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Magnetic and thermal properties of nanoscale heavy-fermion particles
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The heavy-fermion state in some rare-earth and actinide compounds arises from a hybridization of extended
conduction states with strongly correlated localifestiates. The properties of the heavy fermions are those of
a Fermi liquid with small Fermi energy of the order Bf . In nanosized particles, however, the conduction
states have discrete energy levels and the energy spacing leads to an additional energy scale that competes with
the Kondo temperature. A small heavy-fermion particle is considered, described by the Anderson model in the
U—oc limit, so that only two electronic configurations—namely, and f'—are allowed. A mean-field ap-
proximation with one slave boson piesite is used to study the susceptibility, the entropy, and the specific heat
at low temperatures. All quantities increase rapidly withs a consequence of exponential activations due to
the discreteness of the energy spectrum until the heavy-electron state is formed. The possibility of ferromag-
netic order is investigated using the formulation of Kotliar and Ruckenstein in terms of three auxiliary bosons
per site. The mean-field approximation yields several possible magnetic phases for the ground state as a
function of thef-level position. In the strongly mixed-valent regime the transition from the paramagnetic to the
ferromagnetic phase is signaled as a function of temperature by a diverging susceptibility. It is concluded that
the thermal and magnetic properties of very small heavy-fermion particles are quite different from those of
bulk heavy-fermion material.
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[. INTRODUCTION the degeneracy given by the orbital and spin angular mo-
menta. The shell model gives risenmagic numbersvhen a
Heavy-fermion systems at low temperatures and as ahell is filled, which has been verified experimentalljhe
function of magnetic field, pressure, or alloying may show aenergy spacing is proportional B 2 (for the infinite square
variety of phenomena, such as unconventional superconduesell) and decreases rapidly in the macroscopic limit. For
tivity, antiferromagnetism, ferromagnetism, quadrupolar or-nanoscales the discreteness of the levels is a fundamental
der, non-Fermi-liquid properties, or just enhanced paramagproperty.
netism, all believed to arise from the band of heavy In this paper we study the low-temperature behavior of a
electrons. The origin of heavy electrons is the competitiomanosized heavy-electron system. The main difference with
and interplay of strong local atomiclike Coulomb forces with the standard heavy-fermion lattice is that the energy spec-
the solid-state effects of the conduction band and the hybridtrum of the conducting states is now discrete. The physics
ization, which give rise to a#or 5f Kondo-like resonance involved is not expected to be very sensitive to the details of
at the Fermi level. this discrete spectrum, so that for simplicity we choose the
In small metallic clusters the spacing of the energy statetevels as nondegenerafexcept for the spinand with equal
is determined by the finite size of the system. The discreteenergy spacings. We assume that the correlated localized
ness of the energy spectrum has dramatic consequences states correspond to thd%and 4f* configurationge.g., Ce
the low-temperature propertié$or a spherical metallic par- ions or alternately Yb ions if electrons and holes are inter-
ticle the electron states are described by a shell nfoBek-  changedl with the energy of the level independent of the
sible choices of the confining potential are the three-position of the ion within the particle. In principle, tiidevel
dimensional harmonic potential, the infinite square well, orenergy and the valence of the rare-earth ions are expected to
interpolations thereof, all yielding similar results: i.e., dis- be somewhat different for atoms close to the surface of the
crete energy levels. For the infinite square well the wavecluster. In other words, for simplicity we neglect these sur-
function is given by the product of a spherical Bessel funcface effects and assume in addition that the hybridization
tion and a spherical harmonic. The condition that the wavdetween the correlateistates and the conduction states is
function vanish at an infinite wall yields the relation the same at every site. Due to the low crystalline field sym-
j|(kf1')R)=0, whereR is the radius of the spheré,is the ~ Metry, we assume that théhstates can be pharacterized by
angular momentum, and=1,2, . . . labels the zeros of the @ doublet. The Hamiltonian of the system is then
Bessel function in increasing order. The energy of the states
is then given byE, ,=(%k{?)2/(2m*), with m* being the

effective mass. Due to the spherical symmetry, the energy H= of e+ Lo\

does not depend on the quantum number for the projection of % €itiotio Ef% to) 1ol

the angular momentumm,, but this degeneracy is lifted for

other shapes or symmetries. With increasing energy the se- Ry oMol + o) 10lc 1
quence of states is thers,11p, 1d, 2s, 1f, 2p, etc., with % (©ll0Nl ol +1e)(10]ci,), @
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wherei andl label the conduction states and the rare-eartlparticle. Kondo insulators have been intensively studied with
sites in the cluster, respectively. Hejler) denotes a #  the same methods employed in this pdpler.
state of spinc at the sitel and|l0) the corresponding #
state. Thd states satisfy at every site the completeness con- Il. PARAMAGNETIC PHASE
dition
A. Single-slave-boson formulation
We introduce slave-boson creation and annihilation
2 llo)(la|+]l0)(I0]=1. (20 operatord b/ andb,, which act as projectors onto the%
7 configuration at sitd, and fermion operators for thef%
states at sitd, f|, and f,,. The completeness relation

