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Spin susceptibility of the superfluid 3He-B in aerogel
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~Received 30 July 2001; published 3 December 2001!

The temperature dependence of paramagnetic susceptibility of superfluid3He-B in aerogel is found. Calcu-
lations have been performed for an arbitrary phase shift ofs-wave scattering in the framework of BCS
weak-coupling theory and the simplest model of aerogel as an aggregate of homogeneously distributed ordi-
nary impurities. Both limiting cases of the Born and unitary scattering can be easily obtained from the general
result. The existence of gapless superfluidity starting at the critical impurity concentration depending on the
value of the scattering phase has been demonstrated. While larger than in the bulk liquid the calculated
susceptibility of theB phase in aerogel proves to be conspicuously smaller than that determined experimentally
in the high pressure region.
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I. INTRODUCTION

Superfluid 3He is an ideal object for a study of physic
properties of a system with nontrivial pairing. In particular,
is interesting to investigate how a superfluid state could
influenced by the presence of impurities. Direct contami
tion of 3He with any atomic impurities is impossible. Durin
the last years, instead of this, experimentalists have used
uid 3He to fill up aerogel which is a matrix of randoml
arranged silica filaments of nanometer diameter. Commo
used aerogels occupy about 2% of space volume, the
being taken with liquid helium.

Experiments1–5 established decrease of the superflu
transition temperature and the density of the superfluid c
ponent of 3He in aerogel. These effects are related to
scattering of quasiparticles from surface, which suppres
Cooper pairing in thep state. Corresponding theoretic
treatments have been proposed in Refs. 6–10.

NMR measurements2 pointed to the existence of theA
phase of3He in aerogel in relatively high magnetic fields
well as of theB phase11 in lower fields. Recently, evidence o
the phase transition between theA and B phases has bee
demonstrated.12–14

TheA phase as an equal-spin pairing state possesses
tically the same spin susceptibility as the normal phase. T
property remains intact in theA phase in aerogel. On th
other hand, in theB phase where all the three spin states
the Cooper pairs with the spin projectionsSz50,61 are
equally populated, spin susceptibility is partly suppres
compared to its normal-state value. This suppression in a
gel was experimentally found12 to constitute about 45% o
the value in bulk3He-B.

The purpose of the present article is to calculate spin s
ceptibility of the 3He-B in aerogel. We shall work in the
framework of BCS weak-coupling theory, aerogel being a
proximated as homogeneously distributed ordinary imp
ties. At high pressures this model gives values ofD andrs
roughly by a factor of 2 larger6,8 than those observed exper
mentally. At the same time, as it was discussed in Ref. 15
0163-1829/2001/65~2!/024501~10!/$20.00 65 0245
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low pressures, when the coherence length is larger than
average pore size, the homogeneous scattering model is
likely to be justified.

A similar conclusion follows from the present derivatio
The calculated susceptibility is less suppressed compare
the bulk dependence. This suppression is less pronounce
larger values of the scattering phase but still even in
unitary limit noticeably larger than the measured suppress
of the susceptibility at high pressures.3,12

The calculations presented in the paper have been d
for an arbitrary valued0 of the phase shift ofs-wave scatter-
ing. Both extremes—the Born approximation and the unit
limit—can be easily obtained from the general result.

A corresponding theory of changes of paramagnetic s
ceptibility in ordinary superconductors caused by impurit
with ordinary, paramagnetic, and spin-orbital type of scatt
ing has been developed in the Born approximation in R
16. The present theory is not a simple generalization of
cited paper. The point is that usually to go beyond the B
approximation in the theory of dirty alloys it is sufficient t
substitute the Born scattering amplitude by the exact on17

This substitution does not lead to the correct answer fo
dirty metal in a magnetic field. The method developed in
present paper does not rely on the substitution.

The paper is organized as follows. After the introducti
of the basics of the Abrikosov-Gor’kov theory in Sec. II, w
write down its solution for an arbitrary impurity scatterin
phase without magnetic field in Sec. III, where we also
tablish the region of the existence of gapless superfluid
Then by finding corrections in leading order in magne
field we arrive at an expression for the susceptibility. In t
last section we briefly discuss conclusions.

II. EQUATIONS

The Abrikosov-Gor’kov equations of an electrically ne
tral impure superfluid in an external magnetic fieldB are
~see, e.g., Ref. 18!
©2001 The American Physical Society01-1
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@ ivn2Ĥ~k!2Ŝ~vn!#Ĝ~k,vn!51̂, ~1!

where vn5pT(2n11) is the Matsubara frequency. Th
Green functionĜ(k,vn) is a 232 matrix in particle-hole
space,

Ĝ~k,vn!5S Gab~k,vn! Fab~k,vn!

