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Infinitesimal incommensurate stripe phase in an axial next-nearest-neighbor Ising model
in two dimensions
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An axial next-nearest-neighbor Ising model is studied by using the nonequilibrium relaxation method. We
find that the incommensurate stripe phase between the ordered phase and the paramagnetic phase is negligibly
narrow or may vanish in the thermodynamic limit. The phase transition is the second-order transition if
approached from the ordered phase, and it is of the Kosterlitz-Thouless type if approached from the paramag-
netic phase. Both transition temperatures coincide with each other within the numerical errors. The incommen-
surate phase which has been observed previously is a paramagnetic phase with a very long correlation length
(typically £500). We could resolve this phase by treating very large systen@00<6400, which is first
made possible by employing the present method.
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[. INTRODUCTION weak, a ferromagnetic state is the ground state, and a
paramagnetic-ferromagnetic phase transition occurs. On the
Of late, incommensuratédC) stripe structures have been other hand, when frustration is strong, the ground state is the
interesting subjects in various physical phenomena. As thantiphasestate(abbreviated by2)), which is a commensu-
typical examples, we may list an alloy &Y 10_4La, which  rate(C) stripe structure of two up spins and two down spins
contains heavy rare earth metals Er, ¥Athe incommensu- Such as{T|[17. Itis widely accepted that the incommensu-
rate phase of dielectric material such as Ph(ZTi,)O; and  fate stripe phase exists between the paramagnetic phase and
NaNG,,3~" and the stripe structure in Cy@lanes of oxide the antlphage, and 'that the successive phase “t'ra}ns:’ltlons
superconductor$In ErgY 1o 4La,, the longitudinal incom- (paramagnetlc-IC—antlpha)smke place; there is a “finite

mensurate oscillatory phase appears between the paramd gommensurate phase where the up spins and down spins

. . e aligned with a period longer than two.
net!c phaﬁse and trh? ordre]tri?drrptrwnaser.] Iihe eilr|igned i::idtes 0 Although only a topology of the phase diagram is known
main wally separate antilerromagnetic -stripes Gu by the mean-field approximation in the three-dimensional
planes of oxide superconductors, then the spin and charge odel® estimates for the phase transition temperatures in
modulated. In such systems, cooperative effects of fluctua;

. ) i . wo dimensions have been done by several approximation
tion and frustration are considered to play important rolesihaqried?-17 and numerical simulation€-2° However, val-

Thus, we sometimes treat them with the axial next-nearestjes of the phase transition temperatures scatter much de-
neighbor Ising(ANNNI) model as the simplified theoretical pending on the methods employed. One of the reasons that
model. For instance, when a uniaxial anisotropy is strong ifmake the estimate difficult is a lack of a reliable numerical
the dielectric material, the Hamiltonian is equivalent to thesimulation. Because of frustration, the correlation time of
ANNNI model if we only consider the dipole interactions up Monte Carlo(MC) simulations becomes very long near the
to the next-nearest-neighbor distance. The phase diagram ofitical point in large systems. Thus, we are hardly able to
Pb(Zr,_,Ti,)O; obtained by experimentsagrees with that reach thermal equilibrium states within reasonable time
of the three-dimensional ANNNI model obtained by the steps. A powerful method called a cluster heat K&hiB)
mean-field approximatioh. In copper oxide materials method®was developed to reduce the correlation time, how-
CalasCuy04 and CaY,Cus0,9, the Cu-O-Cu chains ever, the system size accessible by this method is restricted
with ferromagnetic nearest-neighbor and antiferromagnetitip to about 64128 lattice sites.
next-nearest-neighbor interactions are aligned on two- Recently, a new method using a MC simulation has been
dimensional planes whose interchain interactions are antifedeveloped: the nonequilibrium relaxatiddER) method?*%2
romagnetic. Furthermore, the spins on this plane are préAle are able to understand phase transitions from the differ-
dicted to have a strong Ising anisotrdfy! Consequently, ences of behaviors in nonequilibrium relaxation processes,
we may treat these copper oxide planes as the twowhich have been discarded in conventional MC simulations.
dimensional ANNNI model, between which the conductionSince we do not wait until the equilibrium is realized, we can
electron planes exist. use the CPU time to enlarge the system sizes. Therefore, it
In the ANNNI model, there are exchange interactions upmakes possible to treat large systems that cannot be possible
to the next-nearest-neighbor pairs along one axis, while thergy other methods. Accordingly, there is expected to be little
are only the nearest-neighbor interactions along the othefinite-size effect in the obtained data, and thus we can regard
axes. Most commonly, we take a convention that the nearesthem as those of the infinite systems. For the reasons stated
neighbor interactions are ferromagnetic and the next-nearestbove, the NER method can be effective especially in sys-
neighbor ones are antiferromagnetic, which cause frustrationems with a slow dynamics which a very long equilibration is
When the next-nearest-neighbor interactidingstration are  necessarg® 3!
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In this paper, we study the two-dimensional ANNNI ferromagnetic correlations along the chain direction remain
model by the NER method in order to determine the succesantil they are destroyed &t.; and the paramagnetic state is
sive phase transition temperatures. However, the obtainegalized. This idea means that the IC phase exists between
results suggest that the IC phase may disappear within limithe penetration of incommensurate domains in the axial di-
of numerical errors. Moreover, we found a very exotic phaseaection and the disappearance of the ferromagnetic chain cor-
transition, which seems to be the Kosterlitz-Thoul&$¥) relation. Therefore, the spin structure along the axial direc-
transitiori? if it is observed from the high-temperature side, tion is incommensurate, while it is ferromagnetic along the
and seems to be the second-order transition if observed frowhain direction in the IC phase. It has been considered that
the low-temperature side. This evidence suggests that the phase transition between the paramagnetic phase and the
frustration parameter does not serve as an asymmetri€ phase is the KT transition and that between the IC phase
paramete—>*which explicitly favors the IC structure. and the antiphase is the second-order transition.

