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Spin susceptibility of the superfluid He-B in aerogel
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The temperature dependence of paramagnetic susceptibility of supéileiB in aerogel is found. Calcu-
lations have been performed for an arbitrary phase shifs-wfve scattering in the framework of BCS
weak-coupling theory and the simplest model of aerogel as an aggregate of homogeneously distributed ordi-
nary impurities. Both limiting cases of the Born and unitary scattering can be easily obtained from the general
result. The existence of gapless superfluidity starting at the critical impurity concentration depending on the
value of the scattering phase has been demonstrated. While larger than in the bulk liquid the calculated
susceptibility of theB phase in aerogel proves to be conspicuously smaller than that determined experimentally
in the high pressure region.
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[. INTRODUCTION low pressures, when the coherence length is larger than the
average pore size, the homogeneous scattering model is more
Superfluid ®He is an ideal object for a study of physical likely to be justified.
properties of a system with nontrivial pairing. In particular, it A similar conclusion follows from the present derivation.
is interesting to investigate how a superfluid state could b&he calculated susceptibility is less suppressed compared to
influenced by the presence of impurities. Direct contaminathe bulk dependence. This suppression is less pronounced for
tion of *He with any atomic impurities is impossible. During |arger values of the scattering phase but still even in the
the last years, instead of this, experimentalists have used ligmitary limit noticeably larger than the measured suppression
uid 3He to fill up aerogel which is a matrix of randomly of the susceptibility at high pressurg¥?
arranged silica filaments of nanometer diameter. Commonly The calculations presented in the paper have been done
used aerogels occupy about 2% of space volume, the regfy an arbitrary values, of the phase shift of-wave scatter-
being taken with liquid helium. _ing. Both extremes—the Born approximation and the unitary
Experiment§™ established decrease of the superfluidjjmit—can be easily obtained from the general result.
transition temperature and the density of the superfluid com- 5 corresponding theory of changes of paramagnetic sus-
ponent of °He in aerogel. These effects are related to theseptibility in ordinary superconductors caused by impurities
scattering of quasiparticles from surface, which suppressegiih ordinary, paramagnetic, and spin-orbital type of scatter-
Cooper pairing in thep state. Corresponding theoretical jhg has been developed in the Born approximation in Ref.
treatments have been proposed in Refs. 6-10. 16. The present theory is not a simple generalization of the
NMR measurementspointed to the existence of & cited paper. The point is that usually to go beyond the Born
phase of°He in aerogel in relatively high magnetic fields as approximation in the theory of dirty alloys it is sufficient to
well as of theB phase" in lower fields. Recently, evidence of gybstitute the Born scattering amplitude by the exact’ne.
the phase transition between theand B phases has been Tpjs substitution does not lead to the correct answer for a
demonstrated’: dirty metal in a magnetic field. The method developed in the
The A phase as an equal-spin pairing state possesses Prafiesent paper does not rely on the substitution.
tically the same spin susceptibility as the normal phase. This The paper is organized as follows. After the introduction
property remains intact in thé phase in aerogel. On the of the basics of the Abrikosov-Gor'kov theory in Sec. I, we
other hand, in th phase where all the three spin states Ofyyrite down its solution for an arbitrary impurity scattering
the Cooper pairs with the spin projectiol=0,+1 areé  phase without magnetic field in Sec. Ill, where we also es-
equally populated, spin susceptibility is partly suppressedaplish the region of the existence of gapless superfluidity.
compared to its normal-state value. This suppression in aererhen by finding corrections in leading order in magnetic
gel was experimentally fourttito constitute about 45% of field we arrive at an expression for the susceptibility. In the

the value in bulk’He-B. o _ last section we briefly discuss conclusions.
The purpose of the present article is to calculate spin sus-

ceptibility of the *He-B in aerogel. We shall work in the

framework of BCS weak-coupling theory, aerogel being ap- Il. EQUATIONS
proximated as homogeneously distributed ordinary impuri- '
ties. At high pressures this model gives valuestoand p, The Abrikosov-Gor’kov equations of an electrically neu-

roughly by a factor of 2 largéf than those observed experi- tral impure superfluid in an external magnetic fiddare
mentally. At the same time, as it was discussed in Ref. 15, disee, e.g., Ref. 18
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[iwn—F(K)~3(0n)]6(k,0y) =1, (1)

where w,=7T(2n+1) is the Matsubara frequency. The

Green functioné(k,wn) is a 2X2 matrix in particle-hole
space,

Gaﬁ(krwn) Faﬁ(kvwn)
Fas(k@n)  Gp(k,wp))’

made up of the normalG,4(k,w,) and anomalous
F.s(K,w,) Green functions which are in their turnx2
matrices in spin space. Here