Fab
1 ~k,vn! Ḡab~k,vn!

D , ~2!

made up of the normalGab(k,vn) and anomalous
Fab(k,vn) Green functions which are in their turn 232
matrices in spin space. Here

Ḡab~k,vn!52Gab
T ~2k,2vn! ~3!

and the superscript ‘‘T’’ implies transposition.
The Hamiltonian

Ĥ~k!5S H0ab~k! D k̂ab

D
k̂ab

†
2H0ab

T ~2k!D ~4!

consists of the one-particle part

H0ab~k!5jkdab2msabB ~5!

including kinetic

jk[j uku5k2/2m* 2eF ~6!

and Zeeman energy, and of the pairing interact
Vab,lm(k,k8) via the order parameterD k̂ab , set by the self-
consistency equation

D k̂ab52T(
n

(
k8

Vba,lm~k,k8!Fml~vn ,k8!. ~7!

B is the magnetic flux, andsab is a vector of the three Pau
matrices in spin space.

The impurity scattering self-energy part comprises norm
S1 and anomalousS2 parts

Ŝ5S S1 S2

S2
1 S̄1

D , ~8!

and in the clean limit of small impurity concentrationsnimp ,
when one can neglect the interference of the scattering
different impurities, is justnimp times the contribution of a
single impurity,

Ŝ5nimpT̂, ~9!

whereT̂ is the scattering amplitude. It is related to the sc
tering potentialÛkk8 by the Lippmann-Schwinger equation

T̂kk85Ûkk81(
q

ÛkqĜqT̂qk8 . ~10!

In the simplest case of a short-range impurity poten
U(r )5ud(r ) its Fourier component is momentum
independentUk2k85u, so that
02450
n

l
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l

Ûkk8[S Uk2k8dab 0

0 2Uk82kdab
D 5udabt̂3 , ~11!

where t̂ is a vector of the three Pauli matrices in particl
hole space. Parametrized in terms of the scattering phasd0
the impurity potential is

u52tand0 /pN0 . ~12!

Equation ~10! is then easily solved, and the scatterin
amplitude turns out to be independent of momenta:

T̂kk8~vn![T̂~vn!5ÛS 1̂2Û(
k

Ĝ~k,vn! D 21

. ~13!

Equations~1!, ~4!, ~9!, and~13! form a closed system o
equations on the Green function~2!.

The pairing interactionVba,lm(k,k8) is usually reckoned
nonzero only in a thin;e1!eF layer near the Fermi surface
In 3He the spin-orbital interaction is weak and the Coop
pairs are formed in the spin-triplet, orbitalp-wave state. So
the pairing interaction can be factorized,

Vba,lm~k,k8!52
3

2
V1k̂k̂8gbaglm

† , ~14!

whereV1 is the constant of thep-wave pairing attraction and

gab5 i ~ssy!ab ~15!

is a vector of the three basis symmetric matrices.
The order parameter

D k̂ab5dk̂gab , ~16!

wheredm k̂5Am i k̂i is the order-parameter vector.
Substituting Eqs.~14! and ~16! into Eq. ~7! yields

dk̂5
3

2
V1T(

n
(
k8

~ k̂k̂8!trs @g†F~vn ,k8!#. ~17!

As one can see,

dk̂dk̂
* 5

1

2
trs @D

k̂

1
D k̂#, ~18!

where trs denotes a trace over spin indices. For unita
phases, among which are theA andB phases actually being
realized in pure3He, (D

k̂

1
D k̂)ab}dab , and so it is conve-

nient to introduce the notationD
k̂

2
5dk̂dk̂

* . We will consider
only the unitary phases.

In the A phase,

dk̂5A3

2
Dd̂@~D̂81 i D̂9!k̂#, ~19!

whered̂, D̂8, andD̂9 are three unit vectors, andD̂8 and D̂9
are mutually orthogonal.

In the B phase,

dk̂5DRJ k̂eiw, ~20!
1-2
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SPIN SUSCEPTIBILITY OF THE SUPERFLUID3He-B . . . PHYSICAL REVIEW B 65 024501
whereRJ is the matrix of rotation on an arbitrary angle.
In both cases, the scalarD is introduced so as to fulfill the

normalization^D k̂

2
& k̂5^dk̂dk̂

* & k̂5D2, where^•••& k̂ stands for

averaging over directionsk̂ of momentum.

III. ZERO MAGNETIC FIELD

In the absence of a magnetic field the solution of Eqs.~1!,
~4!, ~9!, and~13! is ~see elsewhere!

