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Spin-singlet order in a pyrochlore antiferromagnet
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The ground state of a8=% quantum antiferromagnet on a pyrochlore lattice is investigated based on an
effective low-energy Hamiltonian in the spin-singlet sector. In the level of the mean-field approximation, it is
known that a majority part of the spins shows a long-range order of spin-singlet dimers, with a coexisting
nonordered part in the singlet sector. In this paper, | first discuss elementary excitations in the ordered part and
their coupling to the remaining nonordered part. Next, | derive a coupling-mediated effective interaction in the
nonordered part, and examine the possibility of symmetry breaking. | find that the remaining part turns out to
show aq=0 order of either dimers or tetramers. | also find that this symmetry breaking leads to low-energy
singlet excitations with linear dispersions, within the harmonic approximation for quantum fluctuations. The
system has a hierarchical structure of relevant energy scales, and this may be a general feature of geometrically
frustrated magnets.
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[. INTRODUCTION study a Heisenberg antiferromagnet on a pyrochlore lattice, a
typical example of geometrically frustrated magnets in three

A variety of antiferromagnets have a geometrically frus-dimensions. The pyrochlore lattice is a network of corner-
trated lattice structure, and many of them show interestingharing tetrahedra. It is realized as a sublattice in spinel com-
physical propertie$.The geometrical frustration often leads pounds and pyrochlore compounds, and there are many mag-
to a drastic reduction of the energy scale, and a large numbeetic materials with magnetic ions on a pyrochlore lattice.
of spin states become degenerate or nearly degenerate in tBace quantum fluctuations are concerned, | concentrate on
low-energy sector as a consequence. Many experimentallhe limit of large quantum fluctuations, which corresponds to
observed unusual properties are ascribed to this degeneradiie smallest spin quantum numb8&k: 3.

Theoretical studies have actually demonstrated the pres- Classical antiferromagnets on a pyrochlore lattice were
ence of a thermodynamic degeneracy of the ground state istudied by several groupé. They show a thermodynami-
many classical models with geometrical frustratioHow-  cally degenerate ground state for an Ising model and a clas-
ever, this implies that we have to examine the effects okical Heisenberg model. For example, Liebmann’s estimate
various neglected processes in the low-energy sector, in oof the ground-state entropys about (0.293—0.296)log 2,
der to obtain a more complete description at low temperabetween one-fourth and one-third of the total entropy. The
tures. A physical ground state should not be thermodynamielassical Heisenberg model also has thermodynamically de-
cally degenerate, as the third law of thermodynamicsgenerate ground states. It is also believed that no phase tran-
implies. The real low-temperature asymptotic behavior is desition takes place at finite temperatures, indicating the ab-
termined by these additional processes, and eventually theence of an order-by-disorder mechanism.
system undergoes some kind of symmetry breaking and re- Recently, theoretical studies were begun for qguantum an-
leases the residual entropy. The processes to consider are, fiferromagnets on a pyrochlore latti¢e’ The results indicate
example, small spin anisotropy, longer-range spin exchangea, spin-liquid nature, i.e., a spin-singlet ground state and a
spin-orbit coupling, and multispin exchanges. finite energy gap for triplet excitations. However, this spin-

In this paper, | will examine the effects of another type ofliquid phase is different from the one in nonfrustrated quan-
important process, quantum fluctuations. The classical detum antiferromagnets like spin laddéfsThere may exist a
generacy due to geometrical frustration is to be lifted bythermodynamic number of singlet states within a spin gap in
hybridization driven by quantum fluctuations, resulting in athe frustrated case, while the lowest excitation is usually a
nondegeneratéin the thermodynamic sensground state, spin triplet in the nonfrustrated case. Therefore, the system
possibly with symmetry breaking. This mechanism of long-has a potential of revealing nontrivial symmetry breaking
range order may be considered as a quantum version of orderside the spin-singlet sector once residual interactions be-
by disorder, which was first proposed by Villairf the in-  tween these singlet states take effect. Along this line, a low-
teractions are short ranged, this effect is efficient in geoenergy effective Hamiltonian was derived, and a partial
metrically frustrated systems, compared to randomly frusdimer order was predicted within the mean-field
trated systems such as a spin glass. This is becausgproximatior®® Interestingly, this effective model is also
degenerate states in geometrically frustrated magnets différustrated, and the dimer order is only partial, and a quarter
in their local-spin configurations, whereas the difference inof low-energy singlet degrees of freedom remain nonordered.
spin glasses is in longer-range configurations. Therefordn this paper, | start from the same effective Hamiltonian,
quantum transition probability between different states isand will complete the above approach. | will show the pres-
correspondingly larger in geometrically frustrated systems. ence of second-stage symmetry breaking, and determine the

To examine the above scenario, in the present work | willultimate ground state by taking account of effects of quan-

0163-1829/2001/62)/02441%11)/$20.00 65024415-1 ©2001 The American Physical Society



HIROKAZU TSUNETSUGU PHYSICAL REVIEW B65 024415

composed of four symmetrically connected spins, having a
T4 point group symmetry? and the comprising spins are
denoted by indexes 1-4, as shown in the figure. The lattice
constant of the cubic unit cell is set to 1, and | will use it as
units of length throughout this paper.

In the case of spir}, each tetrahedron unit had216
basis functions. Its total spin iS,,;=0, 1, or 2, and in the
limit of J'/J=0 it becomes a good quantum number. Even
for homogeneous couplingJ{/J=1), spin correlation is
very short ranged due to strong geometrical frustrations, in-
> dicating that low-energy dynamics may well be described in

terms of onlyS,,;=0 bases. Two of the 16 basis functions
have S,,=0, and they are transformed as a basis of Ehe
representation of th&, group.

