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Magnetization reversal due to vortex nucleation, displacement, and annihilation
in submicron ferromagnetic dot arrays
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Magnetization processes are analytically described for the arrays of soft ferromagnetic polycrystalline cir-
cular dots with submicron dimensions, wherein the magnetization reversal accompanied by nucleation, dis-
placement, and annihilation of magnetic vortices. Magnetostatic, exchange, and Zeeman energies are taken into
account for the analysis. The magnetic state of each dot in an applied magnetic field is treated as an off-
centered rigid vortex structure; i.e., the vortex keeps its spin distribution while being displaced. This rigid
vortex model yields analytical expressions for the size-dependent initial susceptibility, the vortex nucleation,
and the annihilation fields. The interdot magnetostatic interaction plays an important role in the magnetization
reversal for the arrays when the interdot distance is smaller than the disk radius, where the initial susceptibility
increases and both the nucleation and annihilation fields decrease. The analytical predictions are compared to
the micromagnetic calculations, and limitations of the model are discussed.
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[. INTRODUCTION The remanent domain structure of ideal magnetically soft
dot is determined by the disk aspect rafie=L/R and the
Recent interest in magnetic systems with reduced dimenexchange lengtiR,= \/Wg wherelL is the dot thickness,
sions has been stimulated by the rapid evolution of varioug the disk radiusC the magnetic exchange stiffness con-
microfabrication techniques. In particular, it enables Us t05iant, andM, the saturation magnetization. There are three
fabricate We_ll-deflned two-dlme_:nsmnal arrays of subm|c_ror1st‘,jlb|e magnetic structures for small enolland L, when
fgrromagnenc particleédots. .Th's qffers various opportuni- - yhe formation of magnetic domains and domain walls is not
:Efiéor;er%toﬁ\l\;gggg:pése;pé?;%rz\vfylﬁfsﬁ.?jlé(;]hsi?s m?' energetically favored. Two of them in the first approximation
- g Y Pal" = can be described as single-domain states with magnetization

terned recording medf® and ultrasmall magnetic field parallel and perpendicular to the disk basal plane when
sensor$. Prior to the technological applications mentioned . .
giea’ app F1.81 with L=R,, R<R(L), and #>1.81 with R=R,,

above, it is indispensable to understand well fundamenta ; ) - _
properties of the individual and interacting magnetic ele-réSPectively. The value g8=1.81 is the critical aspect ratio
ments with reduced dimensions. for the reorientation transition for a single-domain cylindri-
It is generally recognized that theoretical description ofcal dot:* The other is the “vortex-type spin distribution
the magnetization reversal process in a real ferromagnet WhenR>R¢(L), the critical radius for the vortex stability.
rather complicated, since one should consider all the energyhe vortex spin structure was experimentally observed in
terms composed of exchange, magnetocrystalline anisotropgubmicron disks with thickness of about several tens of na-
and magnetostatic contributioRsTherefore, the arrays of nometers. For example, Lorenz electron microcopy was em-
identical dots fabricated by the microlithography process argloyed to study a field-dependent vortex evolution in permal-
considered as a model system well suited for direct comparioy disks!® The size dependences of vortex nucleation/
son between calculations and experiments. Controlling botannihilation fields have been studied experimentally for
dot geometry and crystal microstructure is a challenging andircular Permallo§*®*” and ellipsoidal cobalt dot®. The
achievable task. For example, in single-crystalline epitaxiamagnetic force microscop®FM) observations of the mag-
dots, the magnetocrystalline anisotropy plays an importantetic vortex states in remanefeand under an applied
role in determining the demagnetization process, and the efield'® have been reported. The vortex nucleation in Permal-
fective anisotropy is adjusted to the desirable strength. Thoy particles was reported to cause an incomplete magneti-
spin-reorientation transitions caused by interplay betweemation reversal, which originates the failure in operating
the shape and temperature-dependent magnetocrystallidRAM cells.®® On the other hand, the submicron circular
anisotropies have been observed in epitaxial rectangular Gdots and ring-type nanostructures with a high stability of
dots®’ The magnetic behavior of the polycrystalline systemsremanent vortex state have been proposed as possible candi-
is mainly determined by their geometry and shape due talates for bistable magnetic memorfés?
lack of microscopic crystalline order. This tendency has been To our knowledge, there are neither theoretical and ex-
demonstrated for arrays of flat polycrystalline dots withperimental analyses nor micromagnetic data related to the
circular®® elliptical 1°'! rectangulaf*? and triangula®  effect of interdot magnetostatic coupling on the demagnetiz-
shapes. ing process in the dot arrays with nonuniform remanent state
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such as the VorteX structures, whereas there are some the-(1a) by using dimensionless complex variables=(x
oretical works about the magnetization reversal in isolatedy jy)/R andw(¢,¢) (Ref. 26:

circular ferromagnetic elements. The realistic curling magne-

tization distribution in the flat disk was first calculated oW 1—ww
analytically* and then by using a variational approgci? MetHimy=—=, m=7——,
The vortex stability in remanence and in external magnetic Lrww Lrww

fields was examined respectively in Refs. 24, 25 and 26y here the bar over a variable denotes the complex conjuga-

respectively. : . — —
In this work, we have developed an analytical model toflon- The complex functionw({,£) has the formw({, ()

describe how the characteristic properties such as the vortex f(£) if [f(£)|<1 (within the vortex corg and w({,{)
nucleationH , and annihilatiorH ,, fields and the initial sus- = f(Q/[f()] if [f({)|=1, wheref({) is an appropriate ana-
ceptibility x(0) depend on the size and interdisk distance. wdytical function. In our caséd({) =(i/c){, which is equiva-
compare the obtained results with micromagnetic calculalent to Eq.(1a), andc=b/R is the relative core radius.

