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Transition temperature and magnetoresistance in double-exchange compounds
with moderate disorder
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We develop a variational mean-field theory of the ferromagnetic transition in compounds like lanthanum-
manganite within the framework of the double-exchange model supplemented by modest disorder. We obtain
analytical expressions for the transition temperature, its variation with the valence electron density, and its
decrease with disorder. We derive an expression for the conductivity for both the paramagnetic and the
ferromagnetic metallic phases, and study its dependence on the temperature and magnetic field. A simple
relation between the resistivity in the ferromagnetic phase and the spontaneous magnetization is found. Our
results are in a good agreement with the experimental data on transition temperatures and resistivity in the
manganite compounds with relatively small disorder. We comment on the effects of increased disorder.
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[. INTRODUCTION confirmed the results of his earlier wotk.

Interest has revived recently in the perovskite manganese Subsequently a calculation carried out by the authors of
oxidesA;_,B,MnO; (whereA is a trivalent andB is a triva-  Ref. 10 concluded that the double-exchange model alone
lent atom, which were first investigated in the 1950As  could not explain the experimental data for the manganese
the dopingx and the temperatur€ are varied, these manga- oxides. There were two objectiongi) that the double-
nese oxides show a rich variety of pha8dzarticularly in- exchange model gave a transition temperature an order of
teresting is the doping region Gsk=<0.3, where the com- magnitude larger than experiments diigl that the often ob-
pounds undergo a transition from either insulating or veryserved insulatinglike resistivityresistivity increasing with
high resistance metallic, paramagnetic phase at high tendecreasing temperatyrecould not be explained by the
peratures to a ferromagnetic phase at low temperafuresdouble-exchange model. It was proposed in Ref. 10 that for
Near the transition, the resistivity of the compounds changethe description of manganese oxides one should take into
by orders of magnitude. The application of a strong magneti@account a continuation to the metallic state of the Jahn-Teller
field substantially reduces this effect, thus giving rise to adistortion found for the insulating antiferromagnetic end
very large negative magnetoresistance. The physical mechaiember &~0) in these compounds into therange of in-
nism, responsible for this behavior, has been recently theerest in some kind of dynamic fashion. As shown by a
subject of much discussion and controversy. It was initiallysimple calculatiort? objection (i) turns out to be due to an
suggested, that the colossal magnetoresistan@MR) in  inadequate appreciation of the energetics of the double-
manganese oxides can be explained within the framework afxchange process. The transition temperature is related to the
the double-exchange modelDE). In this model it is as- difference in the electronic cohesive energy of the ferromag-
sumed that the on-site direct repulsidh is the largest netic and paramagnetic phases, and is not given by the tran-
energy, followed in order by the Hund’s rule enerdyand  sition temperature of a spin model as in Ref. 10. The large
the hybridization energy between Mn orbitals at neigh- change in the ionic radius of the manganese ions due to the
boring sites. The basic conduction step is then the intereonduction process, Mii—Mn**, does indeed lead to sub-
change of valence between neighboring Mvin™3Mn*#  stantial lattice distortions. However, a substantial theoretical
—Mn"*Mn"3]. The basic physical idea of the DE mecha- effort*>* on the proposal of the dynamical effects of pos-
nism is that this electron conduction is largest when the inisible Jahn-Teller distortion has failed to produce any results
tial and the final states are degenerate. The latter requiremewhich can be compared to experimental data for the resistiv-
corresponds to an alignment of the spins of the manganesty. Nevertheless, strong electron-lattice interaction together
ions. In the opposite case, the conduction rate is suppressedth intrinsic disorder can lead to a static lattice disorder,
by a factor oft/J. As a result, a transition from a paramag- which could account for insulatinglike resistivity in the man-
netic to a ferromagnetic state leads to a dramatic increase glhnese compounds. It was also demonstfatiat the insu-
the conductivity of the compound. Using a dynamical meandating behavior at high temperatures could be related to the
field calculation(DMFT),® the double-exchange mechanism interplay of lattice distortion and the effects of orbital
was successfully uséfi for a quantitative description of the ordering*®
experimental data in LaSrMnQOcompounds. A later study Meanwhile, there has been further progress experimen-
claimed that the agreement with the experiment found irtally. It was only recently pointed odt,that the manganese
Ref. 10 was caused by an unphysical choice of the density ajxides at similar electron densities show two qualitatively
states (DOS), and was accidental. But a calculation by different types of behavior(i) a metal-insulator transition
Furukawa® with several different choices of the local DOS near T, which in this case has relatively low values
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~280 K, and(ii) a metallic behavior both belowa good generates extra lattice disorder which is annealed in the fer-
meta) and aboveincoherent metal with the absolute value romagnetic phase.

