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Magnetic and thermal properties of nanoscale heavy-fermion particles
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The heavy-fermion state in some rare-earth and actinide compounds arises from a hybridization of extended
conduction states with strongly correlated localizedf states. The properties of the heavy fermions are those of
a Fermi liquid with small Fermi energy of the order ofTK . In nanosized particles, however, the conduction
states have discrete energy levels and the energy spacing leads to an additional energy scale that competes with
the Kondo temperature. A small heavy-fermion particle is considered, described by the Anderson model in the
U→` limit, so that only two electronic configurations—namely,f 0 and f 1—are allowed. A mean-field ap-
proximation with one slave boson perf site is used to study the susceptibility, the entropy, and the specific heat
at low temperatures. All quantities increase rapidly withT as a consequence of exponential activations due to
the discreteness of the energy spectrum until the heavy-electron state is formed. The possibility of ferromag-
netic order is investigated using the formulation of Kotliar and Ruckenstein in terms of three auxiliary bosons
per site. The mean-field approximation yields several possible magnetic phases for the ground state as a
function of thef-level position. In the strongly mixed-valent regime the transition from the paramagnetic to the
ferromagnetic phase is signaled as a function of temperature by a diverging susceptibility. It is concluded that
the thermal and magnetic properties of very small heavy-fermion particles are quite different from those of
bulk heavy-fermion material.

DOI: 10.1103/PhysRevB.65.024431 PACS number~s!: 75.20.Hr, 75.30.Mb, 75.75.1a, 73.22.2f
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I. INTRODUCTION

Heavy-fermion systems at low temperatures and a
function of magnetic field, pressure, or alloying may show
variety of phenomena, such as unconventional supercon
tivity, antiferromagnetism, ferromagnetism, quadrupolar
der, non-Fermi-liquid properties, or just enhanced param
netism, all believed to arise from the band of hea
electrons. The origin of heavy electrons is the competit
and interplay of strong local atomiclike Coulomb forces w
the solid-state effects of the conduction band and the hyb
ization, which give rise to a 4f or 5f Kondo-like resonance
at the Fermi level.

In small metallic clusters the spacing of the energy sta
is determined by the finite size of the system. The discre
ness of the energy spectrum has dramatic consequence
the low-temperature properties.1 For a spherical metallic par
ticle the electron states are described by a shell model.2 Pos-
sible choices of the confining potential are the thre
dimensional harmonic potential, the infinite square well,
interpolations thereof, all yielding similar results: i.e., d
crete energy levels. For the infinite square well the wa
function is given by the product of a spherical Bessel fu
tion and a spherical harmonic. The condition that the wa
function vanish at an infinite wall yields the relatio
j l(kn

( l )R)50, whereR is the radius of the sphere,l is the
angular momentum, andn51,2, . . . labels the zeros of the
Bessel function in increasing order. The energy of the sta
is then given byEl ,n5(\kn

( l ))2/(2m* ), with m* being the
effective mass. Due to the spherical symmetry, the ene
does not depend on the quantum number for the projectio
the angular momentummz , but this degeneracy is lifted fo
other shapes or symmetries. With increasing energy the
quence of states is then 1s, 1p, 1d, 2s, 1f , 2p, etc., with
0163-1829/2001/65~2!/024431~10!/$20.00 65 0244
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the degeneracy given by the orbital and spin angular m
menta. The shell model gives rise tomagic numberswhen a
shell is filled, which has been verified experimentally.1 The
energy spacing is proportional toR22 ~for the infinite square
well! and decreases rapidly in the macroscopic limit. F
nanoscales the discreteness of the levels is a fundam
property.

In this paper we study the low-temperature behavior o
nanosized heavy-electron system. The main difference w
the standard heavy-fermion lattice is that the energy sp
trum of the conducting states is now discrete. The phys
involved is not expected to be very sensitive to the details
this discrete spectrum, so that for simplicity we choose
levels as nondegenerate~except for the spin! and with equal
energy spacings. We assume that the correlated local
states correspond to the 4f 0 and 4f 1 configurations~e.g., Ce
ions or alternately Yb ions if electrons and holes are int
changed! with the energy of thef level independent of the
position of the ion within the particle. In principle, thef-level
energy and the valence of the rare-earth ions are expecte
be somewhat different for atoms close to the surface of
cluster. In other words, for simplicity we neglect these s
face effects and assume in addition that the hybridizat
between the correlatedf states and the conduction states
the same at every site. Due to the low crystalline field sy
metry, we assume that the 4f 1 states can be characterized b
a doublet. The Hamiltonian of the system is then

H5(
is

e icis
† cis1e f(

ls
u ls&^ lsu

1V(
ls

~cls
† u l0&^ lsu1u ls&^ l0ucls!, ~1!
©2001 The American Physical Society31-1
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P. SCHLOTTMANN PHYSICAL REVIEW B 65 024431
where i and l label the conduction states and the rare-ea
sites in the cluster, respectively. Hereu ls& denotes a 4f 1

state of spins at the sitel and u l0& the corresponding 4f 0

state. Thef states satisfy at every site the completeness c
dition

(
s

u ls&^ lsu1u l0&^ l0u51. ~2!

