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Infinitesimal incommensurate stripe phase in an axial next-nearest-neighbor Ising model
in two dimensions

Takashi Shirahata and Tota Nakamura
Department of Applied Physics, Tohoku University, Sendai, Miyagi 980-8579, Japan

~Received 20 February 2001; revised manuscript received 2 August 2001; published 6 December 2001!

An axial next-nearest-neighbor Ising model is studied by using the nonequilibrium relaxation method. We
find that the incommensurate stripe phase between the ordered phase and the paramagnetic phase is negligibly
narrow or may vanish in the thermodynamic limit. The phase transition is the second-order transition if
approached from the ordered phase, and it is of the Kosterlitz-Thouless type if approached from the paramag-
netic phase. Both transition temperatures coincide with each other within the numerical errors. The incommen-
surate phase which has been observed previously is a paramagnetic phase with a very long correlation length
~typically j>500!. We could resolve this phase by treating very large systems~;640036400!, which is first
made possible by employing the present method.

DOI: 10.1103/PhysRevB.65.024402 PACS number~s!: 75.10.Hk, 64.70.Rh, 75.40.Mg
n
th

m

O
e
tu
es
es
l
i

he
p
m

he

et
wo
ife
pr

w
on

u
e

th
e
re
tio

d a
the
the

ns
u-
e and
tions

pins

n
nal

in
tion

de-
that
al
of
e
to

me

w-
cted

en

ffer-
es,
ns.
an
e, it
sible
ttle
ard
ated
ys-
is
I. INTRODUCTION

Of late, incommensurate~IC! stripe structures have bee
interesting subjects in various physical phenomena. As
typical examples, we may list an alloy Er90Y102xLax which
contains heavy rare earth metals Er, Tm,1,2 the incommensu-
rate phase of dielectric material such as Pb(Zr12xTix)O3 and
NaNO2,3–7 and the stripe structure in CuO2 planes of oxide
superconductors.8 In Er90Y102xLax , the longitudinal incom-
mensurate oscillatory phase appears between the para
netic phase and the ordered phase. The aligned holes~do-
main walls! separate antiferromagnetic stripes in Cu2

planes of oxide superconductors, then the spin and charg
modulated. In such systems, cooperative effects of fluc
tion and frustration are considered to play important rol
Thus, we sometimes treat them with the axial next-near
neighbor Ising~ANNNI ! model as the simplified theoretica
model. For instance, when a uniaxial anisotropy is strong
the dielectric material, the Hamiltonian is equivalent to t
ANNNI model if we only consider the dipole interactions u
to the next-nearest-neighbor distance. The phase diagra
Pb(Zr12xTix)O3 obtained by experiments3 agrees with that
of the three-dimensional ANNNI model obtained by t
mean-field approximation.9 In copper oxide materials
Ca8La6Cu24O41 and Ca2Y2Cu5O10, the Cu-O-Cu chains
with ferromagnetic nearest-neighbor and antiferromagn
next-nearest-neighbor interactions are aligned on t
dimensional planes whose interchain interactions are ant
romagnetic. Furthermore, the spins on this plane are
dicted to have a strong Ising anisotropy.10,11 Consequently,
we may treat these copper oxide planes as the t
dimensional ANNNI model, between which the conducti
electron planes exist.

In the ANNNI model, there are exchange interactions
to the next-nearest-neighbor pairs along one axis, while th
are only the nearest-neighbor interactions along the o
axes. Most commonly, we take a convention that the near
neighbor interactions are ferromagnetic and the next-nea
neighbor ones are antiferromagnetic, which cause frustra
When the next-nearest-neighbor interactions~frustration! are
0163-1829/2001/65~2!/024402~10!/$20.00 65 0244
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weak, a ferromagnetic state is the ground state, an
paramagnetic-ferromagnetic phase transition occurs. On
other hand, when frustration is strong, the ground state is
antiphasestate~abbreviated bŷ2&), which is a commensu-
rate~C! stripe structure of two up spins and two down spi
such as↑↑↓↓↑↑. It is widely accepted that the incommens
rate stripe phase exists between the paramagnetic phas
the antiphase, and that the successive phase transi
~paramagnetic-IC-antiphase! take place; there is a ‘‘finite’’
incommensurate phase where the up spins and down s
are aligned with a period longer than two.

Although only a topology of the phase diagram is know
by the mean-field approximation in the three-dimensio
model,9 estimates for the phase transition temperatures
two dimensions have been done by several approxima
theories12–17 and numerical simulations.18–20 However, val-
ues of the phase transition temperatures scatter much
pending on the methods employed. One of the reasons
make the estimate difficult is a lack of a reliable numeric
simulation. Because of frustration, the correlation time
Monte Carlo~MC! simulations becomes very long near th
critical point in large systems. Thus, we are hardly able
reach thermal equilibrium states within reasonable ti
steps. A powerful method called a cluster heat bath~CHB!
method20 was developed to reduce the correlation time, ho
ever, the system size accessible by this method is restri
up to about 643128 lattice sites.