of the resistivity near the Mott’s limitthe critical tempera- If indeed the difference in the properties of the CMR ma-
ture, which is comparably high~380 K).}” The difference terials is caused by the effect of the substitutional disorder,
appears to be the amount of disorder. This would tend téhen it might be possible to account for the main features of
remove the possibility that the Jahn-Teller effects, were theyhe behavior of the “paramagnetic-metallic” compounds us-
to occur, have much to do with the resistivity behavior. In-ing the “pure” double-exchange model. To address this ques-
stead the question to ask is why disorder so dramaticallyion is one of the main objectives of the present paper. We
modifies the temperature dependence of the conductivity iglso consider the effect of the substitutional disorder, and
the paramagnetic phase, while simultaneously reducing thghow that it leads to a substantial decrease of the critical
transition temperature. The relation of the resistivity to thetemperature of the para- to ferromagnetic transition, in agree-
magnetizationM(T) in the ferromagnetic phase also de- ment with the observed difference i in different CMR
pends on disorder. For small disorder the temperature depefaterials. In a future paper we hope to address the more
dent part is proportional to the (T)?, while for large disor- ~ subtle issues connected with cation and other disorder in the
der a much stronger dependence is found. mixed-valent compounds.

The effective strength of the intrinsic disorder is influ-  The paper is organized as follows. In the next section, we
enced by several factors, and can be characterized by tiievelop the variation mean-field theory for the double-
so-called “perovskite tolerance factor.” There is substantialexchange Hamiltonian. This is a systematization of the an-
empirical eviden(;éf3 that when this number departs from the satz used in Ref. 12. We calculate the spin distribution func-
“ideal” value of unity, the angle between the oxygen andtion, and the critical temperature of the ferromagnetic
two neighboring manganese ions deviates from 180°, leadingjansition. In the third section, we study the effect of the
to microscopic inhomogeneities and to a substantial enhancéubstitution disorder on this phase transition. In Sec. IV we
ment of the effective disorder. Even a small change in th&levelop a semiclassical transport theory for the CMR com-
perovskite tolerance factor has a substantial influence on theounds, and calculate the magnetic field and temperature de-
effective disorder in the perovskite structures, which cannopendence of the resistivity. We close with a summary and
even form for the tolerance factor less than 0.9. Interestinglydiscussion of future directions.
the dependence of the perovskite tolerance factor on the dif-
ference in the ionic radii is not monotonic. In particular, Il. VARIATIONAL MEAN-FIELD THEORY
although the ionic radius of lanthanufh.216 A) is closer to ) . .
the ionic radius of calciun1.18 A) than to the ionic radius . In the sem|cla§3|cal limit of Iarge.spﬁﬂlof th_e manganese
of strontium(1.31 A), for the compound LgSt, MnO, the  1ONS: the effective electron Hamiltonian in the double-
perovskite tolerance factor is closer to un{®93 than that exchange model can be expressetf as
of a similar structure with calcium instead of strontium
(0.91. As a result, while the LgSrMnO; compound Heff:_z 'toCOS(Gij/Z)CiTCjJFE [vicici— ugSBcosd;],
shows metallic behavior and belongs to the “weakly disor- (D) i

dered” category, its calcium counterpart J-:&& MnO; @
demonstrates metal-insulator transition and represents thgnere the first sum includes hopping only between the
“strongly-disordered” group. nearest-neighbor manganese ions of different valencies, the

It was su_ggestéa that disorder effects due to spin- angleg;; is defined as the angle between the ion sgrand

disorder, lattice polarons due to the 30% difference in theg v, represents the effect of the substitutional disorBés;
3 ¥ insic Sen :

volume of the Mri* and the Mri“ ions, as well as extrinsic  the magnetic field, angg is the Bohr magneton. The angle
disorder acting in concert might be responsible for the resisy is the angle between the spand the magnetic field. It
tivity in the paramagnetic phase. The possibility suggestegs jmportant to note that the assumption of laigeand J
that spin disorder alone my be sufficient Wms out, as showgompared td makes the charge carriers effectively spinless.
by recent numerical studies, not to be corréct! Additional . Neglecting the correlations in the orientations of the
randomness due to substitution disorder has been used Highbor spins, we represent the free endfgyf the system
calculations to explain the experimental dla%soelectronlc_ _in terms of the single spin orientation distribution function
Lag.7-xRCa dMn Og shows enormous decrease of the criti-p (). In the mean-field approximation, the distribution

cal temperatuﬁ_fr whenRis Y Cngared to wherR i5+ Pr. " function depends only on the angiebetween the local spin
Note that the ionic radius of (4 is 1.02 A, of Pf' is and the external magnetic fieR!