The two sets of basis stat@$ and{l} are orthonormal and equivalent to the conditiof®) is now?

related to each other by a unitary transformatidn The
many-body aspect of the problem is hidden in the commuta-
tion relations of the bra and ket states, Whlch_represent cor- 2 f.Lf|g+b.*b|= 1. 3)
related electronsl{— ) and are not free fermions. o
In Sec. Il we rewrite the Hamiltonian in terms of one

slave boson per siftSlave bosons correspond to an exactyransitions between configurations are described by the op-
reformulation of the problem and are very suitable for ag ai0rg|0)(1 0| =b]f,,. The Hamiltonian in auxiliary space
mean-field treatment of the correlations. In particular, theg given by

single-slave-boson approach provides an adequate descrip-

tion of the paramagnetic phase. We discuss the low-

temperature entropy, specific heat, and magnetic susceptibil- H :E ecl o +e 2 £t ¢

ity, which show an exponential activation due to the b SioTe TR Tlatle

discreteness of the energy spectrum. The energy eigenvalues

are renormalized by the hybridization and the slave bosons, +VE (C|T bl‘rfl +f|‘r by,Ciy) (4
and this energy spacing is much smaller than that of the host. AL A

At temperatures higher than the spacing the heavy-electron

state is recovered. In Sec. lll we reinvestigate the probleny pject to the constraiti8), which restricts the model to the
within a three-auxiliary-boson approach. The slave bg’sonﬁhysical subspace. The above slave-boson formulation is ex-
act as projectors onto the respective states of fileadd 4 act; i.e., it does not contain approximations with respect to
configurations. Within the mean-field approximation wethe griginal Hamiltonian(1).

study the possibility of magnetic order. Due to the discrete-
ness of the energy spectrum, the spin-up and spin-down lev-
els can individually be pulled through the Fermi level, so that
numerous magnetic phasés addition to the paramagnetic We now study Hamiltoniar{4) subject to the constraint
one can be obtained as a function @f. The transition from  (3) in the mean-field approximation. The mean-field approxi-
the paramagnetic phase to the first magnetically orderethation for the slave-boson formulation has given reliable
phase is also studied as a function of temperature. Concluesults for several many-body systems, e.g., the degenerate
sions are presented in Sec. IV. Anderson model(mixed-valent Ce and Yb ionsfor the

The Kondo effect in an ultrasmall metallic grain has beensingle-impurity? the two-impurity and the Anderson
studied previously using the noncrossing diagram approxitattice’!° problems. The auxiliary boson saddle-point ap-
mation within the framework of an Anderson impurftyt proximation is related to a i expansion, wher&; is the
was found that the Kondo resonance is strongly affectedlegeneracy of the localized states. In particular, the mean-
when the mean level spacing is comparabl@ toand it also  field solution of the Anderson impurity problem was found to
depends on the parity of the number of electrons. Anbe in good quantitative agreement with the exact Bethe an-
Anderson-like impurity model in a finite-size system wassatz solution even for relatively small degeneractessimi-
also studied by Buttiker and Stafforéh the context of tun- larly good quantitative agreement with the exact Bethe an-
neling into a quantum dot embedded or as a side branch tosatz solution was obtained for an isolated Mn impurity
small metallic ring. These situations refer to impurities inembedded into a spin-polarized lattice and for the general
nanoscale particles, whereas in the present paper we studycase with the noncrossing diagram approximatisee Ref.
small heavy-fermion particle: i.e., the analog of the AndersoriL2). The correct sequence of magnetic phases was also ob-
lattice in a large system. tained for manganites within this approactrom the above

Exponential activations of thermodynamic and transporiexamples it is known that the mean-field approximation may
properties are also observed in so-called Kondo insulatorsntroduce spurious phase transitions as a function of tem-
The indirect narrow gap in these semiconductors arises frorperature, but does provide reliable results for the ground
the coherent hybridization of tHdevels with the conduction state in the absence of large degeneracy lifting fields. It is
states. The gap is of the order Bf and essentially indepen- then expected that the slave boson mean-field approach will
dent of the system size. Its origin and nature are entirehalso render reliable results for a nanoscale heavy-fermion
different from the finite-size gaps in a nanoscale metallicparticle.

