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Transition temperature and magnetoresistance in double-exchange compounds
with moderate disorder
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We develop a variational mean-field theory of the ferromagnetic transition in compounds like lanthanum-
manganite within the framework of the double-exchange model supplemented by modest disorder. We obtain
analytical expressions for the transition temperature, its variation with the valence electron density, and its
decrease with disorder. We derive an expression for the conductivity for both the paramagnetic and the
ferromagnetic metallic phases, and study its dependence on the temperature and magnetic field. A simple
relation between the resistivity in the ferromagnetic phase and the spontaneous magnetization is found. Our
results are in a good agreement with the experimental data on transition temperatures and resistivity in the
manganite compounds with relatively small disorder. We comment on the effects of increased disorder.

DOI: 10.1103/PhysRevB.65.024429 PACS number~s!: 75.30.Kz, 72.15.Gd, 75.30.Vn
e

-

er
em
re
ge
et

ch
th
ll

k

-
te

a-
in

e
ss
g-
e
an
m
e

i
y
y

S

of
one
ese

r of

for
into
ller

nd

a

ble-
o the
ag-
ran-
rge
the
-
ical
s-
ults
tiv-
her
er,
n-

the
al

en-
e
ly

s

I. INTRODUCTION

Interest has revived recently in the perovskite mangan
oxidesA12xBxMnO3 ~whereA is a trivalent andB is a triva-
lent atom!, which were first investigated in the 1950s.1 As
the dopingx and the temperatureT are varied, these manga
nese oxides show a rich variety of phases.2 Particularly in-
teresting is the doping region 0.1&x&0.3, where the com-
pounds undergo a transition from either insulating or v
high resistance metallic, paramagnetic phase at high t
peratures to a ferromagnetic phase at low temperatu3

Near the transition, the resistivity of the compounds chan
by orders of magnitude. The application of a strong magn
field substantially reduces this effect, thus giving rise to
very large negative magnetoresistance. The physical me
nism, responsible for this behavior, has been recently
subject of much discussion and controversy. It was initia
suggested,4 that the colossal magnetoresistance~CMR! in
manganese oxides can be explained within the framewor
the double-exchange model5 ~DE!. In this model it is as-
sumed that the on-site direct repulsionU is the largest
energy, followed in order by the Hund’s rule energyJ and
the hybridization energyt between Mn orbitals at neigh
boring sites. The basic conduction step is then the in
change of valence between neighboring Mn:@Mn13Mn14

→Mn14Mn13#. The basic physical idea of the DE mech
nism is that this electron conduction is largest when the
tial and the final states are degenerate. The latter requirem
corresponds to an alignment of the spins of the mangan
ions. In the opposite case, the conduction rate is suppre
by a factor oft/J. As a result, a transition from a parama
netic to a ferromagnetic state leads to a dramatic increas
the conductivity of the compound. Using a dynamical me
field calculation~DMFT!,6 the double-exchange mechanis
was successfully used7,8 for a quantitative description of th
experimental data in LaSrMnO3 compounds. A later study9

claimed that the agreement with the experiment found
Ref. 10 was caused by an unphysical choice of the densit
states ~DOS!, and was accidental. But a calculation b
Furukawa11 with several different choices of the local DO
0163-1829/2001/65~2!/024429~9!/$20.00 65 0244
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confirmed the results of his earlier work.8

Subsequently a calculation carried out by the authors
Ref. 10 concluded that the double-exchange model al
could not explain the experimental data for the mangan
oxides. There were two objections:~i! that the double-
exchange model gave a transition temperature an orde
magnitude larger than experiments and~ii ! that the often ob-
served insulatinglike resistivity~resistivity increasing with
decreasing temperature! could not be explained by the
double-exchange model. It was proposed in Ref. 10 that
the description of manganese oxides one should take
account a continuation to the metallic state of the Jahn-Te
distortion found for the insulating antiferromagnetic e
member (x'0) in these compounds into thex range of in-
terest in some kind of dynamic fashion. As shown by
simple calculation,12 objection~i! turns out to be due to an
inadequate appreciation of the energetics of the dou
exchange process. The transition temperature is related t
difference in the electronic cohesive energy of the ferrom
netic and paramagnetic phases, and is not given by the t
sition temperature of a spin model as in Ref. 10. The la
change in the ionic radius of the manganese ions due to
conduction process, Mn31→Mn41, does indeed lead to sub
stantial lattice distortions. However, a substantial theoret
effort13,14 on the proposal of the dynamical effects of po
sible Jahn-Teller distortion has failed to produce any res
which can be compared to experimental data for the resis
ity. Nevertheless, strong electron-lattice interaction toget
with intrinsic disorder can lead to a static lattice disord
which could account for insulatinglike resistivity in the ma
ganese compounds. It was also demonstrated15 that the insu-
lating behavior at high temperatures could be related to
interplay of lattice distortion and the effects of orbit
ordering.16