1.01 A, and of ¥* is 0.89 A. Note that the substitution

with Y besides changing the average bond angle introduces 1

disorder. Po=5_Py(d). (2
Also very interesting is the fact that not only does spin

disorder disappear folT<T,., lattice disorder does as In the semiclassical limit, the corresponding spin entropy is

well.?®24 This is evidenced by the remarkable variation ofthen

the Debye-Waller factor with temperature below and above

T.. Itis clear that spin and lattice disorder act in concert and B .

quite unusual ways. Further that quenched lattice disorder SSP‘“S__f dﬁs'm&Pﬂ(ﬁ)ln[Pﬁ(ﬂ)HSgPinf(S)’ 3)
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where the functiorsgpms(S) does not depend oR, and is A
related to our choice of the normalization of the spin distri- -
bution function fd(cosd) Py=1. This semiclassical ap- N
proximation is discussed in detail in Appendix A.

The calculation of the energy for a given spin distribution
is more complicated. When the transfer integral between the
neighboring sites andj is equal to a constant vallte and

the effects of the substitution disorder can be ignored, the
electron energy is given by

Spin distribution, P(6)
2
|

E(T1= [ de poTiene. @

wherep is the electron density of staté®OS) correspond-
ing to the Hamiltonian(1) with no diagonal disorderu;
=0) and constant transfer integtgal=t. To account for the

polar angle, @

effects of the substitution disordey, we introduce an effec- FIG. 1. The distributionP, for T/T.=0.5 (dashed ling 0.7
tive averaged DOS defined as (dashed-dotted line 0.9 (dotted ling, 0.99 (solid line), 1.01
(dashed-triple-dotted line The line of large dots represents the
p(t,e)={po(t,e—v)),, (5) “linear” approximation of Eq.(9), appropriate for a small magne-
. S tization.
where the average is performed over the distribution of the
Ui’S.

erations. In Fig. 1 we plot the distributioRy for different
“values of the scaled temperature T/t, and dimensionless
magnetic fieldbo=B/t,.
When the magnetization of the system is small, and the
spin distribution is close to uniforrfe.g., when the system is
E=J dt Py(t)E[t]. (6)  inthe paramagnetic phase in a small external fjetten the
distribution function

To obtain the total energy, in the mean-field approxima
tion we averageE[t] over the distribution of the transfer
integrals,

The transfer integra; can then be expressed in terms of 1
the polar angles¢; ,9;) and (¢;,9;), which define the ori- Po(0)==+8py(9), Opg<l. (8)
entations of the corresponding spins, since they uniquely de- 2
fine the relative angl@. Therefore the integration ovénn  Eypanding the exponential in the right-hand side of &.

Eqg. (6) can be converted to the integration over the polar, 8py, and keeping the terms up to the first ordemsim, ,
angles. Using the procedure discussed in detail in Appendiyje|ds

B, we derive the effective free-energy functional, and by a

direct minimization obtain the following integral equation 3 )
for the spin distribution function: 6py=5M(T,B)cosd+O(M?), 9
2nd¢py (27depy (7 . whereM (T,B)= x(T)B+ O(B?) is the magnetization of the
Pﬁ(ﬁ)—ex;{ _Zfo ﬁfo EJO ddy sind,Py( ) system. The susceptibility is then given by
N A 1 ,uéSz
inxds T p(t0005<2),8) X(T)—§T_TC, (10)
{ ugSB where the critical temperatufg; is given by
—=+ COoS|. (7)
T T _ ) s
Here the parametef= ¢(T,B) accounts for the proper nor-  1¢= fo dﬂSInﬁCOSﬂJ_de(M—S)p(tO COSZ;S)'
malization of the distribution functio?,. The last term (12)

accounts for the energygSBcos? of the spin, tilted at the

angled with respect to the direction of the external magnetic  For a system without intrinsic disorder, H41) yields the
field. Finally, the first term in the exponential of E(/)  values of the critical temperature consistent with the results
represents the energy of the electron gas, which depends @btain using other methodd?6-2° For example, forx