We describe the model Hamiltonian and the NER method We consider following two quantities to clarify the phase
in Sec. I, and present simulational results in Sec. lll. Sectiortransitions. One is the antiphase magnetization defined by
IV is devoted to conclusions.

1
My (t) = — 2 t), 2
IIl. MODEL AND METHOD @M=y xzy ()81 @
A. Two-dimensional ANNNI model whereN is the total number of spins in the syste8,,(t)
The two-dimensional ANNNI model is described by the denotes the spin value of the sitey) at time t, and
following Hamiltonian: S.y((2)) represents the antiphase ordered state. The an-

tiphase magnetization takes a finite value in the antiphase,
but vanishes in the IC phase and the paramagnetic phase,
H=—2 (J6ScyScs1y+I1SxySuy+1+J2SxyScy+2): since the domain walls destroy the antiphase state at the
Y (1) lower transition temperaturd,.,. Therefore, this parameter
is employed to estimaté.,.
whereJ,(>0) is the nearest-neighbor interaction along the Here, we should note that the antiphase magnetization is
chain direction, which is the direction that has no frustration.not a relevant order parameter that decays algebraically at
J;(>0) andJ,(<0) are respectively the nearest-neighborthe transition temperature. Since the elementary excitation is
and the next-nearest-neighbor interactions along a directiof domain wall which readily percolates the chain direction,
perpendicular to the chain directidaxial direction that has the antiphase magnetization decays exponentially once the
frustration, and S,y==*1. In this paper, we fixJo=J; for domain wall penetrate into the system. Usually, the density
simplicity, and impose the open boundary conditions alongf the domain walls has been used as an order parameter.
the axial(y) direction, while we use the periodic boundary This parameter is considered to diverge algebraically at the
conditions along the chaifx) direction. We define a ratio transition temperature ad ¢ T,)#, which is equivalent to
between the nearest and the next-nearest-neighbor interdéat the correlation length diverges algebraically éas(T
tions along the axial direction ag/= —J,/J;). Our interest —T¢z) ”. In this point, the phase transition between the IC
is restricted to the regior>1/2, where the successive phasephase and the antiphase is the second-order transition. In the
transitions (antiphase IC— paramagnetic) has been consid- Monte Carlo simulations, the correlation length is related to
ered to occur. the characteristic time as~ &%, wherez is called the dy-
The fermion approximations assumed that the system ha@@mic exponent. Therefore, the characteristic time also di-
straight domain walls along the chain direction at the interverges afl ., as7~(T—T¢,) *". We can extract it from the
mediate temperaturé3 That is, domains whose periods are relaxation of the antiphase magnetization: the time that the
longer than two appear among the commensurate antiphagétiphase magnetization begins to decay exponentially is the
domains. In this case, the spin structure becomes incommegharacteristic time that the domain wall penetrates into the
surate along the axial direction, while the spins along thesystem. We execute the finite-time scaling to obtain the char-
chain direction order ferromagnetically. On the other hand, i@cteristic time at each temperature and estinfateas its
was postulated that domain walls run along the axial direcdiverging temperature. A concrete procedure of the finite-
tion in the interface free energy method of Néw-Hartmann  time scaling is explained in Sec. Il D. The antiphase magne-
and Zittartz(MHZ).*>* Namely, the correlation of spins or- tization is an extensive variable so that it shows better accu-
dered ferromagnetically along the chain direction is de4acy as the system size is enlarged because of the self
stroyed by these domain walls. averaging. Thus, we use the antiphase magnetization to esti-
Sato and Matsubafadiscussed using the CHB simulation mate the lower transition temperatuFg,.
that the transition temperaturd §) between the antiphase ~ The other quantity is the layer magnetization defined as
and the IC phase agrees with that of the free-fermion ap-
. . . . L L 2
proximation while the transition temperatur€.() between 1 (1 &
the IC phase and the paramagnetic phase is closg;to m'(t):L_yZ“l (_ 2 Sx,y(t)) ' ©)
obtained by MHZ. Thus, they considered that the domain Y
walls penetrate into the system along the chain direction awvherel, andL, are the length of the system along the chain
T, as the temperature increases from the ground state. Trand the axial direction, respectively. The layer magnetization