Meanwhile, there has been further progress experim
tally. It was only recently pointed out,11 that the manganes
oxides at similar electron densities show two qualitative
different types of behavior:~i! a metal-insulator transition
near Tc , which in this case has relatively low value
©2001 The American Physical Society29-1
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;280 K, and~ii ! a metallic behavior both below~a good
metal! and above~incoherent metal with the absolute valu
of the resistivity near the Mott’s limit! the critical tempera-
ture, which is comparably high~;380 K!.17 The difference
appears to be the amount of disorder. This would tend
remove the possibility that the Jahn-Teller effects, were t
to occur, have much to do with the resistivity behavior.
stead the question to ask is why disorder so dramatic
modifies the temperature dependence of the conductivit
the paramagnetic phase, while simultaneously reducing
transition temperature. The relation of the resistivity to t
magnetizationM (T) in the ferromagnetic phase also d
pends on disorder. For small disorder the temperature de
dent part is proportional to theM (T)2, while for large disor-
der a much stronger dependence is found.

The effective strength of the intrinsic disorder is infl
enced by several factors, and can be characterized by
so-called ‘‘perovskite tolerance factor.’’ There is substan
empirical evidence,18 that when this number departs from th
‘‘ideal’’ value of unity, the angle between the oxygen an
two neighboring manganese ions deviates from 180°, lead
to microscopic inhomogeneities and to a substantial enha
ment of the effective disorder. Even a small change in
perovskite tolerance factor has a substantial influence on
effective disorder in the perovskite structures, which can
even form for the tolerance factor less than 0.9. Interestin
the dependence of the perovskite tolerance factor on the
ference in the ionic radii is not monotonic. In particula
although the ionic radius of lanthanum~1.216 Å! is closer to
the ionic radius of calcium~1.18 Å! than to the ionic radius
of strontium~1.31 Å!, for the compound La0.7Sr0.3MnO3 the
perovskite tolerance factor is closer to unity~0.93! than that
of a similar structure with calcium instead of strontiu
~0.91!. As a result, while the La0.7Sr0.3MnO3 compound
shows metallic behavior and belongs to the ‘‘weakly dis
dered’’ category, its calcium counterpart La0.7Ca0.3MnO3
demonstrates metal-insulator transition and represents
‘‘strongly-disordered’’ group.

It was suggested12 that disorder effects due to spin
disorder, lattice polarons due to the 30% difference in
volume of the Mn13 and the Mn14 ions, as well as extrinsic
disorder acting in concert might be responsible for the re
tivity in the paramagnetic phase. The possibility sugges
that spin disorder alone my be sufficient turns out, as sho
by recent numerical studies, not to be correct.19–21Additional
randomness due to substitution disorder has been use
calculations to explain the experimental data.19 Isoelectronic
La0.72xRxCa0.3Mn O3 shows enormous decrease of the cr
cal temperature22 when R is Y compared to whenR is Pr.
Note that the ionic radius of La31 is 1.02 A, of Pr31 is
1.01 A, and of Y31 is 0.89 A. Note that the substitutio
with Y besides changing the average bond angle introdu
disorder.

Also very interesting is the fact that not only does sp
disorder disappear forT!Tc , lattice disorder does a
well.23,24 This is evidenced by the remarkable variation
the Debye-Waller factor with temperature below and abo
Tc . It is clear that spin and lattice disorder act in concert a
quite unusual ways. Further that quenched lattice diso
02442
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generates extra lattice disorder which is annealed in the
romagnetic phase.

If indeed the difference in the properties of the CMR m
terials is caused by the effect of the substitutional disord
then it might be possible to account for the main features
the behavior of the ‘‘paramagnetic-metallic’’ compounds u
ing the ‘‘pure’’ double-exchange model. To address this qu
tion is one of the main objectives of the present paper.
also consider the effect of the substitutional disorder, a
show that it leads to a substantial decrease of the crit
temperature of the para- to ferromagnetic transition, in agr
ment with the observed difference inTc in different CMR
materials. In a future paper we hope to address the m
subtle issues connected with cation and other disorder in
mixed-valent compounds.

The paper is organized as follows. In the next section,
develop the variation mean-field theory for the doub
exchange Hamiltonian. This is a systematization of the
satz used in Ref. 12. We calculate the spin distribution fu
tion, and the critical temperature of the ferromagne
transition. In the third section, we study the effect of t
substitution disorder on this phase transition. In Sec. IV
develop a semiclassical transport theory for the CMR co
pounds, and calculate the magnetic field and temperature
pendence of the resistivity. We close with a summary a
discussion of future directions.