tions. The paper is composed of five sections as follows. In In the remanent state, the vortex stays at the center of the
Sec. Il we describe the analytical models for an isolated do#lisk. When the magnetic field is applied, the vortex core is
and an array of magnetostatically coupled dots. In Sec. llIpushed toward the dot perimeter to increase the average
we briefly show some issues related to the micromagnetigagnetization component along the field. We assume that the
calculations. The results and applicability of the proposecpin distribution within the vortex is always described by Eq.

model are discussed in Sec. IV. Finally, the summary is giveri1l@ while being displaced, i.e., the vortex spin structure re-
in Sec. V. mains unchanged. The shifted vortex magnetization distribu-

tion is described a$({)=(i/c)({—s), wherec is the con-

stant, ands=1I/R is the relative vortex displacement. The
IIl. ANALYTICAL MODEL value of s=1 requires special consideration where we as-

A. Isolated dot sume thafs—1|>c with c<1. The last assumption is cor-

ect for sub-micron-size dotR>R, (0.6<cR/Ry<1 ac-
ording to Usov and Peschany’s calculatf@hs
This simple one-vortex approximatigso-called “rigid”
rtex model is reasonable whelil) the vortex displace-
ment!| is much smaller than the disk radilsand (2) the

(1b)

To begin, we consider the magnetization reversal initiate
via the vortex nucleation, the displacement, and the annihi-
lation in an isolated disk. The magnetization curling mode invO
the flat disk was analytically examined by Ahartniising

th‘? cyll_ndncal coordmgtes, _Where theaxis the cylinder vortex center is outside the ddtfR). The two-vortex dis-
axis, p is the polar radiusy is the polar angle, anth(r) b tion (one circular vortex is inside the dot and one cross
=M(r)/Ms with m,=0, m,=f(p), and m,=y1-m,.  yorex is outside the dbusing the disk conformal mapping
Usov and Peschafy** have found, from the variational "= (z—a)/(1-ag) was successfully applied to explain
pr|nC|pIe., that the replacemeﬁ¢p).—>sm 1‘}(3) finally y|eld_s the vortex annihilation field by Guslienko and Metlov in Ref.
the relationtan /2= p/b, whereb is the radius of the region 26 Byt this mapping cannot explain satisfactorily the vortex
with m,#0 (vortex core. This solution is valid for a wide jnjtial susceptibility and cannot predict the border of the vor-

ra_l::_gelof %c.)t sgei as_lt?]r as the dtc_)t r?dﬁjs Iz_a;rger :han the tex stability. The functiorw(g,z) determines good trial mag-
critical radiusR(L). The magnetization unit vectan ro- netization distribution in a cylindrical dot. Its parametéss

tates out of the dot bas‘?'.p'?‘r.‘e whertb. The valuc_e ofo andc in our case can be found from the total dot magnetic
can be evaluated by minimizing the total magnetic energy nergy minimization

consisting of the exchange and magnetostatic energies due O The total dot magnetic energy consists of the exchange

surface and volume charges in the dot. Comparison betweew magnetostatiaV,,, and ZeemarW,, energies. The
ex: m: H .

the numerical and analytical results indicate that the Cur"ngmagnetocrystalline anisotropy is assumed to be negligible
type vortex magnetization distribution in a ferromagnetic dotHere all the energies are normalized to the unil 1? ' with '

's expressed as the dot volumeV(=7R2L). The nonuniform exchange en-
ergy We,=(C/2)[d*r=,(Vm,)?, was developed with re-

m =0, m,=sinf(p)= 2bpl (b*+p?), p=b, spect to the vortex center displacemesrity taking into ac-
P e PI=11 p>b, count Eg.(1). The exchange energy of the dot in the
magnetization curling state of E¢l) with the shifted vortex
m,= *cosf(p). (1a) center (<R—b) is thus given by
Note here that the magnetization distribution does not vary We, 1 [Rp)\2 do\2 sirt e
along thez axis. This is correct for disks with thicknegs YEVA 2—(3) J Zp[(d—) —2}
equivalent to the exchange length. It is also clear that the s & p P
side surface and volume charges are not stored in the distri- )
bution given by Eq(1a). The vortex can be characterized by B 1R ’
the out-of-plangfor p<b) and in-plane(for p>b) magne- Wex(S) =Wei( 0) + 2\ R In(1-s%, @

tization directions. It is convenient to rewrite the two-
dimensional magnetization distribution(x,y) given by Eq.  where it is assumed th&— 1|>c.
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1
— =52+ 0(sY |.