Instead of real bases, | use the complex chiral basis states

FIG. 1. Cubic unit cell of the pyrochlore lattice, containing four

tetrahedra labeled—D. Sites in the tetrahedron unit are labeled by |+ )= i(1+ POL(LLTT+ELLTIT)+e (11T D)],

indexes 1-4. Exchange couplings in the-D tetrahedra arel \/E

shown by black bonds, while intertetrahedron couplings #re

shown by white bonds. |—>:(|+>)* (p=2mI3) (2)

t_um fluctuations. | will also study various types of excita- \where ﬁSEHj(stf+sj—) is the spin inversion operator, and

tions. up and down arrows denote the spin direction at sites 1-4
This paper is organized as follows. In Secs. Il and Ill, I from left to right. The symbolp is reserved for this special

will briefly explain the low-energy effective Hamiltonian and angle throughout this paper. These basis states are actually
its mean-field ground state with partial dimer order. | will eigenfunctions of the chirality operat8s- (S; X S,) defined
investigate elementary excitations in the ordered part, angith respect to site 1also with respect to the other three
their coupling to the nonordered part in Secs. IV and V. | will siteg, and|+) and|—) have opposite chiralities from each
then derive the effective interaction for the nonordered partgther. | will make a further discussion of the chirality in Sec.
and finally determine the long-range order of the whole sysy| |t is also important to note that because of the complex
tem in Secs. VI and VII. Section Vil is devoted to conclu- coefficients in Eq(2), they are not invariant with respect to
sions and discussions. the time-reversal operation. In this way, low-energy singlet
degrees of freedom can be represented by these chiral states
Il. MODEL in each tetrahedron unit. The total entropy of this subspace is

a quarter of the original value.

To describe the dynamics of the chirality, | introduce a
pseudospin operator=(7,,7,,73), With (pseudgspin S,
=1, such that its third element is diagonal with respect to

Hs= > 3,+S-S (J,,=0), (1) the chiral basis,
(r,r')

where the summation is taken over nearest neighbor pairs. 73| =)=(*1)|%), [57,, 57, ]1= € w37, ()
The structure of the pyrochlore lattice is shown in Fig. 1.
Instead of studying this Hamiltonian directly, we take anwhereu, u', u"€{1,2,3;, andeis the completely antisym-
alternative approach and start from a low-energy effectivenetric tensor.
Hamiltonian, which will be shown in Eq4). The effective Starting from the original Heisenberg modiglg. (1)], the
Hamiltonian in the spin-singlet sector was derived in Refs. Jow-energy effective Hamiltonian was derived by means of
and 9. The basic strategy is to breakup the whole pyrochlorthird-order perturbation id’/J,°
lattice into a set of tetrahedra shown by black bonds in Fig.
1, and to apply a perturbative approach in the ratio of the two

The model to study is the spiiHeisenberg antiferromag-
net on the pyrochlore lattice:

- 1_ . 1_ .
types of coupling constantk/J, with the hope that the uni- H.= '81<R RE,R,,> [2—e(ay) ][z ~&(ar) 7]
form casel’/J=1 in question is qualitatively described by Y
this approach. A similar approach was also applied to another X[3—e(az)- T, 4

typical geometrically frustrated model, Kagomanti-

ferromagnet? In this section, | explain some details of the where 8,= %J'%/J?, &(a)=(cosa,sine,0), and7z denotes

derivation which will be used in the following sections. the chirality pseudospin of the tetrahedron unit positioned at
Let us understand the pyrochlore lattice as the fcc latticdR. The summation is taken over sets of three tetrahedron

consisting of tetrahedr@ndicated by the dotted circle in Fig. units which are nearest neighbor to each other, but not over

1), and label the four sublattices—D. Each tetrahedron is all the possible combinations in the effective fcc
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FIG. 2. Pseudospin network in the pyrochlore lattice. Pseu-
dospins are shown by balls with sublattices labeleeD. Interac-

tions in Eq.(4) are defined for all triangular faces on each tetrahe- 4 :

dron shown in this figure. 3 chiral(-)

lattice of tetrahedra. It should be taken over a half of them, as 1 5

shown in Fig. 2. In other words, the lattice of tetrahedra is

equivalent to the fcc lattice concerning the “site position,” G, 3. pseudospin order and spin states in tetrahedron. North

but the connectivity is different. Despite this difference, | and south poles correspond to a pure chiral state, and on the equator
will call it a fcc lattice in this paper. The details of the the spin states have no time-reversal symmetry breaking. Three spe-
derivation of the effective mod¢Eq. (4)] are explained in  cial points with azimuthal anglé= and == ¢ correspond to
Ref. 9. dimer-pair states, while the other thré&=0 and =+ ¢) correspond

The complication of mode(4) lies in the nonlocality of to tetramer states. Dimers and tetramers are shown in black.
the @ parameters. The parameter for the pseudospin at
po§|t|onR depequ on the sublattice labelRf but it IS no.t will use solutiong5) in this paper, but the other solutions are
uniquely determined. It also depends on the sublattice Indeélso equivalent except for a different sublattice position of

" , " =
of the other wo position&®’ andR", and this is also the ree pseudospins. These solutions agree with the result of
case fora, andag. The values of these parameters are liste