The two sets of basis states$i% and $l% are orthonormal and
related to each other by a unitary transformationŨ. The
many-body aspect of the problem is hidden in the commu
tion relations of the bra and ket states, which represent
related electrons (U→`) and are not free fermions.

In Sec. II we rewrite the Hamiltonian in terms of on
slave boson per site.3 Slave bosons correspond to an exa
reformulation of the problem and are very suitable for
mean-field treatment of the correlations. In particular,
single-slave-boson approach provides an adequate des
tion of the paramagnetic phase. We discuss the lo
temperature entropy, specific heat, and magnetic suscep
ity, which show an exponential activation due to t
discreteness of the energy spectrum. The energy eigenva
are renormalized by the hybridization and the slave boso
and this energy spacing is much smaller than that of the h
At temperatures higher than the spacing the heavy-elec
state is recovered. In Sec. III we reinvestigate the prob
within a three-auxiliary-boson approach. The slave bos
act as projectors onto the respective states of the 4f 0 and 4f 1

configurations. Within the mean-field approximation w
study the possibility of magnetic order. Due to the discre
ness of the energy spectrum, the spin-up and spin-down
els can individually be pulled through the Fermi level, so th
numerous magnetic phases~in addition to the paramagneti
one! can be obtained as a function ofe f . The transition from
the paramagnetic phase to the first magnetically orde
phase is also studied as a function of temperature. Con
sions are presented in Sec. IV.

The Kondo effect in an ultrasmall metallic grain has be
studied previously using the noncrossing diagram appr
mation within the framework of an Anderson impurity.4 It
was found that the Kondo resonance is strongly affec
when the mean level spacing is comparable toTK and it also
depends on the parity of the number of electrons.
Anderson-like impurity model in a finite-size system w
also studied by Buttiker and Stafford5 in the context of tun-
neling into a quantum dot embedded or as a side branch
small metallic ring. These situations refer to impurities
nanoscale particles, whereas in the present paper we stu
small heavy-fermion particle: i.e., the analog of the Anders
lattice in a large system.

Exponential activations of thermodynamic and transp
properties are also observed in so-called Kondo insulat
The indirect narrow gap in these semiconductors arises f
the coherent hybridization of thef levels with the conduction
states. The gap is of the order ofTK and essentially indepen
dent of the system size. Its origin and nature are entir
different from the finite-size gaps in a nanoscale meta
02443
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particle. Kondo insulators have been intensively studied w
the same methods employed in this paper.6,7

II. PARAMAGNETIC PHASE

A. Single-slave-boson formulation

We introduce slave-boson creation and annihilat
operators3 bl

† and bl , which act as projectors onto the 4f 0

configuration at sitel, and fermion operators for the 4f 1

states at sitel , f ls
† , and f ls . The completeness relatio

equivalent to the condition~2! is now3

(
s

f ls
† f ls1bl

†bl51. ~3!

Transitions between configurations are described by the
eratorsu l0&^ lsu5bl

†f ls . The Hamiltonian in auxiliary space
is given by

Hb5(
is

e icis
† cis1e f(

ls
f ls

† f ls

1V(
ls

~cls
† bl

†f ls1 f ls
† blscls!, ~4!

subject to the constraint~3!, which restricts the model to the
physical subspace. The above slave-boson formulation is
act; i.e., it does not contain approximations with respect
the original Hamiltonian~1!.

