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Properties of liquid nickel: A critical comparison of EAM and MEAM calculations
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In this paper, we compare a variety of properties of liquid nickel calculated with two different embedded
atom model functiongl. Cai and Y. Y. Ye, Phys. Rev. B4, 8398(1996; M. I. Baskes, J. I. Angelo, and N. R.
Moody, in Hydrogen Effects on Material Behaviardited by N. R. Moody and A. W. Thomsd@ihe Minerals,
Metals, and Materials Society, Warrendale, PA, 193hd four variations of the modified embedded atom
(MEAM) model[M. I. Baskes, Mater. Chem. Phys0, 152(1997]. We report calculated values of the melting
point and structure factors for each of the representative potentials. We calculate via equilibrium molecular
dynamics the shear viscosity and self-diffusion coefficient. This study shows that the short-ranged MEAM
potential can give a representative picture of liquid nickel.
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I. INTRODUCTION Although a number of EAM potentials exist, most of the
research efforts to date used early EAM potentipie-1990

There is a great deal of interest in predicting the structurdo study the properties of liquid nickel. For this study, we
and transport properties of liquid metaig® The approaches chose to utilize more recent EAWRefs. 22—2fand MEAM

that have been used to study liquid metals include the empotentials for nickef® These potentials describe the solid
bedded atom method (EAM),'® the tight-binding Properties of nickel better than some of the earlier potentials

method'®* and ab initio techniques?*® Each of these developed. Thus we intend to provide a critical analysis of
methods has been used to study the structure of liquid nickethese potentials as applied to liquid nickel. The properties to
however, only the prior two methods have been used to studhe €xamined include structure factors, melting points, and
the transport properties of liquid nickel. One motivation be-transport coefficientsself-diffusivity and viscosity.

hind studying liquid metals stems from the need for reliable

estimates of transport properties. Looking at one transport Il. EAM AND MEAM POTENTIALS

property, viscosity, the experimental values for liquid nickel
at 1750 K range from 4.4 mPas to 6.2 mP&Experimental
values for the self-diffusion coefficient of liquid nickel to our
knowledge are nonexistent.

The embedded atom method, as first proposed by Daw
and Baske®?%%js a semiempirical many-body potential,
based on density functional theory. The EAM suggests, in
. part, that the energy required to place an impurity atom in a
Both EAM (Ref. 1§ and the modified embedded atom lattice is determined by the electron density at that site, irre-

method® (MEAM) are a semiempirical representation Ofs ective of the source of the electron density. The general
transition metals based on density functional theory. Th(?p L Y- 9
orm for the total energy is given B

EAM has been applied to the calculation of a variety of
properties of perfect and defectivEee surfaces, point de- 1
fects, grain boundaries, dislocations, etoulk metals and Erota= > Flpp)+= > > (1), 1)
alloys as a function of temperature and pres$tireMEAM i 277

arose out of the observation that angular forces are necessaghere p, is the electron density at thigh nucleus resulting

to explain the behavior of non-fcc materiafsA recent  from the atomic electron densities of the neighboring atoms,
model for tirf* was able to quantitatively predict the transi- F(p;) is the embedding function, anfi(r;;) is a pair poten-
tion between thex and 8 phases of tin, besides giving rea- {jg| term. p; is determined by

sonable estimates for the melting point.

The applicability of the EAM for the study of liquid met-
als is well documented in the literature. Foflehowed that Pi=§ f(rij), 2
liquid transition metals could be modeled with EAM poten- o
tials. For the study of nickel, a number of EAM potentials for where f(r;;) is the electron density due to théh particle.
nickel exist??~%’ Liquid nickel has been studied with the Both the embedding function and the pair potentials are
Voter-Chen potentif® and Johnson’s first nearest-neighbor found empirically, fitting some functional form to the solid
potential? In addition, the viscosity of liquid nickel has been properties of the lattice constant, cohesive energy, elastic
calculated utilizing the Cai-Ye potentialHowever, because constants, vacancy formation energy, etc. The EAM assumes
of the recent success of the MEAM in modeling complexthat the electron density is spherically symmetric, whereas
materials, we chose to compare the liquids predicted by ththe MEAM assumes that the background electron density is a
MEAM with other EAM potentials. function of some angular-dependent “partial electron densi-
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ties.” Baskes®?® gives a more detailed description of the Here, ) is the equilibrium atomic volumeB is the bulk

angular-dependent electron densities. modulus, andh is the current lattice constant. The parameters
We utilized two different EAM potentials in this study: used in this study were described in Ref. 24.