) ef. 5.
in Table I. The symmetry of the effective Hamiltonian in chirality
space is planarlike, and interactions do not exist in the
lll. MEAN-FIELD ORDER OF PSEUDOSPINS direction. There also exists an in-plane anisotropy as de-

scribed by thex «) vector. Therefore, this mean-field ground
state is quite stable, and quantum fluctuations around it have
small amplitudes in the ordered sublattices.
e However, at the mean-field level, the chirality pseu-
dospins in theB sublattice are completely free, and there is
no effective potential which constrains the fluctuations of
B-sublattice pseudospins. Therefore, in order to investigate a
) possible symmetry breaking in the remainiBgsublattice,
free (B sublattice we need to consider small quantum fluctuations in the or-
aT (C sublattice dered part, and investigate their effects on the dynamics of
7—¢ (D sublattice the singlet flyctuatlons in thB sublattice. This is the subject
(’5) of the following sections. _ _ _

Here | present further discussions on the singlet fluctua-
and the other three solutions are obtained from this one bions. In Sec. Il, | introduced the pseudospin operatdo
using symmetry operation of the effective Hamiltonian. | describe the internal degrees of freedom of local singlet con-

figuration, and showed that it component corresponds to
TABLE I. « parameters in Hamiltoniat4), dependent on the spin chirality, i.e., the noncollinearity of the spin correlation

The mean-field ground state of the effective Hamiltonian
[Eq. (4)] was obtained in Ref. 9. It is done by treating the
chirality pseudosping’s as classical unit vectors, and the
configurations with the lowest energy were found. One of th
four solutions is

7+¢ (A sublattice

(7r)=(c0S6lR,SiN6R,0), Or=

combination of sublattice index of three sitéRR’R”). or alternatively the finite spin current. The transverse com-
ponentst; and 7, also have a simple meaning. To see this
. a point, let us consider a pseudospin coherent $tatelefined
Sublattice _ . . .
combination A ®) © D) by (7-m)|m)=(+1)|m), wherem is a classma}l unit vector.
Form=(0,0,+1), the coherent state is the chiral state in Eq.
BCD - ¢ - 0 (2). For m=(cos#,sin6,0), the coherent state is written as
ACD @ - 0 — |6)=(]+)+¢€'%—))/v2. By writing this state in terms of the
ABD - 0 - & original spin representation, we note that there are six special
ABC 0 - ¢ - points, as shown in Fig. 3. Three pointd= 7 and 7w+ ¢,

represent a pair of spin-singlet dimers, while the other three,
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terms ofr operators[The first-order terms vanish identically
after taking summation in Eg4).] Since both terms are
expected to be equally important for the ground state, | de-
cide to set the “same order” i, to all the terms in Eq(4).
This is done by replacing 12e- 7 by S,—e- 7, which re-
turns to its original when approaching the physical value
S,=1/2. Next | locally rotate the coordination frame of
operator in ther;- 7, plane such that the ordered moment is
along ther; direction in the new frame:

&a) r=6(@) Tr, (7r)=(1,0,0), (6)
TIR ~1| T1R ~
=~ "|=U(6r) 7" »  T3R=T3R, (7)
2R 2R
with
FIG. 4. A pictorial representation of the mean-field ground state cosf —sind
[Eq. (5)]. The dimer configuration in the cubic unit cell is projected ug)=| . , (8)
on the(111) plane. Dimers are indicated by thick black borwis.D sing  cosé
label the tetrahedra shown in Fig. 1. Molecular fields are canceled (720)
on theB tetrahedron. - (7
G=a—0r, Og=tan l—= (9)

(T1R)
0=0 and = ¢, represent a spin-singlet tetramer state. For ) i i )
example,|9=0) is the same as the singlet ground state on a '_I'he next step is the HoIste_m-F_’nmakoff transformation,
square of sites 1—4: the total singlet state is made of two spiWh'Ch regresents the pseudospins in terms of boson operators
triplets, one out of spins 1 and 2 and the other out of spins $r andbg:
and 4. We can also prove thiat=0) is real for any6 aside _ t ~ +
from the global phase factor, meaning time reversal invari- 71rR=2(S;—brbg), Tor~V2S/(bgtbgr).  (10)
ant, which is consistent with a zero chiralityg| 75| 6)=0. 1/2
Therefore, the transverse components of the pseudospin o
erator describe the dimer-tetramer correlations, and mor
g_enerally t_he inhomogeneity of _twoispin correlations among 1 _ g 4). gy (1—2 coS¥)S,— \/Z_STSina (bJ,;+ br)
six bonds in the tetrahedron unit. Since the nearest-neighbor

Here terms of orde®, ~“ or lower are neglected. Therefore,
géch term in Eq(4) is represented as

two-spin correlations are local energy, as defined in (&g. — 2 cosw b;bR, (12
the transverse components also represent energy-density L,
fluctuations in the tetrahedron unit. wherea=a—tan ((nr)/(Tir))- o

The mean-field ground state with the order paranfé&er Now consider one tetrahedron consisting?of8, C, and

(5)] means the Bose condensation of these different coheref sublattice units. It has four triangular face&R(R’,R")),
states on the different sublattices. Therefore,Ah€, andD  and the corresponding sum of the interactipig. (4)] con-
sublattices show the long-range order of spin-singlet dimersSiSts of two terms. One is the term which does not couple to
and differentd values correspond to different dimer configu- free pseudospin a8 sublattice positiorH,, and the other
rations among these sublattices. The dimer configuration iMith coupling,H;:

the cubic unit cell is shown in Fig. 4.
H(ABCD)=HyABCD)+H,(ABCD), (12

IV. SINGLET EXCITATIONS IN THE ORDERED PART— Ho(ABCD)/B,

DIMERON ) : ) .
- i : . : =—=SA[—t(ba+ba) +baball[t(bc+be)+bebc]
The main part of this paper starts from this section. First,
| discuss the elementary excitations in the ordered sublattices ~ +(A,C—C,D)+(A,C—D,A)}

A, C, andD. To this end, | bosonize pseudospin operators _ ot R Rl
and employ the harmonic approximation for fluctuations. El- (3S;—baba)(3S,—bcbc)(3S,—bpbp), (13
ementary excitations obtained in this way describe spini_| (ABCD)/j8
singlet fluctuations around the mean-field ground state, and* L
correspond to a small-amplitude deformation of dimer con-  =[ —t(b}+b,)+bibal[t(bs+be)+blbcle(2¢)- 75
figuration in space.