B. Mean-field approximation

We now study Hamiltonian~4! subject to the constrain
~3! in the mean-field approximation. The mean-field appro
mation for the slave-boson formulation has given relia
results for several many-body systems, e.g., the degene
Anderson model~mixed-valent Ce and Yb ions! for the
single-impurity,8 the two-impurity,9 and the Anderson
lattice9,10 problems. The auxiliary boson saddle-point a
proximation is related to a 1/Nf expansion, whereNf is the
degeneracy of the localized states. In particular, the me
field solution of the Anderson impurity problem was found
be in good quantitative agreement with the exact Bethe
satz solution even for relatively small degeneracies.11 A simi-
larly good quantitative agreement with the exact Bethe
satz solution was obtained for an isolated Mn impur
embedded into a spin-polarized lattice and for the gen
case with the noncrossing diagram approximation~see Ref.
12!. The correct sequence of magnetic phases was also
tained for manganites within this approach.13 From the above
examples it is known that the mean-field approximation m
introduce spurious phase transitions as a function of te
perature, but does provide reliable results for the grou
state in the absence of large degeneracy lifting fields. I
then expected that the slave boson mean-field approach
also render reliable results for a nanoscale heavy-ferm
particle.
1-2
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MAGNETIC AND THERMAL PROPERTIES OF . . . PHYSICAL REVIEW B 65 024431
In the mean-field~saddle-point! approximation8 boson op-
erators are replaced by their expectation values. Assum
that all rare-earth sites have the same valence we have^bl&
5^bl

†&5b for all l. The constraint~3! is incorporated via
Lagrange multipliersl l , which are independent of the sit
index because all sites are assumed to have the same va
The Hamiltonian is now bilinear in operators and it
straightforward to rewrite it in the basis$i% using the unitary
transformationŨ, relating the basis states$i% and $ l %. The
mean-field Hamiltonian is then diagonal in the indexi and
has the form

Hm f5(
is

@e icis
† cis1~e f2l! f is

† f is1Vb~ f is
† cis1cis

† f is!#

1Nl~12b2!, ~5!

whereN is the number of sites.
The mean-field Hamiltonian can be diagonalized for ea

i and has eigenvalues

zias5
1

2
@e f2l1e i1aA~e f2l2e i !

214b2V2#, ~6!

wherea561. Denoting withdias
† anddias the creation and

annihilation operators for the eigenstates we have

Hm f5(
ias

ziasdias
† dias1Nl~12b2!. ~7!

The free energy of the system is given by

F52T(
ias

ln$11exp@2~zias2m!/T#%

1Nl~12b2!1mNe , ~8!

wherem is the chemical potential andNe is the number of
electrons.

The minimization of the free energy with respect tob, l,
and m yields three transcendental equations which s
consistently determine these three parameters,

l5
1

N (
ias

a
V2

Dzis
f ~zias!,

12b25
1

N (
ias

a
zias2e i

Dzis
f ~zias!,

Ne5(
ias

f ~zias!, ~9!

where f (zias) denotes the Fermi function andDzis

5A(e f2l2e i)
214b2V2 is the difference betweenzias

with a511 anda521.
The strategy used to solve these equations is the foll

ing. Note that the second and third equations only depend
02443
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e f2l but not on these parameters separately. The first eq
tion can then be used to determinee f as a function ofb,
e f2l, and m. The third equation determines the chemic
potential for fixedb and e f2l. We then varyb for given
e f2l ~adjustingm for each case! until the second equation i
satisfied. As mentioned above the first equation then de
minese f andl as a function ofe f2l.

C. Results

The above equations considerably simplify for the grou
state, because the Fermi functions are either equal to 0 o
We assume that the number of electrons,Ne , is smaller than
2N, so that the states of the upper band with energieszias

for a511 are not occupied. Depending on whetherNe is
even or odd the ground state is a singlet or doubly dege
ate. We limit ourselves to discuss the situation of evenNe .
The spectrum is discrete so that the Fermi level then
between energy levels. The level spacing in the neighb
hood of the Fermi level forNe close to 2N is much smaller
than that of the conduction states, as a consequence o
relatively small effective hybridizationVb. This strongly re-
duced energy gap is the precursor to the heavy-fermion s
Consequently, the entropy and the specific heat are expo
tially activated~Arrhenius law involving this reduced gap! at
very low temperatures.

For the ground-state magnetization we have to distingu
two situations. In general there are two gyromagnetic fact
involved: namely,ge for the extended states andgf for the f
states. If ge5gf , spin conservation implies that also th
magnetization is a conserved quantity, so that the zero-fi
susceptibility is zero. As a function of temperature the s
ceptibility is exponentially activated, similarly to the specifi
heat. If geÞgf , on the other hand, the magnetization is n
conserved and the ground-state susceptibility is finite. T
finite x arises from van Vleck admixtures of excited stat
into the ground state as a function of field. In the Kondo lim
the van Vleck susceptibility is in general rather small a
below we limit ourselves to discuss the situationge5gf .