Ĝ(0)5
1

ṽn
21 j̃k

21D
k̂

2

3S 2~ i ṽn1 j̃k!dab D k̂ab

D
k̂ab

1
2~ i ṽn2 j̃k!dab

D . ~21!

The corresponding sum over momenta in the expres
~13! for the scattering amplitude is

(
k

Ĝ(0)~k,vn!5g~vn!1̂dab ,

where we denoted

g~vn!5(
k

G(0)52N0E K i ṽn1 j̃

ṽn
21 j̃21D

k̂

2L
k̂

dj̃

52 ipN0ṽnK 1

Aṽn
21D

k̂

2L
k̂

. ~22!

HereN05m* kF/2p2\2 is the density of states on the Ferm
surface.

So the scattering self-energy~9! equals

Ŝ (0)5
nimpu

12u2g2
@ t̂31ug1̂#dab . ~23!

In the above formulas both the Matsubara frequencyvn
5pT(2n11) and the kinetic energy are renormalized:

i ṽn5 ivn1
1

2
trt @Ŝ (0)~vn!#, ~24!

j̃k5jk2
1

2
trt @ t̂3Ŝ (0)~vn!#. ~25!

Here trt is the trace in particle-hole space.
It should be noted that the term proportional tot̂3 in Ŝ

5Ŝ (0)1Ŝ (1)1••• must be omitted. This term just produce
a shift in the chemical potential~renormalization ofjk) from
introducing the impurities and disappears in the assump
of particle-hole symmetry after integration overj in the sub-
sequent calculations.

Substituting Eqs.~22! and ~23! into Eq. ~24! yields the
self-consistency equation on the renormalized Matsubara
quencyṽn ,
02450
n

n

e-

ṽn5vn1GK ṽnAṽn
21D

k̂

2

ṽn
21cos2d0D

k̂

2L
k̂

, ~26!

whereG is the scattering rate:

G5
nimp

pN0
sin2d0 . ~27!

In the Born limit (d0→0) it tends to the conventional half o
the inverse free flight time:

G→ nimp

pN0
d0

25nimppN0u25
1

2t
. ~28!

In the B phase,D
k̂

2
[D2 does not depend onk̂, and one

can thus omit the angular brackets of thek̂ averaging in Eq.
~26!. Using the overt form~21!, the self-consistency equatio
~17! taking the trace over spin indices and averaging ovek̂
reduces to

1

N0V1

5T(
n
E dj

ṽn
21j21D2

5pT(
n

1

Aṽn
21D2

.

~29!

This equation determines the temperature and impu
concentration behavior of the order parameterD. To obtain
an expression of value one should exclude the unobserv
pairing constantV1 off the left-hand side of Eq.~29!. Using
the standard procedure,18 one obtains the self-consistenc
equation onD(T,G):

ln
T

Tc0

5pT(
n

S 1

Aṽn
21D2

2
1

uvnu D . ~30!

The asymptotics ofD(T,G) at T50 andT5Tc are found in
the Appendix.

Expanding Eq.~26! in degrees ofD2 gives ṽn'vn
1Gsgnvn1O(D2). When inserted into Eq.~30! it yields in
zeroth order inD2 the Abrikosov-Gor’kov19 implicit expres-
sion for the dependence of the critical temperatureTc on the
impurity concentration,

ln
Tc0

Tc
5cS G

2pTc
1

1

2D2cS 1

2D , ~31!

where c is the digamma function. Note, however, thatG
corresponds to different impurity concentrations for vario
scattering phases@see Eq.~27!#. Tc(G) vanishes at the criti-
cal concentration

Gc5
1

2
D00, ~32!

where

D005pTc0e2g ~33!
1-3



p

r p
ca

or

n
l

es

-

of
I

a
es

ly.

e

of
s

less

V. P. MINEEV AND P. L. KROTKOV PHYSICAL REVIEW B65 024501
is the order parameter at zero temperature for a pure su
fluid, andg'0.5772 is Euler’s constant.

Figure 1 shows temperature dependences of the orde
rameter for seven impurity concentrations and for three s
tering phases:d050, p/4, and p/2 obtained numerically
from Eq. ~30!. Plots not shown for intermediate 0,d0
,p/2 all sit in the interior of the belt between curves f
d050 ~Born limit! andd05p/2 ~unitary limit!.

The order parameterD0 at zero temperature as a functio
of the scattering rateG/Gc is presented in Fig. 2 for severa
values of the scattering phased0. The curves for intermediate
values of 0,d0,p/2 lie inside the strap between the curv
for the Born (d0→0) and unitary (d0→p/2) limits.

