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Spin-singlet order in a pyrochlore antiferromagnet
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~Received 21 August 2001; published 14 December 2001!

The ground state of anS5
1
2 quantum antiferromagnet on a pyrochlore lattice is investigated based on an

effective low-energy Hamiltonian in the spin-singlet sector. In the level of the mean-field approximation, it is
known that a majority part of the spins shows a long-range order of spin-singlet dimers, with a coexisting
nonordered part in the singlet sector. In this paper, I first discuss elementary excitations in the ordered part and
their coupling to the remaining nonordered part. Next, I derive a coupling-mediated effective interaction in the
nonordered part, and examine the possibility of symmetry breaking. I find that the remaining part turns out to
show aq50 order of either dimers or tetramers. I also find that this symmetry breaking leads to low-energy
singlet excitations with linear dispersions, within the harmonic approximation for quantum fluctuations. The
system has a hierarchical structure of relevant energy scales, and this may be a general feature of geometrically
frustrated magnets.
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I. INTRODUCTION

A variety of antiferromagnets have a geometrically fru
trated lattice structure, and many of them show interes
physical properties.1 The geometrical frustration often lead
to a drastic reduction of the energy scale, and a large num
of spin states become degenerate or nearly degenerate i
low-energy sector as a consequence. Many experimen
observed unusual properties are ascribed to this degene

Theoretical studies have actually demonstrated the p
ence of a thermodynamic degeneracy of the ground sta
many classical models with geometrical frustration.2 How-
ever, this implies that we have to examine the effects
various neglected processes in the low-energy sector, in
der to obtain a more complete description at low tempe
tures. A physical ground state should not be thermodyna
cally degenerate, as the third law of thermodynam
implies. The real low-temperature asymptotic behavior is
termined by these additional processes, and eventually
system undergoes some kind of symmetry breaking and
leases the residual entropy. The processes to consider ar
example, small spin anisotropy, longer-range spin exchan
spin-orbit coupling, and multispin exchanges.

In this paper, I will examine the effects of another type
important process, quantum fluctuations. The classical
generacy due to geometrical frustration is to be lifted
hybridization driven by quantum fluctuations, resulting in
nondegenerate~in the thermodynamic sense! ground state,
possibly with symmetry breaking. This mechanism of lon
range order may be considered as a quantum version of o
by disorder, which was first proposed by Villain.3 If the in-
teractions are short ranged, this effect is efficient in g
metrically frustrated systems, compared to randomly fr
trated systems such as a spin glass. This is bec
degenerate states in geometrically frustrated magnets d
in their local-spin configurations, whereas the difference
spin glasses is in longer-range configurations. Theref
quantum transition probability between different states
correspondingly larger in geometrically frustrated system

To examine the above scenario, in the present work I w
0163-1829/2001/65~2!/024415~11!/$20.00 65 0244
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study a Heisenberg antiferromagnet on a pyrochlore lattic
typical example of geometrically frustrated magnets in th
dimensions. The pyrochlore lattice is a network of corn
sharing tetrahedra. It is realized as a sublattice in spinel c
pounds and pyrochlore compounds, and there are many m
netic materials with magnetic ions on a pyrochlore lattic1

Since quantum fluctuations are concerned, I concentrate
the limit of large quantum fluctuations, which corresponds
the smallest spin quantum number,S5 1

2 .
Classical antiferromagnets on a pyrochlore lattice w

studied by several groups.2,4 They show a thermodynami
cally degenerate ground state for an Ising model and a c
sical Heisenberg model. For example, Liebmann’s estim
of the ground-state entropy2 is about (0.293– 0.296)3 log 2,
between one-fourth and one-third of the total entropy. T
classical Heisenberg model also has thermodynamically
generate ground states. It is also believed that no phase
sition takes place at finite temperatures, indicating the
sence of an order-by-disorder mechanism.3

Recently, theoretical studies were begun for quantum
tiferromagnets on a pyrochlore lattice.5–9 The results indicate
a spin-liquid nature, i.e., a spin-singlet ground state an
finite energy gap for triplet excitations. However, this sp
liquid phase is different from the one in nonfrustrated qua
tum antiferromagnets like spin ladders.10 There may exist a
thermodynamic number of singlet states within a spin gap
the frustrated case, while the lowest excitation is usuall
spin triplet in the nonfrustrated case. Therefore, the sys
has a potential of revealing nontrivial symmetry breaki
inside the spin-singlet sector once residual interactions
tween these singlet states take effect. Along this line, a lo
energy effective Hamiltonian was derived, and a par
dimer order was predicted within the mean-fie
approximation.5,9 Interestingly, this effective model is als
frustrated, and the dimer order is only partial, and a qua
of low-energy singlet degrees of freedom remain nonorde
In this paper, I start from the same effective Hamiltonia
and will complete the above approach. I will show the pre
ence of second-stage symmetry breaking, and determine
ultimate ground state by taking account of effects of qu
©2001 The American Physical Society15-1
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HIROKAZU TSUNETSUGU PHYSICAL REVIEW B65 024415
tum fluctuations. I will also study various types of excit
tions.

This paper is organized as follows. In Secs. II and III
will briefly explain the low-energy effective Hamiltonian an
its mean-field ground state with partial dimer order. I w
investigate elementary excitations in the ordered part,
their coupling to the nonordered part in Secs. IV and V. I w
then derive the effective interaction for the nonordered p
and finally determine the long-range order of the whole s
tem in Secs. VI and VII. Section VIII is devoted to concl
sions and discussions.