The entropy is obtained by differentiating the free ener
with respect toT. The free energy has an explicit and implic
temperature dependence, the latter through the s
consistently determined parametersb, l, and m. However,
since the free energy is minimal with respect to these th
parameters, only the explicit dependence needs to be con
ered. We then have that

S5(
ias

H ln$11exp@2~zias2m!/T#%1
zias2m

T
f ~zias!J ,

~10!

which is just the entropy of free fermions with renormaliz
spectrumzias . The expression for the specific heat is mo
involved because now the implicitT dependences ofb, l,
andm have to be considered. It is then more convenien
obtain the specific heat by numerical differentiation of t
entropy.
1-3
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P. SCHLOTTMANN PHYSICAL REVIEW B 65 024431
For ge5gf the susceptibility is

x5
1

4T (
ias

$2 cosh@~zias2m!/2T#%22, ~11!

and is obtained by differentiatingF with respect to the field
twice. The free energy again has an explicit, the Zeem
splitting, and implicit magnetic field dependences. The
rivative of the free energy with respect to the implicit depe
dence vanishes becauseF is minimal with respect tob, l,
andm, and these three quantities are all even functions of
field. The expression~11! then just corresponds to the Ze
man splitting of the energy levels.

In Fig. 1 we present our numerical results fore f520.5,
V50.2, and a spacing of the extended states ofde50.2, N
511, andNe518. The entropy grows monotonically withT,
showing the characteristic exponential activation due to
finite size of the system. The dominant gap is much sma
than the level splittingde of the conduction states. For
large system the characteristic Kondo energy scale~in units
of the bandwidth! is given byb2. For the present example a
low T we obtainb250.0882, which would correspond to
mass enhancement of about 11. The inset shows the en
at very lowT. The specific heat is displayed in Fig. 1~b! for
the same parameters and shows an explicit peak struc
which arises from the hybridization gap between thezias

bands witha511 and a521. For T.0.005 the heavy-
electron state is already formed, sinceT is larger than the
spacing between levels. The exponential activation at lowT
is seen in the inset. The susceptibility is presented in F
1~c!. On the one hand, the exponential behavior is obser
at low T, while, on the other hand, forT.0.0004 the heavy-
electron states have already developed—i.e., at aT much
lower than is seen in the specific heat. The main differenc
that the derivative of the implicitT dependence ofb, l, and
m enters the specific heat, but not the susceptibility.

The same quantities are shown in Fig. 2 for the same
of parameters except thate f521.0. This gives rise to a
smaller Kondo temperature and hence to heavier mas
Here b250.001 63, which would correspond to a mass e
hancement of 600 in the bulk. The exponential activation
low T is seen in all three quantities, but on a smaller ene
scale. The specific heat shows low-T structures for the sam
reasons as in Fig. 1~b! and also the susceptibility has rough
the same behavior as in Fig. 1~c!.

D. Competition of the level spacing and Kondo temperature

The gaps dominating the low-temperature specific h
and susceptibility are much smaller than the spacing of
energy levels of the host,de. Let us first point out that the
spin gap and the charge gap are equal as is expected fr
band picture. This is analogous to Kondo insulators~gaps are
difficult to measure because of impurity and intrinsic bou
states in the gap!, but drastically different from impurities
~Kondo and Anderson! in nanosized clusters, where the sp
gaps dominate the low-T specific heat and susceptibility. I
02443
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the impurity case, we have to distinguish in addition betwe
spin gaps for spin-singlet~specific heat! and spin-triplet~sus-
ceptibility! excitations.

After hybridizing thef states with the conduction state
the spacing between the levels~we assume here that th

FIG. 1. ~a! Entropy,~b! specific heat, and~c! susceptibility as a
function ofT for the single-slave-boson formulation in a mean fie
The curves are forNe518,N511,V50.2, spacing between energ
levels of extended statesde50.2, ande f520.5. This corresponds
to an effective mass enhancement of 11. The insets show the
temperature behavior.
1-4
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MAGNETIC AND THERMAL PROPERTIES OF . . . PHYSICAL REVIEW B 65 024431
Fermi level lies betweenzias and zi 11as with a521) at
the Fermi energy is

dzias5zi 11as2zias'
de

2 F12
e i1l2e f

Dzis
G

'de
V2b2

~e f2l2e i !
2
'deb2. ~12!

Hence, the gap of the heavy electrons is reduced by a fa
of b2'TK /D with respect to the original gap of the host. F
the example in Fig. 1~small mass enhancement! the reduc-
tion is approximately one order of magnitude, and for t
example in Fig. 2~small TK) the reduction is about 600
times.

Obviously the low-energy excitation spectrum also d
pends on the parity of the number of electrons. For an
number of electrons the ground state is always a doublet
not a singlet as for an even number of electrons in the
sence of long-range magnetic order.