B. Mean-field approximation
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In the mean-fieldsaddle-pointapproximatiofl boson op-
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€;— \ but not on these parameters separately. The first equa-

erators are replaced by their expectation values. Assumingion can then be used to determiae as a function ofb,

that all rare-earth sites have the same valence we {igye
=(b/)y=b for all I. The constraint3) is incorporated via

€;—\, and u. The third equation determines the chemical
potential for fixedb and e;—\. We then varyb for given

Lagrange multipliers\;, which are independent of the site e;—\ (adjustingu for each caseuntil the second equation is
index because all sites are assumed to have the same valensatisfied. As mentioned above the first equation then deter-
The Hamiltonian is now bilinear in operators and it is minese; and\ as a function ofe; —\.

straightforward to rewrite it in the basfg using the unitary

transformationU, relating the basis statds and {I}. The
mean-field Hamiltonian is then diagonal in the indeand
has the form

Hmf: IE [eiCiT(rCilr_F(ef_ }\)f;r(rfi(r_FVb(fiTrrCi(r_'— CiTofirr)]

+NA(1-Db?), 5

whereN is the number of sites.

C. Results

The above equations considerably simplify for the ground
state, because the Fermi functions are either equal to 0 or 1.
We assume that the number of electraNg, is smaller than
2N, so that the states of the upper band with energigs
for a=+1 are not occupied. Depending on whetir is
even or odd the ground state is a singlet or doubly degener-
ate. We limit ourselves to discuss the situation of eiXgn
The spectrum is discrete so that the Fermi level then lies

The mean-field Hamiltonian can be diagonalized for eachhetween energy levels. The level spacing in the neighbor-

i and has eigenvalues

1
Zia(rzz[ff_)\"_fi_"a\/(ff_)\_6i)2+4b2V2], (6)

wherea==*1. Denoting withdiTW andd;,, the creation and

annihilation operators for the eigenstates we have

HmfZE Ziaod'T diacr+ N)\(l_bz) (7)

lao
lao

The free energy of the system is given by

F=-T2 In{l1+exd —(Za,—n)/T]}

lao

+NA(1—b?)+ uN,g, (8)

where u is the chemical potential and, is the number of
electrons.
The minimization of the free energy with respectotoh,

hood of the Fermi level foN, close to N is much smaller
than that of the conduction states, as a consequence of the
relatively small effective hybridizatiol'b. This strongly re-
duced energy gap is the precursor to the heavy-fermion state.
Consequently, the entropy and the specific heat are exponen-
tially activated(Arrhenius law involving this reduced gapt

very low temperatures.

For the ground-state magnetization we have to distinguish
two situations. In general there are two gyromagnetic factors
involved: namelyg, for the extended states agd for the f
states. Ifg.=0;, spin conservation implies that also the
magnetization is a conserved quantity, so that the zero-field
susceptibility is zero. As a function of temperature the sus-
ceptibility is exponentially activated, similarly to the specific
heat. Ifg.# g;, on the other hand, the magnetization is not
conserved and the ground-state susceptibility is finite. The
finite y arises from van Vleck admixtures of excited states
into the ground state as a function of field. In the Kondo limit
the van Vleck susceptibility is in general rather small and
below we limit ourselves to discuss the situatips= g; .

The entropy is obtained by differentiating the free energy

and u yields three transcendental equations which selfWith respect tar. The free energy has an explicit and implicit

consistently determine these three parameters,

1 V2 .
)\_Niaa aﬁio (Ziaa')v
1 Z.  —€
_ 2:_ lao | '
1-b N%a Az f(Zipo),
Ne= > f(Zigo), 9

lao

where f(z,,) denotes the Fermi function anadz,
=(es—\—€)?+4b?V? is the difference between;,,,
with a=+1 anda=-1.

temperature dependence, the latter through the self-
consistently determined parametdrs\, and u. However,
since the free energy is minimal with respect to these three
parameters, only the explicit dependence needs to be consid-
ered. We then have that

Zigo

S=3 | In{1+ X — (4= )/ TIH "2 F(Zi00) |
(10

which is just the entropy of free fermions with renormalized
spectrumz; ... The expression for the specific heat is more

involved because now the implicit dependences df, A,
and p have to be considered. It is then more convenient to