Recently, a new method using a MC simulation has be
developed: the nonequilibrium relaxation~NER! method.21,22

We are able to understand phase transitions from the di
ences of behaviors in nonequilibrium relaxation process
which have been discarded in conventional MC simulatio
Since we do not wait until the equilibrium is realized, we c
use the CPU time to enlarge the system sizes. Therefor
makes possible to treat large systems that cannot be pos
by other methods. Accordingly, there is expected to be li
finite-size effect in the obtained data, and thus we can reg
them as those of the infinite systems. For the reasons st
above, the NER method can be effective especially in s
tems with a slow dynamics which a very long equilibration
necessary.23–31
©2001 The American Physical Society02-1
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TAKASHI SHIRAHATA AND TOTA NAKAMURA PHYSICAL REVIEW B 65 024402
In this paper, we study the two-dimensional ANNN
model by the NER method in order to determine the succ
sive phase transition temperatures. However, the obta
results suggest that the IC phase may disappear within li
of numerical errors. Moreover, we found a very exotic pha
transition, which seems to be the Kosterlitz-Thouless~KT!
transition32 if it is observed from the high-temperature sid
and seems to be the second-order transition if observed
the low-temperature side. This evidence suggests that
frustration parameter does not serve as an asymm
parameter33–35 which explicitly favors the IC structure.

We describe the model Hamiltonian and the NER meth
in Sec. II, and present simulational results in Sec. III. Sect
IV is devoted to conclusions.

II. MODEL AND METHOD

A. Two-dimensional ANNNI model

The two-dimensional ANNNI model is described by th
following Hamiltonian:

H52(
x,y

~J0Sx,ySx11,y1J1Sx,ySx,y111J2Sx,ySx,y12!,

~1!

whereJ0(.0) is the nearest-neighbor interaction along t
chain direction, which is the direction that has no frustrati
J1(.0) and J2(,0) are respectively the nearest-neighb
and the next-nearest-neighbor interactions along a direc
perpendicular to the chain direction~axial direction that has
frustration!, andSx,y561. In this paper, we fixJ05J1 for
simplicity, and impose the open boundary conditions alo
the axial ~y! direction, while we use the periodic bounda
conditions along the chain~x! direction. We define a ratio
between the nearest and the next-nearest-neighbor int
tions along the axial direction ask(52J2 /J1). Our interest
is restricted to the regionk.1/2, where the successive pha
transitions (antiphase→IC→paramagnetic) has been consi
ered to occur.

The fermion approximations assumed that the system
straight domain walls along the chain direction at the int
mediate temperatures.13 That is, domains whose periods a
longer than two appear among the commensurate antip
domains. In this case, the spin structure becomes incomm
surate along the axial direction, while the spins along
chain direction order ferromagnetically. On the other hand
was postulated that domain walls run along the axial dir
tion in the interface free energy method of Mu¨ller-Hartmann
and Zittartz~MHZ!.12,14 Namely, the correlation of spins or
dered ferromagnetically along the chain direction is d
stroyed by these domain walls.

Sato and Matsubara20 discussed using the CHB simulatio
that the transition temperature (Tc2) between the antiphas
and the IC phase agrees with that of the free-fermion
proximation while the transition temperature (Tc1) between
the IC phase and the paramagnetic phase is close toTc2
obtained by MHZ. Thus, they considered that the dom
walls penetrate into the system along the chain direction
Tc2 as the temperature increases from the ground state.
02440
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ferromagnetic correlations along the chain direction rem
until they are destroyed atTc1 and the paramagnetic state
realized. This idea means that the IC phase exists betw
the penetration of incommensurate domains in the axial
rection and the disappearance of the ferromagnetic chain
relation. Therefore, the spin structure along the axial dir
tion is incommensurate, while it is ferromagnetic along t
chain direction in the IC phase. It has been considered
the phase transition between the paramagnetic phase an
IC phase is the KT transition and that between the IC ph
and the antiphase is the second-order transition.

We consider following two quantities to clarify the pha
transitions. One is the antiphase magnetization defined b

m^2&~ t !5
1

N (
x,y

Sx,y~^2&!Sx,y~ t !, ~2!

whereN is the total number of spins in the system,Sx,y(t)
denotes the spin value of the site (x,y) at time t, and
Sx,y(^2&) represents the antiphase ordered state. The
tiphase magnetization takes a finite value in the antipha
but vanishes in the IC phase and the paramagnetic ph
since the domain walls destroy the antiphase state at
lower transition temperature,Tc2. Therefore, this paramete
is employed to estimateTc2.