Wey(S) =Wey(0) + 2

The exchange energy.,(s) decreases with the increase The functionF,(3) is proportional to the average in-plane
of s. Then expanding Eq(2) in a series ons yields the  demagnetizing factoN,(8)=4=[dtt™*f(8t)JI3(t).*
exchange energy density Here we distinguish three characteristic field related to the
) vortex evolution: the vortex nucleation field,,, the anni-
&) 3) hilation field H,,, and the fieldH, at which the vortex and
R saturatedsingle-domaip states have totally equal magnetic
energies. As will be explained below, these three fields sat-
For the isolated disk, the Zeeman energy does not depengfy the relation,H,<Hy<H,,
on the direction of the in-plane external fittand is given The sum of the energie®), (5), and (8) gives the total
as magnetic energy density of the off-centered vortex in a di-
mensionless form:

W(S) =Wey(S) +Wn(S)+wy(s)

=w(0)+a(B,R)s’>—hs+O(s%), 9)

WH(s)=—de3rM (r)-H

=—H Msst:dx[Jo(x)Jo(xs) —J5(X)Ja(xS)]. where

(4)

For the small vortex displacemesgjtdenotingh=H/Mg, the
Zeeman energy density is thus approximated as

1(Rg\?
a(B,R)=27TF1(,8)—§(E) : (10)

We assume that(3,R) >0, since this condition is neces-
wy(s)=—h(s+0(s%)). (5) sary for stabilizing the magnetic vortex in a cylindrical dot
within the framework of the “rigid” vortex model as pro-
The magnetostatic energy in the model is only generategosed by Usov and Peschany in Ref. 24 b+ 0. The dots
by the surface magnetic charges=(M-n) along the dot considered here satisfy the above condition because the vor-
perimeter. The volume charges are absentridi0), the tex structures are observed in the remanent siateR).

top and bottom surface chargeszat 0, andL remains un- By minimizing the total magnetic energy in E@) with
changed on the vortex displacement. We thus have respect tcs, one can obtain the equilibrium displacemspt
of the vortex center and the dot average magnetization as
a(r)o(r’) function of dot sized ,R and external fieldH in the form.
W= zfdsfd ,—r|’ (6)
1
e ““zagr MV aer @
ssin(e) where yis=[2a(B,R)] ! has sense of the in-plane initial
o(r)=— > , magnetic susceptibility of the isolated disk. It should be
V1+s’—2scod¢) noted that the susceptibility is simply inversely proportional

{o the average in-plane demagnetizing factor obtained with
taking into account the exchange interaction.

By comparing the energies of the vortex states,) and
the uniformly in-plane magnetized statg,(h)=27F ()

where the integration is taken for the disk side surface. Th
vortex displacement is assumed parallel to xhaxis (s is
real). The dot magnetostatic self-energy is given as follows:

W(S) 2 ) —h, we obtain the critical field
= =S 2 Fu(BI(s), (7)
MV wo A(BR)
where ho(B,R)=2a(ﬂ,R)<1— - a(ﬂ,R))’ (12
» dt whereA(B,R)=w,(0)—w(0)>0 is the difference between
F”(B):f Tf(,Bt)Ji(t), energies when the external field is zero. The condition
0 A(B,R)=0 gives the critical lineR.(L) and hy(B,R)
=A(B,R) near the line. The vortex annihilation field can be
d sin(@)sin(ue) approximated by using the conditisy~1 (vortex center
lu(s)=2 \/1 25005“0)4_3 reaches the dot perimejan Eq. (11):
andf(x)=1—[1—exp(x))/x and B=L/R. hai( B,R)=2a(B,R). (13
This expression is valid for all the valuesofFor smalls, Now let us consider the vortex nucleation field. Since the

sincel? u(8)= 7725 1+ 0(s?), the magnetostatic energy den- dot radius is large enough, the magnetization reversal will

sity mcludlng the disk top and bottom surface is obtained a®ccur via incoherentnonuniform) nucleation. Here we de-
termine the nucleation field as a maximal field where the

Wpn(S)=W(0)+27F (B)s?+ O(s%). (8)  originally uniform magnetizedsaturategi state becomes un-
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stable. However, real nucleation fields differ essentially from 2.5F

theoretical predictions due to defe¢snning centerswithin »

the dots. We assume that a curling magnetization distribution = 2.0}

is a nucleation mode wherein a uniformly magnetized state E

loses stability in the external applied field. The correspond- = 15t

ing spin structure is a vortex with its center located outside =

the disk at a distance df,=R/sing, from the disk center, § 1.0}

where the anglep, is the intensive variable. This magneti- 5

zation distribution can be described by the functifiid) % 05

=(i/c)({—s), but with the vortex center displacemesit 5

>1 (s=1/singy). The case wherpy=0 corresponds to the ” 0 3 . ) X . -
saturated state of a disk with a collinear spin struciine 0 5 0 15 20 25 30
vortex center positiors will go to infinity). We then get for Normalized dot radius, R/L

the exchange energy density
FIG. 1. The dot aspect ratio dependence of the vortex critical

Ro 2 fields defined by Eqgs(12), (13), and (17) based on the “rigid”
Wex(@0) = — E) In[cos ¢o)], (14 yortex model forL =20 nm andb/L=0.734.
and the corresponding magnetostatic energy can be obtained B. Array of magnetostatically coupled dots
from Eq. (7) by the substitution there— 1/sin(eo) and ac- The model described in the preceding section is now ex-
counting of uniform dot ¢o=0) magnetostatic energy tended to the case of typical two-dimensiot2D) dot arrays

with a rectangular lattice of nonuniformly magnetized sub-
i S F (ﬁ)'z( _ ) micron-size disks. We consider the system of identical mag-
m Sif(@g) a0 * #\sin(gg) )’ netostatically interacting disks with radil&sand dot thick-
(15  nessL. The unit cell sizes ar@,=2R+d,, T,=2R+d,,
whered, andd, denote the interdisk spacing alorgndy
axes, respectivelyFig. 2).