the EAM of Angelo et al?®?* (A-EAM) and the Cai-Y&

(CY-EAM) potentials. The functional forms of each of these B. Cai-Ye potential

potentials are physically different. The methodology in the . 2

fitting the solid database parameters also differs. We summa- Cal andﬂ:( ét tﬁpprO%Chd%d th? e"lbeddﬁd T\éom ?‘ﬁtphOd by

rize in the following subsections the functional forms for theassunlwltr)\gd atthe embedding uncd|on Sbog bmg ch the um;j

lecon dest, e cmbedding fncton,and pa funclorTS8P AT #1r0) 0resson cesered oy e o

f h the EAM ial MEAM ials. .

or both the potentials and potentials form the equation of state of Ros# al? Angelo et al, on

) the other hand, required the total energy to obey the equation
A. Potential of Angelo et al of state of Roseet al. The embedding function for the CY-
Angelo et al?*2* chose the pair potential to be given by EAM is defined by the equation
the following expression
ﬁ) (ﬁ ﬁ), ©
Pe/ ]\ Pe Pe

wherep, is the equilibrium electronic densitfor a perfect
@ fec crystal it is approximately 12 F is defined as the co-
hesive energy minus the energy of vacancy formationis
an adjustable parameter,is the electron density given by
Eqg. (2), andn was taken as 0.5. They cho$frj;) to be a
1 simple exponentially decreasing functionrgf given by
cut(ru) exp{ )

(@) B
f(r)="fe ex —x(r;—re)l, (10

This f.,; forces the pair potential as well as the electronwherer, is the equilibrium nearest-neighbor distanteis a
density(to be shown laterto zero beyond a certain distance scaling constant taken as one for pure substancesy ana
reut- The value ofr., is 4.84 A, which is an adjustable fitted parameter.

parameter that provides the best match between the calcu- As mentioned above the pair potential was taken to be of
lated and experimental data. the form of the equation of state of Roseal,, more specifi-

The total electron density; given by Eq.(2) requires the cally
r
ex;{ — /3( ——1
ra

summation off(r;;) which was taken to follow the func-
tional form of Chenet al® and is given by b(ri)=—
ij
Y — 6 ~A—Cslij 94— 2Cglj =
f(rij) =Cqrij(e "+ 2% =80 fou(ry)), ®) wherea, B, andr, were taken as adjustable parameters. The

wherer,; is the distance between thth andjth atoms,c, cutoff distance chosen for the parametrization was set to be
andcs aJre fitted constants, arfd, is given by Eq.(4). 1.65 times the lattice parametgy. This represents a distance

Having chosen the functional forms for the electron den{(5-8 A) between the fifth and sixth nearest-neighbor dis-
sity and the pair potential, the embedding energy function Igances The resulting fitted parameters for nickel given by

n

1-nin +F,

Fp)=—F
¢(rij)=C1[e_2°2(’ii_°3)—28_C2(rii_°3)]fcut(rij)+Clof(rij), (P) 0

wherecy, c,, C3, andc,q are fitted parameter$(r;;) is the
electron density due to thigh atom, andf . is given by

ij lcut

a1+ p

r
——1
ra

} , (1D

determined as Cai and Y& were utilized in this work.
1 2 C. Modified embedded atom method potential
F E(a)— = i(rii), 6 .. ) .
(p)=E(a)= 2 77 iy (1) © The modified embedded atom method is an extension of

the EAM which follows Eq.(1) yet includes an angular-
where ¢;;(r;;) is given by Eq.(3) and E(a) is the energy  dependent electron density function. Historically MEAM po-

given by the equation of state of Roseal,** which is tentials have been chosen to be short range whereas EAM
potentials usually are longer range. For a complete descrip-
E(a)=—Eg,y1+a*)e 2", (7)  tion of the MEAM formalism we refer the reader to the pa-
pers by Baske&?8
whereEgyy, is the sublimation energy. The quantdy is a The background electron density in the MEAM is taken

measure of the deviation from the equilibrium lattice con-gg
stantay and is given by

p=piG(I), (12
a
a——l) wherep; is the EAM electron density given in E¢2) and
a* :%ﬁ_ 8 G(I captures the angular dependence. The stalamgiven N
sub by a weighted sum of the squares of partial electron densities
9B() scaled byp; . Each partial electron density captures a differ-