II. MODEL

The model to study is the spin-1
2 Heisenberg antiferromag

net on the pyrochlore lattice:

HS5 (
^r ,r8&

Jr ,r8Sr•Sr 8 ~Jr ,r8>0!, ~1!

where the summation is taken over nearest neighbor p
The structure of the pyrochlore lattice is shown in Fig.
Instead of studying this Hamiltonian directly, we take
alternative approach and start from a low-energy effec
Hamiltonian, which will be shown in Eq.~4!. The effective
Hamiltonian in the spin-singlet sector was derived in Refs
and 9. The basic strategy is to breakup the whole pyroch
lattice into a set of tetrahedra shown by black bonds in F
1, and to apply a perturbative approach in the ratio of the
types of coupling constantsJ8/J, with the hope that the uni
form caseJ8/J51 in question is qualitatively described b
this approach. A similar approach was also applied to ano
typical geometrically frustrated model, Kagome´ anti-
ferromagnet.11 In this section, I explain some details of th
derivation which will be used in the following sections.

Let us understand the pyrochlore lattice as the fcc lat
consisting of tetrahedra~indicated by the dotted circle in Fig
1!, and label the four sublatticesA–D. Each tetrahedron is

FIG. 1. Cubic unit cell of the pyrochlore lattice, containing fo
tetrahedra labeledA–D. Sites in the tetrahedron unit are labeled
indexes 1–4. Exchange couplings in theA–D tetrahedra areJ
shown by black bonds, while intertetrahedron couplings areJ8
shown by white bonds.
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composed of four symmetrically connected spins, havin
Td point group symmetry,12 and the comprising spins ar
denoted by indexes 1–4, as shown in the figure. The lat
constant of the cubic unit cell is set to 1, and I will use it
units of length throughout this paper.

In the case of spin1
2, each tetrahedron unit has 24516

basis functions. Its total spin isSunit50, 1, or 2, and in the
limit of J8/J50 it becomes a good quantum number. Ev
for homogeneous coupling (J8/J51), spin correlation is
very short ranged due to strong geometrical frustrations,
dicating that low-energy dynamics may well be described
terms of onlySunit50 bases. Two of the 16 basis function
haveSunit50, and they are transformed as a basis of theE
representation of theTd group.

Instead of real bases, I use the complex chiral basis st

u1&5
1

A6
~11 P̂S!@~↓↓↑↑ !1eif~↓↑↓↑ !1e2 if~↓↑↑↓ !#,

u2&5~ u1&)* ~f52p/3! ~2!

where P̂S[P j (Sj
11Sj

2) is the spin inversion operator, an
up and down arrows denote the spin direction at sites 1
from left to right. The symbolf is reserved for this specia
angle throughout this paper. These basis states are act
eigenfunctions of the chirality operatorS2•(S33S4) defined
with respect to site 1~also with respect to the other thre
sites!, and u1& and u2& have opposite chiralities from eac
other. I will make a further discussion of the chirality in Se
III. It is also important to note that because of the comp
coefficients in Eq.~2!, they are not invariant with respect t
the time-reversal operation. In this way, low-energy sing
degrees of freedom can be represented by these chiral s
in each tetrahedron unit. The total entropy of this subspac
a quarter of the original value.

To describe the dynamics of the chirality, I introduce
pseudospin operatort5(t1 ,t2 ,t3), with ~pseudo!spin St
5 1

2 , such that its third element is diagonal with respect
the chiral basis,

t3u6&5~61!u6&, @ 1
2 tm , 1

2 tm8#5emm8m9
1
2 tm9 , ~3!

wherem, m8, m9P$1,2,3%, ande is the completely antisym-
metric tensor.

Starting from the original Heisenberg model@Eq. ~1!#, the
low-energy effective Hamiltonian was derived by means
third-order perturbation inJ8/J,9

Ht52b1 (
^R,R8,R9&

@ 1
2 2e~a1!•tR#@ 1

2 2e~a2!•tR8#

3@ 1
2 2e~a3!•tR9#, ~4!

whereb15 1
48J83/J2, e(a)5(cosa,sina,0), andtR denotes

the chirality pseudospin of the tetrahedron unit positioned
R. The summation is taken over sets of three tetrahed
units which are nearest neighbor to each other, but not o
all the possible combinations in the effective fc
5-2
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SPIN-SINGLET ORDER IN A PYROCHLORE . . . PHYSICAL REVIEW B 65 024415
lattice of tetrahedra. It should be taken over a half of them
shown in Fig. 2. In other words, the lattice of tetrahedra
equivalent to the fcc lattice concerning the ‘‘site position
but the connectivity is different. Despite this difference
will call it a fcc lattice in this paper. The details of th
derivation of the effective model@Eq. ~4!# are explained in
Ref. 9.

The complication of model~4! lies in the nonlocality of
the a parameters. The parametera1 for the pseudospin a
positionR depends on the sublattice label ofR, but it is not
uniquely determined. It also depends on the sublattice in
of the other two positionsR8 and R9, and this is also the
case fora2 anda3 . The values of these parameters are lis
in Table I.

III. MEAN-FIELD ORDER OF PSEUDOSPINS

The mean-field ground state of the effective Hamilton
@Eq. ~4!# was obtained in Ref. 9. It is done by treating t
chirality pseudospinst’s as classical unit vectors, and th
configurations with the lowest energy were found. One of
four solutions is

^tR&5~cosuR ,sinuR,0!, uR55
p1f ~A sublattice!

free ~B sublattice!

p ~C sublattice!

p2f ~D sublattice!,
~5!

and the other three solutions are obtained from this one
using symmetry operation of the effective Hamiltonian

FIG. 2. Pseudospin network in the pyrochlore lattice. Ps
dospins are shown by balls with sublattices labeledA–D. Interac-
tions in Eq.~4! are defined for all triangular faces on each tetra
dron shown in this figure.

TABLE I. a parameters in Hamiltonian~4!, dependent on the
combination of sublattice index of three sites,^RR8R9&.

Sublattice
combination

a

~A! ~B! ~C! ~D!