Lx x=1
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reflects the spin order along the chain direction. In the IC OF

phase, the incommensuration is realized in the axial direc- m(t)Na—h

tion. The spin arrangement along the chain direction should h=0

order ferromagnetically or at least be critical. The free en- | “BIVE(a] Uy 4] —2
. " e L= APF(eLM tL7?)

ergy of this state, which is of the order efL* "7, is always

lower than that of the state with the spins disordered only =t PIZVE(gtl7)

along the chain direction, which is of the order-oet, if v is ~Blzv . _
positive. Accordingly, the layer magnetization vanishes ex- xt (e=0L—2), ®)
ponentially in the paramagnetic phase, but takes a finitgyhere we have sdt~t' at the transition point{=0) be-
value or behaves in a power law in the IC phase. Thereforgsause the characteristic time scateand the correlation
this order parameter is used to estimate the upper transitigength ¢ should scale ag~ 2. Equation(5) describes that
temperaturel ;. We determine the transition temperaturesthe order parameter decays in a power law with time at the
by using these two quantities in this paper. transition temperature. On the other hand, the order param-
eter behaves exponentially at temperatures away from the
critical point. Thus, we are able to estimatgby this differ-
B. Nonequilibrium relaxation (NER) method ence. Actually, we measure the order parametét) at each
(Refs. 21,22,30,31 MC step(t) started from an ordered spin configuration at a
Phase transitions occur in the infinite-size limit-{ ) given temperature. We repeat 'Fhis MC run by changing the
and in the equilibrium limit {—o0). Because we cannot take (rjandorg numNtlagr seeds_,”?m{t) is averaged ovr$r rt]hese n-
both limits at the same time in the simulation, the equilib- ependent ~ funs. 1he temperature .a.t which thi)
rium limit has been taken first conventionally, and then we !Tve decays in a power law is the transition temperature.
' ! We use the local exponent to ascertain whether the order

take the |nf|n|te-S|ze_I|m|t by using th_e finite-size scalmg. parameter decays in a power law or exponentially, which is
However, the dynamics of the simulations are very slow iNyefined by

the frustrated systems, which causes a very large correlation
time. From a time-space relation- £, this means that the dInm(t)
correlation length is also very large. As will be mentioned in A(t)= ‘W . (6)
Sec. Ill, we estimate the correlation lengé~500, for
«=0.8 andT=1.40, which resides in the IC phase of previ- When we plot the local exponent against, it diverges to
ous phase diagram. In this situation, reliability of the finite-infinity for T>T., it converges to zero fof <T. and to a
size scaling might become doubtful. In this paper, we followfinite value (#0) atT=T, in the limit of 1—0. The upper
a completely alternative approach to the thermodynami®ound ofT. is the lowest temperature the(t) diverges, and
limit, i.e., we observe the relaxation of the infinite-size sys-the lower bound is the highest temperature thef) decays
tem to the equilibrium state. In order to extract the equilib-{0_Zero. The convergent value of the local exponent at
rium properties, the finite-time scaling analysis is utilized = Tc iS the critical exponenk = g/zv from Eq. (5).
instead of the conventional finite-size scaling. This approach
is known as the nonequilibrium relaxatiofNER) C. NER of fluctuation (Refs. 22,23,37,38
method?"?*%*Actually, we prepare a very large lattice and  Here, we describe the NER of fluctuation. The suscepti-
observe the relaxation of physical quantities. The simulationsility is written by differentiating Eq(4) with the symmetry
are stopped before the finite-size effect appears. Accordinglgreaking field twice,
we can regard the systems as the infinite systems.

Using the NER method, we can estimate the phase tran- 9°F
sition temperature and the critical exponents by examining 9h?
behaviors of the relaxation processes to the thermal equilib-

rium state(nonequilibrium relaxation procesge3he analy- where we have used the scaling relations
sis is based on the dynamic finite-size scaling hypothesis of

oc<m(t)2>_<m(t)>20<td/2—2B/ZV:ty/zy’ 7)
h=0

the free energy that dv=2—a,
at2B+y=2. ®
F(e,h,L,t)=L 9F(eLY" hLd= A/ tL-7), (4)  The susceptibility diverges in a power law at the transition

temperature. Thus, we are able to estimate the transition tem-

perature and the critical exponents from the susceptibility. It
wheree[=(T—T.)/T.],h,L,t are the relative temperature, is also noticed that the NER of fluctuation does not require
the symmetry breaking field, the system size, and time, reus to start with a symmetry-broken ordered state. The quan-
spectively. v and B8 denote static exponents, whileis a ity of fluctuation always takes a definite value and diverges
dynamic exponent, and is a dimension of spac8.The atT, even though the symmetry is not spontaneously broken.
order parameter is given by a derivative of the free energyrherefore, we can start from a paramagnetic state or any
with the field state in this scheme. This is especially useful when an or-
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dered state is not known yet, or it is difficult to realize. The
layer magnetization defined by E@) is equivalent to the
second derivative with respect to a local field along a single
chain in the paramagnetic phase. When the simulation starts
from the antiphase, the first derivative term remains finite in
the NER process even though the temperature is in the para- %%
magnetic phase. Therefore, the layer magnetization is not N=799x800 e
é
\

m;, (1)