The strategy used to solve these equations is the followebtain the specific heat by numerical differentiation of the
ing. Note that the second and third equations only depend oentropy.
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For g.=0s the susceptibility is 1.25 T I . I .
1 1.00 |- (2) -
X= 37 2 {2c0sh(ziao— /2T 2 (D
075 |- 04}
and is obtained by differentiating with respect to the field S i :
twice. The free energy again has an explicit, the Zeeman 0.50 |~ So.2
splitting, and implicit magnetic field dependences. The de- [
rivative of the free energy with respect to the implicit depen- [ 0.0
dence vanishes becauBeis minimal with respect td, A, 0.25T
andu, and these three quantities are all even functions of the !
field. The expressiofill) then just corresponds to the Zee- 0.0 Lol -
man splitting of the energy levels. 0 2 4
In Fig. 1 we present our numerical results tge= —0.5,
V=0.2, and a spacing of the extended state$ef0.2, N 04— I T I

=11, andN,=18. The entropy grows monotonically with
showing the characteristic exponential activation due to the
finite size of the system. The dominant gap is much smaller
than the level splittingde of the conduction states. For a
large system the characteristic Kondo energy s@aleinits

of the bandwidthis given byb?. For the present example at
low T we obtainb?=0.0882, which would correspond to a
mass enhancement of about 11. The inset shows the entropy
at very lowT. The specific heat is displayed in Figlb]l for

the same parameters and shows an explicit peak structure,
which arises from the hybridization gap between the,
bands withe=+1 and a=—1. For T>0.005 the heavy-

electron state is already formed, sin€ds larger than the UL — T8
spacing between levels. The exponential activation atTow Td 0-3)
is seen in the inset. The susceptibility is presented in Fig. ey

1(c). On the one hand, the exponential behavior is observed
at low T, while, on the other hand, far>0.0004 the heavy-
electron states have already developed—i.e., dt rauch
lower than is seen in the specific heat. The main difference is
that the derivative of the implicit dependence df, A, and

w enters the specific heat, but not the susceptibility.

C 0.2:

0.1/

100

The same quantities are shown in Fig. 2 for the same setX

of parameters except that=—1.0. This gives rise to a
smaller Kondo temperature and hence to heavier masses.
Here b2=0.001 63, which would correspond to a mass en-
hancement of 600 in the bulk. The exponential activation at
low T is seen in all three quantities, but on a smaller energy
scale. The specific heat shows Iawstructures for the same
reasons as in Fig.(ft) and also the susceptibility has roughly
the same behavior as in Fig(cL

D. Competition of the level spacing and Kondo temperature

40

20 |

0.3

80 f

60 f
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FIG. 1. (a) Entropy, (b) specific heat, an¢c) susceptibility as a
function of T for the single-slave-boson formulation in a mean field.

o . The curves are foN.=18,N=11,V=0.2, spacing between energy
The gaps dominating the low-temperature specific heajyels of extended state®=0.2, ande;=—0.5. This corresponds

and susceptibility are much smaller than the spacing of thg, an effective mass enhancement of 11. The insets show the low-
energy levels of the hostie. Let us first point out that the temperature behavior.

spin gap and the charge gap are equal as is expected from a

band picture. This is analogous to Kondo insulatgaps are  the impurity case, we have to distinguish in addition between
difficult to measure because of impurity and intrinsic boundspin gaps for spin-singléspecific hegtand spin-triple(sus-
states in the gap but drastically different from impurities ceptibility) excitations.

(Kondo and Andersonin nanosized clusters, where the spin  After hybridizing thef states with the conduction states
gaps dominate the lovl-specific heat and susceptibility. In the spacing between the levelwe assume here that the
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of b2~Ty /D with respect to the original gap of the host. For

Fermi level lies between;,, andz, 1,, With a=—1) at 1.50 ¢ —r—

the Fermi energy is I ]

1.25F ]

s b€ €+N\—¢€; .

Zivnoe™ Lit+1lac ™ Ziac™ 2 Azig' 1.00 _:

V2p2 [ 1 1

~ b —————~ Jeb?. (12) 0.75¢ 17

(e—A—e) s [

Hence, the gap of the heavy electrons is reduced by a factor 0.50 C 1
the example in Fig. Ismall mass enhancemerhe reduc- 0.25 10
tion is approximately one order of magnitude, and for the ]

example in Fig. 2(small Tk) the reduction is about 600 0.00 10

times.

Obviously the low-energy excitation spectrum also de- 0.5
pends on the parity of the number of electrons. For an odd
number of electrons the ground state is always a doublet and

not a singlet as for an even number of electrons in the ab- 0471

sence of long-range magnetic order.