As for bosonization, | rewrite the effective Hamiltonian +(A,C—C,D)e(¢) 73+ (A,C—D,A)e0) - 75,
[Eq. (4)] in terms of the Holstein-Primakoff bosofsThis (14)

procedure is not completely trivial, since the effective
Hamiltonian contains second-order terms and third-ordewheret=3S/2.

024415-4



SPIN-SINGLET ORDER IN A PYROCHLOERE . .. PHYSICAL REVIEW B 65 024415

We sum up theH,(ABCD) term for all the positions. the same as the block-off-diagonal part aside from the part
Since we distinguish chirality pseudospins on different subproportional to the unit matrix. Therefore, these two com-
lattices, it is convenient to use the cubic unit cell shown inmute trivially, and we can diagonalize both of them by the
Fig. 2 (equivalent to Fig. Land write the positiorR as the same orthogonal matri¥,,
sum of a cubic lattice vecton=(n,,ny,n,), (N, ny, n,:
integed, and the internal positiod, , with « <{A,B,C,D} Vi= [V V2 V1, B = v, (20)
being the sublattice labeli,=(0,0,0), 65=(0,1/2,1/2), 6.
=(1/2,0,1/2), and =(1/2,1/2,0). We also use the symbol yhere the eigenvectord’ must be normalized. The eigen-
t_)a(n)zbnwa. We further_employ the harmomc_approxma— values are given by
tion by neglecting the third- and fourth-terms tinand b,
and obtain the following Hamiltonian for the low-energy dy- 3 : C_
namics of excitations: Np=hecodmtid) (1=1.2.3,

o 4 1/2

Hopa/B1=~ 1085100+ 7257 X, bo(mbu(n) M| 3 (it et Yard | . (@D

3
+282> D [da(n+ma)de(n—m’a,) 1
2N o ’ i K= 3 COS 1(8’y§k7’32/k7§k/ﬁ)-
+dc(n+may)dp(n+m’a,)
Therefore, the Hamiltonian for the wave vectoiis diago-
+dp(n—may)da(n+m’a)], (19  nalized in the sublattice space but not yet in the particle-

wherea,, a,, anda, are unit vectors along the y, andz antiparticle space,

directions, respectively), is the number of cubic unit cells,
and d,=b,+ bL. The first term on the right-hand side
agrees with the corresponding part of the mean-field ground-
state energy-— % 3,0, when settingS.= 3.

This harmonic Hamiltonian becomes simplerkirspace. where
We define the Fourier component ag,=Q, V%S, exd—ik
-(n+4,)] b,(n), and also define the vector of the Fourier .
components by, = [ ba,bck,bok.bA_ i .bE_ . .bh_ . V=
Using this vector, the Hamiltonian is written in a simple ma-
trix form as usual in the harmonic approximation,

A+48l Ay

Ay A +48l Vi 22

\I’lAk\I’k: q’l

th

o v, Wy, Ag=diag\y Ao Na). (23

Now the three modes are decoupled from each other. The
— 3 L, coefficient matrix is two-dimensional in the particle-
Hopa/B1=Eo+ ESTZ Wi AW, (16)  antiparticle space with the diagonal elemapt+ 48 and the
o off-diagonal elemenk . Using the result of usual Bogoliu-
whereEy=— 1088§(ST+ 1)Q,, and thek summation is re- bov transformation, the Hamiltonidd is finally diagonal-
stricted to the half of the Brillouin zone of the simple cubic ized,
lattice. The coefficient matrix is

3
_ 3 1
A= Bk+481 Bk (17) HO,HA/B1:E0+ 5872_; Zl /.ij( g}.kgjk—i_ E s (24)
“ By  By+48l) i=
. .
0 Ya¥ek Yk Vyk in terms of boson operators ® =" &y, &, &3k

& .e & 1. The eigenenergyin units of 3S28;) is
By=| Ya¥x O Yok Yyk | (18 given by

YykYxk  Yyk7Yzk 0

[ 1
Ky 19 mik=(\j+48)2—\5, =48 1+ Nk (29

YVak=2 cos{ >

We are ready to diagonalize Hamiltoniét6), and calcu- Here the Bogoliubov transformation is defined as

late the energy dispersion of excitations in the ordered part.
To this end, we need the Bogoliubov transformation of the _ X Yi|=~ _
operatorgb,} and{b!_,}. Generally, this is not easy when Y Xl
the unit cell contains multiple sites, but this case is excep-
tionally simple due to the planar nature of the effective X,= diag(coshpy,coshg,,cosheg) and Y= diag(sinkpy,
model. In the present case, the block-diagonal pahns  sinhey,sinhes), or, explicitly,

X Vi Y Vi
Y Vi Xi Vi

}\pk. (26)
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Q.(m=e"[fa_(nfci(n+fs_(n+a)fc (n—a+a)
1.00 @—& +a(nta)fer(n—a)+far(n+a+a)fc

Hikse X(n+ay)]+e [ fe_ (Mo (Mfe (n—a)fps
050 | X(n—at+a)+fc_(n+ay)fp.(nt+a,)

tier(n—acta)fp (n—a)]+[fp-(Nfai(n)

+fp_(n+a)fas(nta+a)+fp_(n—ay)

0.00 - - - - -
(o (r,0,0) (0,0,0) (ra,m Onm) 001  (0n0) X fA+ ( n+ ay) +f D+ ( n+a,— ax) fAf ( n+ az)] ’

(30
FIG. 5. Normalized dimeron dispersion.