024209-2



PROPERTIES OF LIQUID NICKEL: A CRITICA ... PHYSICAL REVIEW B 65 024209

ent aspect of the local atomic environment; e.g.,sltom- TABLE I. Parameters for MEAM potentials.
ponent represents volume, theomponent represents mirror - - -
symmetry, thed component represents shear, andftaem- ~ Potential pY B Chin G(I')

ponent represents inversion symmetry. The various forms
chosen for the functios are discussed in Bask&sand will
be discussed further below. Each partial electron density is

Nil 2.2 2.2 2.0 v1+TD

proportional to an atomic electron density. The atomic elec- Nj2 2.2 22 2.0 ﬁ
tron densities are given by simple exponentials with decay exp(=1)
constantg®", 1=0-3. _ 2
A many-body screening function was given by Baskes ~ Ni3 15 15 2.0 Ttexp(-T)
which we summarize here. The screening function between
atomsi and k depends on all of the other atomsn the : 2
. Ni4 1.5 1.5 0.8 v
system through an equation such as 1+exp(-T)
Se= 11 Sik. (13)  Navier-Stokes equation for viscosity or Fick’s laws of diffu-
j#ik

sion. The derivation provides a direct relation between the
where S;j is calculated using a simple elliptical construc- MICroscopic autocorrelation functia®hCF) measured in an
tion. Consider the ellipse passing through atdims and k equilibrium system to the macroscopic transport quantity.

where thex axis of the ellipse is determined yandk. The The autocorrelation function that one obtains for the dif-
equation for the ellipse is given by fusion coefficient is given by the following expressidn
N
1 1 )2 1 (= - -
24 N2 Zy. - X e
X+ 5y (zrlk) , (14) D=3x 1, <J_Elv,(0) u,(7)>dr, (18)
where the parameté is determined by where N is the number of atomsz}j(O) is initial velocity

vector for thejth particle, and;j(r) is the velocity vector at
(15) some later timer. The average is taken over different time
' origins.

c 2(Xij+ Xj) = (X = Xpp) 2= 1

1= (X = Xji)? > . o .
A similar expression for the shear viscosity exists relating

_ 2 _ 2 ,
where X;; =(ri; /rix)” and Xj = (rjc/ri)”. Ther's are the o ghear viscosity to the off-diagonal terms of the stress
distance between the respective atoms. We defined the <or The resulting expression is

screening factor to be a smooth function@f
C—Cnin
Cmax_ Cmin

whereC,,i, andC,,.x are material-dependent parameters an
the smooth cutoff function is

1 )
n= WbTJ’O (J(0)J(7))dr, (19

Sijk=fc , (16)

thereV is the volumeky is Boltzmann’s constant is the
absolute temperature, adds defined by

N

1 =1 P«jPgj
fox)=1 [1-(1-%)*% 0<x<L, 17 =
0, x=<0. and is related to one component of the off-diagonal term of

the stress tensow;, 5, wherea 8 equalsxz, xy, yz, yX, zx,

For this paper, we utilized each of the nickel potentialsor zy. P.; andpg; are the momenta of particjén the « and
developed by Basked.We chose to increase the value for B directions, respectivelys; is the 8 component of thgth
the cutoff radiusr; from 4 to 4.5 A in order to maintain particle position vector, an;, is the a component of the

constant energy within the liquid. The four potentials will be force. Again we take the average of the off-diagonal terms at
referred to as Nil, Ni2, Ni3, and Ni4 to correspond with thedifferent time origins.