BCD - f 2f 0
ACD f - 0 2f
ABD 2f 0 - f
ABC 0 2f f -
02441
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will use solutions~5! in this paper, but the other solutions a
also equivalent except for a different sublattice position
free pseudospins. These solutions agree with the resu
Ref. 5.

The symmetry of the effective Hamiltonian in chiralit
space is planarlike, and interactions do not exist in thet3
direction. There also exists an in-plane anisotropy as
scribed by thee(a) vector. Therefore, this mean-field groun
state is quite stable, and quantum fluctuations around it h
small amplitudes in the ordered sublattices.

However, at the mean-field level, the chirality pse
dospins in theB sublattice are completely free, and there
no effective potential which constrains the fluctuations
B-sublattice pseudospins. Therefore, in order to investiga
possible symmetry breaking in the remainingB sublattice,
we need to consider small quantum fluctuations in the
dered part, and investigate their effects on the dynamics
the singlet fluctuations in theB sublattice. This is the subjec
of the following sections.

Here I present further discussions on the singlet fluct
tions. In Sec. II, I introduced the pseudospin operatort to
describe the internal degrees of freedom of local singlet c
figuration, and showed that itst3 component corresponds t
spin chirality, i.e., the noncollinearity of the spin correlatio
or alternatively the finite spin current. The transverse co
ponentst1 and t2 also have a simple meaning. To see th
point, let us consider a pseudospin coherent stateum& defined
by (t•m)um&5(11)um&, wherem is a classical unit vector
For m5(0,0,61), the coherent state is the chiral state in E
~2!. For m5(cosu,sinu,0), the coherent state is written a
uu&5(u1&1eiuu2&)/&. By writing this state in terms of the
original spin representation, we note that there are six spe
points, as shown in Fig. 3. Three points,u5p and p6f,
represent a pair of spin-singlet dimers, while the other thr

-

-

FIG. 3. Pseudospin order and spin states in tetrahedron. N
and south poles correspond to a pure chiral state, and on the eq
the spin states have no time-reversal symmetry breaking. Three
cial points with azimuthal angleu5p and p6f correspond to
dimer-pair states, while the other three~u50 and6f! correspond
to tetramer states. Dimers and tetramers are shown in black.
5-3
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HIROKAZU TSUNETSUGU PHYSICAL REVIEW B65 024415
u50 and 6f, represent a spin-singlet tetramer state. F
example,uu50& is the same as the singlet ground state o
square of sites 1–4: the total singlet state is made of two
triplets, one out of spins 1 and 2 and the other out of spin
and 4. We can also prove thatuu50& is real for anyu aside
from the global phase factor, meaning time reversal inv
ant, which is consistent with a zero chirality:^uut3uu&50.
Therefore, the transverse components of the pseudospin
erator describe the dimer-tetramer correlations, and m
generally the inhomogeneity of two-spin correlations amo
six bonds in the tetrahedron unit. Since the nearest-neigh
two-spin correlations are local energy, as defined in Eq.~1!,
the transverse components also represent energy-de
fluctuations in the tetrahedron unit.

The mean-field ground state with the order parameter@Eq.
~5!# means the Bose condensation of these different cohe
states on the different sublattices. Therefore, theA, C, andD
sublattices show the long-range order of spin-singlet dim
and differentu values correspond to different dimer config
rations among these sublattices. The dimer configuratio
the cubic unit cell is shown in Fig. 4.

IV. SINGLET EXCITATIONS IN THE ORDERED PART—
DIMERON

The main part of this paper starts from this section. Fi
I discuss the elementary excitations in the ordered sublatt
A, C, and D. To this end, I bosonize pseudospin operat
and employ the harmonic approximation for fluctuations.
ementary excitations obtained in this way describe sp
singlet fluctuations around the mean-field ground state,
correspond to a small-amplitude deformation of dimer c
figuration in space.

As for bosonization, I rewrite the effective Hamiltonia
@Eq. ~4!# in terms of the Holstein-Primakoff bosons.13 This
procedure is not completely trivial, since the effecti
Hamiltonian contains second-order terms and third-or

FIG. 4. A pictorial representation of the mean-field ground st
@Eq. ~5!#. The dimer configuration in the cubic unit cell is projecte
on the~111! plane. Dimers are indicated by thick black bonds.A–D
label the tetrahedra shown in Fig. 1. Molecular fields are canc
on theB tetrahedron.
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terms oft operators.@The first-order terms vanish identicall
after taking summation in Eq.~4!.# Since both terms are
expected to be equally important for the ground state, I
cide to set the ‘‘same order’’ inSt to all the terms in Eq.~4!.
This is done by replacing 1/22e•t by St2e•t, which re-
turns to its original when approaching the physical va
St51/2. Next I locally rotate the coordination frame oft
operator in thet1-t2 plane such that the ordered moment
along thet1 direction in the new frame:

e~a!•tR5e~ ã !• t̃R , ^t̃R&5~1,0,0!, ~6!

F t̃1,R

t̃2,R
G5U~uR!21Ft1,R

t2,R
G , t̃3,R5t3,R , ~7!

with

U~u![Fcosu 2sinu

sinu cosu G , ~8!

ã5a2uR , uR5tan21 ^t2R&

^t1R&
. ~9!

The next step is the Holstein-Primakoff transformatio
which represents the pseudospins in terms of boson oper
bR andbR

† :

t̃1R52~St2bR
†bR!, t̃2R;A2St~bR

† 1bR!. ~10!

Here terms of orderSt
21/2 or lower are neglected. Therefore

each term in Eq.~4! is represented as

1
2 2e~a!•tR→~122 cosã !St2A2St sinã ~bR

† 1bR!