G(k,wp) = )
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Ukk’E IU5QB73’

- U Kk’ —kgllﬁ
where 7 is a vector of the three Pauli matrices in particle-
hole space. Parametrized in terms of the scattering pbase
the impurity potential is

U:_tan50/7TNO. (12)

Equation (10) is then easily solved, and the scattering
amplitude turns out to be independent of momenta:

-1

T (0)=T(0,)=0 1—0; Gk, w,) (13

Gap(K,wn)==Gs(—kK,—wp) 3
and the superscript “T” implies transposition. Equations(1), (4), (9), and(13) form a closed system of
The Hamiltonian equations on the Green functigp).
The pairing interactioV/g, , ,(k,k") is usually reckoned
Hoap(K) ANip nonzero only in a thin- €< e layer near the Fermi surface.
H(k)= + - (4)  In He the spin-orbital interaction is weak and the Cooper
AAkaﬂ ~Hoap(—K) pairs are formed in the spin-triplet, orbitplwave state. So
. . the pairing interaction can be factorized,
consists of the one-particle part
3 .
Hoap(K) = &kdap— 1o, 5B ©) Vgaru(KK)=— Evlkk/gﬁag;r\ﬂ , (14

including kinetic whereV, is the constant of thp-wave pairing attraction and

— — 12 * .

Ek=E=KT2m* — e (6) Uup=1(00)) up (15
and Zeen)an_ energy, and of the pairing interactiong 4 vector of the three basis symmetric matrices.
Vapau(k,K") via the order parameteX, s, set by the self- The order parameter
consistency equation

AAkaﬁ': dlgaﬁ ) (16)

Nap==T2 2 VpapnulkikDF (on k). (@)
k!
B is the magnetic flux, andr,z is a vector of the three Pauli
matrices in spin space.

The impurity scattering self-energy part comprises normal
>, and anomalou&, , parts

$ ( 21 2
DDA

and in the clean limit of small impurity concentrationg,,,

when one can neglect the interference of the scattering o

different impurities, is jush;y, times the contribution of a
single impurity,

®)

2= nimp:rv 9

whereT is the scattering amplitude. It is related to the scat-
tering potentiall,,, by the Lippmann-Schwinger equation

:l—kk’:Okk""Eq: qué‘qi—qk’ . (10)

In the simplest case of a short-range impurity potential
U(r)=ué(r) its Fourier component is momentum-
independent),_,»=u, so that

whered = Amki is the order-parameter vector.
Substituting Eqs(14) and(16) into Eq. (7) yields

3 A
| G5 VaT2 2 (KOt [g'F(wa k)] (17)
n oy

As one can see,

« 1 +
didh; =5tr, [ A, A, (18)

where ty, denotes a trace over spin indices. For unitary
Bhases, among which are theand B phases actually being

realized in pure®He, (A]:AL)QBZ‘ Sap, and so it is conve-
nient to introduce the notatioﬁk=<:1“kcir;c . We will consider

only the unitary phases.
In the A phase,

di= @A&[(A’ﬂ&”)k], (19

whered, A’, andA” are three unit vectors, and’ and A”

are mutually orthogonal.
In the B phase,

di= ARke'?, (20)
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whereR is the matrix of rotation on an arbitrary angle.
In both cases, the scaldAris introduced so as to fulfill the

normalization(Ai)‘kz(d@: Yi=A2, where(- - - stands for
averaging over directions of momentum.

Ill. ZERO MAGNETIC FIELD

In the absence of a magnetic field the solution of Edjs.
(4), (9), and(13) is (see elsewheje

wﬁ—l— §ﬁ+ AAk
—(iwn+ &) 8ap Alap
X n -~ . (21
A]@B _(“‘)n_ék)éaﬁ

PHYSICAL REVIEW B 65 024501

B PN
wp=w,t+T =~ o2/ (26)
wp+COS SoA -
wherel is the scattering rate:
=m0 Gip s, (27)
’7TNO 0

In the Born limit (5,— 0) it tends to the conventional half of
the inverse free flight time:

r‘imp

F_> 7TNO

5 (28

2 _ 2_

In the B phase,AAiEA2 does not depend ok, and one
can thus omit the angular brackets of thaveraging in Eq.