[e]
regarded as the susceptibility. The NER of the layer magne- o N=1599x800
tization is within a scheme of the NER of fluctuation, only o N=3199x800
A
®

when the simulation is started from the paramagnetic state. N=6399x800
N=12799x800

D. Finite-time scaling (Refs. 30,3} N=25599x800

2| .
In case when the NER function does not begin to decay 10102 3 10*

. . . . . . . . 10
algebraically within a reasonable time, it is difficult or al- tMCS]
most impossible to estimate the _transmon t_emp_erature di- FIG. 1. The finite-size effect of the layer magnetization kor
rectly by the Iopal proneht. E"e”.”? Sugh a S'tufatlon’ we "’.‘re= 0.8 atT=1.4. Length along an axial direction is fixed to 800,
ablg to, detefm'”e_ it by usmg the f'n'teTt'_me §callng ‘T’malys'swhile that along a chain direction is varied from 799 to 25 599. The
wh|c_h is a dllgact interpretation qf _the _flnlte—S|z_e scalln_g by aconverging value is roughly considered 3L, , from which we
relation¢~ 7. We present the finite-time scaling relation as gerived the correlation length along the ferromagnetic chain direc-
follows: tion as¢&,~500.

m(e,t) =t~ *m[t/r(s)], ©) .
to a smooth curve as we changgandzv by using Eq.(10)

where\ = B/zv, and 7(¢) denotes a relaxation time at the for the second-order transition. In the KT-transition case, we
relative temperature. Since the relaxation time diverges yse Eq.(11) instead. The temperature at which the least-
algebraically in the case of the second-order phase transéguare fitting error becomes minimum is the most probable
t?ons, the relation_ betwee_n the relaxation time and the relaagtimate forT.. The phase transition between the paramag-
tive temperature is described by netic phase and the IC phase is the KT transition and that
He)=As 2. (10) between the IC phase and the antiphase is the second-order
transition in the two-dimensional ANNNI model. Therefore,
On the other hand, in the case of the KT transifiit is  we use Eq(11) for the upper transition temperature, and Eq.
considered that the relaxation time diverges exponentially10) for the lower one.
which we assume that

7(e)=Aexp(B/ ). 1D IIl. SIMULATION AND RESULTS
Now, we describe how we actually estimate the transition A. NER from the antiphase state
temperature by using Eq€)—(11). We use only data which
is clearly in the paramagnetic pha$e-T.. First, we plot We examine the phase transition temperaturexfer0.6

m(t)t* at various temperature agairét-(¢) by using Eq. and 0.8. The temperature is measured in a unil;ofHere,
(9) to determinex and 7(e) so that all data points fall on a the NER of two quantities are presented by the simulation
single curve. Next, we plot(e) againste, and fit the points  started from the antiphase state.

TABLE |. Comparison of the present estimateTof; and T, for k=0.6 and«x= 0.8 with the previous

ones.

k=0.6 xk=0.8
Present results/References Te1 Teo Te1 Teo
NER fromT=0 (scaling 0.89(2) 0.89(2) 1.31(2) 1.32(2)
NER fromT=« (local exponent 0.90(2) 1.325(25)
NER fromT=<« (scaling 0.890(15) 1.300(13)
Ref. 13 ~1.20 ~0.91 ~1.45 ~1.30
Ref. 19 ~1.40 ~1.00 ~1.70 ~1.50
Ref. 14 ~1.10 ~1.50
Ref. 15 ~1.35 ~1.05 ~1.60
Ref. 16 ~1.40 ~1.05 ~1.65 ~1.35
Ref. 17 ~1.64 0.91(1) ~1.95
Ref. 20 1.16(4) ~0.91 ~1.60 ~1.35
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FIG. 2. The NER of the antiphase magnetizatiop,(t) for «
=0.6. The system size id=6399% 6400. The antiphase magneti-
zation clearly decays exponentially B 0.98.