To describe the magnetization reversal in the dot array, we
consider the total magnetic energy of the system. The dot
exchange energW,, and the Zeeman enerdy,, are single-
disk quantities. They thus do not depend on the interdisk
spacingd. The magnetostatic enerdy,, is influenced by the
+o(¢,g), interdisk interaction, especially for closely packed disk ar-

rays with 6= d/R<1. We assume that all the disks are in the
(16) same magnetic state in the external magnetic field.
whereF(8)=F4(8)—F.(B). To calculateWy,, we consider a 2D reciprocal space

By considering the first and second derivatives of the tota}vhere the location of the dots can be specified with the re-
magnetic energy with respect to the anglgwe obtain the ciprocal lattice vectok=(k,,k,). For the recta_ngular lattice
critical field, below where the uniform magnetic state is un-(Kx,Ky)=27(m/T,,n/T,), wherem andn are integers. We
stable. The second derivative aipy=0 ﬁzwb/&wg use thg general expression for magnetostatic energy density
=[(Ry/R)?— wF(B)+h/4] should be positive. Equation per unit volume of in-plane magnetized patterned film de-

(16) with the condition&zwb/agog:O implies that the uni- duced in Ref. 27:

W @g) =Wp(0) +

and the Zeeman energy density is described by the Bmit
>1 in Eq. (4).

Developing the total magnetic energy of the agf{ ¢)
=We, (@) +Wn(o) +Wy(¢g) into a series orpg, followed
by a similar expansion osas in Eq.(9) yields

B 1 ,[{Ro)\? 1
Wh(¢0) =Wp(0)+ 5 90 (ﬁ) —mF(B)+Zh

. o . f(kL
l;otir(r)nn rg:l%r:wetm stateg,=0) is stable up to the vortex nucle Wm:2772k (kz ) kMY, 18
1/[Ry\?
hy(B.R) =4 F(B)—;(E) } (17) 2R dy
\ | T,-2R+d,
Equations(11), (13), and (17) describe analytically the =

characteristic size-dependent parameters of magnetization re- O O
versal in an isolated circular ferromagnetic dot, such as vor-
tex initial susceptibility x(0), annihilationh,,, and nucle- dy
ation h,, fields within the “rigid” vortex model. Figure 1
shows dependence of the isolated dot critical fields on the Q Q
value of 8. The critical values ofR when the functions
ha(B.R), ho(B,R), andh,(B3,R) are equal to zero corre- Ty =2R+d,

spond to the vortex stability radius, the vortex equilibrium
radius, and the single-domain state stability radius, respec- FIG. 2. The geometry of rectangular array of circular ferromag-
tively. netic dots used in the present model.
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where f(x)=1—[1—exp(xX)Vx, M{=S"1fd’pM*(p) This expression foA generalizes E(9) for isolated dots.
xexp(k- p), Sis the area of a unit cell for the square lattice, Since the vortex state is the ground statédat O for used
andp is the radial vector in the-y plane. typical dot parameters @~1 um,L~50nm), the coeffi-

For calculations, we use the magnetization componentsient A(8,8,R,¢y)>0. The condition A(B,8,R,¢y)=0
M<(p) of the shifted vortex in the “rigid” vortex model corresponds to the border of vortex stability in the coupled
(Sec. Il A). For smalls, we obtain the normalized magneto- dot array and determine the increaseRyf. Equation(20)
static energy density by using similar techniques to @j. immediately leads to the equilibrium displacemsgif the

as vortex cente?® and to the dot average magnetizatidipolar
momenj in the magnetic field in the form of Eql1), where
Win(S)=W(0)+27A(B,8,¢1)s°+0(s*), B=LIR, the parametea(B,R) is replaced byA(3,5,R,¢y). The dot
quadrupolar momer®~s? (Ref. 29 does not contribute to
6=0dy/R, (19 Eq. (20). The initial (anisotropi¢ magnetic susceptibility of

2(eR) coupled cylindrical dot array applying in-plane field s,
47 Ji(kR =[2A(B,5,R,en)] "
A(B, S, on) = TXTy§k: f(BkR) K2 COS (P o), In the first approximation, the vortex annihilation field
H ., is determined likely to Eq(13) by the expression
whereJ,(x) is the Bessel function, and, and ¢, are the

polar angles for the vectots andH. H.B,6,R, on) =2A(B,6,R, o) M. (21)

The functionA(B,8,¢y) causes uniaxial anisotropy re-
lated to the interdisk magnetostatic coupling whereby the The in-dot magnetostatic interaction gives positive and
easy magnetization axis is directed along the shortest periogie in-dot exchange interaction and interdot magnetostatic
Ty in the rectangular dot arraye(;=0). The vortices are  coupling (through induced stray fiellgjive negative contri-
located at the center of each disk in the absence of an extefutions to the dot annihilation field. F&=0.1—1xm, the
nal magnetic field. The magnetic charges stored at the smajiprtex shift is mainly determined by competition between
vortex cores and related stray fields do not practically affeChagnetostatic and Zeeman energies. Both the susceptibility
the magnetostatic interaction of the disks. This part of theandHan reveal uniaxial anisotropy in the rectangular dot ar-
interdisk coupling is negligibly small even for a spacidg ray with easy axiss;=0 (Ox), parallel to the close-packed
close to zero. In an external magnetic field, however, thgjirection in the rectangular dot lattice.
centers of the vortices are displaced perpendicular to the field T4 estimate the vortex nucleation field in the dot array we
direction¢y , and some magnetic charges appear at the diskhould consider the stability of magnetized rectangular dot
circumference, and therein corresponding stray fields originrray in an external magnetic field. Let magnetic field is
nate. This leads to an increase in the intradisk magnetostatigyrg|iel to one of the dot latticEL0] or [01] direction. We
energy followed by the appearance of the interdisk magnetheed only recalculation of the magnetostatic energy for the
static coupling due to nonzero dot dipolar, quadrupolar, angjot array given for isolated dot by E¢L5). The magnetiza-
higher-order magnetic moments. The interdisk couplio&  tjon distributionm(p) in each dot is given by the function