II. VARIATIONAL MEAN-FIELD THEORY

In the semiclassical limit of large spinSof the manganese
ions, the effective electron Hamiltonian in the doubl
exchange model can be expressed as25

Heff5
1

2 (̂
i j &

8t0 cos~u i j /2!ci
†cj1(

i
@v ici

†ci2mBSBcosq i #,

~1!

where the first sum includes hopping only between
nearest-neighbor manganese ions of different valencies,
angleu i j is defined as the angle between the ion spinsSi and
Sj , v i represents the effect of the substitutional disorder,B is
the magnetic field, andmB is the Bohr magneton. The angl
q is the angle between the spinSi and the magnetic field. It
is important to note that the assumption of largeU and J
compared tot makes the charge carriers effectively spinle

Neglecting the correlations in the orientations of t
neighbor spins, we represent the free energyF of the system
in terms of the single spin orientation distribution functio
PV(V). In the mean-field approximation, the distributio
function depends only on the angleq between the local spin
and the external magnetic fieldB:

PV5
1

2p
Pq~q!. ~2!

In the semiclassical limit, the corresponding spin entropy
then

Sspins52E dq sinq Pq~q!ln@Pq~q!#1Sspins
0 ~S!, ~3!
9-2



tri
-

on
th

th

th

a
r

of

d

la
d

n

-

tic

s

a

it

the
s

ults

e

s
ld

e
-

TRANSITION TEMPERATURE AND . . . PHYSICAL REVIEW B65 024429
where the functionSspins
0 (S) does not depend onPq , and is

related to our choice of the normalization of the spin dis
bution function *d(cosq) Pq51. This semiclassical ap
proximation is discussed in detail in Appendix A.

The calculation of the energy for a given spin distributi
is more complicated. When the transfer integral between
neighboring sitesi and j is equal to a constant valuet̃ , and
the effects of the substitution disorder can be ignored,
electron energy is given by

Et@ t̃ #5E
2`

m

d« r0~ t̃ ;«!«, ~4!

wherer is the electron density of states~DOS! correspond-
ing to the Hamiltonian~1! with no diagonal disorder (v i
50) and constant transfer integralt i j 5t. To account for the
effects of the substitution disorderv i , we introduce an effec-
tive averaged DOS defined as

r~ t,«!5^r0~ t,«2v !&v , ~5!

where the average is performed over the distribution of
v i ’s.

To obtain the total energy, in the mean-field approxim
tion we averageEt@ t# over the distribution of the transfe
integrals,

E5E dt Pt~ t !Et@ t#. ~6!

The transfer integralt i j can then be expressed in terms
the polar angles (f i ,q i) and (f j ,q j ), which define the ori-
entations of the corresponding spins, since they uniquely
fine the relative angleu. Therefore the integration overt in
Eq. ~6! can be converted to the integration over the po
angles. Using the procedure discussed in detail in Appen
B, we derive the effective free-energy functional, and by
direct minimization obtain the following integral equatio
for the spin distribution function:

Pq~q!5expF22E
0

2pdf1

2p E
0

2pdf2

2p E
0

p

dq1 sinq1Pq~q1!

3E
2`

m

d«
«2m

T
rS t0 cosS u

2D ;« D
2

z

T
1

mBSB

T
cosqG . ~7!

Here the parameterz5z(T,B) accounts for the proper nor
malization of the distribution functionPq . The last term
accounts for the energymBSBcosq of the spin, tilted at the
angleq with respect to the direction of the external magne
field. Finally, the first term in the exponential of Eq.~7!
represents the energy of the electron gas, which depend
the spin distribution via the effective ‘‘local’’ bandwidthW
;cosu/2, determined by the relative orientation of the ne
spins. Note that this term depends nontrivially onq via the
relative angleu5u(f1 ,q1 ;f,q). This nonlinear integral
equation allows a straightforward numerical solution by
02442
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erations. In Fig. 1 we plot the distributionPq for different
values of the scaled temperaturet[T/t0 and dimensionless
magnetic fieldb[B/t0.

When the magnetization of the system is small, and
spin distribution is close to uniform~e.g., when the system i
in the paramagnetic phase in a small external field!, then the
distribution function

Pq~q!5
1

2
1dpq~q!, dpq!1. ~8!

Expanding the exponential in the right-hand side of Eq.~7!
in dpq , and keeping the terms up to the first order indpq ,
yields

dpq5
3

2
M ~T,B!cosq1O~M2!, ~9!

whereM (T,B)5x(T)B1O(B2) is the magnetization of the
system. The susceptibilityx is then given by

x~T!5
1

3

mB
2S2

T2Tc
, ~10!

where the critical temperatureTc is given by

Tc5E
0

p

dq sinq cosqE
2`

m

d«~m2«!rS t0 cos
q

2
;« D .

~11!