Ill. FERROMAGNETIC PHASES C
A. Formulation with three slave bosons per site

In order to study the formation of magnetic phases a dif-
ferent approach with three slave bosons per site has to be
employed. The single auxiliary boson projects onto the non-
magnetic 4° configuration and a mean-field approximation
is not favorable to magnetic order. We use here lthe ©
variant of Kotliar and Ruckensteirt formulation. Origi-

PHYSICAL REVIEW B 65 024431

nally the method was conceived to investigate the Hubbard 5000 —~——

model with finite U with four auxiliary bosons projecting
onto the empty, doubly occupied, and singly occupied levels

with up and down spin, respectively. This technique was 4000 |-

later applied to a model for highly correlated bands of hy-

bridized Cu 2l and O 2 orbitals>® and the Anderson 3000

lattice.” The slave-boson approach has also been formulated

with spin-rotational invarianc¥, but this does not affect the X

mean-field results. 2000
In analogy to Ref. 18 we introduce three Bose creation

and annihilation operators for each sit¢,i.e., e/ g for the 1000 :

empty state an¢|TU ,P1, for the single occupied states, which
act as projectors onto the corresponding electronic states at
sitel, as well as fermion operatofég andf,,. They satisfy

the completeness relation and the projector condition

ele+ pﬁpw pﬂpu =1,

fITO'fltT: plTo'pla" (13)

In physical subspace the operatfiris){I10| and|l0){lo| are
replaced byz/ f andf,,Z,,, respectively, so that the ma-

lo

FIG. 2. (a) Entropy, (b) specific heat, anfc) susceptibility as a
function of T for the single-slave-boson formulation in a mean field.
The curves are foN,=18,N=11,V=0.2, spacing between energy
levels of extended state%=0.2, ande;= —1.0. This corresponds
to an effective mass enhancement of about 600. The insets show the
low-temperature behavior.

trix elements are invariant in the combined fermion-boson

Hilbert space. The definition of the operatafs, is not

unique, and we choose the same expression as in Refs. 7, Mhich yields the correct matrix elements, and for the Hub-

18, and 19, i.e.,
)71/2
(14

Z|O': (1_ pl‘ra'plo)illze;rplo’(l_ e|TE| - plea'p|fa'

bard and Anderson models with finitéthe correct expecta-
tion value of(Z] Z,,) within the mean-field approximation
asU—0.

The constraints, Eq$13), are incorporated via Lagrange
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multipliers A\(*) and\(?), respectively, and the Hamiltonian

lo
in auxiliary space reads F=—T I{1+ex—(Z,,—w)/TIH+NAB(e?-1)

lao
Hop=20 €clyCigt 2 (et M)l f1, FND AD-\®)p2+ uN,, (20)
whereNg is again the number of electrons.

The parameters ™), \{?), p_, e, andu are obtained by
minimizing the free energy with respect to these parameters,

+VE (Clof|UZ|U+Z|Uf CIo’)

+§|: hf”(efeﬁpﬁpw phpu—l) ez+p%+pf=
1 Z;
)\(2) .- 15 2_ iaoc ™
2 PisP ( ) P, N % a — Azm- f( |a(r)
This slave-boson formulation is exact if confined to the 2 2
; Cia ; Lt 1 azZs v
physical subspace; i.e., it does not contain approximations AD=_ = E w7 f(2..),
with respect to the original Hamiltoniail). N5 © g2 Az, @7
B. Mean-field approximation 2 \V&
. . o )\(2)_)\(1)_ ——f(Zi ),
In the mean-fieldsaddle-pointapproximation we replace v o ap(, Zi tao!
all boson operators by their expectation values. We assume
that all sites are equivalent, i.e., that the Lagrange parameters
do not depend on the inddxand Ne=> f(Ziao), (21)
lao
Ty _ TN\
(Plo) =(Pi)=Ps, (&) =(e)=e, where nowAz,=\(e+\?—¢)?+4722V2. Defining p2

=p2+om and \P=\{P+ g€, with o=+%, the second

<Z o =(Zi5)=2Z, (18 and fourth equations can be rewritten as

The mean-field Hamiltonian is
2 1 Zigg—

pO_ZN “~ a Aziu f(zla(r)s

Himi=2 [€cl ciot (et N f,+VZ(t ¢,

|(7

Z;
E e [N}
)]+ NA D (e? —1)+NZ (AD—\@)p2 . o Az,

Io' io
1 1 1-2om V2
( 7) )\(()Z)Z_WZ —ZAZ (Zlaa')
Hence the main effect of the Lagrange param&l‘é? is to e (1 )
provide a spin-dependent renormalization of thdevel,

which opens the possibility of magnetic order. Note that as in 2 e % A 27
Eq. (7) the Hamiltonian is bilinear in fermion operators, so emT™N “~ ‘7( )2 Az (Ziao)- (22)
that by means of the unitary transformationit can be ex- ) _

pressed in théi} basis. All equatlons except the third of Eq§22) depend only on

The diagonalized mean-field Hamiltonian has eigenvalues:+\{, so that this equation can be used to deternzine
once all other parameters are known. Note #fat does not