From the Abrikosov-Gor’kov theory of paramagnetic im
purities in alloys it is known that in the Born limit (d0
→0) starting at the scattering rate of

2Gce
2p/4'0.91Gc ~34!

the energy spectrum gap vanishes though the amplitudeD of
the order parameter remains finite untilGc . Ordinary impu-
rities in ap-wave superfluid will give rise to the existence
an analogous gapless region of impurity concentrations.
deed, the density of states of quasiparticles at an energye off
the Fermi level is expressed in terms of the Green function

N~e!52
1

p
Im (

k
G~k,vn!u ivn→e1 i0 . ~35!

Using Eq.~22! we get

FIG. 1. Order parameterD vs temperatureT for different scat-
tering phasesd0 and impurity concentrations obtained numerical
Solid lines correspond to the Born limitd050, dashed lines tod0

5p/4 and dotted lines to the unitary scatteringd05p/2. In order of
the decrease of the superfluid transition temperatureTc the triples of
the curves correspond toG/Gc50, 0.2, 0.4, 0.6, 0.75, 0.9, 0.98. Th
first curve in the pure caseG50 is common for all phases.
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N~e!5N0 Im
ẽ

AD22 ẽ2
, ~36!

whereẽ5 i ṽnu ivn→e1 i0. From Eq.~26! we obtain an implicit

equation onẽ for a givene:

ẽ5e1G
ẽAD22 ẽ2

D2 cos2d02 ẽ2
. ~37!

For e50 it gives three solutions in the complex plane:ẽ1
50 and

ẽ2,3
2 5

2D2 cos2d02G22GAG214D2 sin2d0

2
. ~38!

It can be verified that for all the three solutionsD22 ẽ2 is

always~real! positive, and soAD22 ẽ2 always real. In order
for N(e50) to be finite one than sees from Eq.~36! that ẽ2

should be negative. From Eq.~38! this gives

G.D cos2d0 . ~39!

This inequality means that for a given phase shiftd0 and a
scattering rateG the superfluid is gapless at temperatur
Tgl,T,Tc , where Tgl is such thatG.D(Tgl)cos2d0. The
superfluid is gapless in the whole temperature range 0,T
,Tc of the existence of superfluidity if inequality~39! is
fulfilled already forD0[D(T50).

FIG. 2. Order parameterD0 at zero temperature as a function
the suppressionTc /Tc0 of the critical temperature for several value
of the scattering phased0. For eachd0 the value ofTc /Tc0 is
pointed, the suppression below which makes the superfluid gap
in the whole range 0,T,Tc . In the unitary limit (d0→p/2) the
superfluid is gapless for whateverTc /Tc0. Bold parts on each curve
mark the regions of the existence of gapless superfluidity.
1-4
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Making use of the implicit dependence~A7! of D0 on d0,
we get for the lower boundary of the onset of gapless su
fluidity in the whole temperature range

G52Gc cos2d0 expS 2
p

2

cos2d0

11cosd0
D , ~40!

which is a generalization of the Abrikosov-Gor’kov valu
~34! on an arbitrary scattering phased0. The corresponding
value of the upper boundary of the order parameter at z
temperature is

D05D00expS 2
p

2

cos2d0

11cosd0
D . ~41!

When the scattering phase is increased~impurity potential
becomes ‘‘stronger’’! the boundary value ofG decreases
meaning that starting from less impurity concentration
superfluidity becomes gapless. At last, in the unitary lim
d0→p/2 the boundary value isG50, and the liquid is gap-
less for whatever small impurity concentration.

The points of the onset of gapless superfluidity a
marked on the plot of the dependence of the order param
at zero temperatureD0 /D00 on the suppressionTc /Tc0 of the
superfluid transition temperature~see Fig. 2!. The regions of
the existence of gapless superfluidity are shown on the p
of D0(Tc) with bold lines.

IV. MAGNETIC SUSCEPTIBILITY

Magnetization M can be calculated from the norm
Green function in a magnetic fieldB as

M5mT(
n

(
k

Gabsba . ~42!

To find the static susceptibilityxab (Ma5xabBb) it is suf-
ficient to solve Eqs.~1!, ~4!, ~9!, and~13! in leading order in
the field. Let the superscript~1! designate the quantities pro
portional toB. From Eqs.~9! and ~13! we get

Ŝ (1)5
1

nimp
Ŝ (0)ÛS (

k
Ĝ(1)D Û21Ŝ (0). ~43!

One should plug here the expression for the Green fu
tion in first order in the field derived from Eq.~1!:

Ĝ(1)5Ĝ(0)~Ĥ (1)1Ŝ (1)!Ĝ(0). ~44!