T<2>(8)

First, we observe the NER of the layer magnetization to
check the relation between the finite sizeand the correla- 0
tion length&, along the chain direction. We change the size 10
along the chain direction frorh, =799 toL,= 25599, while
the length along the axial direction is fixed ltg=800. Fig- 107"
ure 1 shows the NER of the layer magnetization, &g for
k=0.8 and T=1.40. This temperature belongs to the IC  FIG. 3. (& The finite-time scaling of the antiphase magnetiza-
phase(KT phasg in previous investigations as summarized tion for K= 0.6, wherex=0.015. We use the data at five tempera-
in Table I. When the system size is smal £ 799x 800), tures_ ranglngT=0.98—1.06.(b) The least-square fitt?ng of the re-
the relaxation roughly looks like a power-law decay, which!@xation time 7;(e), by Eq. (10), where we obtairT¢,=0.89
misled us to the KT phase. As the system becomes larger, the0-02, Zv=4.07.
relaxation exhibits an exponential decay confirming us that
the system is in the paramagnetic phase. Note that the coa¥e listed in Table Il. The exponertthat gives best scaling
vergence to a finite value is due to the finite-size effect. Byis A=0.015. Excellence of the scaling shown in Fig. 3 may
its definition, the equilibrium value of the layer magnetiza-yield the validity of the finite-time scaling hypothesis.
tion is roughly estimated &5, /L, in the paramagnetic phase.  Next, we estimatd ., by Eq.(10) because it is predicted
As shown in Fig. 1, the convergence value takes a half valughat the phase transition between the antiphase and the IC
if the system size is doubled. Thus, we can estimate thghase is the second-order. We pig}(e) againste[ = (T
correlation lengthé,~500 in this system. From this figure, —T,)/T¢,] as changingl., and find aT, that gives the
we can also understand the relation between the finite sizeest linearity in the log-log scale as shown in Figh)3We
effect and the time effect; the effective time that the systenpbtainT.,=0.89+0.02 andzr=4.07. The error£0.02 is a
behaves as the infinite size. For example, it is about 15 000ange of temperature in which the data points clearly fall on
MCS in the system with_,=6399. After this time scale, the fitting line. The exponent has a range within which we

finite size effect appears in dynamics. In this subsection, wean perform a good scaling as=0.000—-0.030. The transi-
use the lattice oN=6399x 6400 and determine the observ- tion temperature takes the same value irrespective of the
ing time at each temperature until which the relaxation curvechoice of\. Evidence such as the algebraic divergence of
do not begin to bend to an equilibrium value. We averager»,(e) and excellence of the finite-time scaling support that
24~ 32 independent MC runs at each temperature. this transition is the second order. This is a clear distinction
Figure 2 is a raw data of the NER of the antiphase magfrom the three dimensional model, where the lower transition
netization, Eq.(2), for k=0.6. At all the temperatures, the is considered as the first order.
antiphase magnetization clearly decays exponentially, which We estimate the upper transition temperatiligg using
guarantees that the transition temperature must be lower thdhe layer magnetization, E43), in the same way as men-
0.98. As mentioned in Sec. Il A, the antiphase magnetizatiotioned above. Figure 4 shows raw data of the NER of the
is not a relevant order parameter, and so it decays exponelayer magnetizatiomn(t), for k=0.6. Here, the layer mag-
tially as soon as domain walls penetrate into the systenmetization clearly decays exponentially, and thus The
Therefore, we estimate the transition temperature by usingust be less than 0.98. The finite-time scaling is shown in
the finite-time scaling. At first, we determine the exponent,Fig. 5@). The obtained relaxation time(¢) is also pre-
\, and the relaxation timer,(¢), at each temperature so sented in Table . Since it is predicted that the phase transi-
that the scaled datm@)(t)t”, fall on a single scaling func- tion between the IC phase and the paramagnetic phase is the
tion when plotted againgt 7, (¢) [Fig. 3@]. Here, the re- KT transition, we fittedr(¢) by Eg. (11) in Fig. 5b), by
laxation times are normalized by the valueTof1.06, and which we obtainT.;=0.89£0.02 andB=23.44. If we as-
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TABLE Il. The relation between the temperaturésand the relaxation time,y(e) of the antiphase

magnetizationm,(t) and the relaxation time; (&) of the layer magnetizatiom,(t) for x=0.6 and 0.8. The
relaxation time is scaled so that a value at the highest temperature becomes unity.

xk=0.6 x=0.8
T T<2>(8) 7(e) 7(e) T T(2>(8) 7i(e) 7(e)
(fromT=0) (fromT=0) (from T=wx) (fromT=0) (fromT=0) (from T=)
1.06 1.000 1.000 1.50 1.000
1.04 1.680 1.656 1.48 1.000 1.000
1.02 2.950 3.025 1.46 1.713 1.715
1.00 5.889 6.145 1.000 1.44 3.033 3.140
0.98 13.301 16.657 1.42 6.264 6.889
0.97 3.202 1.40 14.822 20.190 17.503
0.95 11.103 1.35 752.314
0.92 500.115

sumed that the phase transition is the second-order transitiolC phase may vanish in the thermodynamic limit. Because
and performed the fitting by Eq10), the estimated ., be-

this is a rather daring conclusion, we must confirm it from
comes far from a physically meaningful value. In conse-another point of view. Actually, it might be dangerous to

qguence, we confirm that the upper phase transition is of thestimate the transition temperature between the paramagnetic
KT type. Actually, Sato and Matsub&faperformed the phase and the IC phase started from the ground state.
finite-size scaling of the layer magnetization supposing