For a system without intrinsic disorder, Eq.~11! yields the
values of the critical temperature consistent with the res
obtain using other methods.4,11,26–29 For example, forx
50.25 we obtainedTc /W'0.016, while a high-temperatur
series expansion26 yields Tc /W'0.013, the Monte Carlo
calculation27 yields Tc /W'0.0125, the method of Ref. 28
yields Tc /W'0.066, and different numerical calculation
within the framework of dynamical mean-field theory yie

FIG. 1. The distributionPq , for T/Tc50.5 ~dashed line!, 0.7
~dashed-dotted line!, 0.9 ~dotted line!, 0.99 ~solid line!, 1.01
~dashed-triple-dotted line!. The line of large dots represents th
‘‘linear’’ approximation of Eq.~9!, appropriate for a small magne
tization.
9-3
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E. E. NARIMANOV AND C. M. VARMA PHYSICAL REVIEW B 65 024429
Tc /W'0.043~Ref. 9! andTc /W'0.046.29 As all these cal-
culations are either of the mean-field type or involve a n
merically exact calculation of only a small cluster of site
the difference in the results by a factor of 3 is not surprisi

It is also worth noting that the relation of this theory to t
approach developed in Ref. 12. There, in addition to
mean-field approximation, a specific functional form of t
probability distribution of the angle between different spi
was assumed, with the system magnetization being the v
tional parameter. This should be contrasted to the metho
the present paper, when the functional form of the sing
spin distribution function is derived variationally. The ge
eral dependence of the distribution derived here turns ou
be quite similar to the one assumed earlier. But the result
the variational procedure developed in this section should
more accurate besides being on firmer ground. Another
vantage of the present method is that it can be used for
description of the effects of the substitution disorder
something which is hard to characterize within the fram
work of Ref. 12.

As follows from Eq.~11!, the critical temperature explic
itly depends on the density of states, and the resulting va
is in fact sensitive to the actual shape of DOS. However,
has only a marginal effect on the dependence ofTc on the
concentrationx. To illustrate this behavior, in Fig. 2 we plo
the critical temperature as a function of the charge car
concentrationx for a rectangular~blue curve! and Gaussian
~red curve! densities of states. For comparison, we also p
the x(12x) dependence~black line!, obtained in an earlier
work,12 and the experimental data of Ref. 10. The mo
densities of states are plotted in Fig. 3 and compared to
DOSr t , corresponding to the Hamiltonian~1! with constant
transfer integral and no diagonal disorder. The effect
bandwidth of the model densities of states is chosen to a
rately reproduce the second moment^«2&. Note how accu-
rately the Gaussian density of states fits the profile ofr t .

As follows from Fig. 2, a reasonable choice of the ban
width W51.8 eV, consistent with the calculations in th
local-density approximation,30 leads to a good agreeme
with the experimental data. One has, however, to keep
mind that the estimates for the bandwidth in the literat

FIG. 2. The dependence of the critical temperature on the e
tron concentration. The dotted and solid lines correspond to, res
tively, rectangular and Gaussian DOS. The dashed line repres
the x(12x) dependence obtained in Ref. 12. The circles are
experimental data of Ref. 8. The left panel showsTc in units of
bandwidth W, while the absolute units for the right panel we
calculated, assumingW51.8 eV.
02442
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differ substantially and range from;1 eV ~Ref. 31! to
;4 eV,32,33 which, e.g., forx50.3 will correspond for the
variation of the critical temperature from 210 to 840 K. O
should, however, keep in mind that the main objective of
variational mean-field theory developed in the present pa
is not a quantitative calculation of the critical temperature
some given composition, but to describe the variation ofTc
with the carrier concentration and effective disorder, and
uncover the physical origin of this behavior.

As explained earlier,12 the transition temperature is dete
mined essentially by the difference in the cohesive energ
the ferromagnet and the paramagnet by the entropy of
paramagnet. The larger bandwidth of the ferromagnet
about 20% is the essential aspect of the energetics in
double-exchange problem.

Consider now the effect of substitutional disorder. Sub
tutional disorder increases the electron-bandwidth for
paramagnet. The removal of spin-disorder is then expecte
decrease the change in the bandwidth on becoming a fe
magnet. This is explicitly borne out by the theory here.

Since the critical temperature is directly related to t
effective DOS, it is sensitive to the substitution disorder
the system. Assuming the Gaussian distribution of the dis
der strengthv i with the standard deviationV0 and Gaussian
‘‘bare’’ DOS ~Ref. 34! rg}exp@2«2/(3t2)#, we obtain

Tc5E
0

p

dqE
2`

m

d«~m2«!r@ teff~q!,«#sinq cosq,

~12!

where the effective transfer integralteff is defined by the
equation

1

teff
2

5
1

t0
2 cos2

q

2

1
3

V0
2

. ~13!

c-
c-

nts
e

FIG. 3. The model rectangular~dotted line! and Gaussian
~dashed line! densities of states, and the actual DOSr t(«) ~solid
line!. For each model density of states, the bandwidth is cho
such that the second moment^«2& is exact. Note how accurately th
Gaussian DOS fits the profile ofr t .
9-4
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TRANSITION TEMPERATURE AND . . . PHYSICAL REVIEW B65 024429
The dependence~12! is shown in Fig. 4 for different electron
concentrations. As extra disorder makes the ferromagn
phase less favorable, the critical temperature goes down
an increase ofV0.