We are now going to show that both the anomalous s
energy S2 remains zero and the order parameterD un-
changed in first order in magnetic field:

S2
(1)50, D (1)50. ~45!

Mathematically, this is due to the fact that self-consist
solution of Eqs.~43! and ~44! produces~linear! homoge-
neous equations onS2

(1) andD (1) which have regularly only
trivial solutions. At the same time, the equation on the n
mal part of self-energyS1

(1) involves a right-hand side pro
portional to the magnetic field coming from
02450
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Ĥ (1)~ k̂!5S 2msabB D
k̂ab

(1)

D
k̂ab

(1)†
msab

T B
D . ~46!

To be more specific, when written out in components, E
~44! reads

G(1)5G(0)@1#1F (0)@2#, ~47!

F (1)†5F (0)†@1#1Ḡ(0)@2#, ~48!

where we made use of the abbreviated notation

@1#5~S1
(1)2msB!G(0)1~S2

(1)2D (1)!F (0)†, ~49!

@2#5~S2
(1)†2D (1)†!G(0)1~S̄1

(1)1msTB!F (0)†. ~50!

Let us first look at the equation onD (1). Expanding Eq.
~7! yields

D
k̂

(1)†
5

3

2
V1gm

† T(
n

(
k8

~ k̂k̂8!trs @gmF (1)†~vn ,k8!#.

~51!

Substituting here Eq.~48! for F (1)† one obtains the equatio
on D (1)†. It turns out that after taking a trace over spin ind
ces as well as integrating overj on the supposition of
electron-hole symmetry there remain only terms proportio
to D (1)†.

Indeed, consider the terms in Eq.~48! in pairs. The two
terms involving the anomalous partS2

(1)(vn) of the self-
energy, which, we recall, does not depend on momenta,
proportional to eitherḠ(0)G(0), which does not depend onk̂,
or to (F (0)†)2 } k̂2. They vanish after averaging withk̂8 over
the direction of momenta in Eq.~51!.

The two terms proportional toB when inserted into Eq.
~51! give

}trs @gm~F (0)†sBG(0)2Ḡ(0)sTBF (0)†!#

}dntrs @gm~gn
†~ i ṽn1j8!sl2sl

T~ i ṽn2j8!gn
†!#Bl .

The terms proportional toj8 vanish on integrating overj8 in
the supposition of particle-hole symmetry. The terms prop
tional to ṽn vanish on summation over the Matsubara fr
quenciesvn5(2n11)pT from n52` to ` because of the
oddness ofṽn(vn): ṽn(2vn)52ṽn(vn).

Similar argumentation leads to the conclusion of vani
ing of the terms involvingS1

(1) because, as we shall see late
in the assumption of particle-hole symmetryS1

(1) is even in
vn .

So we are left with a homogeneous linear equation
D (1) which has normally only trivial solutionsD (1)50.

One obtains the equations to determine the normalS1
(1)

and anomalousS2
(1) parts of the self-energy by plugging Eq

~21! and ~23! into Eq. ~43!:
1-5
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Ŝ (1)5S S1
(1) S2

(1)

S2
(1)† S̄1

(1)D 5
nimpu

2

~12u2g2!2

3S ~11ug!2(
k

G(1) ~12u2g2!(
k

F (1)

~12u2g2!(
k

F (1)† ~12ug!2(
k

Ḡ(1)
D .

~52!

SinceD
k̂

(0)
and, consequently, alsoF (0)(vn ,k) by virtue

of Eq. ~21! andD
k̂

(1)
are all proportional to the unit vectork̂,

any of the terms in Eqs.~47! and ~48! comprising one or
three of either of the quantities vanishes on summing ovek
in Eq. ~43!. For the anomalous part there remains only t
terms giving a homogeneous equation on the four com
nents ofS2

(1) :

S2
(1)†5

nimpu
2

12u2g2 (
k

~F (0)†S2
(1)F (0)†1Ḡ(0)S2

(1)†G(0)!.

~53!

Bar in exceptional cases, this equation has only a trivial
lution S2

(1)[0. However, one can verify separately for ea
component of the expansion ofS2

(1)(vn) in terms of the
three Pauli matrices and the unit matrix,

S2ab
(1) ~vn!5S2

(1)~vn!dab1S2
(1)~vn!sab , ~54!

that this homogeneous equation onS2
(1)(vn) does indeed

have only a trivial solution.
Taking into account the remark after Eq.~25! we omit the

terms proportional tot̂3 in Eq. ~52! and for the normal par
S1

(1) get the equation

S1
(1)5nimpu

2
11u2g2

~12u2g2!2 (
k

@G(0)~S1
(1)2msB!G(0)

1F (0)~S̄1
(1)1msTB!F (0)†#. ~55!