III. FERROMAGNETIC PHASES

A. Formulation with three slave bosons per site

In order to study the formation of magnetic phases a
ferent approach with three slave bosons per site has to
employed. The single auxiliary boson projects onto the n
magnetic 4f 0 configuration and a mean-field approximatio
is not favorable to magnetic order. We use here theU→`
variant of Kotliar and Ruckenstein’s14 formulation. Origi-
nally the method was conceived to investigate the Hubb
model with finite U with four auxiliary bosons projecting
onto the empty, doubly occupied, and singly occupied lev
with up and down spin, respectively. This technique w
later applied to a model for highly correlated bands of h
bridized Cu 3d and O 2p orbitals15,16 and the Anderson
lattice.7 The slave-boson approach has also been formul
with spin-rotational invariance,17 but this does not affect the
mean-field results.

In analogy to Ref. 18 we introduce three Bose creat
and annihilation operators for each site,7,14 i.e., el

† ,el for the
empty state andpls

† ,pls for the single occupied states, whic
act as projectors onto the corresponding electronic state
site l, as well as fermion operatorsf ls

† and f ls . They satisfy
the completeness relation and the projector condition

el
†el1pl↑

† pl↑1pl↓
† pl↓51,

f ls
† f ls5pls

† pls . ~13!

In physical subspace the operatorsu ls&^ l0u andu l0&^ lsu are
replaced byZls

† f ls
† and f lsZls , respectively, so that the ma

trix elements are invariant in the combined fermion-bos
Hilbert space. The definition of the operatorsZls is not
unique, and we choose the same expression as in Refs. 7
18, and 19, i.e.,

Zls5~12pls
† pls!21/2el

†pls~12el
†el2pl 2s

† pl 2s!21/2,
~14!
02443
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14,which yields the correct matrix elements, and for the Hu
bard and Anderson models with finiteU the correct expecta
tion value of^Zls

† Zls& within the mean-field approximation
asU→0.

The constraints, Eqs.~13!, are incorporated via Lagrang

FIG. 2. ~a! Entropy,~b! specific heat, and~c! susceptibility as a
function ofT for the single-slave-boson formulation in a mean fie
The curves are forNe518,N511,V50.2, spacing between energ
levels of extended statesde50.2, ande f521.0. This corresponds
to an effective mass enhancement of about 600. The insets sho
low-temperature behavior.
1-5
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multipliers l l
(1) andl ls

(2) , respectively, and the Hamiltonia
in auxiliary space reads

Hsb5(
is

e icis
† cis1(

ls
~e f1l ls

(2)! f ls
† f ls

1V(
ls

~cls
† f lsZls1Zls

† f ls
† cls!

1(
l

l l
(1)~el

†el1pl↑
† pl↑1pl↓

† pl↓21!

2(
ls

l ls
(2)pls

† pls . ~15!

This slave-boson formulation is exact if confined to t
physical subspace; i.e., it does not contain approximati
with respect to the original Hamiltonian~1!.

B. Mean-field approximation

In the mean-field~saddle-point! approximation we replace
all boson operators by their expectation values. We ass
that all sites are equivalent, i.e., that the Lagrange parame
do not depend on the indexl, and

^pls
† &5^pls&5ps , ^el

†&5^el&5e,

^Zls
† &5^Zls&5Zs . ~16!

The mean-field Hamiltonian is

Hm f5(
is

@e icis
† cis1~e f1ls

(2)! f is
† f is1VZs~ f is

† cis

1cis
† f is!#1Nl (1)~e221!1N(

s
~l (1)2ls

(2)!ps
2 .

~17!

Hence the main effect of the Lagrange parameterls
(2) is to

provide a spin-dependent renormalization of thef level,
which opens the possibility of magnetic order. Note that a
Eq. ~7! the Hamiltonian is bilinear in fermion operators, s
that by means of the unitary transformationŨ it can be ex-
pressed in the$i% basis.

The diagonalized mean-field Hamiltonian has eigenval

zias5
1

2
~e f1ls

(2)1e i !1
1

2
aA~e f1ls

(2)2e i !
214Zs

2V2,

~18!

wherea561, and can be rewritten as

Hm f5(
ias

ziasdias
† dias1Nl (1)~e221!

1N(
s

~l (1)2ls
(2)!ps

2 . ~19!

The free energy is
02443
s

e
rs

n

s

F52T(
ias

ln$11exp@2~zias2m!/T#%1Nl (1)~e221!