1 1 enter physical quantities. There are then five equations to be
Ziag=7 (€ F NP+ €) + > (e + NP~ €)?+4Z5V2, solved self-consistently.

(18)

. C. Magnetic phases in the ground state
wherea= *1, and can be rewritten as g P g

A magnetic phase is characterized by a nonzero magneti-
B t (1)) a2 zationm and a nonzero spin-dependdtevel energy shift
Hme= % ZinoUjaoliast NN (e°—1) €m- We then search for nontrivial solutions of the second and
fourth equations of the sé22). For simplicity we limit our-
selves to the ground state, where the magnetic order is ex-

1 2)\y 12
+ N; (A )_)‘Er ))pg. (19 pected to be most pronounced. At 0 the Fermi functions
are either 0 or 1, which considerably simplifies the calcula-
The free energy is tion. If there is more than one solution of the equations for
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the same parametees andV, then their energy has to be 1.0
compared to see which state is the ground state. The ground- \ Fa ()
state energy is given by

Eas= 2 Ziaof(Ziar) NP +PAP). (23)
Note that the explicit dependence on the chemical potential
and\M has canceled out.

The system of equations always has a paramagnetic solu-
tion for which m=0 and ¢,=0. As a function ofe; the
number of f electrons decreases monotonically, fram
= ZpS approximately 1 to asymptotically 0. For large values
of ¢; the paramagnetic is the only solution, becap§és not
large enough to induce magnetic order in fHeand(mixed
valence regime Note that the paramagnetic phase is mean-
ingless for very negative;, because it corresponds [13
=0.5, i.e.,e?=0. E

As n; increases with decreasing, the discrete levels GS
near to the Fermi level are closer spaced. Under these cir-
cumstances magnetic solutions are possible. They corre-
spond to filling one more up-spin level at the expense of a
down-spin level. Ife; is lowered further, several such solu-
tions may exist; i.e., two or more levels are displaced with ) ) ) . F1, = F1 ]
respect to the paramagnetic solution. The sqution:pi,cmre -1.0 -08 -06 -04 -02 00 02 04
presented in Fig. @). For the present set of parameteks ( ef
=0.2,6e=0.2,N=11, andN.=18) there are four ferromag-
netic phases in addition to the paramagnetic one. They exist FIG. 3. Solution of the self-consistent mean-field equations for
only over a limited range of; . The energy corresponding to the three auxiliary boson formulation @=0 for No=18, N=11,
these five phases is displayed in Figh)3 Several level V=0.2, and spacing between energy levels of extended sfates
crosses and transitions are observed. All transitions involve &0.2. Shown i€a) thef-level population for up and down spins and
jump in the magnetization. A distinction between first- and(b) the energy for the different phases as a functior«f For the
second-order transitions does of course not make sense inpgesent example a paramagnég solution and four ferromagnetic
nanoscale system. Also for a nanosized particle the groundnes(F1, F2, F3, and Pdare found. As a function of; the ground
state energy may have discontinuities. With decreasjripe ~ State changes several times between the paramagnetic and ferro-
sequence of ground-state phases is then from paramagneff@gnetic phases.

(P) to F1 to F2 to P to F3 to P to F4. This phase diagram
refers to this specific nanoparticle, but similar results argpect to the temperature. Since the free energy is minimal
expected for other parameters. o with respect to variational parameters, only the explicit de-

In the limit of a large systenithermodynamic limitthe  pendence off enters and the entropy is just the one of free
presentszgcp))g)lroac_h is closely related_to GutZW|IIer’s_vanatmnafermions with spectrunz; ., as given by Eq(10). The spe-
ansatz,*>* which has been studied as a function of the ific heat is then obtained by numerical differentiation of the

?rb|;al degener?cy. Thde L.T ho' case 1s th{ﬁ most f?v?rta;]ble entropy. At lowT these quantities follow an exponential ac-
or ferromagnetism and with increasirigthe onset of the tivation as for the situation studied in Sec. Il.