Here, we should note that the antiphase magnetizatio
not a relevant order parameter that decays algebraicall
the transition temperature. Since the elementary excitatio
a domain wall which readily percolates the chain directio
the antiphase magnetization decays exponentially once
domain wall penetrate into the system. Usually, the den
of the domain walls has been used as an order param
This parameter is considered to diverge algebraically at
transition temperature as (T2Tc2)b, which is equivalent to
that the correlation length diverges algebraically asj;(T
2Tc2)2n. In this point, the phase transition between the
phase and the antiphase is the second-order transition. In
Monte Carlo simulations, the correlation length is related
the characteristic time ast;jz, wherez is called the dy-
namic exponent. Therefore, the characteristic time also
verges atTc2 ast;(T2Tc2)2zn. We can extract it from the
relaxation of the antiphase magnetization: the time that
antiphase magnetization begins to decay exponentially is
characteristic time that the domain wall penetrates into
system. We execute the finite-time scaling to obtain the ch
acteristic time at each temperature and estimateTc2 as its
diverging temperature. A concrete procedure of the fin
time scaling is explained in Sec. II D. The antiphase mag
tization is an extensive variable so that it shows better ac
racy as the system size is enlarged because of the
averaging. Thus, we use the antiphase magnetization to
mate the lower transition temperatureTc2.

The other quantity is the layer magnetization defined a

ml~ t !5
1

Ly
(
y51

Ly S 1

Lx
(
x51

Lx

Sx,y~ t !D 2

, ~3!

whereLx andLy are the length of the system along the cha
and the axial direction, respectively. The layer magnetizat
2-2
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INFINITESIMAL INCOMMENSURATE STRIPE PHASE . . . PHYSICAL REVIEW B 65 024402
reflects the spin order along the chain direction. In the
phase, the incommensuration is realized in the axial dir
tion. The spin arrangement along the chain direction sho
order ferromagnetically or at least be critical. The free e
ergy of this state, which is of the order of2L111/n, is always
lower than that of the state with the spins disordered o
along the chain direction, which is of the order of2L, if n is
positive. Accordingly, the layer magnetization vanishes
ponentially in the paramagnetic phase, but takes a fi
value or behaves in a power law in the IC phase. Theref
this order parameter is used to estimate the upper trans
temperatureTc1. We determine the transition temperatur
by using these two quantities in this paper.

B. Nonequilibrium relaxation „NER… method
„Refs. 21,22,30,31…

Phase transitions occur in the infinite-size limit (L→`)
and in the equilibrium limit (t→`). Because we cannot tak
both limits at the same time in the simulation, the equil
rium limit has been taken first conventionally, and then,
take the infinite-size limit by using the finite-size scalin
However, the dynamics of the simulations are very slow
the frustrated systems, which causes a very large correla
time. From a time-space relationt;jz, this means that the
correlation length is also very large. As will be mentioned
Sec. III, we estimate the correlation lengthjx;500, for
k50.8 andT51.40, which resides in the IC phase of prev
ous phase diagram. In this situation, reliability of the fini
size scaling might become doubtful. In this paper, we foll
a completely alternative approach to the thermodyna
limit, i.e., we observe the relaxation of the infinite-size sy
tem to the equilibrium state. In order to extract the equil
rium properties, the finite-time scaling analysis is utiliz
instead of the conventional finite-size scaling. This appro
is known as the nonequilibrium relaxation~NER!
method.21,22,30,31Actually, we prepare a very large lattice an
observe the relaxation of physical quantities. The simulati
are stopped before the finite-size effect appears. Accordin
we can regard the systems as the infinite systems.

Using the NER method, we can estimate the phase t
sition temperature and the critical exponents by examin
behaviors of the relaxation processes to the thermal equ
rium state~nonequilibrium relaxation processes!. The analy-
sis is based on the dynamic finite-size scaling hypothesi
the free energy that

F~«,h,L,t !5L2dF̃~«L1/n,hLd2b/n,tL2z!, ~4!

where«@[(T2Tc)/Tc#,h,L,t are the relative temperature
the symmetry breaking field, the system size, and time,
spectively.n and b denote static exponents, whilez is a
dynamic exponent, andd is a dimension of space.36 The
order parameter is given by a derivative of the free ene
with the field
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m~ t !;
]F

]h U
h50

5L2b/nF̄~«L1/n,tL2z!

5t2b/znF̂~«t1/zn!

}t2b/zn~«50,L→`!, ~5!

where we have setL;t1/z at the transition point («50) be-
cause the characteristic time scalet and the correlation
lengthj should scale asj;t1/z. Equation~5! describes that
the order parameter decays in a power law with time at
transition temperature. On the other hand, the order par
eter behaves exponentially at temperatures away from
critical point. Thus, we are able to estimateTc by this differ-
ence. Actually, we measure the order parameterm(t) at each
MC step~t! started from an ordered spin configuration a
given temperature. We repeat this MC run by changing
random number seeds, andm(t) is averaged over these in
dependent MC runs. The temperature at which them(t)
curve decays in a power law is the transition temperatur

We use the local exponent to ascertain whether the o
parameter decays in a power law or exponentially, which
defined by

l~ t !5Ud ln m~ t !

d ln t U. ~6!