The corresponding sum over momenta in the expressio(26). Using the overt forn{21), the self-consistency equation

(13) for the scattering amplitude is

; GO(K,w0)=g(wn) 18,4,
where we denoted

iw,+ &

g(wn>=§ G<°>=—Nof<

k

(22

1
Voi+A? ”k.
HereNy=m*ke/27?#2 is the density of states on the Fermi

surface.
So the scattering self-enerdg9) equals

=—imNgw,

~ NimeU~_~ ~
2<°>=%[73+ug1]5w. (23)

1_

In the above formulas both the Matsubara frequeagy
=7T(2n+1) and the kinetic energy are renormalized:

o~ 1 -
lwy,=lw,+ Etrr[z(o)(‘”n)]u (24)

~ 1 ..
=& ztrT[Tsz(o)(wn)]- (25)
Here tr. is the trace in particle-hole space.

It should be noted that the term proportional gin s
=3+ 3®+ ... must be omitted. This term just produces
a shift in the chemical potentié@tenormalization og,) from

introducing the impurities and disappears in the assumption

of particle-hole symmetry after integration owemn the sub-
sequent calculations.
Substituting Eqs(22) and (23) into Eq. (24) yields the

(17) taking the trace over spin indices and averaging dver
reduces to

1 d¢ 1
SOl [
NoV1 n w2+ E2+ A2 n ‘/Z)ﬁ-i—AZ

(29

This equation determines the temperature and impurity
concentration behavior of the order parameterTo obtain
an expression of value one should exclude the unobservable
pairing constan¥/, off the left-hand side of Eq.29). Using
the standard procedut®,one obtains the self-consistency
equation onA(T,I"):

T E 1 1
INn—=oT _ . (30
Teo n \/Z,§+ A2 |wn|

The asymptotics oA(T,I") at T=0 andT=T, are found in
the Appendix.

Expanding Eq.(26) in degrees ofA? gives w,~w,
+I'sgrw,,+ O(A?). When inserted into E¢(30) it yields in
zeroth order im? the Abrikosov-Gor’kov® implicit expres-
sion for the dependence of the critical temperaflyen the

impurity concentration,
B r 1
“NzaT, "2 7Y

where ¢ is the digamma function. Note, however, tHat
corresponds to different impurity concentrations for various
scattering phasdsee Eq.(27)]. T.(I') vanishes at the criti-
cal concentration

|nb
Te

1

5 (31

1
I‘czono, (32

where

self-consistency equation on the renormalized Matsubara fre-

quencyw,,

AOOZ WTcoe_ Y (33)
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FIG. 1. Order parametek vs temperaturd for different scat- 6 gyppressiofi, /T, of the critical temperature for several values
terlpg phasesb‘o and impurity concen_tratlons obtained pumerlcally. of the scattering phasé,. For eachd, the value of T /Ty, is
Solid lines correspond to the Born lim#,=0, dashed lines 1@  pointed, the suppression below which makes the superfluid gapless
= /4 and dotted lines to thg unltary ;catten«ﬂg= /2. 1n qrder of " in the whole range @ T<T,. In the unitary limit (5,— m/2) the
the decrease of the superfluid transition temperalytée triples of superfluid is gapless for whateveg /T . Bold parts on each curve
the curves correspond fo/I'¢=0, 0.2, 0.4, 0.6, 0.75, 0.9, 0.98. The a1k the regions of the existence of gapless superfluidity.
first curve in the pure cadé=0 is common for all phases.

€
N(e)=Ng Im ——, (36)
AZ_;Z

is the order parameter at zero temperature for a pure super-
fluid, andy~0.5772 is Euler’s constant.

