acwhich corresponds to a reference configurations of dimers,
cessible operational test for this degeneracy short of a fulhamely one without dimersG@=+1), or to a columnar
solution of the spectrum of states. In particular we find thaidimer state G=—1). Any other dimer configuration can
the overlap of a test state with one naive vison wrappedhen be used to generate a transition grégge Ref. § ob-
around a noncontractable loop is orthogonal to any groundained by superimposing that dimer configuration with the
state in the thermodynamic limit, and therefore it does noteference dimer configuration. The resulting transition graph
connect distinct degenerate states. This behavior stands gontains only closed loops. To fix the overall Ising redun-
contrast with what happens in ideal quantum Hall fluids ancdancy, an arbitrary reference spin is chosen to point®up.
chiral spin states, although it may be generic in more realistidThe orientation of any other spin is then obtained by count-
cases. ing the number of dimers in the transition graph any line

connecting that spin to the reference spin crosses. If this

number is even, the spins are aligned, otherwise they are
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APPENDIX B: THE POLYAKOV LOOP TERM IN THE A= (1-05)/2, so that the Hamiltonian is written, up to a
ACTION constant,

In order to see the connection between the constraint in - . o
the Hamiltonian formalism and the role of the Polyakov loop Heom= ZFZ W= "% s (B1)
in the path integrai®®’ it is useful first to recollect the ap-
propriate construction for the electromagnetic gauge field. It turns out to be convenient to rewrite the constraint op-
The Lagrangian density for the free electromagnetic field iserator é:}xlhgx as follows. Let I:(i)= i)+ X
where 7*(i)=(1—7%(i))/2. Then the projector enforcing

L[A,j1=3(E*=B?)—Agjo, G(i)|phys =Y (i)|phys at sitei is given by
where B(i)=(1/2)[1+(—1)LO+&in], (B2)
Ei=doAi + diAg, Here,&(i1)=(1+Y(i))/2 is O for an even site and 1 for an
odd site. In the absence of matter, all sites of the dwela)
Bi= €ijkdAx. theory are everfodd), but the addition of a hole at a site
o . o changes it from even to odd and vice versa, so that the fol-
andj, is a static charge distribution, say lowing treatment is appropriate for static matter.
) We now Trotterize the partition functiafy(8) at tempera-
Jo(z)=6(z—x)—8(z~y) ture 1/3 and obtain
for two static charges at=x,y (with charge*1, respec- Z(,8)=Tr(exp(—,BI:|)I5)
tively). The path integral iD space-time dimensions is
N—1
— i z _ _O\D z
z[j]:f DA#eiIdeL[A,j]:J DA#eidex[L[A,O]—Aojo]_ _lmgo ({01 lexp(—eH)Pl{az}), (BY)

where the greek lettef labels the(imaginary time slices,
and e= B/N, and thes” are eigenstates GF*.
71i1 ) ) Qonsider a single term in the_product, vyhich we evaluate
:<efi1dxo Ap(xX) g+ dxg Ao(yx0)), by inserting a complete set of eigenstatesyof

z[0] .
({oZsatlexp(—eH)Pl{o7})

Thus,

namely, the expectation value of the product of two Polyakov

loops. _ N z 7z 7 7
It is easy to show that in the Hamiltonian picture the —Tf{ag}{h (;_01} (1/2)“sex —EK% oiototo

Polyakov loops become static sources in the Gauss’ law an

constraint® Let us rewrite the path integral by using the

coherent state representation, which is a integral over both ><ex;{ _2€FZ MX)

the vector potentiah,;, the conjugate momenta, the electric

field E;, and the Lagrange multiplier fieldl,. Glossing over ) ) « i
issues related to gauge fixing, gauge copies, and Faddeev— Xl_i[ ex ”77\5(')( 2 &)
Popov determinants, one writes,

X{of toth{ogiod).
Z[j]:f DE; DA, DAOeUdDX LIA Ei Aol Here,Nq is the number of sites, arid, the number of bonds.
We have rewritten the projector as an exponential and turned
where the operators into numbers by letting them act on their
appropriate eigenstates. Note th&fo}|{oF})=2""b"
. 22 . X expim>_u;v5), where the sum runs over all links in
LIA Ei,Ag,j]1=—EidoAi— 3(E?+B?) + Ag(diEi— o). timeslice . e
Thus, we see that the role 8§, is of a Lagrange multiplier ~ Collecting together the terms involving the, we obtain
that forces Gauss’ law, 1
o Z H > exp{ui(ip)[ — 2l +im(\ (i)
[V-E—jol|Phys=0 logh P

as a constraint on the physical Hilbert space. Thus, the N (i +D)+ pi(ip)+ ugq1(ip)]}- (B4)

Polyakov loops are equivalent to static sources. Notice thafiere i, labels the bond connecting sitwith its neighbor in
this is really the Hamiltonian picture since we get that theg gpatial direction labeled b.

momentum canonically conjugate £ois E, as we should. The term in parentheses in the foregoing equation can be
We now turn to the case of the Ising gauge theory. Conturned into a plaquette product by definiag=(1+\)/2 on
sider the Hamiltonian of E(9). For convenience, we define the temporal links, so that this expression becomes
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1 exp(K Tl o) -
IT 51 1+expzen)[] o7 =]1 e Z(/i’)=(1/2)NSTr{U{H (i) €0

ip ip (BS)

Xexp{—KSZ O'O'O'O'—KTZ cgooo|, (B6)
] O

In the last step, we have used the fact the product ovefnere KS= ¢y, the first sum in the second line runs over

plaquetts ;:ontaining temporal bonds occurring in this expresgpatial plaguettes, the second over temporal plaquettes. The
sion,IIgo*, can only take on values 1. The equality holds  race now runs over all the, both in spatial and temporal

for a temporal couplindK”=tanh(-2el"). directions.

Putting this result back into EqB3), using 2 cost” Crucially the productl| runs over the temporal links—
—expK") for e—0, and substituting fok in terms of tem-  this is the Polyakov loop term. It contributes a nontrivial
poral g%, we obtain phase for all the odd sites. This is what we set out to show.
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