When we plot the local exponent against 1/t, it diverges to
infinity for T.Tc , it converges to zero forT,Tc and to a
finite value (Þ0) atT5Tc in the limit of 1/t→0. The upper
bound ofTc is the lowest temperature thatl(t) diverges, and
the lower bound is the highest temperature thatl(t) decays
to zero. The convergent value of the local exponent aT
5Tc is the critical exponentl5b/zn from Eq. ~5!.

C. NER of fluctuation „Refs. 22,23,37,38…

Here, we describe the NER of fluctuation. The susce
bility is written by differentiating Eq.~4! with the symmetry
breaking field twice,

]2F

]h2 U
h50

}^m~ t !2&2^m~ t !&2}td/z22b/zn5tg/zn, ~7!

where we have used the scaling relations

H dn522a,

a12b1g52.
~8!

The susceptibility diverges in a power law at the transiti
temperature. Thus, we are able to estimate the transition
perature and the critical exponents from the susceptibility
is also noticed that the NER of fluctuation does not requ
us to start with a symmetry-broken ordered state. The qu
tity of fluctuation always takes a definite value and diverg
at Tc even though the symmetry is not spontaneously brok
Therefore, we can start from a paramagnetic state or
state in this scheme. This is especially useful when an
2-3
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TAKASHI SHIRAHATA AND TOTA NAKAMURA PHYSICAL REVIEW B 65 024402
dered state is not known yet, or it is difficult to realize. T
layer magnetization defined by Eq.~3! is equivalent to the
second derivative with respect to a local field along a sin
chain in the paramagnetic phase. When the simulation s
from the antiphase, the first derivative term remains finite
the NER process even though the temperature is in the p
magnetic phase. Therefore, the layer magnetization is
regarded as the susceptibility. The NER of the layer mag
tization is within a scheme of the NER of fluctuation, on
when the simulation is started from the paramagnetic sta

D. Finite-time scaling „Refs. 30,31…

In case when the NER function does not begin to de
algebraically within a reasonable time, it is difficult or a
most impossible to estimate the transition temperature
rectly by the local exponent. Even in such a situation, we
able to determine it by using the finite-time scaling analys
which is a direct interpretation of the finite-size scaling by
relationj;t1/z. We present the finite-time scaling relation
follows:

m~«,t !5t2lm̂@ t/t~«!#, ~9!

wherel5b/zn, and t(«) denotes a relaxation time at th
relative temperature«. Since the relaxation time diverge
algebraically in the case of the second-order phase tra
tions, the relation between the relaxation time and the r
tive temperature is described by

t~«!5A«2zn. ~10!

On the other hand, in the case of the KT transition,32 it is
considered that the relaxation time diverges exponentia
which we assume that

t~«!5A exp~B/A«!. ~11!

Now, we describe how we actually estimate the transit
temperature by using Eqs.~9!–~11!. We use only data which
is clearly in the paramagnetic phaseT.Tc . First, we plot
m(t)tl at various temperature againstt/t(«) by using Eq.
~9! to determinel andt(«) so that all data points fall on a
single curve. Next, we plott~«! against«, and fit the points
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to a smooth curve as we changeTc andzn by using Eq.~10!
for the second-order transition. In the KT-transition case,
use Eq.~11! instead. The temperature at which the lea
square fitting error becomes minimum is the most proba
estimate forTc . The phase transition between the param
netic phase and the IC phase is the KT transition and
between the IC phase and the antiphase is the second-
transition in the two-dimensional ANNNI model. Therefor
we use Eq.~11! for the upper transition temperature, and E
~10! for the lower one.

III. SIMULATION AND RESULTS

A. NER from the antiphase state

We examine the phase transition temperature fork50.6
and 0.8. The temperature is measured in a unit ofJ1. Here,
the NER of two quantities are presented by the simulat
started from the antiphase state.