Figure 1 shows temperature dependences of the order pa-
rameter for seven impurity concentrations and for three Sca%herezz
tering phases$,=0, w/4, and w/2 obtained numerically N
from Eq. (30). Plots not shown for intermediate<05, €duation one for a givene:
<m/2 all sit in the interior of the belt between curves for

iZ)n|iwn_,E+i0. From Eq.(26) we obtain an implicit

5,=0 (Born limit) and 5,= 7r/2 (unitary limit). ~ eVAZ-¢?
The order parameteX at zero temperature as a function e=et+l A2 005250_;2- (37)

of the scattering rat&/T"; is presented in Fig. 2 for several
values of the scattering phasg. The curves for intermediate For ¢=0 it gives three solutions in the complex plans:
values of 0< §p< /2 lie inside the strap between the curves —qg gnd

for the Born (6,—0) and unitary §y— 7/2) limits.

From the Abrikosov-Gor’kov theory of paramagnetic im- ~ 2A2cog6,—I'?>—T JI'?+4A%sirf s,
purities in alloys it is known that in the Born limit&, €33~ 2 .

—0) starting at the scattering rate of

(39

It can be verified that for all the three solutiong—¢? is

' _ always(rea) positive, and so/A%—¢? always real. In order
the energy spectrum gap vanishes though the amplifud® o N(e=0) to be finite one than sees from EG6) that €

the order parameter remains finite urdtyl. Ordinary impu-  should be negative. From E(B9) this gives
rities in ap-wave superfluid will give rise to the existence of

an analogous gapless region of impurity concentrations. In- I'>A cogd,. (39
deed, the density of states of quasiparticles at an ereoffy

the Fermi level is expressed in terms of the Green function aghis inequality means that for a given phase shiftand a
scattering ratd” the superfluid is gapless at temperatures

2I'.e” ™*~0.91T", (34)

1 Tg<T<T., whereTy is such thatl'>A(Ty)cogd,. The
N(e)=——Im ; G(K,@p)liw, e+io- (89 superfluid is gapless in the whole temperature ranger0
<T,. of the existence of superfluidity if inequalit{89) is
Using Eq.(22) we get fulfilled already forA,=A(T=0).
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Making use of the implicit dependen€A?) of Ay on &,

1
. R _/.LO'Q,‘BB A{‘aiﬁ'
we get for the lower boundary of the onset of gapless super- AWk =

fluidity in the whole temperature range A]ug o, 5B
cog s,
['=2I", cog s, exp{ - g ﬁ) , (40 To be more specific, when written out in components, Eg.
COS9g (44) reads
which is a generalization of the Abrikosov-Gor’kov value
(34) on an arbitrary scattering phasgg. The corresponding GM=GO11+FOr2], 47
value of the upper boundary of the order parameter at zero
temperature Is F(l)T:F(O)T[1]+€(O)[Z], (48)
m CoS8, . .
= = where we made use of the abbreviated notation
Ao AOOeXF{ 2 1+cos§o)' “D

— (> (1) _ (0) (1) _ AD)yp(0)t
When the scattering phase is increadatpurity potential [1]=(31" - poB)G+ (237 - AT)FTL - (49

becomes “strongery the boundary value of" decreases, _
meaning that starting from less impurity concentration the [2]1=CPT-ADOHGO+ (3 M+ ue™B)FOF. (50)
superfluidity becomes gapless. At last, in the unitary limit
do— m/2 the boundary value iE=0, and the liquid is gap- Let us first look at the equation oh®. Expanding Eq.
less for whatever small impurity concentration. (7) yields

The points of the onset of gapless superfluidity are
marked on the plot of the dependence of the order parameter 3 .
at zero temperatur&,/A oo on the suppressiof, /T, of the AAf(l)TzzvlgLTE > (Kk)try[g,FO(w,,k")].
superfluid transition temperatu(see Fig. 2 The regions of nok
the existence of gapless superfluidity are shown on the plots
of Ag(T,) with bold lines.

