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Properties of liquid nickel: A critical comparison of EAM and MEAM calculations
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In this paper, we compare a variety of properties of liquid nickel calculated with two different embedded
atom model functions@J. Cai and Y. Y. Ye, Phys. Rev. B54, 8398~1996!; M. I. Baskes, J. I. Angelo, and N. R.
Moody, inHydrogen Effects on Material Behavior, edited by N. R. Moody and A. W. Thomson~The Minerals,
Metals, and Materials Society, Warrendale, PA, 1995!# and four variations of the modified embedded atom
~MEAM ! model@M. I. Baskes, Mater. Chem. Phys.50, 152~1997!#. We report calculated values of the melting
point and structure factors for each of the representative potentials. We calculate via equilibrium molecular
dynamics the shear viscosity and self-diffusion coefficient. This study shows that the short-ranged MEAM
potential can give a representative picture of liquid nickel.
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I. INTRODUCTION

There is a great deal of interest in predicting the struct
and transport properties of liquid metals.1–16The approaches
that have been used to study liquid metals include the
bedded atom method ~EAM!,1–9 the tight-binding
method,10,11 and ab initio techniques.12–16 Each of these
methods has been used to study the structure of liquid nic
however, only the prior two methods have been used to st
the transport properties of liquid nickel. One motivation b
hind studying liquid metals stems from the need for relia
estimates of transport properties. Looking at one trans
property, viscosity, the experimental values for liquid nick
at 1750 K range from 4.4 mPa s to 6.2 mPa s.17 Experimental
values for the self-diffusion coefficient of liquid nickel to ou
knowledge are nonexistent.

Both EAM ~Ref. 18! and the modified embedded ato
method19 ~MEAM ! are a semiempirical representation
transition metals based on density functional theory. T
EAM has been applied to the calculation of a variety
properties of perfect and defective~free surfaces, point de
fects, grain boundaries, dislocations, etc.! bulk metals and
alloys as a function of temperature and pressure.20 A MEAM
arose out of the observation that angular forces are neces
to explain the behavior of non-fcc materials.19 A recent
model for tin21 was able to quantitatively predict the trans
tion between thea andb phases of tin, besides giving rea
sonable estimates for the melting point.

The applicability of the EAM for the study of liquid met
als is well documented in the literature. Foiles1 showed that
liquid transition metals could be modeled with EAM pote
tials. For the study of nickel, a number of EAM potentials f
nickel exist.22–27 Liquid nickel has been studied with th
Voter-Chen potential6–9 and Johnson’s first nearest-neighb
potential.2 In addition, the viscosity of liquid nickel has bee
calculated utilizing the Cai-Ye potential.5 However, because
of the recent success of the MEAM in modeling compl
materials, we chose to compare the liquids predicted by
MEAM with other EAM potentials.
0163-1829/2001/65~2!/024209~9!/$20.00 65 0242
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Although a number of EAM potentials exist, most of th
research efforts to date used early EAM potentials~pre-1990!
to study the properties of liquid nickel. For this study, w
chose to utilize more recent EAM~Refs. 22–24! and MEAM
potentials for nickel.28 These potentials describe the sol
properties of nickel better than some of the earlier potent
developed. Thus we intend to provide a critical analysis
these potentials as applied to liquid nickel. The properties
be examined include structure factors, melting points, a
transport coefficients~self-diffusivity and viscosity!.

II. EAM AND MEAM POTENTIALS

The embedded atom method, as first proposed by D
and Baskes,18,29,30 is a semiempirical many-body potentia
based on density functional theory. The EAM suggests
part, that the energy required to place an impurity atom i
lattice is determined by the electron density at that site, ir
spective of the source of the electron density. The gen
form for the total energy is given by20

Etotal5(
i

F~r i !1
1

2 (
i

(
j

f~r i j !, ~1!

wherer i is the electron density at thei th nucleus resulting
from the atomic electron densities of the neighboring atom
F(r i) is the embedding function, andf(r i j ) is a pair poten-
tial term.r i is determined by

r i5(
j Þ i

f ~r i j !, ~2!

where f (r i j ) is the electron density due to thej th particle.
Both the embedding function and the pair potentials
found empirically, fitting some functional form to the soli
properties of the lattice constant, cohesive energy, ela
constants, vacancy formation energy, etc. The EAM assu
that the electron density is spherically symmetric, wher
the MEAM assumes that the background electron density
function of some angular-dependent ‘‘partial electron den
©2001 The American Physical Society09-1
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F. J. CHERNE, M. I. BASKES AND P. A. DEYMIER PHYSICAL REVIEW B65 024209
ties.’’ Baskes19,28 gives a more detailed description of th
angular-dependent electron densities.