the spin distribution via the effective “local” bandwidtV/ =0.25 we obtained . /W~0.016, while a high-temperature
~cos6/2, determined by the relative orientation of the nearseries expansiéh yields T,/W~0.013, the Monte Carlo
spins. Note that this term depends nontrivially #rvia the  calculatiod’ yields T./W=~0.0125, the method of Ref. 28
relative anglef=6(¢,,91;¢,9). This nonlinear integral yields T./W=~0.066, and different numerical calculations
equation allows a straightforward numerical solution by it-within the framework of dynamical mean-field theory yield
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FIG. 2. The dependence of the critical temperature on the elec- L ]
tron concentration. The dotted and solid lines correspond to, respec- ot _
tively, rectangular and Gaussian DOS. The dashed line represents - 1
the x(1—x) dependence obtained in Ref. 12. The circles are the I i
experimental data of Ref. 8. The left panel shoWsin units of o =

bandwidth W, while the absolute units for the right panel were
calculated, assuming/=1.8 eV.

FIG. 3. The model rectangulafdotted ling and Gaussian
~ - 29 )
Tc/W~0.043(Ref. 9 andT,/W~0.046""As all these cal (dashed ling densities of states, and the actual D@$e) (solid

culations are either of the mean-field type or involve a nuWine). For each model density of states, the bandwidth is chosen

merically exact calculation of only a small cluster of sites, g,ch that the second momért) is exact. Note how accurately the
the difference in the results by a factor of 3 is not surprising gayssian DOS fits the profile of .

It is also worth noting that the relation of this theory to the
approach developed in Ref. 12. There, in addition to theliffer substantially and range from-1 eV (Ref. 31 to
mean-field approximation, a specific functional form of the ~4 eVv3233 which, e.g., forx=0.3 will correspond for the
probability distribution of the angle between different spinsvariation of the critical temperature from 210 to 840 K. One
was assumed, with the system magnetization being the varighould, however, keep in mind that the main objective of the
tional parameter. This should be contrasted to the method afariational mean-field theory developed in the present paper
the present paper, when the functional form of the singleis not a quantitative calculation of the critical temperature for
spin distribution function is derived variationally. The gen- some given composition, but to describe the variatiofT of
eral dependence of the distribution derived here turns out tiith the carrier concentration and effective disorder, and to
be quite similar to the one assumed earlier. But the results afncover the physical origin of this behavior.
the variational procedure developed in this section should be As explained earlie}? the transition temperature is deter-
more accurate besides being on firmer ground. Another adnined essentially by the difference in the cohesive energy of
vantage of the present method is that it can be used for thghe ferromagnet and the paramagnet by the entropy of the
description of the effects of the substitution disorder—paramagnet. The larger bandwidth of the ferromagnet by
something which is hard to characterize within the frame-about 20% is the essential aspect of the energetics in the
work of Ref. 12. double-exchange problem.

As follows from Eq.(11), the critical temperature explic- Consider now the effect of substitutional disorder. Substi-
ity depends on the density of states, and the resulting valugitional disorder increases the electron-bandwidth for the
is in fact sensitive to the actual shape of DOS. However, thiparamagnet. The removal of spin-disorder is then expected to
has only a marginal effect on the dependenc& obn the  decrease the change in the bandwidth on becoming a ferro-
concentratiorx. To illustrate this behavior, in Fig. 2 we plot magnet. This is explicitly borne out by the theory here.
the critical temperature as a function of the charge carrier Since the critical temperature is directly related to the
concentratiorx for a rectangulafblue curvg and Gaussian effective DOS, it is sensitive to the substitution disorder in
(red curve densities of states. For comparison, we also plothe system. Assuming the Gaussian distribution of the disor-
the x(1—x) dependencéblack ling, obtained in an earlier der strengthy; with the standard deviatio¥, and Gaussian
work,"? and the experimental data of Ref. 10. The model“bare” DOS (Ref. 34 pyexy —s%/(3t)], we obtain
densities of states are plotted in Fig. 3 and compared to the
DOS p;, corresponding to the Hamiltonid) with constant T s .
transfer integral and no diagonal disorder. The effective Tc_fo dﬁf,wds('u_8)p[teﬁ(ﬂ)’8]smﬁco‘°ﬁ’
bandwidth of the model densities of states is chosen to accu- (12
rately reproduce the second moméat). Note how accu-
rately the Gaussian density of states fits the profilg,of