1N(
s

~l (1)2ls
(2)!ps

21mNe , ~20!

whereNe is again the number of electrons.
The parametersl (1), ls

(2) , ps , e, andm are obtained by
minimizing the free energy with respect to these paramet

e21p↑
21p↓

251,

ps
25

1

N (
ia

a
zias2e i

Dzis
f ~zias!,

l (1)52
1

N (
ias

a
]Zs

2

]e2

V2

Dzis
f ~zias!,

ls
(2)2l (1)5

1

N (
ias8

a
]Zs8

2

]ps
2

V2

Dzis8

f ~zias8!,

Ne5(
ias

f ~zias!, ~21!

where nowDzis5A(e f1ls
(2)2e i)

214Zs
2V2. Defining ps

2

5p0
21sm and ls

(2)5l0
(2)1sem with s56 1

2 , the second
and fourth equations can be rewritten as

p0
25

1

2N (
ias

a
zias2e i

Dzis
f ~zias!,

m5
2

N (
ias

as
zias2e i

Dzis
f ~zias!,

l0
(2)52

1

2N (
ias

a
122sm

~12ps
2 !2

V2

Dzis
f ~zias!,

em5
2

N (
ias

as
e2

~12ps
2 !2

V2

Dzis
f ~zias!. ~22!

All equations except the third of Eqs.~22! depend only on
e f1l0

(2) , so that this equation can be used to determinee f

once all other parameters are known. Note thatl (1) does not
enter physical quantities. There are then five equations to
solved self-consistently.

C. Magnetic phases in the ground state

A magnetic phase is characterized by a nonzero magn
zation m and a nonzero spin-dependentf-level energy shift
em . We then search for nontrivial solutions of the second a
fourth equations of the set~22!. For simplicity we limit our-
selves to the ground state, where the magnetic order is
pected to be most pronounced. AtT50 the Fermi functions
are either 0 or 1, which considerably simplifies the calcu
tion. If there is more than one solution of the equations
1-6
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the same parameterse f and V, then their energy has to b
compared to see which state is the ground state. The gro
state energy is given by

EGS5(
ias

zias f ~zias!2N~p↑
2l↑

(2)1p↓
2l↓

(2)!. ~23!

Note that the explicit dependence on the chemical poten
andl (1) has canceled out.

The system of equations always has a paramagnetic s
tion for which m50 and em50. As a function ofe f the
number of f electrons decreases monotonically, fromnf

52p0
2 approximately 1 to asymptotically 0. For large valu

of e f the paramagnetic is the only solution, becausep0
2 is not

large enough to induce magnetic order in thef band~mixed
valence regime!. Note that the paramagnetic phase is me
ingless for very negativee f , because it corresponds top0

2

50.5, i.e.,e250.
As nf increases with decreasinge f , the discrete levels

near to the Fermi level are closer spaced. Under these
cumstances magnetic solutions are possible. They co
spond to filling one more up-spin level at the expense o
down-spin level. Ife f is lowered further, several such solu
tions may exist; i.e., two or more levels are displaced w
respect to the paramagnetic solution. The solutions forps

2 are
presented in Fig. 3~a!. For the present set of parametersV
50.2,de50.2,N511, andNe518) there are four ferromag
netic phases in addition to the paramagnetic one. They e
only over a limited range ofe f . The energy corresponding t
these five phases is displayed in Fig. 3~b!. Several level
crosses and transitions are observed. All transitions involv
jump in the magnetization. A distinction between first- a
second-order transitions does of course not make sense
nanoscale system. Also for a nanosized particle the grou
state energy may have discontinuities. With decreasinge f the
sequence of ground-state phases is then from paramag
~P! to F1 to F2 to P to F3 to P to F4. This phase diagr
refers to this specific nanoparticle, but similar results
expected for other parameters.

In the limit of a large system~thermodynamic limit! the
present approach is closely related to Gutzwiller’s variatio
ansatz,18,20,21 which has been studied as a function of t
orbital degeneracyL. The L50 case is the most favorabl
for ferromagnetism and with increasingL the onset of the
magnetic instability is pushed towards lower values ofe f .
Also the characteristic energy scale of the paramagn
phase—i.e., the Kondo temperature—is different from
traditional TK of the single-impurity model. Although
ln(TK /D), whereD is the bandwidth, is proportional to th
inverse of the exchange coupling, the dependence on
degeneracy is different. This has originally been attributed
a ‘‘lattice enhancement of the Kondo effect,’’20 but is now
believed to be an artifact of the Gutzwiller approximation

D. Susceptibility

In this subsection we investigate the low-temperature
tropy and susceptibility in the paramagnetic phase. The
tropy is obtained by differentiating the free energy with r
02443
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spect to the temperature. Since the free energy is mini
with respect to variational parameters, only the explicit d
pendence onT enters and the entropy is just the one of fr
fermions with spectrumzias as given by Eq.~10!. The spe-
cific heat is then obtained by numerical differentiation of t
entropy. At lowT these quantities follow an exponential a
tivation as for the situation studied in Sec. II.