ing negativg reduces the total magnetostatic energy of thef(g):(ilc)(é"_s) wheres> 1. Detailed calculation on the
patterned film and therefore favors stabilization of the satupasis of Eq.(18) leads to the substitution of the function

rated state. The in-dot magnetostatic energy of the sidg(lg) in Egs.(16) and(17) to the function
charges is taken into account by E¢8) and(8) within the

“rigid” vortex model. Equation(18) includes both the in-dot 8 02— opy)
and interdot magnetostatic energy  contributions.  F(B,6,¢y)=— > f(BkR) %
A(B, 8, on)— F1(B) within the limit of isolated doB>1 by Ty &
the substitution X[ C1(KR)COS A o o) + Co(KR)],
Ty [ 5 (22)
zk" ()= B2 j d2k(--).

where the coefficients ar€;(x)=3J;(x)J3(x) — J3(x) and
Co(X)=—J1(x)JI3(X) —Jo(X)JIo(X). Then, the nucleation
field h, for the magnetostatically coupled rectangular dot
guray has the following form:

By minimizing the total magnetic energy, one can obtain
the equilibrium shift of the vortex center as well as the
other physical parameters of the dot array. We use decomp
sition of the energies defined by Ed8), (5), and(19) and

rewrite the total energy density in the dimensionless form Ro
9y y hn(B.6,R,on) =4

1 2

W(S)=Wey(S) +Wp(S) +Wy(S) . , - e
) 4 This field decreases rapidly when decreasing the relative in-
=w(0)+A(B,6,R,en)s”—hst+O(sY), terdot distances. The nucleation fielch, exhibits a more
5 complex anisotropy than the uniaxial one. This is due to the
Ro) (20 presence of a considerable contribution of high-order intra-

1
AB.OR en)=2mA(B S 00) = 3| | dot magnetic multipolar momeniguadrupolar,Q, in par-
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ticular) to the interdot magnetostatic coupling. This effect is 1.0F

essential for close-packed rectangular dot arrays @it ®©
29 1 b

<0.5: 05k @

Ill. MICROMAGNETIC CALCULATIONS ©

-0.5F

Magnetization, M/Ms
S

The magnetic behaviors of individual and interacting
disks were separately examined using Landau-Lifshitz-
successfully used for calculating hysteresis loops and domain 19 : : . .
structures in small ferromagnetic particfsThe computa- 0«00 <0 D ?0 140 150
saturation magnetizatioM ;=8.0Xx 10° A/m and the ex- 7z = P
change stiffness constaBt=1.3x 10 **J/m. The magneto- S
crystalline anisotropy is neglected. A systematical study on
the effect of discretization and of the element size on calcu-

@ () © @ ©

culations. Comparison between 2D and 3D discretization _ . o
schemes shows that the obtained results are almost identical FIG. 3. The typical hysteresis loop and magnetization reversal
X 4 nmx L. Decreasing the element size does not influencés calculated with micromagnetic solver for an isolated dot with
the numerical results, even for the smallest disks calculated?™ 9-1#m andL=30nm.
exchange length of the systefr-14 nm so that the spin dot diameter is varied from 0.1 to 0g8n and disk thickness
distribution in the vortex core can be described correctly. Thdfom 10 to 60 nm. The micromagnetic calculation is time
components, and the dot energy terms were calculated asd@t diameter in this case was fixed to be @ only.
function of an in-plane applied magnetic field. The initial
part of the magnetization curve at zero field. The critical
fields where the spin structure transforms from the vortex to Figure 3 shows a typical hysteresis loop and the field
hilation H,, and nucleatiorH,, fields, respectively. solver for the circular dots, 0.2m in diameter and 30 nm in

The effect of interdot magnetostatic interaction on mag-thickness. When the magnetic field is decreased from satura-
finite chain. The susceptibility(0) and critical fieldsH, and  field H,, [Fig. 3(b)] accompanied by an abrupt decrease in
H,, of the central dot in the chain were used for comparisorthe average dot magnetization. This results in a gain in the
sponds to the limit of the dot array with a rectangular latticecenter of the dofFig. 3(c)] at H=0. The reversible part of
where the interdisk distance along one direction is kept mucithe loop corresponds to the vortex core movement perpen-
interaction between the individual chains in the array. In thdfield reaches the annihilation field,,, the vortex vanishes
analytical model, the magnetostatic energy described by Eqompletely. This process stabilizes the single-domain state in
fore the susceptibility, nucleation, and annihilation fieldsthe linear part of the hysteresis loop are strongly size depen-
given by Eqs(21) and(23) correspond to the infinitely large dent. The magnetization distribution in FiggaBand 3e) is
for the chains with different number of dots from 3 to 13 andstaté), to reduce side surface magnetostatic energy. But we
small interdot distance, we conclude that at least seven elavill neglect these deviations.
correctly treat the effects of long-range magnetostatic intervortex state determined using the micromagnetic calculations
action. The switching behavior of the central dot does no{open markensand analytical results given by E@.1) (solid
considered as a good approximation to the infinite chainradiusR is well above ofR., and the exchange contribution
Detailed discussion of analytical calculations for smalleris negligible. The analytical model is in excellent agreement
thicknessL is chosen to be 40 or 60 nm and the interdotcoincide well with the experimental data obtained for 60-nm-
distanced is varied from 400 nm down to 30 nm. The exter- thick submicron circular Permalloy dot&The value ofy(0)