As follows from Fig. 2, a reasonable choice of the band-
width W=1.8 eV, consistent with the calculations in the
local-density approximatiotf, leads to a good agreement - 4= (13
with the experimental data. One has, however, to keep in
mind that the estimates for the bandwidth in the literature

where the effective transfer integrgly is defined by the
equation
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AL L L B averaged value defined by the magnetization of the system.
From the point of view of the semiclassical transport theory,
that would correspond to effective independent “scatterers”
located at each point of the lattice. However, in the ferro-
magnetic phase, when the spin fluctuations are small com-
pared to the averaged value, the corresponding electron mean
free path may be substantially larger than tivn) lattice
e spacing. In this limit, in order to estimate the resistivity of
S N the system, we can use the standard semiclassical transport
R, theory.

We introduce the average transfer integral
=to(c0s@,4/2)), so that the corresponding unperturbed
Hamiltonian is defined as

Te / Wo
0.02
LI L L B B B I.[I |',| T
v v v v v v vy Iy

0.01

O|||||||||||||||||||
0 0.5 1 1.5

disorder, Vg

N

1 _
_- +
Ho=5 <a2ﬁ> tcicy (14)

FIG. 4. The dependence of the critical temperature on the averand the rest of is treated as the “perturbation,”
age “disorder”vg (in units of the bandwidthV, of the “clean”
systemv=0). Curves of different styles represent different electron 1
concentrationgfrom top to bottomx=0.4, 0.3, 0.2, 0.1 The dis- V=— E &ijCiJer . (15
tribution of the disorder energies is Gaussian. 2.1

The standard plane-wave diagonalizationHf yields the

The dependencgd2) is shown in Fig. 4 for different electron ' ’
dispersion law

concentrations. As extra disorder makes the ferromagneti
phase less favorable, the critical temperature goes down with o
an increase oY/, €= t[cogk,a)+cogk,a)+cogk,a)] (16

It might be tempting to attribute the difference in critical
temperature between the “type-1” and “type-II” compounds which describes “holes” neak=0 and “electrons” near,
to the effect of the substitutional disorder. In such model, are.g.,k=m/a(1,1,1). When the Fermi energy is located near
effective disorder strength &f,~0.7W would fully account  the bottom or near the top of the band, one can define the
for only ~30% difference in the critical temperatures of effective mass for the electrons and the holes, respectively,
type-l and type-Il compounds. We suspect that large enough, =2ta2/%2.
lattice disorder in concert with lattice disorder localizes elec- The kinetic equation for the electron distribution function
tronic states in the paramagnetic phase. New considerations js36
then enter in to the determination of the transition tempera-

ture. These will be discussed separately. Also missing from -

the discussion above is the effect of the formation of spin =~ —eE——=—— > [(k|V|k’}|25(ex— e ) (fx—fr),
polarons which must occur in the paramagnetic pfase. gk h%

They would tend to decrease. but the number of spins in 17)

the polarons is rather small and only a modest numerical 0 . A o .
effect on the transition temperature is expected. Theyvheref (€) is the equilibrium distribution function, and

are, however, quite important for the dynamics near thékMk’)_is the matri_x element of the “pgrturbatior(‘lS).
transition. The kinetic equatiori17) has the solution

ﬂEk (9f°( Gk)

Il. RESISTIVITY WITHOUT LATTICE DISORDER: szfo( 6k)—eET(k)W P
z €k

SEMICLASSICAL TREATMENT

: (18

In the mean-field approximation developed in the previ-where the relaxation time is defined by the following equa-
ous section, each spin independently fluctuates around then:

1 3as
m(K) 272

3
€x+k’ . _ a 2 ! i ’ _
1+ Gt_>5(ek €) S0t fdk sirf(k.a) 8( ec— ex). (19

Wf dk’

Assuming auniform dispersione, = €(|k|), this expression reduces to the standard result for the transport relaxation time,
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1 , :
TI():J dk Wkk,(l—cosﬁkkr)5(ek—ek/), (20) E ! I &o é)
= Q QU
where the scattering rateW, =3a3(2724) 16t71 5 2 2 ]
+€/(61)], and Gy is the angle between the vectdes 2 b5 ‘
andk’. % .m.‘.\...‘\m_&)qu)o>‘|‘x.|.\‘\|
Near the top and the bottom of the band, the integrals in 3 0.01 0.015 0.02 0 02040608 1