four MEAM potentials given by Baske Tabulated in Table In order to obtain reliable average values for E(3)
| are the unique parameter8("), &), Ci,, and the func-  and (19) we utilize a method of overlapping-time-interval
tion for G(I') for each of these model potentials. correlation average¥. This method allows one to store in
memory a series of individual correlation functions
Ill. COMPUTATIONAL DETAILS A(0)A(7) (whereA is the quantity of interest—for example,

the velocity or off-diagonal terms of the stress temsor
spaced apart by some time. The time spacing is determined

In order to calculate the various transport properties giversuch that there is no correlation between the initial correla-
in this paper, we used the Green-Kdb& method as devel- tion function and the second correlation function. This sig-
oped by McQuarrié® The transport properties are derived nificantly shortens the computational time while getting
from the continuum equations of fluid dynamics, such as theneaningful statistical averages.

A. Transport properties
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The results for the self-diffusivity and the shear viscosity ~TABLE Il. Calculated melting points and atomic densities for
are calculated using an average of 4000 individual correlathe EAM and MEAM potentials. Experimental densifgef. 41 at
tion functions spaced 0.1 ps apart with a total time for theT=1773 K is 0.0792 atoms/A and the experimental melting
correlation function being 1 ps. Longer correlation functionsPointisT=1726 K.
as well as including more correlation functions in the aver-

age did not significantly alter the resulting values. For each _ T (K) patT=1775 K
autocorrelation function calculated, the simulations lasted’otential £25 K (atoms/&)
approximately 400 ps. A total of three to five autocorrelation, g\ 1478 0.0781

functions were subsequently averaged to obtain the valu EAM

. S 1536 0.0785

presented. The errors for the calculated diffusivity data wer i 1880 0.0778

less than 2%. The estimated errors in the shear viscosity da 1825 0.0780
were less than 7%. These simulations were run using a mkl_ '

. i3 1890 0.0783

crocanonical ensemblgonstantN, V, andE). The volume . 1570 0.0781
was selected in such a way that the average pressure equafg'é )

zero. Each of these simulations contained 1372 atoms. We
evaluated the effect of system size on our calculations an
found that 1372 atoms was the optimal size for statisticall
meaningful results and computational feasibility.

gemperature within the errors associated with the method of
ydetermining the melting temperature.

Also included in Table Il are the zero-pressure densities at
1775 K. These densities are slightly lower than the exper-
B. Other properties mental density* The CY-EAM potential appears to be the

. closest to the experimental density. The furthest from experi-

We Ca.ICl.Jlated the st.ructurgl parameters through a S8R ental density was that of Nil which is 1.8% less than that
of isobaric-isothermal simulations at 1775 K and zero pres-

sure for each of the nickel potentials. Temperature was cori-)f the experimental. Thus each of the potentials predict a
trolled using a standard Nostoover thermostdt® with a ero-pressure density very close to the experimental results.

time constant of 0.1 ps. A radial distribution function was In Fig. 1, the structure factor for each of the potentials
calculated for 150 different configurations of 10976 atoms evaluated within this paper is plotted. The experimental re-

A Fourier transform of the radial distribution function was sults ‘indicated by the open circles were obtained from
Waseda and Ohtafit. The lines in the figure represent the

g\éiluR}ed to obtain the structure factors we present "iructure faqtor from the potentials. Each of the potentials

T.he .melting point was calculated using the moving inter.2Ppears to fl_t the experlmental data well. Even though each
face method® This method is a two-phase simulation of the pot_ent|als predicts the structure well, the structures for
method that rﬁeasures the velocity of the interface for a va'—vIEANI .Nll and MEAM Ni2 appear to have Iopger-range
. . . correlations. In other words, the second and third peaks are
riety of temperatures. The simulations were allowed to ex-
pand and contract at zero constant pressure while tempera-
ture was held fixed away from the moving interface. This
technique provides reasonable estimates of the melting point
A series of simulations bracketing the assumed melting tem-
perature was run while determining the velocity of the inter-
face. The total length of the simulations was 25 ps with
output times being 0.1 ps. The velocities were plotted with
respect to the temperature of the uncontrolled temperaturt
region. The melting point was taken as the temperature a
which the velocity equaled zero.