FIG. 1. The finite-size effect of the layer magnetization fork
50.8 at T51.4. Length along an axial direction is fixed to 80
while that along a chain direction is varied from 799 to 25 599. T
converging value is roughly considered asjx /Lx , from which we
derived the correlation length along the ferromagnetic chain dir
tion asjx;500.
TABLE I. Comparison of the present estimate ofTc1 andTc2 for k50.6 andk50.8 with the previous
ones.

k50.6 k50.8
Present results/References Tc1 Tc2 Tc1 Tc2

NER from T50 ~scaling! 0.89(2) 0.89(2) 1.31(2) 1.32(2)
NER from T5` ~local exponent! 0.90(2) 1.325(25)
NER from T5` ~scaling! 0.890(15) 1.300(13)

Ref. 13 ;1.20 ;0.91 ;1.45 ;1.30
Ref. 19 ;1.40 ;1.00 ;1.70 ;1.50
Ref. 14 ;1.10 ;1.50
Ref. 15 ;1.35 ;1.05 ;1.60
Ref. 16 ;1.40 ;1.05 ;1.65 ;1.35
Ref. 17 ;1.64 0.91(1) ;1.95
Ref. 20 1.16(4) ;0.91 ;1.60 ;1.35
2-4
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INFINITESIMAL INCOMMENSURATE STRIPE PHASE . . . PHYSICAL REVIEW B 65 024402
First, we observe the NER of the layer magnetization
check the relation between the finite sizeLx and the correla-
tion lengthjx along the chain direction. We change the s
along the chain direction fromLx5799 toLx525599, while
the length along the axial direction is fixed toLy5800. Fig-
ure 1 shows the NER of the layer magnetization, Eq.~3!, for
k50.8 and T51.40. This temperature belongs to the
phase~KT phase! in previous investigations as summariz
in Table I. When the system size is small (N57993800),
the relaxation roughly looks like a power-law decay, whi
misled us to the KT phase. As the system becomes larger
relaxation exhibits an exponential decay confirming us t
the system is in the paramagnetic phase. Note that the
vergence to a finite value is due to the finite-size effect.
its definition, the equilibrium value of the layer magnetiz
tion is roughly estimated asjx /Lx in the paramagnetic phase
As shown in Fig. 1, the convergence value takes a half va
if the system size is doubled. Thus, we can estimate
correlation lengthjx;500 in this system. From this figure
we can also understand the relation between the finite
effect and the time effect; the effective time that the syst
behaves as the infinite size. For example, it is about 15
MCS in the system withLx56399. After this time scale
finite size effect appears in dynamics. In this subsection,
use the lattice ofN5639936400 and determine the obser
ing time at each temperature until which the relaxation cu
do not begin to bend to an equilibrium value. We avera
24;32 independent MC runs at each temperature.

Figure 2 is a raw data of the NER of the antiphase m
netization, Eq.~2!, for k50.6. At all the temperatures, th
antiphase magnetization clearly decays exponentially, wh
guarantees that the transition temperature must be lower
0.98. As mentioned in Sec. II A, the antiphase magnetiza
is not a relevant order parameter, and so it decays expo
tially as soon as domain walls penetrate into the syst
Therefore, we estimate the transition temperature by us
the finite-time scaling. At first, we determine the expone
l, and the relaxation time,t^2&(«), at each temperature s
that the scaled data,m^2&(t)t

l, fall on a single scaling func-
tion when plotted againstt/t^2&(«) @Fig. 3~a!#. Here, the re-
laxation times are normalized by the value ofT51.06, and

FIG. 2. The NER of the antiphase magnetizationm^2&(t) for k
50.6. The system size isN5639936400. The antiphase magnet
zation clearly decays exponentially atT>0.98.
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are listed in Table II. The exponentl that gives best scaling
is l50.015. Excellence of the scaling shown in Fig. 3 m
yield the validity of the finite-time scaling hypothesis.

Next, we estimateTc2 by Eq. ~10! because it is predicted
that the phase transition between the antiphase and th
phase is the second-order. We plott^2&(«) against«@5(T
2Tc2)/Tc2# as changingTc2 and find aTc2 that gives the
best linearity in the log-log scale as shown in Fig. 3~b!. We
obtainTc250.8960.02 andzn54.07. The error60.02 is a
range of temperature in which the data points clearly fall
the fitting line. The exponent has a range within which w
can perform a good scaling asl50.000–0.030. The transi
tion temperature takes the same value irrespective of
choice of l. Evidence such as the algebraic divergence
t^2&(«) and excellence of the finite-time scaling support th
this transition is the second order. This is a clear distinct
from the three dimensional model, where the lower transit
is considered as the first order.

We estimate the upper transition temperatureTc1 using
the layer magnetization, Eq.~3!, in the same way as men
tioned above. Figure 4 shows raw data of the NER of
layer magnetizationml(t), for k50.6. Here, the layer mag
netization clearly decays exponentially, and thus theTc2
must be less than 0.98. The finite-time scaling is shown
Fig. 5~a!. The obtained relaxation timet l(«) is also pre-
sented in Table II. Since it is predicted that the phase tra
tion between the IC phase and the paramagnetic phase i
KT transition, we fittedt l(«) by Eq. ~11! in Fig. 5~b!, by
which we obtainTc150.8960.02 andB53.44. If we as-