Eq. (19) allow a straightforward analytical evaluation. For Temperature, T/W, Magnetization, M/M__
example, for the holes we obtain

’1k—6k12k2¥ 21 035
7 (k) =—ka 1~ g(ka) = (21 < o £
o L SE ~~_._3
As we pointed out before, the semiclassical approach devel- & ""9 L 4

Ean | PR L
0.01 0.02 0.03 0 01 02 03 04

oped in the present section is appropriate only when the

chgrge—carrler mean free path>a. Usmg Eq.(_21) for the Temperature, T/W, Magnetic field, uSB,/W,
ratio of the mean free path to the lattice spacing near the top
of the band we obtain FIG. 5. The resistivity and magnetization of the sample, calcu-
_ lated using in the variational mean-field approximation for the DE
/t? 3 model.(a) The variation of the resistivitysolid line) and magneti-
g_zz 2 (22 zation (dashed ling with temperature, in the absence of external
ot al1- —(ka)2 magnetic field.(b) The resistivity as a function of magnetization,
9 the inset shows the variation of the coefficianith concentration

X, obtained from the experimental d4fef. 37, and the theoretical
As follows from Eqs.(19) and(22), in the absence of sub- prediction in the effective-mass approximati¢diashed ling (c)
stitution  disorder, //a is always greater than The resistivity as a function of temperature, for different values of
(3/m)*(t?/ 6t%). The ratiot?/ 5t? is a monotonically decreas- the magnetic field. From top to bottom, solid lineSB/W,=0;
ing function of temperature in the ferromagnetic phase, andashed lineuSB/W,=0.005; dashed-dotted lingeSB/W,=0.01;

constant above thd., where t2/5t2=8. Therefore, since dotted line: uSB/W,=0.015; dashed-triple-dotted lingtSB/'W,

A - ._n=0.02.(d) The resistivity as a function of magnetic field, for dif-
the mean free path due to the spin disorder is SUbStant'al%rent té%peratures_ F%m top to bottom solgin liiéW, = 0.05;

larger than the effegtlve lattice spacing, we exp“ect that |r,1, th%ashed lineT/Wy=0.02; dotted lineT/W,— 0.01.
relevant concentration range=0.1-0.3 such a “pure DE
system would generally show the metallic behavior. Indeedzero-field resistivityp,. However, the behavior above the
in a typical type-Il compound LgSr, sMnOg, the resistivity — critical temperature is characterized by the formation of
does show the metallic behavidp/dT>0 both above and small magnetic polarons, localized due to the spin disdrder.
below the transitiof. In a nonzero magnetic field, this effect also affects the mag-

The effect of nonzero magnetizatiétaused either by the netization and is taken into account phenomenologically by
transition to the ferromagnetic phase, or by external magusing the actual experimentally observed magnetizatan
netic field on the conductivity is twofold: first, it suppresses Ed. (23). However, the present Boltzmann-type approach is
the fluctuations in transfer integrals thus decreasing the coflot adequate for a quantitative calculation of the zero-field
responding scattering rate; second, the increase oathe  '€SISUVIty po.

age transfer integral caused by the magnetization leads to a 1 h€ guadratic dependence of the resistivity on the mag-
netization in manganites was also obtained in Refs. 6 and 38.