It might be tempting to attribute the difference in critic
temperature between the ‘‘type-I’’ and ‘‘type-II’’ compound
to the effect of the substitutional disorder. In such model,
effective disorder strength ofV0;0.7W would fully account
for only ;30% difference in the critical temperatures
type-I and type-II compounds. We suspect that large eno
lattice disorder in concert with lattice disorder localizes el
tronic states in the paramagnetic phase. New considera
then enter in to the determination of the transition tempe
ture. These will be discussed separately. Also missing fr
the discussion above is the effect of the formation of s
polarons which must occur in the paramagnetic phase.12,35

They would tend to decreaseTc but the number of spins in
the polarons is rather small and only a modest numer
effect on the transition temperature is expected. Th
are, however, quite important for the dynamics near
transition.

III. RESISTIVITY WITHOUT LATTICE DISORDER:
SEMICLASSICAL TREATMENT

In the mean-field approximation developed in the pre
ous section, each spin independently fluctuates around

FIG. 4. The dependence of the critical temperature on the a
age ‘‘disorder’’ v0 ~in units of the bandwidthW0 of the ‘‘clean’’
systemv[0). Curves of different styles represent different electr
concentrations~from top to bottom:x50.4, 0.3, 0.2, 0.1!. The dis-
tribution of the disorder energiesv i is Gaussian.
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averaged value defined by the magnetization of the syst
From the point of view of the semiclassical transport theo
that would correspond to effective independent ‘‘scattere
located at each point of the lattice. However, in the fer
magnetic phase, when the spin fluctuations are small c
pared to the averaged value, the corresponding electron m
free path may be substantially larger than the~Mn! lattice
spacing. In this limit, in order to estimate the resistivity
the system, we can use the standard semiclassical tran
theory.

We introduce the average transfer integralt̄
[t0^cos(uab/2)&, so that the corresponding unperturb
Hamiltonian is defined as

H05
1

2 (
^ab&

t̄ ca
1cb ~14!

and the rest ofH is treated as the ‘‘perturbation,’’

V5
1

2 (̂
i j &

dt i j ci
1cj . ~15!

The standard plane-wave diagonalization ofH0 yields the
dispersion law

ek5 t̄ @cos~kxa!1cos~kya!1cos~kza!# ~16!

which describes ‘‘holes’’ neark50 and ‘‘electrons’’ near,
e.g.,k5p/a(1,1,1). When the Fermi energy is located ne
the bottom or near the top of the band, one can define
effective mass for the electrons and the holes, respectiv
m* 52 t̄ a2/\2.

The kinetic equation for the electron distribution functio
f k is36

2eE
] f 0

]k
5

2p

\ (
k

u^kuVuk8&u2d~ek2ek8!~ f k2 f k8!,

~17!

where f 0(ek) is the equilibrium distribution function, and
^kuVuk8& is the matrix element of the ‘‘perturbation’’~15!.

The kinetic equation~17! has the solution

f k5 f 0~ek!2eEt~k!
]ek

]kz

] f 0~ek!

]ek
, ~18!

where the relaxation time is defined by the following equ
tion:

r-
me,
1

t~k!
5

3a3

2p2\
dt2E dk8S 11

ek1k8

6 t̄
D d~ek2ek8!2

a3

2p\
dt2E dk8sin2~kz8a!d~ek2ek8!. ~19!

Assuming auniform dispersionek5e(uku), this expression reduces to the standard result for the transport relaxation ti
9-5
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1

t~k!
5E dk8Wkk8~12cosukk8!d~ek2ek8!, ~20!

where the scattering rateWkk853a3(2p2\)21dt2@1
1ek1k8/(6 t̄ )#, andukk8 is the angle between the vectorsk
andk8.

Near the top and the bottom of the band, the integrals
Eq. ~19! allow a straightforward analytical evaluation. F
example, for the holes we obtain

t21~k!5
6

p\
kaS 12

2

9
~ka!2D dt2

t̄
. ~21!

As we pointed out before, the semiclassical approach de
oped in the present section is appropriate only when
charge-carrier mean free pathl @a. Using Eq.~21! for the
ratio of the mean free path to the lattice spacing near the
of the band we obtain

l

a
5

t̄ 2

dt2

3

pF12
2

9
~ka!2G . ~22!

As follows from Eqs.~19! and ~22!, in the absence of sub
stitution disorder, l /a is always greater than
(3/p)*( t̄ 2/dt2). The ratiot̄ 2/dt2 is a monotonically decreas
ing function of temperature in the ferromagnetic phase,
constant above theTc , where t̄ 2/dt258. Therefore, since
the mean free path due to the spin disorder is substant
larger than the effective lattice spacing, we expect that in
relevant concentration rangex.0.1–0.3 such a ‘‘pure DE’’
system would generally show the metallic behavior. Inde
in a typical type-II compound La0.7Sr0.3MnO3, the resistivity
does show the metallic behaviordr/dT.0 both above and
below the transition.8