(51)

Substituting here Eq48) for F(VT one obtains the equation

on AT It turns out that after taking a trace over spin indi-
IV. MAGNETIC SUSCEPTIBILITY ces as well as integrating ovef on the supposition of

MagnetizationM can be calculated from the normal €lectron-hole symmetry there remain only terms proportional

S - 1
Green function in a magnetic fiel as to AT, ) _ ) )
Indeed, consider the terms in E@8) in pairs. The two

terms involving the anomalous pak(w,) of the self-
M :/LT; ; Gup0pa- (42) energy, which, we recall, does not depend on momenta, are
proportional to eitheG(?G(?), which does not depend dn
or to (FOM?2 «k2, They vanish after averaging witt over
the direction of momenta in E¢51).
The two terms proportional t8 when inserted into Eq.
(51) give

To find the static susceptibility .5 (M ,= x.sBp) it is suf-
ficient to solve Eqgs(1), (4), (9), and(13) in leading order in
the field. Let the superscripl) designate the quantities pro-
portional toB. From Eqs.(9) and(13) we get

- 1.~ N ~ 12
2(1):_—2(0)%; G(l))U—lz(O)_ (43 octro[gﬂ(F(O)To.BG(O)_E(O)O_TBF(O)T)]

Nimp

i ’ T/~ Y
One should plug here the expression for the Green func-  *9utTe[9u(9,(0n+ &) oy~ oy (10— E7)9,) ]B) .

tion in first order in the field derived from EqL): ) ) ) ) ,
The terms proportional t§’ vanish on integrating ovef’ in

é(l):G(O)(ﬂ(l)Jri(l))é(O)_ (44) the suppgsition of particle-hole symmetry. The terms propor-
tional to w,, vanish on summation over the Matsubara fre-
We are now going to show that both the anomalous selfquenciesw,=(2n+1)#T from n=—« to « because of the
energy 2, remains zero and the order parameterun-  gddness oo (w): @n(—wp)=— on(wy).
changed in first order in magnetic field: Similar argumentation leads to the conclusion of vanish-
ing of the terms involving () because, as we shall see later,

(1 — 1=
%37=0, A™=0. 49 inthe assumption of particle-hole symmety") is even in
Mathematically, this is due to the fact that self-consistentw,,.
solution of Egs.(43) and (44) produces(linean homoge- So we are left with a homogeneous linear equation on

neous equations oB$Y andA® which have regularly only A™) which has normally only trivial solutiona®=0.

trivial solutions. At the same time, the equation on the nor- One obtains the equations to determine the norfyflél
mal part of self—energ)Z(ll) involves a right-hand side pro- and anomalou§(21) parts of the self-energy by plugging Egs.
portional to the magnetic field coming from (21) and(23) into Eq. (43):
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im:( ) T

1— U292)2

The second term in E@55) is proportlonal to the product of
(o)ocAgaBRk and FOTcAg] Rk. After averaging ovek
and integration oveé we find that

1
s
E(Zl)T

s g
S (1
s

2
nimpu

Tua)? (1) 11202 (1) 1
(rug2 60 A-Ug) 2 F S FOf () FO = Tl(w)of (w)g.  (58)
X k
(1-u?g?) >, FOT  (1-ug)?>, GW So
k k
3~ [ 1 — ]
62 xP=THi(wy) 30~ uoB+ 9P+ ua'B)gl|,
SinceA{(O) and, consequently, al$e?(w, k) by virtue _ (59
of Eq. (22) andA~(k1) are all proportional to the unit vectéy _ 3.
any of the terms in Eqs47) and (48) comprising one or Egl)ziﬂ(wn) 2(1)+M B+ gT(E(l)—,uUB)Q :
three of either of the quantities vanishes on summing &ver " (60)

in Eq. (43). For the anomalous part there remains only two
terms g|V|ng a homogeneous equation on the four compo- ExpandingS (") and S (" in the basis of the three Pauli

nents osz : matrices and the unit matrix similarly to E¢p4), one sees
, that for the coefficient of expansion over the unit matrix one
NimpU — obtains an uncoupled homogeneous equation, with trivial so-
2(21”:1_—5292 ; (F(O)Tz(zl)':(om‘G(O)E(zl)TG(O))- lution. So one may put simply
(53 sW=3Wg SH=3WgT. 61)
Bar in exceptional cases, this equation has only a trivial so- ) ) . ) -
lution 3§M=0. However, one can verify separately for each UsSingg=iooy, g'=—io,o, and the equalities
component of the expansion df(zl)(wn) in terms of the o (62)
three Pauli matrices and the unit matrix, ey oo ’
we find that
S50p(wn) =2 (@) Supt E ) 0, (54) L
_ , , 9,09,=9,09,=0", (63
that this homogeneous equation Eril)(wn) does indeed . _
have only a trivial solution. so that solution of the systef®9) and(60) is
Taking into account the remark after H&5) we omit the 7 i
terms proportional ta; in Eq. (52) and for the normal part s(H= _MUBS—‘O“), g(ll):MUTBE—w“)_
3(Y get the equation 1-1(wy) 1-Tl(wp) ©