Q-(m=[Q,(m]",

0 ) . and f, .(n)==td,(n)+b,(n)'b,(n). Here t=43S,2,
§jk=a:AC 5 (V") ol coshejb o+ sinhgjby, 1, andd,=b,+b! as defined above.
- As seen in Eqs(29) and(30), the coupling of free pseu-

27) dospin to dimerons vanish in the first order of dimeron op-
erators, and starts from the second order. | keep terms of
ng_k: 2 (V(J)) [Sinh(pjkbak-f—COSh(pjkbl s c_iada,’s in the local coupling, and rewrite in the presenta-
a=A.C,D tion. The result reads
with (2) 2~ i(k+k’ 5g)
QP(nm=t*g LS gk B_E Fi (k')
n k,k’ ji'=1
1 - Nik | 1 ) 8 X[§jk+fjfk][fj'k*gjr,k/], (3D
pik=x=tan og| 1+ =N l- 28
2 Jk+48 4 24 ! where
The energy dispersiop;, is shown in Fig. 5. These excita- (k k')=[e""%fac(k,k’ )(V(J))A(V e
tions describe spin-singlet excitations in the part of dimer
order, and | will call them “dimerons” in this paper. +e P ep(k,k) (v ))c(V o+ foa(kk’)
X(V(J))D(V(J )) ]e—(<ij+<Pj’k')’ (32
V. PSEUDOSPIN-DIMERON INTERACTION d
an

The pseudospins on th® sublattice are subject to zero
molecular field, and they are free in the level of the mean-
field approximation. However, they have couplings to dy-
namic fluctuations in the ordered part. In this section, | de-
rive this coupling in terms of dimeron operators introduced

Fac(k k)= 2{cog 3 (I + k) Te! k)2

+eog 3 (k,—ky)Je vk,

in Sec. IV.
The coupling of pseudospins on tBesublattice and those fep(k,k')=€*K) %20cod 3 (k,+ k.)]ei ket kor2
on the other sublattices was already obtained in (E4). in _ ,
the originalr representation. What we need here is to rewrite +cog 3 (ky—k})Je (ki) (33

the 7 operators in the ordered, C, and D sublattices by
dimeron operatorg and¢'. As shown in Fig. 2, on® pseu-
dospin belongs to four pseudospin tetrahedra. Summing up
Eq. (14) over these four tetrahedra, the local interaction of
the B-sublattice pseudospin at positionis given as

foa(k,k ) =Kk B20cog 1 (k,+k|)]e! ka2
+cog § (ke— k;)]e—i<kz+k£>/2}_

Within this approximation, the coupling of remaining free
pseudospins and dimerons in the whole lattice is written as

1
H1(n)/B1=5[Q(M 75— (M +Q-(M7a.(M], (29
1
H1/B1=5 2 [QP(m) 75 () +Q (M) g (m)].

where rg.= 75+ i 75, and (34
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TABLE Il. Normalized coupling constan?aa,:Kw, /B1. N, is the number of sites at a distance

r=n| Ny n Kya(n) Koo(N) Ko(n) = Kay(n)
1 6 (+1,0,0 1.0167x 10 4 1.0599< 10 4 —0.0374x 104
(0,+1,0 1.0167x 104 1.0599< 10 4 0.0374x10°4
(0,0+1) a;=1.0815x 1074 b;=0.9951x 104 0
V2 12 (0,+1,+1) 5.5467 104 0.5296< 10 * 4.3449< 10 *
(+1,0+1) 5.5467x 10 4 0.5296x10 4 —4.3449<10 4
(+1,+1,0 a,=—1.9789% 104 b,;=8.0552x 10" * 0
V3 8 (*x1,+1,%1) a,;=1.8738< 10 © b,;=1.8738<10 ® 0
2 6 (+2,0,0 1.6702<10°8 4.7174<10°8 —2.6390<10°8
(0,+2,0) 1.6702<1078 4.7174x10°8 2.6390< 1078
(0,0+2) a,=6.2410x10 8 b,=0.1466<10"8 0
VI. EFFECTIVE PSEUDOSPIN INTERACTION MEDIATED 1 1 1 1 o
BY DIMERONS Kaa(n) D (n)
Kao(N) -1 -1 1 1 D**(n)
Effective couplings betweeB-sublattice pseudospins are Ko |71 i =i =i i D-*(n) |’
mediated from this HamiltonialEqg. (34)], and | derive it by Kopy(1) i IR D (n)

second-order perturbation. This is analogous to the phonon-
mediated electron-electron interaction and also the RKKY (37)
interaction between localized spins mediated by their cou-
pling to conduction electrons. In the present case, each fun-_ 3

damental process contains one pseudospin and two dimeron@ (n)/'gl_l_e 02 2

1 3 goilk+k’)n
. t fot . ) Nk j.j =1 MikT Rk
like £'¢ and&'¢, not a single dimeron. In the second order

of the coupling[Eqg. (34)] and at temperaturd =0, two X[Fj”j,(k,k’)+Fj”,j(k’,k)][Fj”j/,(—k,—k’)
dimerons are simultaneously created by a local pseudospin
flip at a certain positiom, and after propagation they are +FV,'.(—k’,—k)], (v,v'==+). (38)
absorbed by a pseudospin at another posititn I

The second-order effective Hamiltonian is definedgs I numerically calculated the coupling constants using Egs.