magnetic instability is pushed towards lower valuesepf The susceptibility in the P phase as a functioTaind e
Also the characteristic energy scale of the paramagnetic f

phase—i.e., the Kondo temperature—is different from the® an interesting quantity, because it indicates the onset of

traditional T of the single-impurity model. Although _magnetic order with a diyerger)ce. Although Iong.—range order
In(T,./D), whereD is the bandwidth, is proportional to the is a concept not compatible with nanoscale particles, we can

inverse of the exchange coupling, the dependence on tHgrmally expand the free energy close to a transition in pow-

degeneracy is different. This has originally been attributed t§'S Of the magnetizatiom andep,, as in a Ginzburg-Landau
a “lattice enhancement of the Kondo effe@but is now functional. Mean-field exponents are exact in this case. The

believed to be an artifact of the Gutzwiller approximation. leading term is_quadratic in these quan_tities. The transition to
the F1 phasédivergence ofy) is then signaled by the van-
ishing of a determinant. Rather than expanding the free en-
ergy, it is more convenient to expand the magnetization. The
In this subsection we investigate the low-temperature enresult is presented in the Appendix. Note that the expression
tropy and susceptibility in the paramagnetic phase. The emsf the susceptibility, EqAL), is different from Eq(11). The
tropy is obtained by differentiating the free energy with re-reason for this difference is the fact that two of the three

D. Susceptibility
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face effects, although it is believed that atoms close to the
0.025 - boundary of the particle will have different model param-
""""" eters. There are two main differences between a nanopatrticle
and the infinite lattice. First, the electronic energy levels are
0.020 P discrete; i.e., they have finite spacing which depends on the
size of the particle. Consequently the IGwproperties are
exponentially activated. This feature is not qualitatively
0.0151 changed by surface effects. Second, the results depend on the
T parity of N.. If Ng is odd, the ground state is doubly degen-
erate. In this paper we limit ourselves to evep.
0.010 F We employed two different mean-field auxiliary boson
approaches to incorporate the local correlations in fthe
N shells. In Sec. Il a single-slave-boson operator per site was
0.005 | s introduced, which acts as a projector onto thé gonfigu-
ration. In the continuum limit this approach reproduces the
___________ correct Kondo energy scale and provides a good qualitative
0.000 jzzzzzm description of the lowF heavy-fermion lattic&:'° We stud-
703 -02 -0A 0.0 0.1 0.2 ied the entropy, specific heat, and susceptibility at low and
8 intermediatel. The specific heat displays structure due to the
f hybridization gap, which is close to the Fermi level of the
heavy electrons. The crossover from exponential activation

FIG. 4. Transition temperature from the paramagnetic to ferrotg the heavy-electron state occurs at quite bW the sus-
magnetic phases as a functionepf Only a continuous transition is - ceptibility.

considered. The determinant of E@\5) also vanishes along the The exponential activation at loW in the susceptibility

lower branch, but this solution does not correspond to a physical 4 the specific heat corresponds to the same gap. This gap is
situation, because the ferromagnetic phase is stable in that regiop,4,,ced with respect to the energy-level spacing in the host
The cross denotes the end point of the upper branch, but a discoB-y a factorbzzTK/D as a consequence of the “mass en-
tin_uous transition is b(_alieyed to set in already before reaching thi%ancement.” The intérplay of the Kondo temperature with
point. Parameters as in Fig. 3. the mean-level spacing in the host yields then a new energy
- @) L scale. This contrasts the behavior of an isolated impurity
auxiliary bosons, as well as,”’, have a nontrivial field de-  empedded into a metallic nanoparticle for which the spin and
pendence, in contrast to the one-slave-boson approach @ﬁarge gaps are renormalized differently.
Sec. Il. N S __ The mean-field approximation of the single-slave-boson
The necessary condmorj for a Fhvergmg susceptibility isfgrmulation always favors the paramagnetic phase. To
that the determinant associated with the2Zsystem of Egs.  jhyestigate possible ferromagnetic phases we have to intro-
(A5) vanishes. The result for this condition in thiee; plane  gyce as well projectors onto the states of tHé donfigura-
is shown in Fig. 4. The susceptibility refers to the paramagtion, On the lattice—i.e., in the thermodynamic limit—this
netic phase and this expansion only is meaningful if the magapproach is equivalent to Gutzwiller’s approximatidi2:
netization disappears continuously at the P-F boundary; i.ewhich yields a characteristic energy scale different from the
if the magnetization jumps to zerg,does not diverge. This {raditional Kondo temperatufé&?° This approach tends to
is believed to happen fo¢; less than—0.15 in Fig. 4. The  gyerestimate magnetic order. We obtain several ferromag-
cross indicates the point whepeno longer diverges. The netic phases, which are associated with the crossing of the
lower branch of theT (;) curve does not have physical sig- Fermi level by individual levels. As a function of tiidevel
niﬁcance, because it takes place in the region where the F1 @rnergy a rich ground_state phase diagram is obtained this
F2 phases are the stable ones. . way. The transition from the paramagnetic to the first ferro-
The remainder of the phase diagram at finlités rather  magnetic state is signaled by a diverging susceptibility at the
tedious to obtain because the magnetization is expected {pansition temperature. However, most transitions between
have several discontinuous transitions until it reaches thghases are discontinuous. In the thermodynamic limit, also a
paramagnetic state. Moreover, the many-slave-boson apfiscontinuous transition from the paramagnetic to ferromag-
proaches usually overemphasize the phases with magnetigtic ground state is obtained whepis lowered'®
order, since the mean field suppresses quantum and thermal For simplicitly we have limited ourselves to study a rela-
fluctuations. It is then difficult to get a reliable finifephase tively small metallic particle. However, we do not expect