FIG. 3. ~a! The finite-time scaling of the antiphase magnetiz
tion for k50.6, wherel50.015. We use the data at five temper
tures rangingT50.98–1.06.~b! The least-square fitting of the re
laxation time t^2&(«), by Eq. ~10!, where we obtainTc250.89
60.02, zn54.07.
2-5



TAKASHI SHIRAHATA AND TOTA NAKAMURA PHYSICAL REVIEW B 65 024402
TABLE II. The relation between the temperaturesT and the relaxation timet^2&(«) of the antiphase
magnetizationm^2&(t) and the relaxation timet l(«) of the layer magnetizationml(t) for k50.6 and 0.8. The
relaxation time is scaled so that a value at the highest temperature becomes unity.

k50.6 k50.8
T t^2&(«) t l(«) t l(«) T t^2&(«) t l(«) t l(«)

~from T50) ~from T50) ~from T5`) ~from T50) ~from T50) ~from T5`)

1.06 1.000 1.000 1.50 1.000
1.04 1.680 1.656 1.48 1.000 1.000
1.02 2.950 3.025 1.46 1.713 1.715
1.00 5.889 6.145 1.000 1.44 3.033 3.140
0.98 13.301 16.657 1.42 6.264 6.889
0.97 3.202 1.40 14.822 20.190 17.503
0.95 11.103 1.35 752.314
0.92 500.115
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sumed that the phase transition is the second-order trans
and performed the fitting by Eq.~10!, the estimatedTc1 be-
comes far from a physically meaningful value. In cons
quence, we confirm that the upper phase transition is of
KT type. Actually, Sato and Matsubara20 performed the
finite-size scaling of the layer magnetization supposing

ml3Lh5Y@L21exp~B«20.5!#, ~12!

which gaveTc151.16 andh50.25 fork50.6. This scaling
form is equivalent to the finite-time scaling, Eqs.~9! and
~11!, if we admit L5t1/z andl5h/z. The difference of the
obtained transition temperatures can be attributed to the
ference of the system sizes. We estimatel50.015 by mini-
mizing the normalized residual, however, this value does
correspond to (22h)/z. Because we start simulations fro
the antiphase state, the layer magnetization contains co
butions from the antiphase magnetization,^m^2&&

2.
We have obtained theTc2 and theTc1 for k50.8 in the

same way. In the finite-time scaling plot, we used the dat
five temperature rangingT51.40;1.48, and obtainedTc2
51.3260.02 andTc151.3160.02.

The phase transition temperatures,Tc1 andTc2, coincide
within limits of error both fork50.6 and 0.8. This means th

FIG. 4. The NER of the layer magnetizationml(t), for k50.6.
The size of system isN5639936400. The layer magnetizatio
clearly decays exponentially atT>0.98.
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IC phase may vanish in the thermodynamic limit. Becau
this is a rather daring conclusion, we must confirm it fro
another point of view. Actually, it might be dangerous
estimate the transition temperature between the paramag
phase and the IC phase started from the ground state.

B. NER from the paramagnetic state

We start the simulation from the paramagnetic state
observe the NER of fluctuation; the layer magnetizatio
Since the observable is a quantity of fluctuation, it is nec
sary to take much more sample averages compared to

FIG. 5. ~a! The finite-time scaling of the layer magnetization f
k50.6, wherel50.015. The data of five temperatures rangingT
50.98–1.06 are plotted together.~b! The least-square fitting of the
relaxation timet l(«), by Eq. ~11!, where we obtainTc150.89
60.02, B53.44.
2-6
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NER of antiphase magnetization. Therefore, the system
is restricted toN5199932000 at most. The NER function
of fluctuation diverges algebraically atT5Tc , diverges ex-
ponentially atT,Tc and remains finite atT.Tc . We find
the phase transition temperature from these differences.
noticed that the NER function finally converges to a fin
value because the system is finite. Therefore, we mus
aware of the range of time not to observe the finite-size
fect. This is a time scale that the correlation length reac
the finite system size. We compare the NER functions of t
different sizes (199932000, 159931600/159931600, 999
31000/159931600, 7993800, etc.! for every data point,
and estimate this crossover time until which two curves
on the same line and the finite-size effect does not appea
example of this comparison is shown in Fig. 6. The NE
functions of the layer magnetization from the paramagn
phaseml(t) are plotted for three sizesN5199932000, N
5159931600, andN5119931200 atT50.92 andk50.6.

TABLE III. The crossover MCS at each temperature fork
50.6 and 0.8. This is a MC step until which the NER function fa
on the same line as that of a larger system.