=—2,0(0[Han)(n|H4|0)/(E,—Eg), where theln)'s are  (37), (38), (25), and(32). The results fofn|<2 are shown in
dimeron eigenstates anjd) is the dimeron vacuum. As ex- Table II. For|n|=v2, the couplings decay rapidly in space.
plained above, the relevant intermediate stapes are  The value for|n|>2 is order 10° at most, and | neglect
dimeron-pair statedjk,j ’k’)=§ka§J-T,k,|0>, and so the ma- longer-range couplings. Note that, as seen in Table II, the
trix element becomes couplings depend also on the direction rofexcept for|n|
=43, but they have the same eigenvalues, which are de-
S, noted bya, andb, (r=|n|).
(,J "K' [H3[0)/(Bat?) ya andby (r=[n)
_ 11
20,5

. , VIl. ORDER OF PSEUDOSPINS ON THE B SUBLATTICE
e—l(k+k )(n+5B){[F+,(_k,_k,)
. In Sec. VI, by considering fluctuations of dimeron-pair
o - L processes, | derived the effective interactions between the
+Fj’j( k', k)]TB—(n)+[Fji’( k,=k") B-sublattice pseudospins, which remain nonordered in the
FEO(—K —K M 35 mean-ﬂe!d level. Now | discuss a possible static order in the
iril J7e: (N} 39 g sublattice.
The interactions are not isotropic in thg-7, plane, as

| take a summation over the intermediate states, and obtaighown in Table II, but they have a special kind of symmetry,
the following effective Hamiltonian: e.qg.

K(+1,0,0=U(-¢) 'K(0,0+1)U(—¢),
He=—2 2 Keau(n=n")7g,(N)7g,(N"). )
nn' aa' =12 K(0,+1,00=U(¢) K(0,0+1)U(¢),
(36) (39)
K(0,£1,+1)=U(—¢) *K(=1,+1,0U(—¢),
Here | drop the constant energy shift due to the self-energy
correction, and the coupling constant is given by K(+1,0-1)=U(¢) K(=1,£1,0U(¢).
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A2 ()=Ko(q) = VKa(q)?+ Ky (q)?, (44)

and they take a maximum value @ 0,

1.0

0.5 k.
00 No=N(0)=2 5. =Ko(0), (45)
. r
and this value is 4.283910 3B, calculated from the data in
05 A Table Il. Aroundg~0, the eigenvalues are expanded as
1.0 N S — N (@)~ o= CotP= eV (ai+ai+0D) — LGP,
®00) 0,00 Ord (nr0) (xmm) 0,0,0) (0,0,x) (46)
FIG. 6. Wave-vector dependence of the coupling constgpts
K3, andK,, renormalized by the largest eigenvaldg, defined in co=1 r2s c,=%(s, —s, +4s 4
Eq. (45). 2 GZ r+ 4 6( 1- V2 — 2—), ( 7)

In order to find the relevant wave vector for symmetry break-2nd the value of the parameterscis=1.3267<10° °p1 and
ing, | calculate the Fourier transform of the couplings, andca=1.0078<10"°8;. Since the eigenvalue is maximized at

the result is the wave vectog=0, a uniform order is realized.
Next | discuss the direction of this ordered moment in the
_ Ko(q)+Ks(q) Ki(q) B sublattice. To this end, we need to look at the anisotropy of
K(g)=2> K(nje '9"= K. () Ko(q)— Ka(q) the coupling constari(q). First of all, recall that the pseu-
" 1d ot~ Hsa dospins are interacting only in the- 7, plane, but not in the
=Ko(q)1+K3(q)oz+Ky(aq) oy, (40) 73 direction. Second, a=0, the coupling is isotropic in the

. . ) i 71- 7, plane,K(0)=\gl. Therefore, in the level of the mean-
with o, and o5 being the Pauli matrices. The parametersig|q approximation(equivalent to the classical limjt the
here are defined as spontaneous moment is aligned in any direction inther,
plane. However, the coupling constant in the effective model

3Ko(@) = ;. (COSTy +COSQy +COST,) [Eqg. (36)] is not isotropic for generah, and this is more

+ 5,3+ (COSQy COSQy, clearly ;hown as th.e presence of anisotropic p&riéq) and
K1(q), in the Fourier component. Therefore, when fluctua-
+cosq, cosq, + cosq, Cosqy) tions around the mean-field ground state are concerned, we

expect that some special directions will be favored. | discuss

*Sy3+-3 €O, COSGy COSY, this problem in Sec. VIII.

+5,.4(COS 2+ COS A+ CoSs AY,), (41) | examine the quantum fluctuations around the mean-field
ground state of &-sublattice pseudospin. As before, | use
3K =5, [cosd.— & (cosd.+cos the Holstein-Primakoff bosonization and the harmonic ap-
3(8)=s1-[cosq,~ 3 (cosdy ay)] proximation for fluctuations. Let us parametrize the mean-
+s, [cosd. cosa.— & (cosa. cos field ground state by the direction of the ordered moment,
v2-[ c0Sa, cosdy — 2 (cosq cosd; (75(n))=(cos6,sing,0). | treat this angles as a variational
+¢0S(, cogY,) |+ S, [ cos A, — & (cos A, parameter, and will calculate the quantum zero-point energy
as a function of this angle\Eg(6), to check the stability of
+cos )], (42)  this state. The calculations are all done in parallel to those for

the dimeron spectrum in Sec. IV. Since the unit cell now
contains only a singl®-sublattice site, the calculations are
3K1(0) =s;- - (c0sqy — cOsqy) straightforward. The result of linearized Hamiltonian is