The effect of nonzero magnetization~caused either by the
transition to the ferromagnetic phase, or by external m
netic field! on the conductivity is twofold: first, it suppresse
the fluctuations in transfer integrals thus decreasing the
responding scattering rate; second, the increase of theaver-
age transfer integral caused by the magnetization leads
decrease of the effective massm* ;1/t̄ . Both these factors
lead to a decrease of the resistivityr. For a small magneti-
zation,

r~M !5r0@12k~M /Mmax!
2#, ~23!

where in the effective-mass approximation the coefficienk
is equal to 9/5. For weakly disordered manganites, the re
tivity indeed follows Eq.~23!. As seen in the inset in Fig
5~b! the experimental value is about 2 and slowly varies w
the electron density. Taking into account the band nonp
bolicity leads to a weak dependence ofk on the concentra-
tion x, but does not fully account for an increase ofk. The
variation of the resistivity in the whole range of the samp
magnetization 0,M,Mmax is shown in Fig. 5.

Using the semiclassical approach developed in the pre
section, one can also obtain an analytic expression for
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zero-field resistivityr0. However, the behavior above th
critical temperature is characterized by the formation
small magnetic polarons, localized due to the spin disorde12

In a nonzero magnetic field, this effect also affects the m
netization and is taken into account phenomenologically
using the actual experimentally observed magnetizationM in
Eq. ~23!. However, the present Boltzmann-type approach
not adequate for a quantitative calculation of the zero-fi
resistivity r0.

The quadratic dependence of the resistivity on the m
netization in manganites was also obtained in Refs. 6 and
The prefactor we obtain in the present work is similar to t
one calculated by Furukawa in Ref. 6, and agrees with
experiment better than the result of Inoue and Maekaw38

However, as all three methods are essentially mean-fi
theories with a number of nontrivial approximations, t
marginal difference obtained for the prefactor is not ve
important. Instead, the advantage of the approach prese
in this paper is that it makes much more transparent
physics underlying the behavior of colossal magnetore
tance compounds—which is much harder to achieve us
e.g., the numerical dynamical mean-field theory used ear

IV. SUBSTITUTION DISORDER: EFFECT
ON RESISTIVITY

As we pointed out in Sec. II, the 30% difference in th
critical temperatures of the type-I and type-II compoun

FIG. 5. The resistivity and magnetization of the sample, cal
lated using in the variational mean-field approximation for the D
model.~a! The variation of the resistivity~solid line! and magneti-
zation ~dashed line! with temperature, in the absence of extern
magnetic field.~b! The resistivity as a function of magnetization
the inset shows the variation of the coefficientk with concentration
x, obtained from the experimental data~Ref. 37!, and the theoretical
prediction in the effective-mass approximation~dashed line!. ~c!
The resistivity as a function of temperature, for different values
the magnetic field. From top to bottom, solid line:mSB/W050;
dashed line:mSB/W050.005; dashed-dotted line:mSB/W050.01;
dotted line: mSB/W050.015; dashed-triple-dotted line:mSB/W0

50.02. ~d! The resistivity as a function of magnetic field, for di
ferent temperatures. From top to bottom, solid line:T/W050.05;
dashed line:T/W050.02; dotted line:T/W050.01.
9-6



e
th
im
se

d
ns
et
in
i

id
th

th
s
n

io
et
it
a

ity
n

tic
b

tu
is
e

al
a
t

on
e
le
u
vi
e
e

n
e

l
e
lin
o

de
ie
th
or
e

as
ela
ib

ge
ure
on
ata.
d.
an
We
stiv-
ee-
the
lec-
nsi-
sive
s.
red
nds
the
btle
is-
the
the
ide

ity
-

ew

TRANSITION TEMPERATURE AND . . . PHYSICAL REVIEW B65 024429
implies that in the ‘‘disordered’’ compounds the effectiv
scattering potential is of the order of the electron bandwid
In such conditions, the localization effects can become
portant, and the semiclassical treatment of the previous
tion is no longer appropriate.

It has been proposed that in the ‘‘strongly disordere
~type-I! compounds, the ferro- to paramagnetic phase tra
tion drives the metal-insulator transition. In the paramagn
phase, the ‘‘combined effort’’ of the substitution and sp
disorder is sufficient to localize the charge carriers, while
the ferromagnetic phase, due to larger electron bandw
and weaker spin disorder, the mobility edge is below
Fermi energy.12,22

One might be tempted to think that this mechanism of
colossal magnetoresistance of the disordered manganite
duces the problem to an Anderson-type transition as a fu
tion of disorder alone, where the spin disorder is a funct
of the magnetization. This is not correct since the magn
entropy is essential to the transition which occurs at a fin
temperature unlike the Anderson transition which occurs
T50.