MEAM Ni 4

—_

S(k)

MEAM Ni 3

IV. RESULTS AND DISCUSSION

e

Following the two-phase simulation method described
above, the melting points for each of the potentials were
obtained. Tabulated in Table Il are the melting points. The
experimental melting point of nickel is 1726 K. It is noticed
that Ni1, Ni2, and Ni3 all have similar melting points. Com-
paring the resulting melting points of liquid nickel predicted
through MEAM calculations, the value &,,;, appears to
have a strong effect on the melting temperatsee Table)l
It was noticed by Baské&that the selection of th€ ,;, also
affects the linear expansion coefficient for the solid. The se- FIG. 1. Structure factor of liquid nickel. Lines represent the
lection of the form for the background electron densigl") calculated structure factor for EAM and MEAM liquid nickel; sym-
appears to have a minimal effect in changing the meltinghols represent the experimental structure factor ¢R&f. 47).

MEAM Ni 2

—_ Oy =

k (Angstroms'l)
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10 T

A B R B e B — — TABLE Ill. Viscosity parameters assuming Arrhenius behavior
% f for each potential. The units of, are mPas and dE, are eV.
} Viscosity
8- : AFaM l — Potential 7o Ea EalkTp,
A MEAM Nil ~ I
| | Y MEAMN2 i ] A-EAM 3.61 0.224 1.76:0.03
£ > VBAMNG . CY-EAM 3.38 0.277 2.080.03
S 6L Nil 10.36 0.656 4.050.05
Z Ni2 11.76 0.601 3.820.05
& L Ni3 4.48 0.200 1.230.05
Ni4 3.84 0.157 1.160.03
4L Expt. range 4.2-6.4 0.311-0.374 2.09-2.51
I decreased the shear viscosity by nearly 10%. Thus it is in-
o T N SR T consistent to calculate the shear viscosity using experimental
f7o0 1750 1800 1850 1900 1950 2000 densities rather than the zero-pressure densities predicted by

Temperature (K) the model.
Over the limited temperature range we studied, the vis-

FIG. 2. Viscosity of liquid nickel as a function of temperature. cosity appeared to follow an Arrhenius relationship
Solid lines represent experimental data from the early 1950s to the

late 19609Ref. 17). Dashed lines correspond to an Arrhenius best- F{Ea< 1 1 )
7= 7o €X

fit curve through calculated data points. k_b

T Ta/l @)

more pronounced. The position of the first peaks of thewhere %, is the viscosity at the experimental melting point,
A-EAM and CY-EAM appears to be shifted slightly from the k,, is Boltzmann’s constant, arigl, is the activation energy.
experimental data points. Comparing each of the structurén Table Ill, we present the values for the activation energies
factor curves in Fig. 1, it is noticed that the structure factorsof each process as well as the prefactors for each of the
are nearly identical for MEAM Nil and MEAM Ni2, potentials studied here. It is difficult to compare these values
MEAM Ni3 and MEAM Ni4, and A-EAM and CY-EAM. to experimental data, in part, due to the difficulty in experi-
Thus, referring to the table for the MEAM potentials, Table I, mentally measuring viscosity at high temperatures. The cal-
one sees that the structure factor appears to be controlled ylated activation energy for the viscosity of MEAM Ni3,
the selection of thegd™") and 8 parameters. Ni4, A-EAM, and CY-EAM is lower than the activation en-

In Fig. 2 we report the viscosity results compared to theergy from most experimental data by up to a factor of 1.5.
experimental viscosities from the 1950s and 1960s found iThe activation energy is higher by a factor greater than 2 for
lida and Guthrie’ The solid lines represent the experimentalthe Nil and Ni2 potentials.
results; our results are illustrated with symbols and the The calculated viscosity for MEAM Nil and Ni2 appears
dashed lines. The dashed lines represent an Arrhenius-like overestimate the experimental numbers while the remain-
function through the data. The temperature uncertainty ariséag MEAM potentials and the EAM potentials tend to
from the temperature fluctuations within the simulations. In aslightly undershoot the experimental numbers. These results
prior paper, we reported larger fluctuations in the values for could be explained purely from structural arguments. In the
the viscosity. Here we reduced the deviations by averagintjterature there exists a relationship that relates the micro-
more individual correlation functions. Furthermore, we en-scopic details of the system to the viscosity through a semi-
sured that the spacing between the correlation functions wasmpirical function ofg(r) and the Lindemann frequency
such that each correlation function was significantly decayed, 1”43
before overlapping the next correlation function. The overall
values of the viscosity were not significantly affected, how- 8 2 (24
ever. The errors associated with the calculations were re- n=?w,_mnofor g(rydr,
duced to less thart 7%.