We utilized two different EAM potentials in this study
the EAM of Angelo et al.23,24 ~A-EAM ! and the Cai-Ye22

~CY-EAM! potentials. The functional forms of each of the
potentials are physically different. The methodology in t
fitting the solid database parameters also differs. We sum
rize in the following subsections the functional forms for t
electron density, the embedding function, and pair funct
for both the EAM potentials and MEAM potentials.

A. Potential of Angelo et al.

Angelo et al.23,24 chose the pair potential to be given b
the following expression

f~r i j !5c1@e22c2(r i j 2c3)22e2c2(r i j 2c3)# f cut~r i j !1c10f ~r i j !,

~3!

wherec1 , c2 , c3, andc10 are fitted parameters,f (r i j ) is the
electron density due to thej th atom, andf cut is given by

f cut~r i j !5expS 1

r i j 2r cut
D , ~4!

This f cut forces the pair potential as well as the electr
density~to be shown later! to zero beyond a certain distanc
r cut . The value ofr cut is 4.84 Å, which is an adjustabl
parameter that provides the best match between the ca
lated and experimental data.

The total electron densityr i given by Eq.~2! requires the
summation off (r i j ) which was taken to follow the func
tional form of Chenet al.31 and is given by

f ~r i j !5c4r i j
6 ~e2c5r i j 129e22c5r i j ! f cut~r i j !, ~5!

wherer i j is the distance between thei th and j th atoms,c4
andc5 are fitted constants, andf cut is given by Eq.~4!.

Having chosen the functional forms for the electron de
sity and the pair potential, the embedding energy functio
determined as

F~r i !5E~a!2
1

2 (
i , j

f i j ~r i j !, ~6!

wheref i j (r i j ) is given by Eq.~3! and E(a) is the energy
given by the equation of state of Roseet al.,32 which is

E~a!52Esub~11a* !e2a* , ~7!

whereEsub is the sublimation energy. The quantitya* is a
measure of the deviation from the equilibrium lattice co
stanta0 and is given by

a* 5

S a

a0
21D

S Esub

9BV D 1/2. ~8!
02420
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Here, V is the equilibrium atomic volume,B is the bulk
modulus, anda is the current lattice constant. The paramet
used in this study were described in Ref. 24.

B. Cai-Ye potential

Cai and Ye22 approached the embedded atom method
assuming that the embedding function should match the
versal binding energy expression described by Banarjea
Smith33 and that the pair potential should match in function
form the equation of state of Roseet al.32 Angelo et al., on
the other hand, required the total energy to obey the equa
of state of Roseet al. The embedding function for the CY
EAM is defined by the equation

F~r!52F0F12n lnS r

re
D G S r

re
D n

1F1S r

re
D , ~9!

wherere is the equilibrium electronic density~for a perfect
fcc crystal it is approximately 12!, F0 is defined as the co
hesive energy minus the energy of vacancy formation,F1 is
an adjustable parameter,r is the electron density given b
Eq. ~2!, andn was taken as 0.5. They chosef (r i j ) to be a
simple exponentially decreasing function ofr i j given by

f ~r !5 f e exp@2x~r i j 2r e!#, ~10!

wherer e is the equilibrium nearest-neighbor distance,f e is a
scaling constant taken as one for pure substances, andx is a
fitted parameter.

As mentioned above the pair potential was taken to be
the form of the equation of state of Roseet al., more specifi-
cally

f~r i j !52aF11bS r

r a
21D GexpF2bS r

r a
21D G , ~11!

wherea, b, andr a were taken as adjustable parameters. T
cutoff distance chosen for the parametrization was set to
1.65 times the lattice parametera0. This represents a distanc
(5.8 Å) between the fifth and sixth nearest-neighbor d
tances. The resulting fitted parameters for nickel given
Cai and Ye22 were utilized in this work.