(1

2
21 = nimpu

1+u?g?
m ; [G(O)(Eg_l)— ,U.O'B)G(O)

+FOED+ueB)FOT. (55)

Making use of the explicit form of the zero-order Green
function (21), we first calculate the sum ové&r introducing
the auxiliary quantity

7TN0A2
3(wi+A%)%

IT
(w (

n) = (56)

Since from Eq.(47) it follows that

GW=GOEV - 4oB)GO+FOE D+ 4 TB)FOT,
(65)

we find from Eq.(42) that

3 H(wn)

M=—-2u’BTD, —=———.
n 1-Il(wy,)

(66)

Because we have first integrated okeand left the sum-
mation ovem, this expression does not incldd¢he normal-
state Fermi gas Pauli susceptibil'ﬁ=2/L2No. Adding and

(0y2_3 OFO)t—=
SO t.h.atEk(G. )"=:11(wy) and 2, F7F (@p). In subtracting it from both sides of E42), we get eventually
addition, we introduce
AZ
- 1+ u?g? -
1_[(wn):nimpu I(wy) x° T (2)2+A2)3/2
( —u g2)2 —0:1—51—2 5 ~2n 5 32
~ n A wp, COS 255+ A cos S
A2 w2cos25,+A%cos s, An 1— . ° o
_ —— . (57) 3 /;§+A2(;§+Az c025,)2
Voi+A%(0Z+ A% cogby) (67)
024501-6
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This expression gives susceptibility as a function of tempera-
ture for a given scattering rafé and a scattering phas®.
The infinite sum over the Matsubara frequencies should be
taken using self-consistent expressions for the renormalized
Matsubara frequencw, Eq. (26), and the order parameter
A(T) Eq. (30).

In the clean limitI’—0 the Matsubara frequencies rest
unrenormalized and susceptibility reduces to its conventional

n

bulk value

Xo—l 77-T A* =1 ! 1-Yg(T
Xg_ 3 = (wﬁ+A2)3/2_ 3[ B( )]!
(68)
where
2
Ye(T)=1—7T>, (69)

n (wﬁ-l— A2)3/2
is the B-phase Yosida function.

At T—T, susceptibilityxol)(ﬂ behaves linearly. Indeed,
thenA—0 andw— w+I". Hence

0 2 2
A 1 2A
X——>1— 3 TCE

= —1+
X3 m ol 3(47T,)?

(2) , (70)

C

wherex,=I'/27T, and (" = ¢ (% +x,) is the polygamma
function. Using the asymptotic expressioh2) for A at T
—T., we find eventually

0 x.—1
X _)1_’_2(/,((:2) e

0
Xn T—T,

T—T
3P +xPcos2s, Te
(71

In the Born limit (6,—0) we arrive at the expression for
the spin susceptibility:

AZ
0 Z)2+ AZ 3/2
X_1-I73 et A7) (72)
x° 3 4 L A2 1
3 (Z)ﬁ_’_ A2)3/2
In the opposite unitary limit §o— 7/2),
AZ
0 ~2 2\3/2
X T (w5+A%)
SE— ; (73)
X2 3 n T'A2

1+

3 G3aZ+a2

Susceptibilities for several impurity concentrations and

three scattering phas¢$,=0 (Born limit), 5,=w/4, and

S8o=m/2 (unitary limit)] are plotted as functions of the re-

duced temperatur&/T, in Fig. 3 with Fermi-liquid effects
taken into accountsee below.

o
»
\

°
IS
\

Spin susceptibility y/x

0.2 - 4

L | | |
0 0.2 0.4 0.6
Temperature T/T

FIG. 3. Spin susceptibility of superfluitHe in aerogel vs tem-
perature for several values of impurity concentratiband scatter-
ing phasesy, with the Fermi liquid corrections taken into account.
Solid lines correspond to the Born limfiy=0, dashed lines td,
= /4, and dotted lines to the unitary scatterifg= /2. In order
of the decrease of the superfluid transition temperalytée triples
of the curves correspond 1o/T';=0, 0.2, 0.4, 0.6, 0.75, 0.9, 0.98.
The first curve in the pure cage=0 is common for all phases.