V3 H =—40,S.(S.+1)A
+sﬂ_7(cosqzcosqx—cosqycosqz) B.HA nSHAS+ Do

;Ao 2Kpk)  —2Koy(k)

+28.2" - - o
—2K(k)  4Ng— 2K (k)

(48)

V3
+sz_7(cos Q,—cos &), (43

with s,.=N,(a, = b,)/2 defined by the values listed in Table o o

Il. Figure 6 ShOWS these parameters a|ong Symmetric axes mhere thd( summation Is taken over a half Of the Br|"0u|n

the Brillouin zone. zone of the cubic Iatticen,[;l=[bék,b3,k] are the Holstein-
In the classical limit §,—=), the long-range order is Primakoff boson operators, and

determined from the largest eigenvalue of the coupling con- _

stantK(q). The eigenvalues are Koo(k)=Kg(k) —Kj(k)cos 20— K4 (k)sin 26, (49

024415-8
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000) OO (Lr0) (Trm

0.0
(%,0,0)

0,0,0) 0,0,

FIG. 7. Wave-vector dependence of the renormalized eigenen-

ergy M, for severald's.

depends on the variational angle parameter Apply-
ing the Bogoliubov transformationég, = bg, cosheg
—b}_, sinheg, With = 1/2 coth [21\q/K,p(k) — 1], we
finally obtain the diagonalized Hamiltonian

l+1
S,

_ N 1
Hg na= EB,O+887)\0; M §Bk§Bk+§ ;

(50

with Eg o= —4QnS§)\o is the mean-field ground-state energy

of the B-sublattice order, and

Mk)) v -

Mk: ( 1_ )\O
is the eigenenergy of excitations in units &8 ,. The dis-
persion ofM, is plotted in Fig. 7 for typical values of.

Whenk—0, the anisotropic parts of the coupling constant,

K3 andK,, becomes zero as seen from E@) and (43),

and thereforeK ,»(k) —K,(0) = \o. Therefore, on approach-

ing the k=0 point, the excitation energy A M, always
goes to zero “linearly,” but with an anisotropic velocity:

M, ~ \/6)\ (CxkG+eykZ+c k),

(52
Cy c cog26+ ¢)
Cyt =1— —x{ cog20— ). (53
c, €2 cog26)

The ratioc,/c,=
thesec's are positive for anyg.

0.7597 is smaller than unity, and therefore

PHYSICAL REVIEW B 65 024415

0.982 |-

R(6)

0.981 |

0.980 L L ' L
0.0 0.2 0.4 0.6 0.8 1.0

0/2r

FIG. 8. Dependence of the zero-point energy on the direction of
the ordered moment.

1
Eg(0)=Egna— EB,0:§ |[Ego[—1+R(6)]. (55
The part of—1 here corresponds to the contribution of the
first term on the right-hand sides E&4). We can determine
the stable direction of the spontaneous order by the calcula-

tion of R( ). This is explicitly expressed as

Kzz(k))

1
R(&zQ—Z Mkz— ( "

n

1 1
:Q_nE [1— )\—O[Ko(k)—Kg,(k)cosZH

1/2

—K,(k)sin26]| (56)

and the value is always less than unity. This implies that
—1+R(6)<0 for all 6, meaning that the quantum fluctua-
tions always lower the ground-state energy, as expected.

Figure 8 shows the result of numerical calculation for
R(#). Although the # dependence is very small, | have
checked that it is not a numerical error but is intrinsic. Upon
the numerical summation for E@56), | systematically in-
creased the number &fpoints up to 512, and confirmed a
fairly well convergence. This result is well approximated by
a simple harmonic function,

R(#)~0.98106-0.00101 cos 6, (57)

and have the minimum value &0, = ¢/2, + ¢, andw. The

The ground-state energy of the Hamiltonian is obviously amplitude of other harmonics is very sma#,10™° at most.

Egna(0)=| 1+ (59

= |Egot4SAo> My,
S : K

T

and this depends on th& parameter, inherited from thé

A similar 6 dependence is reproduced by replading by its
continuum limit[Eq. (52)], and therefore the anisotropy may
be due to fluctuations with long wavelength.

As discussed in Sec. I, the points 6&=0 and * ¢ cor-
respond to the order of dimer pairs in tBesublattice tetra-

dependence dK,,. The correction due to quantum fluctua- hedra, while the other pointé=+ ¢/2 and correspond to
tions,AEg, has a relative factor $, compared to the mean- tetramer orders. Therefore, we come to the conclusion that

field value, and | parametrize it by a function of ordg,
andR, as

the B-sublattice tetrahedra will ultimately reveal a uniform
long-range order of either dimers or tetramers.
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VIIl. CONCLUSIONS AND DISCUSSIONS

In this paper, | have investigated the ground state of a
guantum Heisenberg antiferrmagnet on the pyrochlore lat-
tice. Here | summarize and reinterpret the results of this pa-
per in the original spin picture instead of the pseudospin
representation used in the previous sections.

My approach is based on the basic assumption that the
spin-triplet sector has a finite-energy gap from the singlet
ground state, and that the low-energy dynamics can be well
described in terms of local singlet basis. | employed the ef-
fective Hamiltonian which was obtained for the singlet sec-
tor in Ref. 9, and determined its ground state beyond the
mean-field approximation. | accomplished this by taking ac-
count of the effects of quantum fluctuations in four stages. |
also clarified the nature of various elementary excitations in
this system, and calculated their energy scales.