diagram without using in addition other criteria. qualitative changes to occur with increasing size of the clus-
ter, so that the formation of the heavy-fermion state can be
V. CONCLUSIONS studied as a function of the size of the particle. It would also

be interesting to experimentally investigate these nanopar-

We studied the low-temperature and magnetic propertieicles via electron spin resonance in or close to the ferromag-
of a nanosized heavy-fermion particle described in terms ohetic phases. The electromagnetic field induces spin flips,
the Anderson model. For simplicity we have neglected surwhich correspond to transitions between the different ferro-
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magnetic states. An advantage of the small size is that mag- 1 f(zlw

non relaxation is very limited, so that the ESR linewidths are 1:N E Az

expected to be narrow and the resonances well defined. e '
Finally, we would like to address the validity of the mean-

field approaches. At the beginning of Sec. Il B we listed _i S o f(Ziao)

some models that have successfully been solved using the 2_N o (Az,)®

single-slave-boson formulatidhi}*Here the criteria to deter- 7

mine success are comparisons with results from other meth- 1 (z

ods, e.g., the Bethe ansatz for integrable impurity models and As=— > a '“‘T 2 (20 o—

approximate methods such as the noncrossing diagram ap- N (Az .,,)3

proximation(NCA), diagram summations, etc. It is more dif-

ficult to determine the reliability of the mean field in the 1 f(Zi o)

three-slave-boson formulation, but similar variants have been A=y > a SH [Ziar o€l (A3)

applied to numerous other problefdfs’’ including Kondo e (AZiy)"a

insulators” Fluctuations, neglected in the mean-field ap-ng

proach, are less controlled in finite-size systems and it is hard

to provide a quantitative estimate of the error. However, ch(z,,)

based on the previous experience with slave-boson mean- 2 @R

field approaches, we expect our results to be correct not only '

qualitatively, but also quantitatively reliable.
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APPENDIX B“:NE @ — ' !

AZiu’ ,
In the paramagnetic phase the magnetization is obtained

by differentiating the free energy with respect to the external 1 (Zi wo— €)%Ch(Zi 1)

magnetic field. We consider here the situatigg=g; for Bszﬁ 2 >

which the magnetization is a conserved quantiiy, " (A7)
2i400f(Zi4o—0oH). The zero-field susceptibility is now where ch(z;,,)={2 costi(z,—w)/2T]} "2, we have with

, (Ad)

given by X=V2e?/(1— p(r)z
2
Y= 1 g —o'&zia(,/&H ' (Al) (9)\57_2) :UXE_X A E (7)\572)

T ao {2 cosl(z .o — p)/2T]}? oH T 3T ) Tom
wheredul/dH is zero becausg is even inH. It is straight- XA B,\ | ap?
forward to see that + 1 —XZ( A+ 2| | =<

2 2 '
(1-p3) T/|H
Ziny  Ziao™ € N 2v2  e?  9p?
H %Az, H YRz, (1-p2r H’ Py By Bs| N[ Bs|9Ps
(A2) H 7T 47T ) oH 3TT ) oH

. . . A
where we used the fact thaf is even in the field, buk® (A5

andp? have a linear component i, which is obtained by ~The solution of this system of two equations with two un-

differentiating the second and fourth of Eq&1) with re-  knowns @pf,/aH and &Aff)/aH) yields the susceptibility.

spect to the field. The necessary condition for a divergent susceptibility is that
Defining the determinant vanish.
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