Fermi-liquid corrections

The Fermi-liquid interaction between quasiparticles leads
to renormalization of the susceptibility. An external magnetic
field is screened by a polarization of the liquid, which is
quantitatively described by even terms of the expansion in
Legendre polynomials of the antisymmetfexchangg part
F2 of the Fermi-liquid interaction.

It was argued in Ref. 20 on the basis of experimental data
that only the zeroth ternfr§ is nonzero. Then the magneti-
zationM = x, 4Bz induced by magnetic fiel® in a liquid
with an interaction equals the magnetizatith,= x3 ;B5'
that would be induced in an interaction-free liquid by an
effective field

Bef=B—FaMm/x°. (74

Herexﬁzz,uzNo is the Pauli paramagnetic susceptibility of
a normal Fermi gas. This yieltfs*?

Xap=(BaptFOXos X0 X5 (75)

In the B phaseyq,; 3, and we get
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' bars span the possible slopes of the linear fits to the data at
0.6 - 2.4 T=T, within the plotted error bars of the respective experi-

E 8,=0 / = mental works.

= 8,=n/6 A =

(o] , o

o 8,=n/4 s =

:»ﬂ 5 =/3 J £ V. CONCLUSIONS

= 0 > : :

i §,=m/2 E In the framework of the homogeneous scattering model
D 03 p 128 we found spin susceptibility ofHe in aerogel considering
o% p X the latter as ordinary randomly distributed impurities with an
Ray . = . . .
°x 7 5 arbitrary scattering phas&, in swave channel. The answer
g R o is given in the form of an infinite sum over the Matsubara
o (% frequenciesw,=(2n+1)#T with the summation term de-
%] pending on the amplitudA of the order parameter and the

,’-/'" L self-consistently renormalized Matsubara frequeZ)gy Nu-
0 0.2 0.4 0.6 0.8 merically plotted curveg(T) show that susceptibility is less

Critical temperature T /T |

suppressed in comparison to the bulk dependence, this sup-

pression being less pronounced for larggr

Comparison with high-pressure experimental ddté.7
bars(Ref. 3 and 32 bargRef. 12] shows that the slope of
bl||ty X/Xn with the Fermi |IqUId correctionBight scale, coefficient X(T) at T*)TC is approximate|y twice less than the value
of proportionality (79)] as functions of the suppressidR /T,y of predicted by the theory. The discrepancy is obviously un-
the critical temperature. The crosses mark the experimental values,qigable because of the major inadequacy of the homoge-
of the slopes in Ref. 3{) and in Ref. 12 0). neous scattering model at high pressures, where the super-
fluid coherence length becomes shorter than the correlation
length of the internal structure of aerogeNote that quan-
titatively the difference between experimental and theoretical
values seems to be in line with the fact that experimentally
observed at high pressuré$9.7 bar$ superfluid densit?
was approximately by the factor of 2 smaller than predicted
by Abrikosov-Gor’kov theory.

On the other hand, we pointed out that for any finite scat-
tering phases,>0 the impurity concentration threshold of
the gapless superfluidity onset diminishes dramatically. For

FIG. 4. The slope al— T, of the reduces temperatui@ T,
plots of the “bare” susceptibilityy®/ Xﬂ (left scalg or the suscepti-

1+F5 Xx°
X_ "o X (76)

0,0’
1+ FSX—O An
n
Wherexn=X2/(1+ Fg) is the Fermi-liquid susceptibility. In
3He, F3~— 2 slightly varying with pressure.
For the asymptotics ai— T, we have

X d(X/Xn)| T-T, example, for the valuéy= 7/4 which was maintained to be
Xn - +d(T/Tc)’ T, (77 the most satisfactory phase for the real structure of aerogel,
T=Te T=Te gapless superfluidity sets on in the whole temperature range

starting at the critical temperature suppression Tof
~0.51T .y compared toT.~0.22T, in the Born limit &,
—0, whereas in the unitary limi,— /2 the superfluid is
(79) always gapless. For impurity concentrations exceeding the
gapless threshold all the thermodynamical quantities vanish
algebraically at zero temperature. Experimental observation
is the slope of the plots of versusT at T—T,. of such behavior could provide additional immediate insight
Taking — 2 as a value foF3, we see that the slope of the into the quasiparticle scattering on impurities in aerogel.