22 cosã bR
†bR , ~11!

whereã5a2tan21(^t2R&/^t1R&).
Now consider one tetrahedron consisting ofA, B, C, and

D sublattice units. It has four triangular faces (^R,R8,R9&),
and the corresponding sum of the interactions@Eq. ~4!# con-
sists of two terms. One is the term which does not couple
free pseudospin atB sublattice positionH0 , and the other
with coupling,H1 :

H~ABCD!5H0~ABCD!1H1~ABCD!, ~12!

H0~ABCD!/b1

52St$@2t~bA
†1bA!1bA

†bA#@ t~bC
† 1bC!1bC

† bC#

1~A,C→C,D !1~A,C→D,A!%

2~3St2bA
†bA!~3St2bC

† bC!~3St2bD
† bD!, ~13!

H1~ABCD!/b1

5@2t~bA
†1bA!1bA

†bA#@ t~bC
† 1bC!1bC

† bC#e~2f!•tB

1~A,C→C,D !e~f!•tB1~A,C→D,A!e~0!•tB ,

~14!

wheret5A3St/2.

e

d
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SPIN-SINGLET ORDER IN A PYROCHLORE . . . PHYSICAL REVIEW B 65 024415
We sum up theH0(ABCD) term for all the positions.
Since we distinguish chirality pseudospins on different s
lattices, it is convenient to use the cubic unit cell shown
Fig. 2 ~equivalent to Fig. 1! and write the positionR as the
sum of a cubic lattice vector,n5(nx ,ny ,nz), ~nx , ny , nz :
integer!, and the internal positionda , with aP$A,B,C,D%
being the sublattice label:dA5(0,0,0), dB5(0,1/2,1/2),dC
5(1/2,0,1/2), anddD5(1/2,1/2,0). We also use the symb
ba(n)5bn1da

. We further employ the harmonic approxim

tion by neglecting the third- and fourth-terms inb and b†,
and obtain the following Hamiltonian for the low-energy d
namics of excitations:

H0,HA /b152108St
3Vn172St

2(
n

(
a5A,C,D

ba
†~n!ba~n!

1
3

2
St

2(
n

(
m,m850,1

@dA~n1maz!dC~n2m8ax!

1dC~n1may!dD~n1m8az!

1dD~n2max!dA~n1m8ay!#, ~15!

whereax , ay , andaz are unit vectors along thex, y, andz
directions, respectively,Vn is the number of cubic unit cells
and da[ba1ba

† . The first term on the right-hand sid
agrees with the corresponding part of the mean-field grou
state energy,2 27

2 b1Vn , when settingSt5 1
2 .

This harmonic Hamiltonian becomes simpler ink space.
We define the Fourier component asbak[Vn

21/2Sn exp@2ik
•(n1da)# ba(n), and also define the vector of the Fouri
components byCk [ t @ bAk ,bCk ,bDk ,bA2k

† ,bC2k
† ,bD2k

† # .
Using this vector, the Hamiltonian is written in a simple m
trix form as usual in the harmonic approximation,

H0,HA /b15Ē01
3

2
St

2( 8
k

Ck
† AkCk, ~16!

whereĒ0[2108St
2(St11)Vn , and thek summation is re-

stricted to the half of the Brillouin zone of the simple cub
lattice. The coefficient matrix is

Ak5FBk1481 Bk

Bk Bk1481G , ~17!

Bk5F 0 gxkgzk gxkgyk

gzkgxk 0 gzkgyk

gykgxk gykgzk 0
G , ~18!

gak[2 cosS ka

2 D . ~19!

We are ready to diagonalize Hamiltonian~16!, and calcu-
late the energy dispersion of excitations in the ordered p
To this end, we need the Bogoliubov transformation of
operators$bak% and$ba2k

† %. Generally, this is not easy whe
the unit cell contains multiple sites, but this case is exc
tionally simple due to the planar nature of the effecti
model. In the present case, the block-diagonal part inAk is
02441
-
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the same as the block-off-diagonal part aside from the p
proportional to the unit matrix. Therefore, these two co
mute trivially, and we can diagonalize both of them by t
same orthogonal matrixVk ,

Vk5@vk
~1! ,vk

~2! ,vk
~3!#, Bkvk

~ j !5l j kvk
~ j ! , ~20!

where the eigenvectorsvk
( j ) must be normalized. The eigen

values are given by

l j k5l̄k cos~hk1 j f! ~ j 51,2,3!,

l̄k[F4

3
~gxk

2 gyk
2 1gyk

2 gzk
2 1gzk

2 gxk
2 !G1/2

, ~21!

hk[
1

3
cos21~8gxk

2 gyk
2 gzk

2 /l̄k
3!.

Therefore, the Hamiltonian for the wave vectork is diago-
nalized in the sublattice space but not yet in the partic
antiparticle space,

Ck
†AkCk5C̃k

†FLk1481 Lk

Lk Lk1481GC̃k , ~22!

where

C̃k[F tVk O

O tVk
GCk , Lk5diag~l1k ,l2k ,l3k!. ~23!

Now the three modes are decoupled from each other.
coefficient matrix is two-dimensional in the particle
antiparticle space with the diagonal elementl j k148 and the
off-diagonal elementl jk . Using the result of usual Bogoliu
bov transformation, the HamiltonianH0 is finally diagonal-
ized,

H0,HA /b15Ē01
3

2
St

2(
k

(
j 51

3

m j kS j j k
† j j k1

1

2D , ~24!

in terms of boson operators Fk[
t@j1k ,j2k ,j3k ,

j12k
† ,j22k

† ,j32k
† #. The eigenenergy~in units of 3

2St
2b1! is

given by

m j k[A~l j k148!22l j k
2 548A11

1

24
l j k. ~25!

Here the Bogoliubov transformation is defined as

Fk[FXk Yk

Yk Xk
GC̃k5FXk

tVk Yk
tVk

Yk
tVk Xk

tVk
GCk. ~26!