4 o5 B. NER from the paramagnetic state
mXL7=Y[L™ “expBe "], (12 . _ )

We start the simulation from the paramagnetic state and
which gaveT.;=1.16 andy=0.25 forx=0.6. This scaling observe the NER of fluctuation; the layer magnetization.
form is equivalent to the finite-time scaling, Eq®) and

Since the observable is a quantity of fluctuation, it is neces-
(11), if we admitL=t? and\ = 5/z. The difference of the sary to take much more sample averages compared to the
obtained transition temperatures can be attributed to the dif-

ference of the system sizes. We estimate0.015 by mini- (a)
mizing the normalized residual, however, this value does not
correspond to (2 7)/z. Because we start simulations from

10° 1
the antiphase state, the layer magnetization contains contri- .
butions from the antiphase magnetizatiom,,))?. =
We have obtained th&;, and theT;; for k=0.8 in the € 107"
same way. In the finite-time scaling plot, we used the data at
five temperature rangin@=1.40~1.48, and obtained ., x=0.6
=1.32+0.02 andT ¢, =1.31+0.02. NN=8399x6400
The phase transition temperaturgs; and T.,, coincide 10725 —
within limits of error both fork=0.6 and 0.8. This means the 10 vt © 10
1
®) 1) Aexp(BE%)
EWR W’ 10’
$10% % _
1=0.6 SL % e g
2 o1k N=6399x6400 ¢ 4 g ®
= S
E o T=008le 4
o T=1.00 a
o T-102] % 4 i 107 Te1 =0.89.
s T=104 | J B=3.44
o T=1.06 Y e S
10_2 2 I 3 I 4 ¢
10 10 1
{{MCS]

FIG. 5. (a) The finite-time scaling of the layer magnetization for
x=0.6, wherex=0.015. The data of five temperatures ranging
=0.98-1.06 are plotted togethéb) The least-square fitting of the

relaxation timer(g), by Eqg. (11), where we obtainT ,=0.89
+0.02, B=3.44.

FIG. 4. The NER of the layer magnetizatiom(t), for x=0.6.

The size of system itN=6399x6400. The layer magnetization
clearly decays exponentially at=0.98.
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10°

N=1599x1600
N=1999x2000

N=1199x1200

1072
10°

10° MCS] 10* 10°

FIG. 6. Size dependence of the NER of layer magnetization
m;(t) at T=0.92 and«=0.6. Three curves dil=1999x 2000, N
=1599x 1600, andN=1199x1200 fall on the same line until
25000 MCS. Then, the curve di=1199x 1200 deviates down
from the other two curves, which remain consistent until 100 000
MCS. We discard the data dd=1199x 1200 after 25000 MCS,
though we employ the data 6f=1599x 1600 until 100 000 MCS.

NER of antiphase magnetization. Therefore, the system size
is restricted toN=1999x 2000 at most. The NER function
of fluctuation diverges algebraically @at=T., diverges ex-

ponentially atT<T_; and remains finite alT>T.. We find

the phase transition temperature from these differences. It is
noticed that the NER function finally converges to a finite Three curves fall on the same line until 25000 MCS. After
value because the system is finite. Therefore, we must bis crossover time, however, the curve /¥ 1199x 1200
aware of the range of time not to observe the finite-size efbends down from the other two curves, probably because the
fect. This is a time scale that the correlation length reachegorrelation length reaches 1200 at this temperature. So, we
the finite system size. We compare the NER functions of two
different sizes (19982000, 159% 1600/159% 1600, 999

X 1000/159% 1600, 79% 800, etc) for every data point,
and estimate this crossover time until which two curves fall
on the same line and the finite-size effect does not appear. An
example of this comparison is shown in Fig. 6. The NER
functions of the layer magnetization from the paramagnetic
phasem(t) are plotted for three sizeld=1999x 2000, N
=1599x< 1600, and\N=1199x 1200 atT=0.92 andx=0.6.

TABLE Ill. The crossover MCS at each temperature for
=0.6 and 0.8. This is a MC step until which the NER function falls
on the same line as that of a larger system.

PHYSICAL REVIEW B 65 024402

@ 108

T=0.88
T=0.90
T=0.92
T=0.95
T=0.97
T=1.00

x=0.8

T=

1.30

T=1.33
T=1.35
T=1.40

T=

1.50

o
ocHepono

0
tMCS]

10°

FIG. 7. The NER of layer magnetizatian(t), for (a) k=0.6
and(b) k=0.8 started from the paramagnetic state.