An important question, however, is whether the resistiv
near the transition can be expressed uniquely as a functio
magnetization. If the phase transition~with or without ‘‘di-
agonal’’ disorder! is characterized by a divergent magne
correlation length scale, this may be possible. It should
remembered, however, that resistivity depends on fluc
tions at large momentum transfer. In a solid with lattice d
order, the ferromagnetic correlation length does not uniqu
characterize the important disorder at short length sc
even though it may be coupled to the magnetization as
pears to be the case in the manganites. It is also possible
for sufficiently strong disorder, the ferromagnetic transiti
is replaced by a crossover and there is no divergent corr
tion length. These are probably the reasons why no c
indication of scaling behavior expected in a continuo
quantum phase transition were found in the recent resisti
measurements.39,40 These considerations, however, go b
yond the mean-field-type theory developed in the pres
paper.

In any case, we believe that in order to fully understa
the physics underlying the colossal magnetoresistanc
doped manganites, one also has to take into account the
tice disorder, which is coupled to the spin disorder, via th
influence on the charge carriers. Indeed, the strong coup
between the spin and lattice disorder was recently dem
strated in two independent experiments.24,25 Clearly, the ef-
fective lattice disorder has its own nontrivial temperature
pendence, and, being coupled to the charge carr
therefore obviously leads to substantial deviations from
standard picture of the ‘‘static’’ Anderson metal-insulat
transition. However, at this point we defer the further d
scription of this effect.

V. CONCLUSIONS

As shown in the first part of the present paper, the ph
transition from paramagnetic to ferromagnetic phase in r
tively pure manganese oxides can be successfully descr
02442
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by a variational approximation on the double-exchan
Hamiltonian. The results obtained for the critical temperat
and its evolution with doping and the chemical compositi
of the compound are consistent with the experimental d
The decrease ofTc with modest disorder is also understoo

The resistivity of the type-II manganese compounds c
also be successfully described using the DE model.
showed that, e.g., the theoretical dependence of the resi
ity on the sample magnetization is in a quantitative agr
ment with the experimental data. Our calculations show
robustness of the results to the particular choice of the e
tron density of states, as should be obvious since the tra
tion temperature depends on the difference of the cohe
energy of the paramagnetic and the ferromagnetic phase

The principal problems of the manganites left unanswe
in this paper concern the properties of the type-I compou
and the remarkable effects of disorder in them in both
dynamic and static properties. These are also the more su
problems. Especially interesting is the fact that extrinsic d
order appears to promote some additional disorder in
paramagnetic phase which is swept away together with
spin disorder in the ferromagnetic phase. We hope to prov
an answer to these questions separately.

APPENDIX A: SPIN ENTROPY IN THE SEMICLASSICAL
MEAN-FIELD APPROXIMATION

In the mean-field approximation, when the spin-dens
matrix of the whole systemrS(Sz

( i )) is represented as a prod
uct of diagonal density matricesr i5r (1)(Sz

( i )) of the indi-
vidual spins,

rS5P i 51
N r i . ~A1!

Then the total spin entropy

Sspins
S 5Tr$rSln@rS#% ~A2!

is represented by

Sspins5N (
Sz52S

S

r (1)~Sz!ln@r (1)~Sz!#. ~A3!

In the semiclassical approximationS@1, the summation
over Sz can be replaced by integration. Introducing the n
variableq[arccos(Sz /S), we obtain

Sspins5NSE
21

1

d cosq r (1)~Scosq!ln@r (1)~Scosq!#,

~A4!

wherer (1)(Scosq) is normalized as follows:

15 (
Sz52S

S

r (1)~Sz!5SE
21

1

d cosq r (1)~Scosq!. ~A5!

We now define the spin orientation distribution functionPq

;r (1)(Scosq), normalized as

E
21

1

d cosq r (1)~Scosq!51. ~A6!
9-7
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As follows from Eqs.~A5! and ~A6!, the spin orientation
distribution function

Pq5
1

S
r (1)~Scosq!. ~A7!

Therefore the semiclassical spin entropy

Sspins52NE
21

1

d cosq Pq ln@Pq#1N ln@S#. ~A8!

For example, in the paramagnetic phase, when there ar
external fields, and the spin orientation distribution is u
form, Pq51/2, the semiclassical spin entropy is equal
N ln(2S), which is consistent with the exact resultN ln(2S
11) for S@1. Note that the main contribution to the sem
classical spin entropy comes actually from the distributio
independent term in Eq.~A8!.

The semiclassical description, however, fails for lar
magnetization, when the spin system is almost comple
polarized, and the distribution function starts to change s
stantially on the scale ofdq;1/S. In this case, the origina
expression, Eq.~A3!, should be used for the calculation o
the spin entropy.

APPENDIX B: VARIATIONAL FREE-ENERGY
FUNCTIONAL

In this appendix, we calculate the variational free-ene
functional for the double-exchange model. Using Eqs.~4!
and ~6!, for the electron energy we obtain

Ee5E
0

2pdf1

2p E
0

2pdf2

2p E
0

p

dq1 sinq1

3E
0

p

dq2 sinq2Pq~q1!Pq~q2!

3E
2`

m

d««rXt0 cosS u~f1 ,q1 ;f2 ,q2!