Making use of the explicit form of the zero-order Gre
function ~21!, we first calculate the sum overk, introducing
the auxiliary quantity

P~vn!5
pN0D2

3~ṽn
21D2!3/2

, ~56!

so that (k(G
(0))25 3

2 P(vn) and (kF
(0)F (0)†5P(vn). In

addition, we introduce

P̃~vn!5nimpu
2

11u2g2

~12u2g2!2
P~vn!

5
GD2

3

ṽn
2 cos 2d01D2 cos2d0

Aṽn
21D2~ṽn

21D2 cos2d0!2
. ~57!
02450
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The second term in Eq.~55! is proportional to the product o
Fab

(0)}DgabRJ k̂ and F (0)†}Dgab
† RJ k̂. After averaging overk̂

and integration overj we find that

(
k

F (0)f ~vn!F (0)†5
1

2
P~vn!gf ~vn!g†. ~58!

So

S1
(1)5

3

2
P̃~vn!FS1

(1)2msB1
1

3
g~S̄1

(1)1msTB!g†G ,
~59!

S̄1
(1)5

3

2
P̃~vn!F S̄1

(1)1msTB1
1

3
g†~S1

(1)2msB!gG .
~60!

ExpandingS1
(1) and S̄1

(1) in the basis of the three Pau
matrices and the unit matrix similarly to Eq.~54!, one sees
that for the coefficient of expansion over the unit matrix o
obtains an uncoupled homogeneous equation, with trivial
lution. So one may put simply

S1
(1)5S1

(1)s, S̄1
(1)5S̄1

(1)sT. ~61!

Using g5 i ssy , g†52 isys, and the equalities

syssy52sT, smssm52s, ~62!

we find that

gmsgm
† 5gm

† sgm5sT, ~63!

so that solution of the system~59! and ~60! is

S1
(1)52msB

P̃~vn!

12P̃~vn!
, S̄1

(1)5msTB
P̃~vn!

12P̃~vn!
.

~64!

Since from Eq.~47! it follows that

G(1)5G(0)~S1
(1)2msB!G(0)1F (0)~S̄1

(1)1msTB!F (0)†,
~65!

we find from Eq.~42! that

M522m2BT(
n

P~vn!

12P̃~vn!
. ~66!

Because we have first integrated overk and left the sum-
mation overn, this expression does not include17 the normal-
state Fermi gas Pauli susceptibilityxn

052m2N0. Adding and
subtracting it from both sides of Eq.~42!, we get eventually

x0

xn
0

512
p

3
T(

n

D2

~ṽn
21D2!3/2

12
GD2

3

ṽn
2 cos 2d01D2 cos2d0

Aṽn
21D2~ṽn

21D2 cos2d0!2

.

~67!
1-6
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This expression gives susceptibility as a function of tempe
ture for a given scattering rateG and a scattering phased0.
The infinite sum over the Matsubara frequencies should
taken using self-consistent expressions for the renormal
Matsubara frequencyṽn Eq. ~26!, and the order paramete
D(T) Eq. ~30!.

In the clean limitG→0 the Matsubara frequencies re
unrenormalized and susceptibility reduces to its conventio
bulk value

x0

xn
0

512
p

3
T(

n

D2

~vn
21D2!3/2

[12
1

3
@12YB~T!#,

~68!

where

YB~T!512pT(
n

D2

~vn
21D2!3/2

~69!

is theB-phase Yosida function.
At T→Tc susceptibilityx0/xn

0 behaves linearly. Indeed

thenD→0 andṽ→v1G. Hence

x0

xn
0
→12

pD2

3
Tc(

n

1

uṽnu3
→11

2D2

3~4pTc!
2
cc

(2) , ~70!

wherexc5G/2pTc andcc
(n)5c (n)( 1

2 1xc) is the polygamma
function. Using the asymptotic expression~A2! for D at T
→Tc , we find eventually

x0

xn
0U

T→Tc

→112cc
(2)

xccc
(1)21

3cc
(2)1xccc

(3) cos 2d0

Tc2T

Tc
.

~71!

In the Born limit (d0→0) we arrive at the expression fo
the spin susceptibility:

x0

xn
0

512
p

3
T(

n

D2

~ṽn
21D2!3/2

12
GD2

3

1

~ṽn
21D2!3/2

. ~72!

In the opposite unitary limit (d0→p/2),

x0

xn
0

512
p

3
T(

n

D2

~ṽn
21D2!3/2

11
GD2

3

1

ṽn
2Aṽn

21D2

. ~73!