curve x(T) at T=T, with the Fermi-liquid interaction taken  \ye wish to thank J. A. Sauls for valuable comments on
Into account Is the manuscript and attraction of our attention to Ref. 24,
which complies with ours in the main results. One of the
authors(P.K) is grateful to J. Flouquet for the granted op-
portunity to complete the work at the Center for Nuclear
Research in Grenoble.

where from Eq.(76)

1 d(xX%xp)
T—»Tc 1+F8 d(T/TC) T—»TC

d(x/xn)
d(T/Te)

U(1+F3)~4 (79)

times greater than that of°(T)—without the interaction.

The slopes of bothy°(T) and x(T) for F3=—3% versus
the suppressioiii. /Ty of the critical temperature are plotted
in Fig. 4 in two scales of the ordinate axis — the left one for
the slope ofy?(T) and the right one for the slope gf(T),
which is Eq.(79) times the former. In the same picture we
also pointed out the slopes experimentally observed in Ref. 3 In this appendix we elaborate on the details of the calcu-
at 18.7 bars and in Ref. 12 at 32 bars — the only experimentation of the asymptotics of the order parameter already uti-
tal data present up to day the authors are aware of. The errized in the main text of the paper.

APPENDIX: ASYMPTOTICAL BEHAVIOR OF THE
ORDER PARAMETER A AT T—T.AND T—0
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Asymptotics at the critical temperature
Expanding Eq(26) in degrees ofA? gives[we consider
only positive w,, because of the oddness af,(w,): o,
(—wn)=—on(wy)]
1-2cogs,
2(w, 1)

When inserted into Eq30) it yields in first order inA?
the asymptotics atl —T.:

o~w,+T+T A2+0(A%. (A1)

Xy —1 T—T
:3(4WT°)231//§)+; Cz/, T oos 25, CTc (A2)
Herex,=I'/27T, and y{" = ¢ (% +x.), where
* ( l)n+1
VD= a(2)= 2 Zror (A3)

is the polygamma function. Af —0 alsox.—0 and zﬁﬁz)
— y®)(3)=—14{(3), andthus Eq.(A2) transforms into the
conventional BCS asymptotics
87T Teo—T
74(3)  Teo

2= (A4)

Order parameter at zero temperature

Consider the sumrTE(w2+A?) Y2 WhenT—0 the
summation over the Matsubara frequencigsmay be sub-
stituted with an integration over the continuous variable

TE ™=0re do | 2eq (A5)
~ n—,
RN +A2 0 Jo?+AZ A

where the divergent integration up to infinity is cut offet

The general temperature dependence of the order param-

eter is obtained by combination of Eq29), (33), and(A5):
1
Vaz+az  Jopta?

(AB)

A
|nA—=’7TT2

00 n

PHYSICAL REVIEW B 65 024501

At T—0 the value of the order parameter tends to the
value A, the implicit dependence of which dn is set by
replacing summation in the above expression with an inte-
gral. The integral ovew from the first term in the parenthe-

ses in Eq(A6) transforms into an integral oves by means

of the substitution(26) and eventually we get an equation
that determines implicitly the impurity concentration behav-
ior of the value of the order parameter at zero temperature:

1 AO aa
n—"+-————————=0

T'M Ay 2A4(1+ cossy) (A7)

if <A, cogs and

1 wotVwi+Ad T

I Ay 2A4(1+cosdy)
P 1 s aret o
—= — Cosdy arctan————
(,()é"‘ A§C0§50 AO Sir]250 0 A000350
— arctan—) (A8)
Ao

if [>Aqcoss. Here

3 ['?—2A%cog6y+ T VI'?+4A2% sir? s,
(I'A)=
2
(A9)

is the solution of Eq(26) for w,=
taken with the arguments,A,.
For smalll’, Eq. (A7) gives

0 and in Eq.(A8) it was

AO a

r
Ao~ 4(1+cosdy) T. (A10)

while for I' close to the critical value

Ao \/ 1 r.-T
Ao 1-2%cos2s, Ie

(A1)
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