Xk5diag(coshw1k,coshw2k,coshw3k) andYk5diag(sinhw1k,
sinhw2k ,sinhw3k), or, explicitly,
5-5
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HIROKAZU TSUNETSUGU PHYSICAL REVIEW B65 024415
j jk5 (
a5A,C,D

~vk
~ j !!a@coshw j kbak1sinhw j kba2k

† #,

~27!

j j 2k
† 5 (

a5A,C,D
~vk

~ j !!a@sinhw j kbak1coshw j kba2k
† #,

with

w j k5
1

2
tanh21

l j k

l j k148
5

1

4
logS 11

1

24
l j kD . ~28!

The energy dispersionm j k is shown in Fig. 5. These excita
tions describe spin-singlet excitations in the part of dim
order, and I will call them ‘‘dimerons’’ in this paper.

V. PSEUDOSPIN-DIMERON INTERACTION

The pseudospins on theB sublattice are subject to zer
molecular field, and they are free in the level of the me
field approximation. However, they have couplings to d
namic fluctuations in the ordered part. In this section, I
rive this coupling in terms of dimeron operators introduc
in Sec. IV.

The coupling of pseudospins on theB sublattice and those
on the other sublattices was already obtained in Eq.~14! in
the originalt representation. What we need here is to rew
the t operators in the orderedA, C, and D sublattices by
dimeron operatorsj andj†. As shown in Fig. 2, oneB pseu-
dospin belongs to four pseudospin tetrahedra. Summing
Eq. ~14! over these four tetrahedra, the local interaction
the B-sublattice pseudospin at positionn is given as

H1~n!/b15
1

2
@Q1~n!tB2~n!1Q2~n!tB1~n!#, ~29!

wheretB6[tB16 i tB2 and

FIG. 5. Normalized dimeron dispersion.
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e

up
f

Q1~n!5e2 if@ f A2~n! f C1~n!1 f A2~n1ay! f C1~n2ax1ay!

1 f A2~n1az! f C1~n2ax!1 f A1~n1ay1az! f C2

3~n1ay!#1eif@ f C2~n! f D1~n! f C2~n2ax! f D1

3~n2ax1az!1 f C2~n1ay! f D1~n1az!

1 f C1~n2ax1ay! f D2~n2ax!#1@ f D2~n! f A1~n!

1 f D2~n1az! f A1~n1ay1az!1 f D2~n2ax!

3 f A1~n1ay!1 f D1~n1az2ax! f A2~n1az!#,
~30!

Q2~n!5@Q1~n!#†,

and f a,6(n)[6tda(n)1ba(n)†ba(n). Here t5A3St/2,
andda5ba1ba

† , as defined above.
As seen in Eqs.~29! and ~30!, the coupling of free pseu

dospin to dimerons vanish in the first order of dimeron o
erators, and starts from the second order. I keep term
dada8’s in the local coupling, and rewrite in thek presenta-
tion. The result reads

Q6
~2!~n!5t2

1

Vn
(
k,k8

ei ~k1k8!•~n1dB! (
j , j 851

3

F j j 8
6

~k,k8!

3@j j k1j j 2k
† #@j j 8k81j j 82k8

†
#, ~31!

where

F j j 8
6

~k,k8!5@e7 if f AC~k,k8!~vk
~ j !!A~vk8

~ j 8!
!C

1e6 if f CD~k,k8!~vk
~ j !!C~vk8

~ j 8!
!D1 f DA~k,k8!

3~vk
~ j !!D~vk8

~ j 8!
!A#e2~w j k1w j 8k8!, ~32!

and

f AC~k,k8!5ei ~k1k8!•dB2$cos@ 1
2 ~kz1kx8!#ei ~ky1ky8!/2

1cos@ 1
2 ~kz2kx8!#e2 i ~ky1ky8!/2%,

f CD~k,k8!5ei ~k1k8!•dB2$cos@ 1
2 ~ky1kz8!#ei ~kx1kx8!/2

1cos@ 1
2 ~ky2kz8!#e2 i ~kx1kx8!/2%, ~33!

f DA~k,k8!5ei ~k1k8!•dB2$cos@ 1
2 ~kx1ky8!#ei ~kz1kz8!/2

1cos@ 1
2 ~kx2ky8!#e2 i ~kz1kz8!/2%.

Within this approximation, the coupling of remaining fre
pseudospins and dimerons in the whole lattice is written

H1 /b15
1

2 (
n

@Q1
~2!~n!tB2~n!1Q2

~2!~n!tB1~n!#.

~34!
5-6
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TABLE II. Normalized coupling constantK̄aa85Kaa8 /b1 . Nr is the number of sites at a distancer.

r 5unu Nr n K̄11(n) K̄22(n) K̄12(n)5K̄21(n)

1 6 ~61,0,0! 1.016731024 1.059931024 20.037431024

~0,61,0! 1.016731024 1.059931024 0.037431024

~0,0,61! a151.081531024 b150.995131024 0

& 12 ~0,61,61! 5.546731024 0.529631024 4.344931024

~61,0,61! 5.546731024 0.529631024 24.344931024

~61,61,0! a&521.978931024 b&58.055231024 0

) 8 ~61,61,61! a)51.873831026 b)51.873831026 0

2 6 ~62,0,0! 1.670231028 4.717431028 22.639031028

~0,62,0! 1.670231028 4.717431028 2.639031028

~0,0,62! a256.241031028 b250.146631028 0
e

o
K
ou
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VI. EFFECTIVE PSEUDOSPIN INTERACTION MEDIATED
BY DIMERONS

Effective couplings betweenB-sublattice pseudospins ar
mediated from this Hamiltonian@Eq. ~34!#, and I derive it by
second-order perturbation. This is analogous to the phon
mediated electron-electron interaction and also the RK
interaction between localized spins mediated by their c
pling to conduction electrons. In the present case, each
damental process contains one pseudospin and two dime
like j†j andj†j†, not a single dimeron. In the second ord
of the coupling @Eq. ~34!# and at temperatureT50, two
dimerons are simultaneously created by a local pseudo
flip at a certain positionn, and after propagation they ar
absorbed by a pseudospin at another positionn8.