C. Modified embedded atom method potential

The modified embedded atom method is an extension
the EAM which follows Eq.~1! yet includes an angular
dependent electron density function. Historically MEAM p
tentials have been chosen to be short range whereas E
potentials usually are longer range. For a complete desc
tion of the MEAM formalism we refer the reader to the p
pers by Baskes.19,28

The background electron density in the MEAM is tak
as

r̄5r iG~G!, ~12!

wherer i is the EAM electron density given in Eq.~2! and
G(G) captures the angular dependence. The scalarG is given
by a weighted sum of the squares of partial electron dens
scaled byr i . Each partial electron density captures a diffe
9-2
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PROPERTIES OF LIQUID NICKEL: A CRITICAL . . . PHYSICAL REVIEW B 65 024209
ent aspect of the local atomic environment; e.g., thes com-
ponent represents volume, thep component represents mirro
symmetry, thed component represents shear, and thef com-
ponent represents inversion symmetry. The various fo
chosen for the functionG are discussed in Baskes28 and will
be discussed further below. Each partial electron densit
proportional to an atomic electron density. The atomic el
tron densities are given by simple exponentials with de
constantb ( l ), l 5023.

A many-body screening function was given by Baske28

which we summarize here. The screening function betw
atoms i and k depends on all of the other atomsj in the
system through an equation such as

Sik5 )
j Þ i ,k

Si jk , ~13!

where Si jk is calculated using a simple elliptical constru
tion. Consider the ellipse passing through atomsi, j, andk
where thex axis of the ellipse is determined byi andk. The
equation for the ellipse is given by

x21
1

C
y25S 1

2
r ikD 2

, ~14!

where the parameterC is determined by

C5
2~Xi j 1Xjk!2~Xi j 2Xjk!221

12~Xi j 2Xjk!2
, ~15!

where Xi j 5(r i j /r ik)2 and Xjk5(r jk /r ik)2. The r ’s are the
distance between the respective atoms. We defined
screening factor to be a smooth function ofC:

Si jk5 f cF C2Cmin

Cmax2Cmin
G , ~16!

whereCmin andCmax are material-dependent parameters a
the smooth cutoff function is

f c~x!5H 1, x>1,

@12~12x!4#2, 0,x,1,

0, x<0.

~17!

For this paper, we utilized each of the nickel potenti
developed by Baskes.28 We chose to increase the value f
the cutoff radiusr c from 4 to 4.5 Å in order to maintain
constant energy within the liquid. The four potentials will b
referred to as Ni1, Ni2, Ni3, and Ni4 to correspond with t
four MEAM potentials given by Baskes.28 Tabulated in Table
I are the unique parameters,b (1), b (3), Cmin , and the func-
tion for G(G) for each of these model potentials.

III. COMPUTATIONAL DETAILS

A. Transport properties

In order to calculate the various transport properties gi
in this paper, we used the Green-Kubo34,35 method as devel-
oped by McQuarrie.36 The transport properties are derive
from the continuum equations of fluid dynamics, such as
02420
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Navier-Stokes equation for viscosity or Fick’s laws of diffu
sion. The derivation provides a direct relation between
microscopic autocorrelation function~ACF! measured in an
equilibrium system to the macroscopic transport quantity

The autocorrelation function that one obtains for the d
fusion coefficient is given by the following expression36

D5
1

3NE0

`K (
j 51

N

vW j~0!•vW j~t!L dt, ~18!

where N is the number of atoms,vW j (0) is initial velocity
vector for thej th particle, andvW j (t) is the velocity vector at
some later timet. The average is taken over different tim
origins.

A similar expression for the shear viscosity exists relat
the shear viscosity to the off-diagonal terms of the str
tensor. The resulting expression is

h5
1

VkbTE0

`

^J~0!J~t!&dt, ~19!

whereV is the volume,kb is Boltzmann’s constant,T is the
absolute temperature, andJ is defined by

Jab5(
j 51

N S pa j pb j

mj
1b jF j aD ~20!

and is related to one component of the off-diagonal term
the stress tensor,sab , whereab equalsxz, xy, yz, yx, zx,
or zy. pa j andpb j are the momenta of particlej in thea and
b directions, respectively,b j is theb component of thej th
particle position vector, andF j a is the a component of the
force. Again we take the average of the off-diagonal terms
different time origins.