Gilbert (LLG) micromagnetic solve®’ The solver has been o ®)

tional material parameters are typically for Permalloy the Field (T

lated hysteresis loops was performed prior to the main cal-

for the flat disk withL <R. The unit element size is 4 nm Process due to the vortex nucleation, displacement, and annihilation
Note that the unit element size is much smaller than the

evolution of the spin structure, the average magnetizatio§onsuming, especially for the chain of the dots: therefore, the
susceptibility y(0) was determined as a slope of the linear IV RESULTS AND DISCUSSION

the single domain state and vice versa were defined as anrévolution of the spin structure, calculated with the LLG
netization reversal was elucidated for the dots placed in &on[Fig. 3(@], a magnetic vortex nucleates in the nucleation
with the analytical model. The chain configuration corre-magnetostatic energy. The center of the vortex stays at the
larger than the dot radius. We thus neglect the magnetostatiticular to the applied fieldFig. 3(d)]. When the magnetic
(18) includes the effect of all the surrounding disks. There-the dot[Fig. 3(e)]. The values oH,, H,,, and the slope of
dot array. By comparing the micromagnetic hysteresis loopslightly nonuniform, especially near the dot eddéseaf’
ments have to be considered in the calculation in order to Figure 4 compares the initial susceptibilig(0) of the
vary with increase of the number of elements and can bénes as a function of the dot aspect rafib=L/R. The dot
number of the elements will be reported elsewhere. The diswith micromagnetic data for a variety ¢8. These results
nal magnetic field was applied along the chain. The isolateéhcreases with decreasir®g e.g., the vortex core has higher
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20 fields decrease. The vortex magnetic state is the ground state
2R of the system, and the nucleation field is always smaller than
shd o oot the annihilation field.
A 04 As can be expected from EqgL1), (13), and (17), the
o initial susceptibility, the vortex, nucleation and annihilation
fields are predetermined by saturation magnetizatiorand
the dot aspect rati@. As far asR is much larger than the
exchange length, the magnetostatic energy dominates, and
the absolute values of dot radisand the dot height are
not important. This means that the model yields identical
ob—— . results forH,, x(0), andH ,, for the dots with different val-
01 02 03 04 05 06 ues ofR andL, but the same aspect raffb The solid lines in
Dot aspect-ratio, B Figs. 4 and 5 can be viewed within the framework of “rigid”
vortex model as universal curves of the characteristic param-
FIG. 4. The initial susceptibilitysolid line) calculated using Eq. eters of magnetization reversal process. As we mentioned
(7) together with micromagnetic datapen markersas obtained  ahove, the proposed model for the shifted vortex magnetiza-
for isolated circular dots with variable diameteR 2nd thickness. tion distribution is valid only for weak magnetic fields when
the vortex core displacemestis small. The values oH,,
mobility for the dots with larger diameter or smaller thick- were determined by extrapolating the linear parvafH) up
ness. Note that the susceptibility of the single vortex has théo saturationM. Therefore, the analytical results gf0),
smallest value for intermediaj@~ 0.5 and increases sharply equivalent to a reversible vortex displacement in small fields,
for the dot with diameter close to the dot’s instability region are in full agreement with micromagnetic results for all the
due to expected transition of the vortex state to the in-planglots studied here. There are some evident disagreements
magnetized single domain state. The valueRgfL) deter-  with numerical results for thél, andH,, as discussed be-
mined from the equationa(8,R)=0 by Usov and low.
Peschan$ are much smaller than those calculated in the The analytical equatior(13) for the annihilation field
Ref. 25 by using two-vortex model more correct values.  closely follows the micromagnetic data for the dots with
Figure 5 summarizes the data for the vortex nucleatiorsmaller aspect ratigg and larger dot radiu, but it fails
and annihilation fields for an isolated circular dot with vari- whenR<0.1um and3>0.5. For the fixed value oB, the
ableR andL. The solid lines are plotted using Eq43) and  discrepancy tends to increase with decreasing the dot radius
(17), and the symbols represent micromagnetic calculationdR. Within the “rigid” vortex model we are able to use the
The analytical results agree well with the micromagnetichigher-order terms in the expansion on the parameter
LLG calculations except for thel, values for largeR, where  the Egs.(2), (4), and (7). More detailed analyses show that
other nucleation modes can be realized, indicating that théhe model overestimates the magnetostatic energg-fol
vortex nucleation occurs in the dot with a relatively smalland, thus, the vortex annihilation field, especially for small
diameter, and quite a strong field required to uniformly mag-R. When the vortex core approaches the circumference of
netize the dots. Therefore, the magnetization reversal due @ots (s<1), the elliptically deformed vortex shape should be
the vortex nucleation and annihilation is not desirable fortaken into account. This will effectively reduce the magne-
MRAM memories with in-plane magnetized celfsAs the  tostatic energy due to the decrease in surface charge along
dot diameter increases, both the nucleation and annihilatiothe dot perimeter. A possible way to improve the model for
proper values of ., is to introduce the field-dependent vor-
tex core radiug® However, this approach does not yield the