Local exponent

—_

1=
[
c
(o]
o
x
2

g —— T-1.30

= 0.2 —=— T=1.33

j —— T=1.35

. —— T=1.40

; —e— T=1.50

% 0.001 0.002

11

FIG. 8. The local exponent of the layer magnetizatit) for

(8x=0.6 and(b)x=0.8 started from the paramagnetic state. In

T LyXLy Crossover MCS
k=0.6 0.88 99% 1000 ~8000
0.90 999 1000 ~10000
0.92 159% 1600 ~100 000
0.95 999 1000 ~10000
0.97 799 800 ~8000
1.00 9991000 ~100 000
k=0.8 1.30 79% 800 ~5000
1.33 9991000 ~10000
1.35 119% 1200 ~100 000
1.40 599K 600 ~8000
1.50 599 600 ~100 000

both systems, local exponents converge\te(2— 7)/z=0.49 in
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(@) T T @1 c-06
< 10%
£ O
& 10'F
T2092-1.00 10% T
1073 A=0.49 1
(o) [T
T &)
£ e
=
=3
1077 «=0.8
T=1.35~1.50
A=0.49
10°  10° 10° 10
4, (8) FIG. 10. The least-square fitting of the relaxation timg:) by

o . o Eq. (12) for (@) k=0.6 and(b) x=0.8. The transition temperature is
FIG. 9. The finite-time scaling of the layer magnetizatioy{t) estimated to give the best fitting d8) T.;=0.89 and(b) T
started from the paramagnetic state. The data of four different tem- 1.30 ¢ ¢

peratures ranging =0.92-1.00 are plotted together f@ «=0.6,
while those of different three temperatures ranging 1.35—-1.50
are plotted for(b) k=0.8 transition temperatures are again consistent with the values

, B estimated from the local exponents of the NER from the
have to discard the data df=1199x<1200 after 25000 aramagnetic state, and those by the scaling from the ground
MCS. Comparing two curves oN=1999<2000 andN state.
=1599x 1600, we can use the data f=1599x 1600 until

Therefore, we are able to conclude thgt and T, coin-
at least 18 MCS. Table Il shows the crossover MCS at eachgige with each other within limits of error in both cases of

temperature foi=0.6 and 0.8. Thus, we use a system of a,_0 g and 0.8. The phase transition temperature between the

proper size for a proper observing time at each temperatur%aramagnetic phase and the IC phasg& is=0.895+0.025
We take averages over 1000—7000 independent MC runs. g that between the antiphase and the IC phasg.s

The NER of the layer magnetizatiomy(t), from the  _5gg+002 for k=06. and T.,=1.32+0.03 and T,
paramagnetic state are shown in Fig. 7@r«x=0.6 and(b)  —1 35+0.02 for x=0.8. Since these temperatures are very

«x=0.8. Figure 8 shows the corresponding local exponents;|ose to each other, it is suggested that the IC phase does not
In Fig. 8(a), the exponent decreases or0.92 and diverges  gyist or it is very narrow even if it exists. We need to pay

for T<0.88. AtT=0.90, it converges to a finite value. In attention to a fact that Monte Carlo simulation is not able to
consequence, we predict that the phase transition tempergycude a very tiny temperature region.

ture between the paramagnetic phase and the IC phase is
T.1=0.90£0.02. For x=0.8, we obtainedT.;=1.325
+0.025 as shown in Fig.(B).

Furthermore, we also analyze the upper transition tem-
peraturel; using the finite-time scaling as shown in Figs. 9 It has been considered that the successive phase transi-
and 10. We show the scaling in Fig. 9 f@ «=0.6 and(b) tions with a finite IC phase take place far>0.5 in two-
x=0.8. Since the layer magnetization diverges algebraicallglimensional ANNNI model. In this paper, we estimated the
ast®=7/Z at the transition temperature, we plag(t)t=* phase transition temperatures by applying the NER method,
againstt/7;(g). All the curves excellently fall on the same and found that th& ., is equal toT, within limits of errors.
line, by which we obtain the relaxation time as shown in Fig.This is a very exotic phase transition, which is the KT type if
10. Here, we adopt=(2— 7)/z=0.49 that is a value which approached from the high-temperature side, and is the
the local exponent converges (&ee Fig. 8 If we admit the  second-order if approached from the low-temperature side.
KT criterion »=1/4, the dynamic exponent is estimated asTherefore, we speculate successive phase transitions with an
z~3.6. Next, we fit the relaxation time using E41). Figure infinitesimallC phase may occur in this system.

10 shows the best least-square fitting far x=0.6 and(b) In the studies of the C-IC transitions in two-dimensional
k=0.8. We obtain the transition temperatufg,;=0.890 systems, it has been investigated the systems with an
+0.015 fork=0.6 andT.;=1.300+ 0.013 fork=0.8. These asymmetric parameter which explicitly favors the IC