The susceptibility in the P phase as a function ofT ande f

is an interesting quantity, because it indicates the onse
magnetic order with a divergence. Although long-range or
is a concept not compatible with nanoscale particles, we
formally expand the free energy close to a transition in po
ers of the magnetizationm andem , as in a Ginzburg-Landau
functional. Mean-field exponents are exact in this case.
leading term is quadratic in these quantities. The transitio
the F1 phase~divergence ofx! is then signaled by the van
ishing of a determinant. Rather than expanding the free
ergy, it is more convenient to expand the magnetization. T
result is presented in the Appendix. Note that the express
of the susceptibility, Eq.~A1!, is different from Eq.~11!. The
reason for this difference is the fact that two of the thr

FIG. 3. Solution of the self-consistent mean-field equations
the three auxiliary boson formulation atT50 for Ne518, N511,
V50.2, and spacing between energy levels of extended statede
50.2. Shown is~a! the f-level population for up and down spins an
~b! the energy for the different phases as a function ofe f . For the
present example a paramagnetic~P! solution and four ferromagnetic
ones~F1, F2, F3, and F4! are found. As a function ofe f the ground
state changes several times between the paramagnetic and
magnetic phases.
1-7
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P. SCHLOTTMANN PHYSICAL REVIEW B 65 024431
auxiliary bosons, as well asls
(2) , have a nontrivial field de-

pendence, in contrast to the one-slave-boson approac
Sec. II.

The necessary condition for a diverging susceptibility
that the determinant associated with the 232 system of Eqs.
~A5! vanishes. The result for this condition in theT-e f plane
is shown in Fig. 4. The susceptibility refers to the param
netic phase and this expansion only is meaningful if the m
netization disappears continuously at the P-F boundary;
if the magnetization jumps to zero,x does not diverge. This
is believed to happen fore f less than20.15 in Fig. 4. The
cross indicates the point wherex no longer diverges. The
lower branch of theT(e f) curve does not have physical sig
nificance, because it takes place in the region where the F
F2 phases are the stable ones.

The remainder of the phase diagram at finiteT is rather
tedious to obtain because the magnetization is expecte
have several discontinuous transitions until it reaches
paramagnetic state. Moreover, the many-slave-boson
proaches usually overemphasize the phases with mag
order, since the mean field suppresses quantum and the
fluctuations. It is then difficult to get a reliable finite-T phase
diagram without using in addition other criteria.

IV. CONCLUSIONS

We studied the low-temperature and magnetic proper
of a nanosized heavy-fermion particle described in terms
the Anderson model. For simplicity we have neglected s

FIG. 4. Transition temperature from the paramagnetic to fe
magnetic phases as a function ofe f . Only a continuous transition is
considered. The determinant of Eq.~A5! also vanishes along th
lower branch, but this solution does not correspond to a phys
situation, because the ferromagnetic phase is stable in that re
The cross denotes the end point of the upper branch, but a dis
tinuous transition is believed to set in already before reaching
point. Parameters as in Fig. 3.
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face effects, although it is believed that atoms close to
boundary of the particle will have different model param
eters. There are two main differences between a nanopar
and the infinite lattice. First, the electronic energy levels
discrete; i.e., they have finite spacing which depends on
size of the particle. Consequently the low-T properties are
exponentially activated. This feature is not qualitative
changed by surface effects. Second, the results depend o
parity of Ne . If Ne is odd, the ground state is doubly dege
erate. In this paper we limit ourselves to evenNe .

We employed two different mean-field auxiliary boso
approaches to incorporate the local correlations in thf
shells. In Sec. II a single-slave-boson operator per site
introduced, which acts as a projector onto the 4f 0 configu-
ration. In the continuum limit this approach reproduces
correct Kondo energy scale and provides a good qualita
description of the low-T heavy-fermion lattice.9,10 We stud-
ied the entropy, specific heat, and susceptibility at low a
intermediateT. The specific heat displays structure due to t
hybridization gap, which is close to the Fermi level of th
heavy electrons. The crossover from exponential activa
to the heavy-electron state occurs at quite lowT in the sus-
ceptibility.

The exponential activation at lowT in the susceptibility
and the specific heat corresponds to the same gap. This g
reduced with respect to the energy-level spacing in the h
by a factorb25TK /D, as a consequence of the ‘‘mass e
hancement.’’ The interplay of the Kondo temperature w
the mean-level spacing in the host yields then a new ene
scale. This contrasts the behavior of an isolated impu
embedded into a metallic nanoparticle for which the spin a
charge gaps are renormalized differently.