051

Initial susceptibility, %(0)

= 100} Nucleation vortex stability radius and correct initial susceptibility. Then
g ot all the magnetic energy terms will be modified. The influence
ms .t 2 of the vortex deformation becomes crucially important for a
= 0 dot with a very small diametdnear the critical radiug, of
% od Annihilation the vortex stability, since the vortex core occupies almost all
T Look the dot volume.
= ) 2R All the calculated vortex nucleation fields can be classi-
= o932 fied into two groups in accordance with the dot radius as is
E 2001 04 clearly seen in Fig. 5, where the nucleation field is plot-
=} e 05 . . .
5 206 . . . ) ted as a function of the aspect rafh The micromagnetic

0 01 02 03 04 05 06 data for the first groupopen symbolgscorrespond to the data

for dots with R<0.2um, in excellent agreement with the

analytical results given by Eq17) (solid line). The value of
FIG. 5. The vortex nucleation and annihilation fiel@solid H, in the second grougsolid symbol$ for dots with R

lines) calculated using Eqg13) and(17) together with micromag- >0.2um has a larger nucleation field than the analytical

netic datalopen and solid symbolss obtained for isolated circular results. The discrepancy is more pronounced for lagyén

dots with variable radiuf and thickness. our simple assumption, the magnetization reversal was initi-

Dot aspect-ratio, B
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a)

FIG. 6. The spin instabilities modes obtained with micromag-
netic calculations for the circular dots with tie=0.1 (a), 0.2 (b),
and 0.25um (c) and fixedL =30 nm. ("’)

ated by the C-shapé nucleation mode as shown in Fig. FIG. 8. The evolution of the spin structure in the chain of cir-

6(a). This mode is described quite well by the “rigid” vortex cular dots for different magnetic fields marked by the open circles
model. Micromagnetic calculations show that there are othei, Fig. 7.

spin structures with close energy just before nucleation for
small dots. Figure 6 shows the metastable spin structures50 nm. As follows from previously described micromag-
calculated for the dots with =30 nm andR=0.1, 0.2, and netic data, the magnetization reversal process in a small dot
0.3 um. With increasing dot diameter, the spin structureis always accompanied by only one sharp jump in magneti-
gradually transforms from C-shapé [Fig. 6(@)] to “buck-  zation, corresponding to an irreversible transition from a col-
ling” [Fig. 6(b)] and then to ‘S-shap® [Fig. 6(c)] configu- linear to a vortex spin structure. The demagnetization curve
rations. The dot aspect ratipseems to have no effect on the for the chain exhibits a stepwise decrease, because the vor-
in-plane magnetic states. Interesting to note is that the cortices nucleate at different fields for the different dots. The
figurations in Figs. @) and Gb) end up with a single vortex. field evolution of the spin structure in the chain is given in
On the other hand, two vortices are nucleated on the dot sideig. 8. In high magnetic fields, all spins are aligned along the
surface at much higher field for the nucleation mode showrdield [Fig. 8@)]. With decreasing field the vortex nucleation
in Fig. 6(c). The different nucleation modes appear to beis first initiated in two dots located at the ends of the chain
responsible for the discrepancy between the analytical anFig. 8(b)]. These dots are neighbor free in one side, and they
the micromagnetic results. The magnetization reversal aare consequently subjected to an effective magnetic field,
companied by the nucleation of two vortices was studiedvhich is smaller than the one for other dots inside of the
experimentally in submicron disksand with micromagnet- chain. After the nucleation, the vortex core stays quite far
ics in ellipsoidal permalloy dot¥ The validity of the ana- from the dot centefFig. 8(c)], according to the balance be-
lytical solution, likely given by Eq(17), can be extended for tween the magnetostatic and Zeeman energies. The magnetic
the dots withR>0.2um if one takes a more complicated charges induced on the side surface result in a non-negligible
magnetization distribution into consideration for the energystray magnetic field around the dot. Therefore the ending
description. The theoretical expression of the size-dependedpts with magnetic vortices are still magnetostatically
transition between different nucleation modes still remains ta&oupled with other elements of the chain. This coupling de-
be deduced. creases drastically with decreasing field because of the vor-
Figure 7 shows a typical micromagnetic hysteresis loogex core displacement toward the dot centers. The contribu-
for the chain of seven identical circular dots with radRs tion of the out-of-plane dot magnetization component can be
=0.2um, thicknessL=60nm, and separating distande ignored here, since the dot radius is much larger then the
radius of the vortex core. As a result, the magnetization re-
versal process is progressively initiated in the neighboring
dots toward the center of the chdiRigs. §d) and 8e)]. In
remanencezero applied fielil the dots are in the vortex
05 b~ magnetic states. The centers of the vortices are at the center
of the dots. Therefore, the magnetic “charges” are practi-
cally absent and magnetostatic interaction between the indi-
vidual the dots is negligibly small, even though for distances

1.0t

Magnetization, M/Ms
(=

05k © d close to zero. However, once the external magnetic field is
: 7 applied to the system, the centers of vortices are shifted and
@ | © some magnetic “charges” arise on the dots boundaries. This
-1.0 o @ . leads to increasing the self-magnetostatic energy of the dots
-100 50 0 50 100 described by Eq(19) and appearing the interdot magneto-
Field (mT) static interaction.