2 D ;« C ~B1!

while the extra spin energy

Es52BE
0

2pdf1

2p E
0

p

dq1 sinq1 cosq1Pq~q1!. ~B2!

The free energy can be obtained by the substituting th
expressions and the entropy~3! into the standard definition
of the free energy

F5Ee1Es2TS. ~B3!

In order to find the single-spin distributionPq , one has to
minimize the effective free energy, taking into account t
constraints of normalization. Using the standard Lagra
multiplier method, for the effective free-energy function
we obtain
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F̃@Pq ;m,l,z#5E
0

2pdf1

2p E
0

2pdf2

2p E
0

p

dq1 sinq1

3E
0

p

dq2 sinq2Pq~q1!Pq~q2!

3E
2`

m

d«~«2l!rXt0 cosS u

2D ;« C
1TE

0

2pdf1

2p

3E
0

p

dq1 sinq1Pq~q1!ln@Pq~q1!#

2BE
0

2pdf1

2p E
0

p

dq1 sinq1 cosq1Pq~q1!

1zE
0

p

dq sinqpq~q!1F̄@x,l,z#, ~B4!

where the ‘‘constant’’F̄ represents the spin distribution
independent part of the free energy. Here, the Lagrange m
tiplier z accounts for the normalization of the distributio
function Pq , while the Lagrange multiplierl represents the
constraint of having a fixed concentration of mobile ele
trons in the system.

It is straightforward to show by a direct calculation that
the extremum of the functional~B4! l5m. This has a clear
physical meaning—the Lagrange multiplierl corresponds to
the electron number conservation, and therefore should
equal to the electron electrochemical potential. Replacinl
by m in Eq. ~B4!, we finally obtain the effective mean-field
free energy functional:

F̃@Pq ;m,l,z#5E
0

2pdf1

2p E
0

2pdf2

2p E
0

p

dq1 sinq1

3E
0

p

dq2 sinq2Pq~q1!Pq~q2!

3E
2`

m

d«~«2m!rXt0 cosXu2D ;« D
1TE

0

2pdf1

2p E
0

p

dq1 sinq1Pq~q1!

3 ln@Pq~q1!#2B

3E
0

2pdf1

2p E
0

p

dq1 sinq1 cosq1Pq~q1!

1zE
0

p

dq sinqpq~q!1F̄. ~B5!

Taking the functional derivative of Eq.~B5! with respect to
Pq , for the distribution we obtain
9-8



Pq~q!5expF22E
0

2pdf1

2p E
0

2pdf2

2p E
0

p

dq1 sinq1Pq~q1!E
2`

m

d«
«2m

T
rXt0 cosS u

2D ;« C2 z

T
1

B

T
cosqG . ~B6!

Note that the exponential on the right-hand side nontrivially depends onq via the angleu5u(f1 ,q1 ;f,q).
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26H. Röder, R. R. P. Singh, and J. Zang, Phys. Rev. B56, 5084

~1997!.
27M. J. Calderon and L. Brey, Phys. Rev. B58, 3286~1998!.
28S. Yunoki, J. Hu, A. L. Malvezzi, A. Moreo, N. Furukawa, and E

Dagotto, Phys. Rev. Lett.80, 845 ~1998!.
29A. Chattopadhyay, A. J. Millis, and S. Das Sarma, Phys. Rev

61, 10 738~2000!.
30L. F. Mattheiss~unpublished!.
31Y. Moritomo, A. Asamitsu, and Y. Tokura, Phys. Rev. B51,

16 491~1995!.
32D. Das Sarma, N. Shanthi, S. R. Krishnakumar, T. Saitoh,

Mizokawa, A. Sekiyama, K. Kobayashi, A. Fujimori, E. We
schke, R. Meier, G. Kaindl, Y. Takeda, and M. Takano, Ph
Rev. B53, 6873~1996!.

33W. E. Pickett and D. J. Singh, Phys. Rev. B53, 1146~1996!.
34The coefficient of 1/3 is introduced so that the Gaussian distri

tion rg will yield the same second moment^«2& as the actual
density of states—see Fig. 4.

35I. F. Lyuksyutov and V. Pokrovsky, cond-mat/9808248~unpub-
lished!.

36W. Kohn and J. M. Luttinger, Phys. Rev.108, 590 ~1957!; J. M.
Luttinger and W. Kohn,ibid. 109, 1892~1958!.

37A. Urishibara, Y. Morimoto, T. Arima, A. Asamitsu, G. Kido, an
Y. Tokura, Phys. Rev. B51, 14 103~1995!.

38J. Inoue and S. Maekawa, Phys. Rev. Lett.74, 3407~1995!.
39V. N. Smolyaninova, X. C. Xie, F. C. Zhang, M. Rajeswari, R.

Greene, and S. Das Sarma, cond-mat/9903238~unpublished!.
40P. C. Hohenberg and B. I. Halperin, Rev. Mod. Phys.49, 435

~1977!.
9-9