T Lx3Ly Crossover MCS

k50.6 0.88 99931000 ;8000
0.90 99931000 ;10 000
0.92 159931600 ;100 000
0.95 99931000 ;10 000
0.97 7993800 ;8000
1.00 99931000 ;100 000

k50.8 1.30 7993800 ;5000
1.33 99931000 ;10 000
1.35 119931200 ;100 000
1.40 5993600 ;8000
1.50 5993600 ;100 000

FIG. 6. Size dependence of the NER of layer magnetiza
ml(t) at T50.92 andk50.6. Three curves ofN5199932000, N
5159931600, andN5119931200 fall on the same line unti
25 000 MCS. Then, the curve ofN5119931200 deviates down
from the other two curves, which remain consistent until 100 0
MCS. We discard the data ofN5119931200 after 25 000 MCS,
though we employ the data ofN5159931600 until 100 000 MCS.
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Three curves fall on the same line until 25 000 MCS. Aft
this crossover time, however, the curve ofN5119931200
bends down from the other two curves, probably because
correlation length reaches 1200 at this temperature. So

FIG. 7. The NER of layer magnetizationml(t), for ~a! k50.6
and ~b! k50.8 started from the paramagnetic state.

FIG. 8. The local exponent of the layer magnetizationml(t) for
~a!k50.6 and ~b!k50.8 started from the paramagnetic state.
both systems, local exponents converge tol5(22h)/z50.49 in
the limit of t→` at the transition temperature.
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have to discard the data ofN5119931200 after 25 000
MCS. Comparing two curves ofN5199932000 andN
5159931600, we can use the data ofN5159931600 until
at least 105 MCS. Table III shows the crossover MCS at ea
temperature fork50.6 and 0.8. Thus, we use a system o
proper size for a proper observing time at each temperat
We take averages over 1000–7000 independent MC run

The NER of the layer magnetization,ml(t), from the
paramagnetic state are shown in Fig. 7 for~a! k50.6 and~b!
k50.8. Figure 8 shows the corresponding local expone
In Fig. 8~a!, the exponent decreases forT>0.92 and diverges
for T<0.88. At T50.90, it converges to a finite value. I
consequence, we predict that the phase transition temp
ture between the paramagnetic phase and the IC pha
Tc150.9060.02. For k50.8, we obtainedTc151.325
60.025 as shown in Fig. 8~b!.

Furthermore, we also analyze the upper transition te
peratureTc1 using the finite-time scaling as shown in Figs.
and 10. We show the scaling in Fig. 9 for~a! k50.6 and~b!
k50.8. Since the layer magnetization diverges algebraic
as t (22h)/z at the transition temperature, we plotml(t)t

2l

againstt/t l(«). All the curves excellently fall on the sam
line, by which we obtain the relaxation time as shown in F
10. Here, we adoptl5(22h)/z50.49 that is a value which
the local exponent converges to~see Fig. 8!. If we admit the
KT criterion h51/4, the dynamic exponent is estimated
z;3.6. Next, we fit the relaxation time using Eq.~11!. Figure
10 shows the best least-square fitting for~a! k50.6 and~b!
k50.8. We obtain the transition temperatureTc150.890
60.015 fork50.6 andTc151.30060.013 fork50.8. These

FIG. 9. The finite-time scaling of the layer magnetizationml(t)
started from the paramagnetic state. The data of four different t
peratures rangingT50.92–1.00 are plotted together for~a! k50.6,
while those of different three temperatures rangingT51.35–1.50
are plotted for~b! k50.8
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transition temperatures are again consistent with the va
estimated from the local exponents of the NER from t
paramagnetic state, and those by the scaling from the gro
state.

Therefore, we are able to conclude thatTc1 andTc2 coin-
cide with each other within limits of error in both cases
k50.6 and 0.8. The phase transition temperature between
paramagnetic phase and the IC phase isTc150.89560.025
and that between the antiphase and the IC phase isTc2
50.8960.02 for k50.6, and Tc151.3260.03 and Tc2
51.3260.02 for k50.8. Since these temperatures are ve
close to each other, it is suggested that the IC phase doe
exist or it is very narrow even if it exists. We need to p
attention to a fact that Monte Carlo simulation is not able
exclude a very tiny temperature region.

IV. CONCLUSIONS

It has been considered that the successive phase tr
tions with a finite IC phase take place fork.0.5 in two-
dimensional ANNNI model. In this paper, we estimated t
phase transition temperatures by applying the NER meth
and found that theTc1 is equal toTc2 within limits of errors.
This is a very exotic phase transition, which is the KT type
approached from the high-temperature side, and is
second-order if approached from the low-temperature s
Therefore, we speculate successive phase transitions wit
infinitesimalIC phase may occur in this system.