The second-order effective Hamiltonian is defined asHB
52(nÞ0^0uH1un&^nuH1u0&/(En2E0), where theun&’s are
dimeron eigenstates andu0& is the dimeron vacuum. As ex
plained above, the relevant intermediate statesun& are
dimeron-pair states,u j k, j 8k8&5j j k

† j j 8k8
† u0&, and so the ma-

trix element becomes

^ j k, j 8k8uH1u0&/~b1t2!

5
1

2

1

Vn
(

n
e2 i ~k1k8!•~n1dB!$@F j j 8

1
~2k,2k8!

1F j 8 j
1

~2k8,2k!#tB2~n!1@F j j 8
2

~2k,2k8!

1F j 8 j
2

~2k8,2k!#tB1~n!%. ~35!

I take a summation over the intermediate states, and ob
the following effective Hamiltonian:

HB52(
n,n8

(
a,a851,2

Kaa8~n2n8!tBa~n!tBa8~n8!.

~36!

Here I drop the constant energy shift due to the self-ene
correction, and the coupling constant is given by
02441
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F K11~n!

K22~n!

K12~n!

K21~n!

G5F 1 1 1 1

21 21 1 1

i 2 i 2 i i

i 2 i i 2 i

G F D22~n!

D11~n!

D21~n!

D12~n!

G ,

~37!

Dnn8~n!/b15
3

16

1

Vn
2 (

kk8
(

j , j 851

3
e2 i ~k1k8!•n

m j k1m j 8k8

3@F j j 8
n

~k,k8!1F j 8 j
n

~k8,k!#@F j j 8
n8 ~2k,2k8!

1F j 8 j
n8 ~2k8,2k!#, ~n,n856 !. ~38!

I numerically calculated the coupling constants using E
~37!, ~38!, ~25!, and~32!. The results forunu<2 are shown in
Table II. For unu>&, the couplings decay rapidly in spac
The value forunu.2 is order 1028 at most, and I neglec
longer-range couplings. Note that, as seen in Table II,
couplings depend also on the direction ofn except forunu
5A3, but they have the same eigenvalues, which are
noted byar andbr (r 5unu).

VII. ORDER OF PSEUDOSPINS ON THE B SUBLATTICE

In Sec. VI, by considering fluctuations of dimeron-pa
processes, I derived the effective interactions between
B-sublattice pseudospins, which remain nonordered in
mean-field level. Now I discuss a possible static order in
B sublattice.

The interactions are not isotropic in thet1-t2 plane, as
shown in Table II, but they have a special kind of symmet
e.g.,

K~61,0,0!5U~2f!21K~0,0,61!U~2f!,

K~0,61,0!5U~f!21K~0,0,61!U~f!,
~39!

K~0,61,61!5U~2f!21K~61,61,0!U~2f!,

K~61,0,61!5U~f!21K~61,61,0!U~f!.
5-7



ak
n

r

le
s

on

at

he
of

-

-

del

a-
, we
uss

eld
se
p-
n-
nt,

rgy

for
w
e

n

HIROKAZU TSUNETSUGU PHYSICAL REVIEW B65 024415
In order to find the relevant wave vector for symmetry bre
ing, I calculate the Fourier transform of the couplings, a
the result is

K~q!5(
n

K~n!e2 iq•n5FK0~q!1K3~q! K1~q!

K1~q! K0~q!2K3~q!
G

5K0~q!11K3~q!s31K1~q!s1 , ~40!

with s1 and s3 being the Pauli matrices. The paramete
here are defined as

3K0~q!5s11~cosqx1cosqy1cosqz!

1s&1~cosqx cosqy

1cosqy cosqz1cosqz cosqx!

1s)13 cosqx cosqy cosqz

1s21~cos 2qx1cos 2qy1cos 2qz!, ~41!

3K3~q!5s12@cosqz2
1
2 ~cosqx1cosqy!#

1s&2@cosqx cosqy2 1
2 ~cosqy cosqz

1cosqz cosqx!#1s22@cos 2qz2
1
2 ~cos 2qx

1cos 2qy!#, ~42!

3K1~q!5s12

)

2
~cosqy2cosqx!

1s&2

)

2
~cosqz cosqx2cosqy cosqz!

1s22

)

2
~cos 2qy2cos 2qx!, ~43!

with sr 6[Nr(ar6br)/2 defined by the values listed in Tab
II. Figure 6 shows these parameters along symmetric axe
the Brillouin zone.

In the classical limit (St→`), the long-range order is
determined from the largest eigenvalue of the coupling c
stantK(q). The eigenvalues are

FIG. 6. Wave-vector dependence of the coupling constantsK0 ,
K3 , andK1 , renormalized by the largest eigenvalue,l0 , defined in
Eq. ~45!.
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l6~q!5K0~q!6AK3~q!21K1~q!2, ~44!

and they take a maximum value atq50,

l05l1~0!5(
r

sr 15K0~0!, ~45!

and this value is 4.283931023b1 calculated from the data in
Table II. Aroundq;0, the eigenvalues are expanded as

l6~q!;l02c2q26c4A3
2 ~qx

41qy
41qz

4!2 1
2 ~q2!2,

~46!

c25 1
6 (

r
r 2sr 1 , c45 1

6 ~s122s&214s22!, ~47!

and the value of the parameters isc251.326731023b1 and
c451.007831023b1 . Since the eigenvalue is maximized
the wave vectorq50, a uniform order is realized.