There have been other calculations for the viscosity ofvherem is the atomic mass), is the atomic density, ana
liquid nickel based on the Voter-Chen EAM potenfiafBe-  denotes the first minimum of the radial distribution function.
sides the difference in the potential the methodology in theifThe Lindemann frequency is proportional to the square root
papers differs slightly in that they calculated the Green-Kubmf the melting temperature. The Lindemann frequency that
viscosities at the experimental density rather than the zerowe use is 3.7% 10" s~* which corresponds to 15.5 mé¥.
pressure densities used here. This fundamental differend#e then adjust this value to the melting point of the poten-
could dramatically affect the viscosity obtained. For in-tial. In Table IV, we compare our viscosity values extrapo-
stance, one of the auth8fsan several calculations for liquid lated to the potentials melting point to the viscosity calcu-
nickel examining the effect of the density upon the sheatated from Eq. (22). Comparing the trends with the
viscosity and observed that decreasing the density by 2%alculated integral and its resulting viscosity, Eg2) ap-

(22
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TABLE IV. Viscosity values calculated from Eq. 22. The Lin-
demann frequency used is equal to 3T8'*\/T ycaic/ Tmexpt The
units of 77, a, and [3r*g(r)dr are mPas, A, and A respectively.

PHYSICAL REVIEW B5 024209

TABLE V. Arrhenius diffusion parameters for each potential.
The units ofE, are eV and oD, are 10° cn? s 2.

Self-diffusivity

Ncalc Msemiemp a fSr“g(r)dr Potential Do Ea EalkTh
Potential (meard (Tr) A-EAM 56.0 0.364 2.86:0.05
A-EAM 4.65 5.70 3.43 99.0 CY-EAM 108.0 0.476 3.5%40.06
CY-EAM 4.26 5.82 3.43 98.2 Nil 139.5 0.618 3.8 0.05
Nil 7.22 4.27 3.03 66.3 Ni2 203.7 0.704 4.4F70.06
Ni2 9.45 4.23 3.03 66.3 Ni3 62.4 0.394 2.420.03
Ni3 3.99 4.97 3.18 75.9 Ni4 59.6 0.381 2.810.05
Ni4 4.24 4.29 3.13 72.3

erable agreement between the CY-EAM, A-EAM, MEAM

pears to not be a valid expression for our systems. Recall\i3: and MEAM Ni4 potentials. We also see agreement be-
however, that MEAM Nil and MEAM Ni2 had essentially tWeen the MEAM Nil and MEAM Ni2 potentials. The self-
the same structure and compared to the experimental strugiffusivity appeared to obey the following Arrhenius-type
ture factors had greater intensity for the second and thirgduation:
peaks. Perhaps E@22) should be modified to extend to E
beyond the second and third nearest-neighbor distances. Fur- D= Doex;< — _a) , (23)
thermore, the more intense correlations at longer distances kpT
appear to contribute significantly to values for the ViSCOSity'whereDo is the self-diffusion prefactor. The values fbr,

In Fig. 3, we report the results for the self-diffusion coef- ;¢ appear in Table V. The data predicted by Protopapas
ficient of liquid nickel as a function of temperature. The solid et a|'4i‘ is comparable in value with the A-EAM, CY-EAM
line in the figure represents the self-diffusivity predicted byy,eam Ni3, and MEAM Ni4, vet the slope fc;r the datz;l

44 : -
Protopapaset al.™ The solid data points are the self- p qionanast al. is greater. The activation energy for the

diffusivity calculated in this work. The open symbols repre- 4o, of Protopapaat al.is 0.818 eV/atom which differs from
sent the self-diffusion calculated by Alemaeyal’®and by - activation energies by as much as a factor of 2.