decrease of the effective masg, ~1/t. Both these factors  tne prefactor we obtain in the present work is similar to the
lead to a decrease of the resistivily For a small magneti-  one calculated by Furukawa in Ref. 6, and agrees with the
zation, experiment better than the result of Inoue and Maek&wa.
However, as all three methods are essentially mean-field
p(M)=po[1— k(M/Mpna?], (23 theories with a number of nontrivial approximyations, the
where in the effective-mass approximation the coefficient Marginal difference obtained for the prefactor is not very
is equal to 9/5. For weakly disordered manganites, the resiémportant. Inst_ead, th? advantage of the approach presented
tivity indeed follows Eq.(23). As seen in the inset in Fig. n th!s paper 1s that it makes much more transparent t_he
5(b) the experimental value is about 2 and slowly varies withPhYSics underlying the behavior of colossal magnetoresis-
the electron density. Taking into account the band nonpard@1Cc€ compounds—uwhich is much harder to achieve using,
bolicity leads to a weak dependenceobn the concentra- e.g., the numerical dynamical mean-field theory used earlier.
tion x, but does not fully account for an increasexfThe IV. SUBSTITUTION DISORDER: EFEECT
variation of the resistivity in the whole range of the sample ON RESISTIVITY
magnetization 82M <M 44 IS shown in Fig. 5.
Using the semiclassical approach developed in the present As we pointed out in Sec. Il, the 30% difference in the
section, one can also obtain an analytic expression for theritical temperatures of the type-l and type-ll compounds
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implies that in the “disordered” compounds the effective by a variational approximation on the double-exchange
scattering potential is of the order of the electron bandwidthHamiltonian. The results obtained for the critical temperature
In such conditions, the localization effects can become imand its evolution with doping and the chemical composition
portant, and the semiclassical treatment of the previous seof the compound are consistent with the experimental data.
tion is no longer appropriate. The decrease dof . with modest disorder is also understood.
It has been proposed that in the “strongly disordered” The resistivity of the type-lIl manganese compounds can
(type-l) compounds, the ferro- to paramagnetic phase transialso be successfully described using the DE model. We
tion drives the metal-insulator transition. In the paramagnetichowed that, e.g., the theoretical dependence of the resistiv-
phase, the “combined effort” of the substitution and spinity on the sample magnetization is in a quantitative agree-
disorder is sufficient to localize the charge carriers, while inment with the experimental data. Our calculations show the
the ferromagnetic phase, due to larger electron bandwidthobustness of the results to the particular choice of the elec-
and weaker spin disorder, the mobility edge is below theron density of states, as should be obvious since the transi-
Fermi energy??? tion temperature depends on the difference of the cohesive
One might be tempted to think that this mechanism of theenergy of the paramagnetic and the ferromagnetic phases.
colossal magnetoresistance of the disordered manganites re- The principal problems of the manganites left unanswered
duces the problem to an Anderson-type transition as a fundn this paper concern the properties of the type-I compounds
tion of disorder alone, where the spin disorder is a functiorand the remarkable effects of disorder in them in both the
of the magnetization. This is not correct since the magnetidynamic and static properties. These are also the more subtle
entropy is essential to the transition which occurs at a finitgoroblems. Especially interesting is the fact that extrinsic dis-
temperature unlike the Anderson transition which occurs abrder appears to promote some additional disorder in the
T=0. paramagnetic phase which is swept away together with the
An important question, however, is whether the resistivityspin disorder in the ferromagnetic phase. We hope to provide
near the transition can be expressed uniquely as a function ah answer to these questions separately.
magnetization. If the phase transitiwith or without “di-
agonal” disordey is characterized by a divergent magnetic APPENDIX A: SPIN ENTROPY IN THE SEMICLASSICAL
correlation length scale, this may be possible. It should be MEAN-FIELD APPROXIMATION
remembered, however, that resistivity depends on fluctua- ] o ) ]
tions at large momentum transfer. In a solid with lattice dis- N the mean-field approximation, when the spin-density
order, the ferromagnetic correlation length does not uniquelynatrix of the whole system™(S}”) is represented as a prod-
characterize the important disorder at short length scaledct of diagonal density matricgs=p™(S{") of the indi-
even though it may be coupled to the magnetization as ap/idual spins,
pears to be the case in the manganites. It is also possible that s N
for sufficiently strong disorder, the ferromagnetic transition p==IiZ1pi . (A1)
is replaced by a crossover and there is no divergent correlarhen the total spin entropy
tion length. These are probably the reasons why no clear
indication of scaling behavior expected in a continuous Sepins= Tr{p*IN[p* 1} (A2)
guantum phase transition were found in the recent resistivity
measurement®*° These considerations, however, go be-IS represented by
yond the mean-field-type theory developed in the present s
paper. = (1) (1)
In any case, we believe that in order to fully understand pins stzz—s PASIINLPAS,) ) (A3)

the physics underlying the colossal magnetoresistance;r th iclassical imatiog>1. th i
doped manganites, one also has to take into account the | fl (he semiclassical approximati , the summation

tice disorder, which is coupled to the spin disorder, via theirove_r‘g'lZ Cgﬁ be replac;esd by intggr_ation. Introducing the new
influence on the charge carriers. Indeed, the strong couplingriable 9=arccosg,/S), we obtain
between the spin and lattice disorder was recently demon-

1
strated in two independent experimeffté® Clearly, the ef- Sepine= st d cosd p(Scos)In pM(Scosd)],
fective lattice disorder has its own nontrivial temperature de- -1
pendence, and, being coupled to the charge -carriers, (A4)

therefore obviously leads to substantial deviations from thgyhere p(1)(Scos®) is normalized as follows:

standard picture of the “static” Anderson metal-insulator

transition. However, at this point we defer the further de- S 1

scription of this effect. 12522 . p(l)(Sz)=SJ 1d cosd p(Scosd). (A5)