The mean-field approximation of the single-slave-bos
formulation always favors the paramagnetic phase.
investigate possible ferromagnetic phases we have to in
duce as well projectors onto the states of the 4f 1 configura-
tion. On the lattice—i.e., in the thermodynamic limit—th
approach14 is equivalent to Gutzwiller’s approximation,20,21

which yields a characteristic energy scale different from
traditional Kondo temperature.18,20 This approach tends to
overestimate magnetic order. We obtain several ferrom
netic phases, which are associated with the crossing of
Fermi level by individual levels. As a function of thef-level
energy a rich ground-state phase diagram is obtained
way. The transition from the paramagnetic to the first fer
magnetic state is signaled by a diverging susceptibility at
transition temperature. However, most transitions betw
phases are discontinuous. In the thermodynamic limit, als
discontinuous transition from the paramagnetic to ferrom
netic ground state is obtained whene f is lowered.18

For simplicitly we have limited ourselves to study a rel
tively small metallic particle. However, we do not expe
qualitative changes to occur with increasing size of the cl
ter, so that the formation of the heavy-fermion state can
studied as a function of the size of the particle. It would a
be interesting to experimentally investigate these nano
ticles via electron spin resonance in or close to the ferrom
netic phases. The electromagnetic field induces spin fl
which correspond to transitions between the different fer

-

al
on.
n-

is
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magnetic states. An advantage of the small size is that m
non relaxation is very limited, so that the ESR linewidths a
expected to be narrow and the resonances well defined.

Finally, we would like to address the validity of the mea
field approaches. At the beginning of Sec. II B we list
some models that have successfully been solved using
single-slave-boson formulation.8–13Here the criteria to deter
mine success are comparisons with results from other m
ods, e.g., the Bethe ansatz for integrable impurity models
approximate methods such as the noncrossing diagram
proximation~NCA!, diagram summations, etc. It is more di
ficult to determine the reliability of the mean field in th
three-slave-boson formulation, but similar variants have b
applied to numerous other problems,14–17 including Kondo
insulators.7 Fluctuations, neglected in the mean-field a
proach, are less controlled in finite-size systems and it is h
to provide a quantitative estimate of the error. Howev
based on the previous experience with slave-boson m
field approaches, we expect our results to be correct not
qualitatively, but also quantitatively reliable.
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APPENDIX

In the paramagnetic phase the magnetization is obta
by differentiating the free energy with respect to the exter
magnetic field. We consider here the situationge5gf for
which the magnetization is a conserved quantity,M
5( iass f (zias2sH). The zero-field susceptibility is now
given by

x5
1

T (
ias

s22s]zias /]H

$2 cosh@~zias2m!/2T#%2
, ~A1!

where]m/]H is zero becausem is even inH. It is straight-
forward to see that

]zias

]H
5a

zias2e i

Dzis

]ls
(2)

]H
1a

2V2

Dzis

e2

~12ps
2 !2

]ps
2

]H
,

~A2!

where we used the fact thate2 is even in the field, butls
(2)

andps
2 have a linear component inH, which is obtained by

differentiating the second and fourth of Eqs.~21! with re-
spect to the field.

Defining
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A15
1

N (
ia

a
f ~zias!

Dzis
,

A25
1

N (
ia

a
f ~zias!

~Dzis!3
,

A35
1

N (
ia

a
f ~zias!

~Dzis!3 (
a8

@zia8s2e i #,

A45
1

N (
ia

a
f ~zias!

~Dzis!3)
a8

@zia8s2e i #, ~A3!

and

B15
1

N (
ia

a
ch~zias!

Dzis
,

B25
1

N (
ia

ch~zias!

~Dzis!2
,

B35
1

N (
ia

~zias2e i !ch~zias!

~Dzis!2
,

B45
1

N (
ia

a
~zias2e i !ch~zias!

Dzis
,

B55
1

N (
ia

~zias2e i !
2ch~zias!

~Dzis!2
, ~A4!

where ch(zias)5$2 cosh@(zias2m)/2T#%22, we have with
X5V2e2/(12ps

2)2

]ls
(2)

]H
5sX

B1

T
2XS A31

B3

T D ]ls
(2)

]H

1F 2XA1

~12ps
2 !

2X2S 2A21
B2

T D G]ps
2

]H
,

]ps
2

]H
5s

B4

T
2S 2A41

B5

T D ]ls
(2)

]H
2XS A31

B3

T D ]ps
2

]H
.

~A5!

The solution of this system of two equations with two u
knowns (]ps

2/]H and ]ls
(2)/]H) yields the susceptibility.

The necessary condition for a divergent susceptibility is t
the determinant vanish.
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