In the studies of the C-IC transitions in two-dimension
systems, it has been investigated the systems with
asymmetric parameter which explicitly favors the I

-

FIG. 10. The least-square fitting of the relaxation timet l(«) by
Eq. ~11! for ~a! k50.6 and~b! k50.8. The transition temperature i
estimated to give the best fitting as~a! Tc150.89 and ~b! Tc1

51.30.
2-8
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structure.33–35For a finite value of the parameter, there exi
the finite IC phase between the commensurate phase an
paramagnetic phase. In the limit of vanishing the parame
the IC phase shrinks to the infinitesimal. The frustration
rameterk of the ANNNI model has been considered as t
asymmetric parameter based on the approximate theory12–17

valid only at low temperatures, and the small-scaled Mo
Carlo simulations.18–20However, what is actually favored b
frustration is the creation of the domain wall. Between t
creation of the domain wall and the realization of the
structure, there are many conditions to satisfy, which h
been supposed in the free-fermion approximation.13 One of
these is the spin correlation along the ferromagnetic chain
the two-dimensional ANNNI model, the nonfrustrated dire
tion is only one dimension, and thus the spin correlat
along the ferromagnetic chain can be easily destroy
Therefore, we question regarding the frustration paramete
the asymmetric parameter. If we consider that these two
not related with each other and the asymmetric paramet
zero in the present model, the width of the IC phase beco
infinitesimal. This is what we observed in this paper.

Here, we show the comparison of the obtained transit
temperatures with the previous ones in Table I. It is rec
nized that ourTc1 is lower than any other ones, thoughTc2 is
consistent with each other. This can be explained by the
ference of the finite-size effect. The phase transition betw
the IC phase and the paramagnetic phase is confirmed t
the KT transition while the one between the antiphase
the IC phase is the second order. The correlation length
verges algebraically against the temperature in the la
while it diverges exponentially in the former case. If a sy
tem size is small compared with the correlation length a
the accuracy of the numerical data is not enough, even
finite-size scaling analysis may mislead to a wrongTc ,
where the finite but very large correlation length reaches
finite system size. Therefore, it is very likely that the K
transition temperature obtained previously is overestima
We may rather easily obtain the phase transition tempera
accurately in the second-order transition, because the d
gence is algebraically. In the two-dimensional ANNN
model, the correlation length along the chain direction isjx
;500 atT51.40 andk50.8 which is the temperature a littl
higher than the KT transition temperature and the correla
length is far larger than the system sizes ever simulated
viously (N5643128).20 We actually used data with syste
sizesN55993600;639936400 in this paper, and checke
the finite-size effect and the range of observing time in wh
the system behaves as an infinite system at each tempera
Thus, our data can be considered as closed to the therm
namic value. This is a reason why we could detect the
transition accurately.

In this paper, we have supposed that the ferromagn
correlation along the chain direction remains finite or at le
it is critical in the IC phase. Thus, theTc1 we have obtained
is the temperature at which the ferromagnetic correlation
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comes critical. Above this temperature, each ferromagn
chain exhibits paramagnetism, even though the correla
length is very large near theTc1. The present results only
exclude the finite IC phase of this type. In this study, it
clarified that the domain walls penetrate into the syst
along the chain direction at the lower transition temperat
Tc2. The spin configuration along the chain direction chang
drastically from the ferromagnetic ordered state to the pa
magnetic disordered state at the same temperature w
limits of error. We can neglect the IC phase where the fer
magnetic correlation has been expected to be critical. Th
fore, the domain walls mostly run straight along the cha
direction. We consider this is why the naive free-fermi
approximation of Villain and Bak13 gives the best quantita
tive agreements with our estimate ofTc2, and is the best
approximation. The analyses for other regions ofk and de-
termination of the critical exponents will be a task in th
future. The NER of the Binder parameter, the specific h
and the spin correlation with high accuracy is necessary.22

As for the dielectrics, Pb(Zr12xTix)O3, the phase
diagram3 in the low concentration of Ti is very similar to tha
of the ANNNI model if we interpret the paraelectric, th
ferroelectric and the antiferroelectric phases as the param
netic, the ferromagnetic and the antiphase phases. Ther
two controversial explanations for the existence of the
commensurate phase observed in the experiment. Ri
et al.4 concluded that the appearance of the IC phase is
to the surface effect by two experiments using the pow
neutron diffraction and a transmission electron microsco
On the other hand, Viehlandet al.5 considered it a bulk effec
by directly observing the high resolution image of a tran
mission electron microscope. In addition Watanabeet al.6

also described that it is not because of the surface effec
examining the stability of the IC phase in the bulk. If th
compound can be explained by the ANNNI model, the ex
tence of the IC phase is only possible in three dimensio
Therefore, we predict that the appearance of the IC phas
Pb(Zr12xTix)O3 is the effect of a bulk.

In this work, we have presented that the NER analysis
very effective for systems with the KT transition and/or wi
slow dynamics which has been difficult by numerical me
ods. Furthermore, a phase transition is studied using
finite-time scaling if we know a proper quantity that ca
probe characteristic time,t, or a characteristic lengthj even
though it is not a relevant order parameter. It is conside
that images of the phase transition which has been belie
as standard may change in some systems.
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