Next I discuss the direction of this ordered moment in t
B sublattice. To this end, we need to look at the anisotropy
the coupling constantK(q). First of all, recall that the pseu
dospins are interacting only in thet1-t2 plane, but not in the
t3 direction. Second, atq50, the coupling is isotropic in the
t1-t2 plane,K(0)5l01. Therefore, in the level of the mean
field approximation~equivalent to the classical limit!, the
spontaneous moment is aligned in any direction in thet1-t2
plane. However, the coupling constant in the effective mo
@Eq. ~36!# is not isotropic for generaln, and this is more
clearly shown as the presence of anisotropic parts,K3(q) and
K1(q), in the Fourier component. Therefore, when fluctu
tions around the mean-field ground state are concerned
expect that some special directions will be favored. I disc
this problem in Sec. VIII.

I examine the quantum fluctuations around the mean-fi
ground state of aB-sublattice pseudospin. As before, I u
the Holstein-Primakoff bosonization and the harmonic a
proximation for fluctuations. Let us parametrize the mea
field ground state by the direction of the ordered mome
^tB(n)&5(cosu,sinu,0). I treat this angleu as a variational
parameter, and will calculate the quantum zero-point ene
as a function of this angle,DEB(u), to check the stability of
this state. The calculations are all done in parallel to those
the dimeron spectrum in Sec. IV. Since the unit cell no
contains only a singleB-sublattice site, the calculations ar
straightforward. The result of linearized Hamiltonian is

HB,HA524VnSt~St11!l0

12St( 8
k

ck
†F4l022K̃22~k! 22K̃22~k!

22K̃22~k! 4l022K̃22~k!
Gck,

~48!

where thek summation is taken over a half of the Brilloui
zone of the cubic lattice,ck

†5@bBk
† ,bB2k# are the Holstein-

Primakoff boson operators, and

K̃22~k!5K0~k!2K3~k!cos 2u2K1~k!sin 2u, ~49!
5-8
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depends on the variational angle parameteru. Apply-
ing the Bogoliubov transformationjBk5bBk coshwBk

2bB2k
† sinhwBk , with wBk51/2 coth21@2l0 /K̃22(k)21#, we

finally obtain the diagonalized Hamiltonian

HB,HA5S 11
1

St
DEB,018Stl0(

k
M̄ kS jBk

† jBk1
1

2D ,

~50!

with EB,0524VnSt
2l0 is the mean-field ground-state ener

of the B-sublattice order, and

M̄ k5S 12
K̃22~k!

l0
D 1/2

, ~51!

is the eigenenergy of excitations in units of 8Stl0 . The dis-
persion ofM̄ k is plotted in Fig. 7 for typical values ofu.
When k→0, the anisotropic parts of the coupling consta
K3 andK1 , becomes zero as seen from Eqs.~42! and ~43!,
and therefore,K̃22(k)→K0(0)5l0 . Therefore, on approach
ing the k50 point, the excitation energy 8Stl0M k always
goes to zero ‘‘linearly,’’ but with an anisotropic velocity:

M̄ k;A c2

6l0
~cxkx

21cyky
21czkz

2!, ~52!

cx

cy

cz

J 512
c4

c2
3H cos~2u1f!

cos~2u2f!

cos~2u!
. ~53!

The ratioc4 /c250.7597 is smaller than unity, and therefo
thesec’s are positive for anyu.

The ground-state energy of the Hamiltonian is obvious

EB,HA~u!5S 11
1

St
DEB,014Stl0(

k
M̄ k , ~54!

and this depends on theu parameter, inherited from theu
dependence ofK̃22. The correction due to quantum fluctu
tions,DEB , has a relative factor 1/St compared to the mean
field value, and I parametrize it by a function of orderSt

0,
andR, as

FIG. 7. Wave-vector dependence of the renormalized eigen

ergy M̄ k , for severalu’s.
02441
,

DEB~u!5EB,HA2EB,05
1

St
uEB,0u@211R~u!#. ~55!

The part of21 here corresponds to the contribution of t
first term on the right-hand sides Eq.~54!. We can determine
the stable direction of the spontaneous order by the calc
tion of R(u). This is explicitly expressed as

R~u!5
1

Vn
(

k
M̄ k5

1

Vn
(

k
S 12

K̃22~k!

l0
D 1/2

5
1

Vn
(

k
F12

1

l0
@K0~k!2K3~k!cos 2u

2K1~k!sin 2u#G1/2

, ~56!

and the value is always less than unity. This implies t
211R(u),0 for all u, meaning that the quantum fluctua
tions always lower the ground-state energy, as expected

Figure 8 shows the result of numerical calculation f
R(u). Although the u dependence is very small, I hav
checked that it is not a numerical error but is intrinsic. Up
the numerical summation for Eq.~56!, I systematically in-
creased the number ofk points up to 5123, and confirmed a
fairly well convergence. This result is well approximated
a simple harmonic function,

R~u!'0.9810620.00101 cos 6u, ~57!

and have the minimum value atu50, 6f/2, 6f, andp. The
amplitude of other harmonics is very small,;1025 at most.
A similar u dependence is reproduced by replacingM̄ k by its
continuum limit@Eq. ~52!#, and therefore the anisotropy ma
be due to fluctuations with long wavelength.

As discussed in Sec. III, the points ofu50 and6f cor-
respond to the order of dimer pairs in theB-sublattice tetra-
hedra, while the other pointsu56f/2 andp correspond to
tetramer orders. Therefore, we come to the conclusion
the B-sublattice tetrahedra will ultimately reveal a unifor
long-range order of either dimers or tetramers.

n-

FIG. 8. Dependence of the zero-point energy on the direction
the ordered moment.
5-9
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VIII. CONCLUSIONS AND DISCUSSIONS

In this paper, I have investigated the ground state o
quantum Heisenberg antiferrmagnet on the pyrochlore
tice. Here I summarize and reinterpret the results of this
per in the original spin picture instead of the pseudos
representation used in the previous sections.