Susceptibilities for several impurity concentrations a
three scattering phases@d050 ~Born limit!, d05p/4, and
d05p/2 ~unitary limit!# are plotted as functions of the re
duced temperatureT/Tc in Fig. 3 with Fermi-liquid effects
taken into account~see below!.
02450
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Fermi-liquid corrections

The Fermi-liquid interaction between quasiparticles lea
to renormalization of the susceptibility. An external magne
field is screened by a polarization of the liquid, which
quantitatively described by even terms of the expansion
Legendre polynomials of the antisymmetric~exchange! part
Fa of the Fermi-liquid interaction.

It was argued in Ref. 20 on the basis of experimental d
that only the zeroth termF0

a is nonzero. Then the magnet
zation Ma5xabBb induced by magnetic fieldB in a liquid
with an interaction equals the magnetizationMa5xab

0 Bb
eff

that would be induced in an interaction-free liquid by
effective field

Beff5B2F0
aM /xn

0 . ~74!

Herexn
052m2N0 is the Pauli paramagnetic susceptibility

a normal Fermi gas. This yields21,22

xab5~dab1F0
axab

0 /xn
0!21xab

0 . ~75!

In the B phasexab
0 }dab and we get

FIG. 3. Spin susceptibility of superfluid3He in aerogel vs tem-
perature for several values of impurity concentrationG and scatter-
ing phasesd0 with the Fermi liquid corrections taken into accoun
Solid lines correspond to the Born limitd050, dashed lines tod0

5p/4, and dotted lines to the unitary scatteringd05p/2. In order
of the decrease of the superfluid transition temperatureTc the triples
of the curves correspond toG/Gc50, 0.2, 0.4, 0.6, 0.75, 0.9, 0.98
The first curve in the pure caseG50 is common for all phases.
1-7
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x

xn
5

11F0
a

11F0
a x0

xn
0

x0

xn
0

, ~76!

wherexn5xn
0/(11F0

a) is the Fermi-liquid susceptibility. In
3He, F0

a'2 3
4 slightly varying with pressure.

For the asymptotics atT→Tc we have

x

xn
U

T→Tc

511
d~x/xn!

d~T/Tc!
U

T→Tc

T2Tc

Tc
, ~77!

where from Eq.~76!

d~x/xn!

d~T/Tc!
U

T→Tc

5
1

11F0
a

d~x0/xn
0!

d~T/Tc!
U

T→Tc

~78!

is the slope of the plots ofx versusT at T→Tc .
Taking2 3

4 as a value forF0
a , we see that the slope of th

curvex(T) at T5Tc with the Fermi-liquid interaction taken
into account is

1/~11F0
a!'4 ~79!

times greater than that ofx0(T)—without the interaction.
The slopes of bothx0(T) and x(T) for F0

a52 3
4 versus

the suppressionTc /Tc0 of the critical temperature are plotte
in Fig. 4 in two scales of the ordinate axis — the left one
the slope ofx0(T) and the right one for the slope ofx(T),
which is Eq.~79! times the former. In the same picture w
also pointed out the slopes experimentally observed in Re
at 18.7 bars and in Ref. 12 at 32 bars — the only experim
tal data present up to day the authors are aware of. The e

FIG. 4. The slope atT→Tc of the reduces temperatureT/Tc

plots of the ‘‘bare’’ susceptibilityx0/xn
0 ~left scale! or the suscepti-

bility x/xn with the Fermi liquid corrections@right scale, coefficient
of proportionality~79!# as functions of the suppressionTc /Tc0 of
the critical temperature. The crosses mark the experimental va
of the slopes in Ref. 3 (h) and in Ref. 12 (s).
02450
r

3
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ror

bars span the possible slopes of the linear fits to the da
T&Tc within the plotted error bars of the respective expe
mental works.

V. CONCLUSIONS

In the framework of the homogeneous scattering mo
we found spin susceptibility of3He in aerogel considering
the latter as ordinary randomly distributed impurities with
arbitrary scattering phased0 in s-wave channel. The answe
is given in the form of an infinite sum over the Matsuba
frequenciesvn5(2n11)pT with the summation term de
pending on the amplitudeD of the order parameter and th
self-consistently renormalized Matsubara frequencyṽn . Nu-
merically plotted curvesx(T) show that susceptibility is les
suppressed in comparison to the bulk dependence, this
pression being less pronounced for largerd0.