Figure 9 compares the initial susceptibiliyy0) obtained
FIG. 7. The descending part of the micromagnetic hysteresi$rom micromagnetic and analytical calculations for a mag-
loops for the chain of seven dots wiR=0.2um, L=60nm, and netic field applied along the shortest unit cell periagh(
d=50nm. =0). We have reasonably good agreement between the cal-
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o ) Normalized interdot distance, &
Normalized interdot distance, &

o o ) _ FIG. 11. The normalized nucleation fields,(d/R)/H, (isolated
_ FIG. 9. The initial susceptlblllt)(dashed Ilnel_=_60 nm; solid  dot) (dashed linel. =60 nm; solid line L =40 nm calculated using
line, L =40 nm calculated using Eq20) together with correspond- Eq. (23) plotted with corresponded micromagnetic data for the

ing micromagnetic datéopen markersfor the chain of the dots vs.  ¢hain of the dots vs the normalized interdot distadeed/R.
the normalized interdot distanae=d/R.

8, the nucleation initiates at the edges of the chain to propa-
culations and experiments except for the litlR>0. This  gate toward the center, indicating that the nucleation process
means that the “rigid” vortex model is applicable to accountis not uniform. The mean field approximation based on Egs.
for the interdot magnetostatic coupling. The vortex nucle-(lg) and(22) shows that the strength of the dipolar coupling
ation and annihilation fieldsi,(d/R) andH,{d/R) are nor- s proportional to the magnetization averaged over the chain.
malized to the corresponding values in isolated da¥R(  This approximation now fails to explain qualitatively the
>1) with the same geometry and are shown in Figs. 10 an@onuniform nucleation process. In the approximation, all the
11. Both the analytical model and the micromagnetic datgjots are assumed to have an identical magnetic configuration
clearly show that the magnetostatic interdot plays an imporwith the same dot magnetization. However, the magnetiza-
tant role in the magnetization reversal in arrays wiih tion of the dot with nonuniform nucleation is smaller than
=d/R<0.5, leading to a decrease Hf,, Ha,, and an in-  the average. This reduces the interdot coupling and results in
crease inx(0). the higher values of the nucleation fiet,(d/R) compared

We had good quantitative agreement between the interd@b the mean-field approximation. A detailed discussion of the
spacing dependences bf,, obtained from both analytical nucleation in coupled dots is out of the scope of this paper
and numerical calculations as seen in Fig. 10. This impliegind will be discussed elsewhere. Note that the Ibgifd/R)
that the vortices annihilate almost collectively in the dot ar-andH,{d/R) follow their universal lines when plotted into
ray and allow us to regard all the dots as identical. But thehormalized coordinates. Therefor8,is considered to be a
physical picture for the nucleation field is more complex.key parameter to compare the effect of magnetostatic inter-
Equation(23) predicts more rapid decrease ldf, than the  action on magnetization reversal in submicron dot arrays
micromagnetic result when decreasing the interdot spating with differentL andR. For the dots with smallesithe chain
(Fig. 11. According to the micromagnetic calculation in Fig. s stabilized in the single-domain remanent state and nucle-
ation field becomes negative. The similar effect was ob-
served by Cowburet al® In their work, the transition from
superparamagnetic to ferromagnetic ordering in Permalloy
dot arrays R=30nmL =10-20 nm) induced by interdot in-
teraction was reported. The rectangular dot arrays were in-
vestigated for cobaf Permalloy**"*? and iron dots. How-
ever the effect of anisotropic interdot magnetostatic coupling
was suppressed by the strong shape and magnetocrystalline
anisotropies.
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) ) . V. CONCLUSIONS
0 0.5 1.0 1.5 2.0
Normalized interdot distance, &

=]

Normalized annihilation field, H,,
>
~
L)

The “rigid” vortex model was used to describe analyti-
cally the characteristic parameters of the magnetization re-
FIG. 10. The normalized annihilation field,(d/R)/H,, (iso-  Vversal in individual circular dots and magnetostatically
lated doj (line, L=40 nm; solid line,L =60 nm calculated using coupled rectangular arrays with “vortex” remanent state by

Eq. (21) for the rectangular dot array together with correspondingusing only the geometry of the dbtandR, interdot distance
micromagnetic datdopen markeisfor chain of the dots vs the d, and the saturation magnetizatibhy. The proposed ana-
normalized interdot distancé=d/R. lytical description is in good qualitative and, sometimes,
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guantitative agreement with micromagnetic data for the mossusceptibilityx(0). The origin of this coupling is the appear-
important practical case of the flat submicron dot arrays witrance of dot side surface charges induced by an external field.
R~0.1-0.3um andB=L/R<0.2. The nucleation and anni-
hilation fields decrease, whereas the initial susceptibility in-
creases with decreasing the dot aspect ratidhe effect of
interdot magnetostatic interaction is rather small and there-
fore can be ignored for the dots in “vortex” state, in zero  This work was supported in part by Korea Institute for
magnetic field, and for the dot arrays with=d/R>1. On  Advanced Study, RFTF of the Japan Society for the Promo-
the other hand, the interdot interaction has a strong destabiion of Science, and the Grant-in-Aid for Scientific Research
lizing effect on the vortex spin state in dot arrays with smallfrom the Ministry of Education, Science, and Culture
interdot distance, leading to a significant decrease of both thiem Japan. Valuable discussions with Dr. Olivier Fruchart are
vortex critical fieldsH,,, H,,, and an increase in the initial acknowledged.
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