My approach is based on the basic assumption that
spin-triplet sector has a finite-energy gap from the sing
ground state, and that the low-energy dynamics can be
described in terms of local singlet basis. I employed the
fective Hamiltonian which was obtained for the singlet se
tor in Ref. 9, and determined its ground state beyond
mean-field approximation. I accomplished this by taking
count of the effects of quantum fluctuations in four stage
also clarified the nature of various elementary excitations
this system, and calculated their energy scales.

An important parameter characterizing quantum fluct
tions is determined by the number of local singlet sta
(2St11) and the number of local processes (Nproc.): it is
1/(St3Nproc.), as expected from the analogy to the sp
wave theory. AlthoughSt is 1/2 in the present case,Nproc. is
large because of large connectivity in the effective mod
12 elementary triangle faces for the fcc lattice and six nei
bor sites for the simple cubic lattice. Therefore, this para
eter becomes small, and this may justify the harmonic
proximation used in the present work to treat quant
fluctuations.

The mean-field picture of the effective model in the p
vious studies is the coexistence of a long-range order of s
singlet dimers and a non-ordered spin-singlet part. The n
ordered part has large local fluctuations of both the s
chirality and dimer pattern, and no long-range order is sta
lized. In the first stage of this paper, I determined elemen
excitations in the dimerized part. They are spin-singlet ex
tations, and mainly correspond to the deformation of dim
configuration; I called themdimerons. In the second stage,
calculated the coupling of the nonordered spin-singlet p
and the dimeron excitations, and I found that the fundam
tal processes involve the creation and annihilation o
dimeron pair. In the third stage, I derived the effective int
action between two nonordered singlets mediated from
coupling to dimeron pairs. It is a model in which fluctuatio
of the dimer channel are coupled to each other between
nonordered positions, and the favored local pattern depe
on the configuration of the dimer pattern in the surround
ordered part. On the other hand, there is no coupling in
chirality channel within the present approach. In the l
stage, I determined the ground state of this effective mo
and discussed the final form of spin order in the spin-sing
sector. I found that the uniform spatial arrangement has
lowest energy, and that the energy gain is identical to
quantum mixture of local dimer and tetramer states wit
the mean-field level. However, it turns out that the quant
fluctuations favor one of the three pure dimer states or
three pure tetramer states. All the pure dimer states
equivalent to each other, and this is also the case for
tetramer order.

Figure 9 shows the finally determined ground-state s
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configuration of the whole system. It is shown for the cub
unit cell of the pyrochlore lattice. One is for the case of
dimers, and the other is for the case of a mixture of
dimers and one tetramer.

I now summarize the various types of elementary exc
tions and their energy scale. First of all, the original Heise
berg spin model is believed to have a finite spin gap, i.e
singlet-triplet energy gap; the spin-triplet excitations a
quantum~para! magnons. A spin-triplet sector was alread
traced out when my starting Hamiltonian in the singlet sec
was derived, and we need to go back to the original Heis
berg model to determine the value of the spin gap and
magnon dispersion, which I did not study in the present
per. The excitations studied in this paper are all of spin s
glet type, and they may be understood in the following w
The second type of excitations corresponds to the defor
tion of the dimer pattern in the easily ordered part, and th
are called ‘‘dimerons’’ in this paper. They have a dispersi

b1
3
2 St

2m j k , shown in Fig. 5, and their energy gap is finit
The large energy gap means that the dimer order in the ea

FIG. 9. Spin configuration in the ground state with singlet ord
The hardly ordered part~B-sublattice in Fig. 1! is indicated by
dotted circle.~a! All-dimer pattern.~b! Mixture of dimers and tet-
ramer. Dimers and tetramers are shown in black.
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ordered part is quite stable, and fluctuations of the dim
pattern in this part are small in amplitude and short rang

The third type of excitations corresponds to collective d
formations of the dimer or tetramer pattern in the har
ordered part. In this sense, they are also a kind of dime
excitation, but the energy scale and the dispersion are di
ent from those in the easily ordered part. They have
dispersion 8Stl0M̄ k shown in Fig. 7, and the energy gap
zero. Sincel0 /b1,1022 in addition to a further reduction
factor, the energies of these excitations are well below
gap of the dimeron dispersion in the easily ordered part.
bandwidth of these excitations is very small, because
dimers and tetramers in the hardly ordered part interact o
through the coupling to dimeron excitations in the eas
ordered part, which decay rapidly in space. The zero ga
these excitations is reminiscent of the Goldstone mode
the systems with continuous symmetry. However, our mo
does not hold the rigorous rotation symmetry in the space
dimer and tetramer patterns. Therefore, there may appe
finite energy gap, when the nonharmonicity of quantum fl
tuations is taken into account. However, even if this is
case, the size of the generated gap will be very small.

An important open problem is the interaction betwe
triplet magnons and singlet dimerons. This interaction w
play a crucial role when the system approaches a magn
instability.
g
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Finally, I emphasize the presence of a hierarchical str
ture of energy scales corresponding to different types of
citations. This point may be one of the main features
geometrically frustrated quantum magnets. When geome
cal frustrations are strong, the construction of the ultim
ground state needs complicated processes, and this will
place successively on different length scales. That is, in
stage, a part of degrees of freedom are to be arranged
clever way to gain energy, but other parts remain frustra
until the next stage. This process repeats with the reduc
of the energy scale, until all the degrees of freedom are u
up. A hierarchical structure of the relevant energy scale
thus expected, corresponding to multiple stages in the s
cessive stabilization processes. Therefore, this featur
expected to be common in many geometrical frustra
systems.
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