In order to obtain reliable average values for Eqs.~18!
and ~19! we utilize a method of overlapping-time-interva
correlation averages.37 This method allows one to store i
memory a series of individual correlation function
A(0)A(t) ~whereA is the quantity of interest—for example
the velocity or off-diagonal terms of the stress tenso!,
spaced apart by some time. The time spacing is determ
such that there is no correlation between the initial corre
tion function and the second correlation function. This s
nificantly shortens the computational time while getti
meaningful statistical averages.

TABLE I. Parameters for MEAM potentials.

Potential b (1) b (3) Cmin G(G)

Ni1 2.2 2.2 2.0 A11G

Ni2 2.2 2.2 2.0
2

11exp(2G)

Ni3 1.5 1.5 2.0
2

11exp(2G)

Ni4 1.5 1.5 0.8
2

11exp(2G)
9-3
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F. J. CHERNE, M. I. BASKES AND P. A. DEYMIER PHYSICAL REVIEW B65 024209
The results for the self-diffusivity and the shear viscos
are calculated using an average of 4000 individual corr
tion functions spaced 0.1 ps apart with a total time for
correlation function being 1 ps. Longer correlation functio
as well as including more correlation functions in the av
age did not significantly alter the resulting values. For ea
autocorrelation function calculated, the simulations las
approximately 400 ps. A total of three to five autocorrelati
functions were subsequently averaged to obtain the va
presented. The errors for the calculated diffusivity data w
less than 2%. The estimated errors in the shear viscosity
were less than 7%. These simulations were run using a
crocanonical ensemble~constantN, V, andE). The volume
was selected in such a way that the average pressure eq
zero. Each of these simulations contained 1372 atoms.
evaluated the effect of system size on our calculations
found that 1372 atoms was the optimal size for statistica
meaningful results and computational feasibility.

B. Other properties

We calculated the structural parameters through a se
of isobaric-isothermal simulations at 1775 K and zero pr
sure for each of the nickel potentials. Temperature was c
trolled using a standard Nose´-Hoover thermostat38,39 with a
time constant of 0.1 ps. A radial distribution function w
calculated for 150 different configurations of 10 976 atom
A Fourier transform of the radial distribution function wa
evaluated to obtain the structure factors we present
Sec. IV.

The melting point was calculated using the moving int
face method.40 This method is a two-phase simulatio
method that measures the velocity of the interface for a
riety of temperatures. The simulations were allowed to
pand and contract at zero constant pressure while temp
ture was held fixed away from the moving interface. Th
technique provides reasonable estimates of the melting p
A series of simulations bracketing the assumed melting t
perature was run while determining the velocity of the int
face. The total length of the simulations was 25 ps w
output times being 0.1 ps. The velocities were plotted w
respect to the temperature of the uncontrolled tempera
region. The melting point was taken as the temperatur
which the velocity equaled zero.

IV. RESULTS AND DISCUSSION

Following the two-phase simulation method describ
above, the melting points for each of the potentials w
obtained. Tabulated in Table II are the melting points. T
experimental melting point of nickel is 1726 K. It is notice
that Ni1, Ni2, and Ni3 all have similar melting points. Com
paring the resulting melting points of liquid nickel predicte
through MEAM calculations, the value ofCmin appears to
have a strong effect on the melting temperature~see Table I!.
It was noticed by Baskes28 that the selection of theCmin also
affects the linear expansion coefficient for the solid. The
lection of the form for the background electron densityG(G)
appears to have a minimal effect in changing the melt
02420
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temperature within the errors associated with the method
determining the melting temperature.