Comparison with high-pressure experimental data@18.7
bars~Ref. 3! and 32 bars~Ref. 12!# shows that the slope o
x(T) at T→Tc is approximately twice less than the valu
predicted by the theory. The discrepancy is obviously u
avoidable because of the major inadequacy of the homo
neous scattering model at high pressures, where the su
fluid coherence length becomes shorter than the correla
length of the internal structure of aerogel.15 Note that quan-
titatively the difference between experimental and theoret
values seems to be in line with the fact that experimenta
observed at high pressures~19.7 bars! superfluid density23

was approximately by the factor of 2 smaller than predic
by Abrikosov-Gor’kov theory.9

On the other hand, we pointed out that for any finite sc
tering phased0.0 the impurity concentration threshold o
the gapless superfluidity onset diminishes dramatically.
example, for the valued05p/4 which was maintained to be
the most satisfactory phase for the real structure of aero
gapless superfluidity sets on in the whole temperature ra
starting at the critical temperature suppression ofTc
'0.51Tc0 compared toTc'0.22Tc0 in the Born limit d0
→0, whereas in the unitary limitd0→p/2 the superfluid is
always gapless. For impurity concentrations exceeding
gapless threshold all the thermodynamical quantities van
algebraically at zero temperature. Experimental observa
of such behavior could provide additional immediate insig
into the quasiparticle scattering on impurities in aerogel.

We wish to thank J. A. Sauls for valuable comments
the manuscript and attraction of our attention to Ref.
which complies with ours in the main results. One of t
authors~P.K.! is grateful to J. Flouquet for the granted o
portunity to complete the work at the Center for Nucle
Research in Grenoble.

APPENDIX: ASYMPTOTICAL BEHAVIOR OF THE
ORDER PARAMETER D AT T\Tc AND T\0

In this appendix we elaborate on the details of the cal
lation of the asymptotics of the order parameter already
lized in the main text of the paper.
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Asymptotics at the critical temperature

Expanding Eq.~26! in degrees ofD2 gives @we consider
only positive vn because of the oddness ofṽn(vn): ṽn

(2vn)52ṽn(vn)#

ṽn'vn1G1G
122 cos2d0

2~vn1G!
D21O~D4!. ~A1!

When inserted into Eq.~30! it yields in first order inD2

the asymptotics atT→Tc :

D253~4pTc!
2

xccc
(1)21

3cc
(2)1xccc

(3) cos 2d0

Tc2T

Tc
. ~A2!

Herexc5G/2pTc andcc
(n)5c (n)( 1

2 1xc), where

c (n)~z!5]z
nc~z!5 (

k50

`
~21!n11n!

~z1k!n11
~A3!

is the polygamma function. AtG→0 also xc→0 and cc
(2)

→c (2)( 1
2 )5214z(3), andthus Eq.~A2! transforms into the

conventional BCS asymptotics

D25
8p2Tc0

2

7z~3!

Tc02T

Tc0
. ~A4!

Order parameter at zero temperature

Consider the sumpT(n(vn
21D2)21/2. When T→0 the

summation over the Matsubara frequenciesvn may be sub-
stituted with an integration over the continuous variablev,

pT(
n

1

Avn
21D2

→
T→0E

0

e1 dv

Av21D2
' ln

2e1

D
, ~A5!

where the divergent integration up to infinity is cut off ate1.
The general temperature dependence of the order pa

eter is obtained by combination of Eqs.~29!, ~33!, and~A5!:

ln
D

D00

5pT(
n

S 1

Aṽn
21D2

2
1

Avn
21D2D . ~A6!
. J

. J

d

y

.

02450
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At T→0 the value of the order parameter tends to
value D0, the implicit dependence of which onG is set by
replacing summation in the above expression with an in
gral. The integral overv from the first term in the parenthe
ses in Eq.~A6! transforms into an integral overṽ by means
of the substitution~26! and eventually we get an equatio
that determines implicitly the impurity concentration beha
ior of the value of the order parameter at zero temperatu

1

G
ln

D0

D00
1

p

2D0~11cosd0!
50 ~A7!

if G,D0 cos2d and

05
1

G
ln

ṽ01Aṽ0
21D0

2

D00
1

p

2D0~11cosd0!

2
ṽ0

ṽ0
21D0

2 cos2d0

2
1

D0 sin2d0

S cosd0 arctan
ṽ0

D0 cosd0

2arctan
ṽ0

D0
D ~A8!

if G.D0 cos2d. Here

ṽ0~G,D!5AG222D2 cos2d01GAG214D2 sin2d0

2
~A9!

is the solution of Eq.~26! for vn50 and in Eq.~A8! it was
taken with the argumentsG,D0.

For smallG, Eq. ~A7! gives

D0

D00
'12

p

4~11cosd0!

G

Gc
, ~A10!

while for G close to the critical value

D0

D00
'A 1

12 2
3 cos 2d0

Gc2G

Gc
. ~A11!
sh,
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