IV. CONCLUSIONS
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structure®®*~°For a finite value of the parameter, there existscomes critical. Above this temperature, each ferromagnetic
the finite IC phase between the commensurate phase and theain exhibits paramagnetism, even though the correlation
paramagnetic phase. In the limit of vanishing the parametetength is very large near th&;,. The present results only
the IC phase shrinks to the infinitesimal. The frustration pa€xclude the finite IC phase of this type. In this study, it is
rameterx of the ANNNI model has been considered as theclarified that the domain walls penetrate into the system
asymmetric parameter based on the approximate tiedfy —along the chain direction at the lower transition temperature
valid only at low temperatures, and the small-scaled Montd c2- The spin configuration along the chain direction changes
Carlo simulationg®-2°However, what is actually favored by drast|ca'lly from the ferromagnetic ordered state to the para-
frustration is the creation of the domain wall. Between theMagnetic disordered state at the same temperature within
creation of the domain wall and the realization of the IC"mitS of_error. We_ can neglect the IC phase wherg_ the ferro-
structure, there are many conditions to satisfy, which hav agnetic correlation has been expected to be critical. There-

been supposed in the free-fermion approximatib@ne of ore, the domain walls mostly run straight along the chain

these is the spin correlation along the ferromagnetic chain. |Hirectiqn. We cc;n\sfiltlje_r this isa\{vghy the rr:aive free-fermion
the two-dimensional ANNNI model, the nonfrustrated direc-aPpProximation ot Villain and Bak gives the best quantita-

tion is only one dimension, and thus the spin correlatior!V® agreements with our estimate ®f,, and is the best

along the ferromagnetic chain can be easily destroyedPProximation. The analyses for other regionscodind de-
Therefore, we question regarding the frustration parameter 4§'mination of the critical exponents will be a task in the
the asymmetric parameter. If we consider that these two arg/tureé. The NER of the Binder parameter, the specific heat
not related with each other and the asymmetric parameter &1d the spin correlation with high accuracy is necesSary.
zero in the present model, the width of the IC phase becomes AS for the dielectrics, Pb(Zr,Tix)Os, the phase
infinitesimal. This is what we observed in this paper. diagrant in the low concentration of Ti is very similar to that

Here, we show the comparison of the obtained transitiorPf the ANNNI model if we interpret the paraelectric, the
temperatures with the previous ones in Table I. It is recog1‘erroelectrlc and the antiferroelectric phases as the paramag-

nized that ouf; is lower than any other ones, though, is netic, the ferromagnetic and the antiphase phases. There are

consistent with each other. This can be explained by the difWo controversial explanations for the existence of the in-
ference of the finite-size effect. The phase transition betweef0MMmensurate phase observed in the experiment. Ricote
the IC phase and the paramagnetic phase is confirmed to [ &l concluded that the appearance of the IC phase is due
the KT transition while the one between the antiphase andP the surface effect by two experiments using the powder
the IC phase is the second order. The correlation length g€utron diffraction and a transmission electron microscope.
verges algebraically against the temperature in the latteON the other hand, Viehlaret al” considered it a bulk effect
while it diverges exponentially in the former case. If a sys-DY directly observing the high resolution image of a trans-
tem size is small compared with the correlation length andniSsion electron microscope. In addition Watanaiel.

the accuracy of the numerical data is not enough, even th@lSO described that it is not because of the surface effect by
finite-size scaling analysis may mislead to a wrohg, examining the stability qf the IC phase in the bulk. If th|.s
where the finite but very large correlation length reaches th§omPound can be explained by the ANNNI model, the exis-
finite system size. Therefore, it is very likely that the KT tence of the IC phz_ise is only possible in three d|men5|0ns_.
transition temperature obtained previously is overestimated! herefore, we predict that the appearance of the IC phase in
We may rather easily obtain the phase transition temperatufe®(Zf1-xTix) Os is the effect of a bulk.

accurately in the second-order transition, because the diver- N this work, we have presented that the NER analysis is
gence is algebraically. In the two-dimensional ANNNI VETY effecnvg for systems with the_ KT transition ar_1d/or with
model, the correlation length along the chain directiod,is slow dynamics which has been d|ff|pult _by numencal .meth-
~500 atT=1.40 andk=0.8 which is the temperature a little ods. Furthermore, a phase transition is studied using the
higher than the KT transition temperature and the correlatiofiite-time scaling if we know a proper quantity that can
length is far larger than the system sizes ever simulated pré2fOPe characteristic time;, or a characteristic length even
viously (N=64x 128) % We actually used data with system though it is not a relevant order parameter. It is considered
sizesN =599x 600~ 6399x 6400 in this paper, and checked that images of the phase transition which has been believed
the finite-size effect and the range of observing time in whichfS standard may change in some systems.
the system behaves as an infinite system at each temperature.
Thus, our data can be considered as closed to the thermody-
namic value. This is a reason why we could detect the KT The authors would like to thank Professor Fumitaka Mat-
transition accurately. subara, Professor Kazuo Sasaki, Professor Nobuyasu Ito, and
In this paper, we have supposed that the ferromagnetiDr. Yukiyasu Ozeki for fruitful discussions and comments.
correlation along the chain direction remains finite or at leasThey also thank Professor Nobuyasu Ito and Professor Yasu-
it is critical in the IC phase. Thus, tHE.; we have obtained masa Kanada for providing us with a fast random number
is the temperature at which the ferromagnetic correlation begeneratoRNDTIK.
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