Mei a’?d Davenp_oﬁ.AIemanyet aI._utiIized a tight-bindi_ng Oftentimes the self-diffusion coefficient is predicted from
potential for their study and Mei and Davenport utilized ;scqsity data using Stokes-Einstein or Sutherland-Einstein

126 £ . . K
Johnson®® first nearest-neighbor analytical EAM pment'al'_dexpressions. The Stokes-Einstein relationship is given by
Considering the differences in the potentials, we see consid-

kT
8 T I T I T I T D - 67TR7] (24)
and the Sutherland-Einstein expression is
p= ol 25
- 47Ry’ (25

MEAM Ni2
MEAM Ni3
MEAM Ni4

where the atomic radiuR is calculated from the atomic vol-
ume. Applying both relationships to the Angelo potential, we
obtain the results shown in Fig. 4. From the figure, it is
observed that the Sutherland-Einstein relationship,(E5),
provides a closer agreement to the calculated self-diffusion
coefficient. Although the Sutherland-Einstein relationship
provides good qualitative predictions for the self-diffusion
- coefficient for pure liquid metals, one must exercise caution

4 in applying either of the expressions where accurate self-
diffusivities are needed.

Examining the functional form of Eq$24) and(25), we

recognize that the expressions could be generalized as

<
®
A MEAM Nil
v
<
>

S

Self-Diffusion Coefficient (10'5 em” shl)
»

1 I 1 I 1 I 1
3 0.52 0.54 0.56 0.58
1000/T (K

FIG. 3. Self-diffusion coefficient of liquid nickel as a function DR7y
of temperature. The solid line is the data predicted by Protopapas Ko T
et al. (Ref. 44. Dashed lines correspond to an Arrhenius best-fit
curve through calculated data points. The open circle corresponds #shere const 1/6m and 1/47 for the Stokes-Einstein and
data obtained by Mei and DavenpdRef. 2. Open diamonds are Sutherland-Einstein equations, respectively. In Fig. 5, we
the results of Alemangt al. (Ref. 10. plot Eq. (26) for each of the potentials. The lower solid line

=const, (26)
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| i | , > /‘, ]
‘_I‘t/J 5 I~ = —/\ - i -
NE i i ¥ W
@ < F E
=T ] £ »
g T ] € o5t 4 . -
> > % L
Z ar - z Sy
‘“E': i | E + " // i
> z /e
2 2K — £ F o E
L - ¢ A-EAM
@—® Green-Kubo Diffusion F @® CY-EAM E
1+ 381 Sutherland-Einstein Eq. 24 | — 4 MEAMNi3
| (—© Stokes-Einstein Equation 23 | L » MEAM Ni4 ]
O 1 I 1 I 1 I 1 I 1 | 1 I I |
1700 1750 1800 1850 1900 1950 2000 %.7 0.8 0.9 1 1
Temperature (K) Temperature (Tm/T)

FIG. 4. Self-diffusivity calculated for the potential of Angelo FIG. 6. Plot of the natural logarithim of/T vs T, /T. Solid
et al. A comparison between the Green-Kubo diffusivity, Stokes-Iines represent experimental lines from the 1950s and 1960s.

Eir_lstein reIationsh_ip{Eq. (24)1’ and Sutherland-Einstein relation- Dashed lines are best fits through the data obtained in this work.
ship [Eq. (25)]. Solid data points are calculated from Green-Kubo

relationships. Open squares from E@5). Open circles from

Eq. (24) MEAM Ni2 are beyond the range of the graph,, is taken

as the value found in Table Il. For the experimental curves

in the plot represents the constant for the Sutherland-Einsteiﬁm was taken to be 1726 K. With the A-EAM potential we

model, 1/4r. Aside from the data scatter, E@6) does hold also aquired data below the experimental melting point of

for all the potentials except for MEAM Nil and MEAM Ni2. 3(371‘53?8';(:2 dsffe'lftitnhe ”;2? gf?gg‘“%?eafig"" B“Zﬁ\;' g:r? P
Each potential gives a slightly different constant which im- gp P - By yzing

plies that the constant in E¢R6) is potential dependent. data n this rranner, V\;]e recognlze.trlllat T}ach of theIEAM ar?;d
Under the assumption that Eq26) and (23) are valid, experimental curves have essentially the same slope while

i o . the slope of the MEAM Ni3 and Ni4 potentials is slightly
we plot in Fig. 6 the natural logarithim of/T as a function o . .
of T,./T. We chose in Fig. 6 to plot with finer detail the lower. This high correlation between the potentials and the