We now define the spin orientation distribution functiBg
~ pM)(Scosd), normalized as

As shown in the first part of the present paper, the phase N
transition from paramagnetic to ferromagnetic phase in rela- J d cos® pD(Scosd)=1. (AB)
tively pure manganese oxides can be successfully described -1

V. CONCLUSIONS
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As follows from Egs.(A5) and (A6), the spin orientation

distribution function F[Py;m\, (1=

1
Pﬁzép(l)(SCOSﬂ). (A7)

Therefore the semiclassical spin entropy
1
Sspins= — Nf dcosdPyIn[Py]+NIn[S]. (A8)
-1

For example, in the paramagnetic phase, when there are no
external fields, and the spin orientation distribution is uni-
form, Py=1/2, the semiclassical spin entropy is equal to
N In(29), which is consistent with the exact resitin(2S

+1) for S>1. Note that the main contribution to the semi-
classical spin entropy comes actually from the distribution-
independent term in EGAS).

The semiclassical description, however, fails for large
magnetization, when the spin system is almost completely
polarized, and the distribution function starts to change sub-
stantially on the scale af9~1/S. In this case, the original
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2wd 2md
f ¢1f d)zf dd, sindy

X j dd,sin9,P 5(01)P g(0>)
0

" 6
X J’, ds(s—)\)p(to CO%E) ;8)

2m7d
+Tf i

0 2
xf d¥ SinY1P4(91)IN[P4( 1) ]
0
27Td¢l
—Bf f ddy sindy cosIPg(9q)

+ gfoﬂdﬁ Sinop, (N +FDGNL], (B4)

where the “constant’F represents the spin distribution-

expression, Eq(A3), should be used for the calculation of jndependent part of the free energy. Here, the Lagrange mul-

the spin entropy.

tiplier ¢ accounts for the normalization of the distribution

function P4, while the Lagrange multipliex represents the

APPENDIX B: VARIATIONAL FREE-ENERGY
FUNCTIONAL

constraint of having a fixed concentration of mobile elec-
trons in the system.

It is straightforward to show by a direct calculation that at
In this appendix, we calculate the variational free-energythe extremum of the function@B4) \ = «. This has a clear

functional for the double-exchange model. Using E@b.
and (6), for the electron energy we obtain

physical meaning—the Lagrange multipliercorresponds to
the electron number conservation, and therefore should be

equal to the electron electrochemical potential. Replaging

27Tdd)l 27Td¢2 T )
Ee—fo Efo Efo dd sindy

xf dd, siNO,P (1) P g(95)
0

XJM dssp(toco{ 0((1)1'01’(1)2’62)) ) (B1)

FIPy:u\ (=

2

while the extra spin energy

27Td¢1
ESI—BI fdﬂlslnz‘}lcosﬁl o(91). (B2)

The free energy can be obtained by the substituting these
expressions and the entrog$) into the standard definition
of the free energy

F=E.,+E—TS. (B3)
In order to find the single-spin distributioR,, one has to

minimize the effective free energy, taking into account the
constraints of normalization. Using the standard Lagrange

by u in Eq. (B4), we finally obtain the effective mean-field-
free energy functional:

21Td¢1 27Td¢2 T )
f Jo ﬁJ’o dd,sindy

xj d9, siNO,P o( 1) Py(95)
0

H 0
Xj_wd8(8—M)P(tocos(§);s)

27Td¢l T )
JrTJO 27 o ddy sind;Py(9)

XIN[Py(d)]—B

2nd¢py (7 .
X J' —f d¥4 sin¥4 cosH P y(d4)
o 2mJo

+§f0ﬁdﬁ SinOp,(9)+F. (B5)

multiplier method, for the effective free-energy functional Taking the functional derivative of E4B5) with respect to

we obtain
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P, for the distribution we obtain
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) [0 1, [
Pﬁ(ﬁ)—exr{—ZJo Ej@ Z Od015|nﬁlpﬁ(ﬂl) 7md8

. (B6)

e~ U 0\ { B
T p(tocos(z),s)—$+?cosi}

Note that the exponential on the right-hand side nontrivially depend8 wia the angled= 6( ¢, 91; ¢, D).
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