An important parameter characterizing quantum fluctua-
tions is determined by the number of local singlet states
(2S,+1) and the number of local processes,(.): it is
1/(S;XNpyoc), as expected from the analogy to the spin-
wave theory. Althougt$, is 1/2 in the present casB, is
large because of large connectivity in the effective models:
12 elementary triangle faces for the fcc lattice and six neigh-
bor sites for the simple cubic lattice. Therefore, this param-
eter becomes small, and this may justify the harmonic ap-
proximation used in the present work to treat quantum
fluctuations.

The mean-field picture of the effective model in the pre-
vious studies is the coexistence of a long-range order of spin-
singlet dimers and a non-ordered spin-singlet part. The non-
ordered part has large local fluctuations of both the spin
chirality and dimer pattern, and no long-range order is stabi-
lized. In the first stage of this paper, | determined elementary
excitations in the dimerized part. They are spin-singlet exci- FIG. 9. Spin configuration in the ground state with singlet order.
tations, and mainly correspond to the deformation of dimerrhe hardly ordered partB-sublattice in Fig. 1 is indicated by
configuration; | called therdimerons In the second stage, | dotted circle.(a) All-dimer pattern.(b) Mixture of dimers and tet-
calculated the coupling of the nonordered spin-singlet partamer. Dimers and tetramers are shown in black.
and the dimeron excitations, and | found that the fundamen- _ ) )
tal processes involve the creation and annihilation of aonfiguration of the whole system. It is shown for the cubic
dimeron pair. In the third stage, | derived the effective inter-Unit cell of the pyrochlore lattice. One is for the case of all
action between two nonordered singlets mediated from &imers, and the other is for the case of a mixture of six
coupling to dimeron pairs. It is a model in which fluctuations dimers and one tetramer. _
of the dimer channel are coupled to each other between two | NOW summarize the various types of elementary excita-
nonordered positions, and the favored local pattern depend©ns and their energy scale. First of all, the original Heisen-
on the configuration of the dimer pattern in the surrounding®®'d Spin model is believed to have a finite spin gap, i.e., a
ordered part. On the other hand, there is no coupling in th&inglet-triplet energy gap; the spin-triplet excitations are
chirality channel within the present approach. In the lasduantum(parg magnons. A spin-triplet sector was already
stage, | determined the ground state of this effective modefraced out when my starting Hamiltonian in the singlet sector
and discussed the final form of spin order in the spin-singletvas derived, and we need to go back to the original Heisen-
sector. | found that the uniform spatial arrangement has thB€rg model to determine the value of the spin gap and the
lowest energy, and that the energy gain is identical to anyn@gnon dispersion, which I did not study in the present pa-
quantum mixture of local dimer and tetramer states withinPel- The excitations studied in this paper are all of spin sin-
the mean-field level. However, it turns out that the quantunf!€t type, and they may be understood in the following way.
fluctuations favor one of the three pure dimer states or thd "€ second type of excitations corresponds to the deforma-
three pure tetramer states. All the pure dimer states ardon of the dimer pattern in the easily ordered part, and they
equivalent to each other, and this is also the case for th@re called “dimerons” in this paper. They have a dispersion
tetramer order. ,81§Sf,ujk, shown in Fig. 5, and their energy gap is finite.

Figure 9 shows the finally determined ground-state spiThe large energy gap means that the dimer order in the easily
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ordered part is quite stable, and fluctuations of the dimer Finally, | emphasize the presence of a hierarchical struc-
pattern in this part are small in amplitude and short rangedture of energy scales corresponding to different types of ex-
The third type of excitations corresponds to collective de-itations. This point may be one of the main features of
formations of the dimer or tetramer pattern in the hardlygeometrically frustrated quantum magnets. When geometri-
ordered part. In this sense, they are also a kind of dimeroga| frustrations are strong, the construction of the ultimate
excitation, but the energy scale and the dispersion are diffelground state needs complicated processes, and this will take
ent from those in the easily ordered part. They have theyace successively on different length scales. That is, in one
dispersion &\ oM, shown in Fig. 7, and the energy gap is stage, a part of degrees of freedom are to be arranged in a
zero. Since\/B,<10" 2 in addition to a further reduction clever way to gain energy, but other parts remain frustrated
factor, the energies of these excitations are well below thentil the next stage. This process repeats with the reduction
gap of the dimeron dispersion in the easily ordered part. Thgf the energy scale, until all the degrees of freedom are used
bandwidth of these excitations is very small, because thgp A hierarchical structure of the relevant energy scales is
dimers and tetramers in the hardly ordered part interact only, ;g expected, corresponding to multiple stages in the suc-

through the coupling to dimeron excitations in the easilyoggive stabilization processes. Therefore, this feature is
ordered p?‘”aWh'C.h dece_ly. rapidly in space. The zero gap oéxpected to be common in many geometrical frustrated
these excitations is reminiscent of the Goldstone mode fo%ystems

the systems with continuous symmetry. However, our mode
does not hold the rigorous rotation symmetry in the space of
dimer and tetramer patterns. Therefore, there may appear a
finite energy gap, when the nonharmonicity of quantum fluc-
tuations is taken into account. However, even if this is the
case, the size of the generated gap will be very small. This work was supported by a Grant-in-Aid from the

An important open problem is the interaction betweenMinistry of Education, Science, Sports and Culture of Japan.
triplet magnons and singlet dimerons. This interaction willA part of the numerical calculations were performed on su-
play a crucial role when the system approaches a magnetjgercomputers at the Institute for Solid State Physics, Univer-
instability. sity of Tokyo.
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