. . experimental points indicates that A-EAM, CY-EAM,
experimental data A-EAM, CY-EAM, MEAM Ni3, and . . :
MEAM Ni4 for a closer comparison. MEAM Nil and MEAM Ni3, and MEAM Ni4 represent nickel very well.

Furthermore, considering the errors associated with the
method in determining the melting points, A-EAM, CY-

L I R R B B EAM, and MEAM Ni4 could very well lie on the same line.
- ¢ A-EAM T Another approach that has been recently suggested by
0161 e CrEam. i Dzugotov® which relates the self-diffusion coefficient to the
Vv MEAM Ni2 excess entropy of the liquid, which is related to the radial
i NV 1 distribution functiong(r). The relation for the dimensionless
0.14 - — Sutherland-Einstein _ diffusion coefficient Dzugotov proposed was
5 T D* =0.04%>, (27)
Sonp whereS, is the excess entropy of the system and is defined
- as
0.1 B
- S;= —2wpfo {g(nInfg(r)]—[g(r)—1]}r?dr, (28)
0.08
L L wherep is the atomic density; is the radial position, and

1700 1750 18|00 1850 1900 1950 2000 g(r) is the radial distribution function. Once the dimension-

less diffusion coefficient is calculated the actual diffusion

coefficient can be calculated using the following relation-
FIG. 5. Plot of Eq(26) vs temperature. The solid line represents Ship:

a value constant from the Sutherland-Einstein expression(25y.

Dashed lines are least-squares fits for each data set. D=D*I'gzo?, (29

Temperature (K)
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where o is the position of the first maximum in the radial V. CONCLUSIONS
distribution function.I'z corresponds with the Enskog colli-
sion frequency, given by We have examined a variety of liquid nickel properties
) [k, T predicted from two EAM potentials as well as four MEAM
Fe=40°g(0)p m ' (30) potentials. Of these potentials each gives reasonable struc-

_ o _ tures compared to experimental data. The melting points de-
whereg(o) is the value of the radial distribution function at termined by the moving interface method were in fair agree-
o andmis the mass of the ator* exhibits some tempera- mant for all of the potentials with the potential of Angelo
ture and potential dependence through the characteristics gf 5| yielding the worst results. On the other hand, the other

g(r) with temperature and potential chosen. To test Dzugogy|0jjated properties of the EAM potential of Angaibal.

tov's universal scaling law, we took the radial distribution agree well with the available experimental values. The melt-
function of the Cai-Ye potential at 1725 K and calculated the, " . o0 e vted by the choice of Be... param-
diffusion coefficient from Dzugutov's expressions for the 9p y y in P

self-diffusivity. We obtained a diffusion coefficient of 3.52 ef[er n the screening funct|.on O.f the MEAM. The self-
%105 cn?/s. The equilibrium molecular dynamics results diffusion coefficient and the viscosity appear to be dependent
in a self-diffusivity of 4.50< 10°5 cn?/s. Although the self- upon the details of the liquid structure out to the second

diffusivities are comparable, these numbers suggest that tf1d third - nearest-neighbor distances. In other words,
universal scaling law might not be universal. In fact, Hoytthe long-distance correlations appear to increase the viscosity

et al*® suggested that the universal scaling law is valid forand decrease the diffusion coefficient. In addition, this
many-body potentials when the actual excess entropy is usédudy extends the work of Foilesby illustrating that
rather than the simple two-body approximation for the ex-MEAM potentials, even though short ranged, describe the
cess entropy. Thus we concur with Hagtal. that the simple  structure of the liquids effectively. Of the MEAM potentials
two-body approximation to the excess entropy does not profor nickel examined, MEAM Ni3 and MEAM Ni4 appear to
vide valid estimates for the self-diffusivity through the uni- provide the best agreement with the available experimental

versal scaling law. data.
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