Also included in Table II are the zero-pressure densitie
1775 K. These densities are slightly lower than the exp
mental density.41 The CY-EAM potential appears to be th
closest to the experimental density. The furthest from exp
mental density was that of Ni1 which is 1.8% less than t
of the experimental. Thus each of the potentials predic
zero-pressure density very close to the experimental res

In Fig. 1, the structure factor for each of the potentia
evaluated within this paper is plotted. The experimental
sults indicated by the open circles were obtained fr
Waseda and Ohtani.41 The lines in the figure represent th
structure factor from the potentials. Each of the potenti
appears to fit the experimental data well. Even though e
of the potentials predicts the structure well, the structures
MEAM Ni1 and MEAM Ni2 appear to have longer-rang
correlations. In other words, the second and third peaks

TABLE II. Calculated melting points and atomic densities f
the EAM and MEAM potentials. Experimental density~Ref. 41! at
T51773 K is 0.0792 atoms/Å3 and the experimental melting
point is T51726 K.

Tm ~K! r at T51775 K
Potential 625 K (atoms/Å3)

A-EAM 1478 0.0781
CY-EAM 1536 0.0785
Ni1 1880 0.0778
Ni2 1825 0.0780
Ni3 1890 0.0783
Ni4 1570 0.0781

FIG. 1. Structure factor of liquid nickel. Lines represent t
calculated structure factor for EAM and MEAM liquid nickel; sym
bols represent the experimental structure factor data~Ref. 41!.
9-4
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PROPERTIES OF LIQUID NICKEL: A CRITICAL . . . PHYSICAL REVIEW B 65 024209
more pronounced. The position of the first peaks of
A-EAM and CY-EAM appears to be shifted slightly from th
experimental data points. Comparing each of the struc
factor curves in Fig. 1, it is noticed that the structure fact
are nearly identical for MEAM Ni1 and MEAM Ni2,
MEAM Ni3 and MEAM Ni4, and A-EAM and CY-EAM.
Thus, referring to the table for the MEAM potentials, Table
one sees that the structure factor appears to be controlle
the selection of theb (1) andb (3) parameters.

In Fig. 2 we report the viscosity results compared to
experimental viscosities from the 1950s and 1960s foun
Iida and Guthrie.17 The solid lines represent the experimen
results; our results are illustrated with symbols and
dashed lines. The dashed lines represent an Arrhenius
function through the data. The temperature uncertainty ar
from the temperature fluctuations within the simulations. I
prior paper,5 we reported larger fluctuations in the values f
the viscosity. Here we reduced the deviations by averag
more individual correlation functions. Furthermore, we e
sured that the spacing between the correlation functions
such that each correlation function was significantly deca
before overlapping the next correlation function. The ove
values of the viscosity were not significantly affected, ho
ever. The errors associated with the calculations were
duced to less than67%.

There have been other calculations for the viscosity
liquid nickel based on the Voter-Chen EAM potential.6–8 Be-
sides the difference in the potential the methodology in th
papers differs slightly in that they calculated the Green-Ku
viscosities at the experimental density rather than the z
pressure densities used here. This fundamental differe
could dramatically affect the viscosity obtained. For i
stance, one of the authors42 ran several calculations for liquid
nickel examining the effect of the density upon the sh
viscosity and observed that decreasing the density by

FIG. 2. Viscosity of liquid nickel as a function of temperatur
Solid lines represent experimental data from the early 1950s to
late 1960s~Ref. 17!. Dashed lines correspond to an Arrhenius be
fit curve through calculated data points.
02420
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decreased the shear viscosity by nearly 10%. Thus it is
consistent to calculate the shear viscosity using experime
densities rather than the zero-pressure densities predicte
the model.

Over the limited temperature range we studied, the v
cosity appeared to follow an Arrhenius relationship

h5h0 expFEa

kb
S 1

T
2

1

Tm
D G , ~21!

whereh0 is the viscosity at the experimental melting poin
kb is Boltzmann’s constant, andEa is the activation energy
In Table III, we present the values for the activation energ
of each process as well as the prefactors for each of
potentials studied here. It is difficult to compare these val
to experimental data, in part, due to the difficulty in expe
mentally measuring viscosity at high temperatures. The
culated activation energy for the viscosity of MEAM Ni3
Ni4, A-EAM, and CY-EAM is lower than the activation en
ergy from most experimental data by up to a factor of 1
The activation energy is higher by a factor greater than 2
the Ni1 and Ni2 potentials.

The calculated viscosity for MEAM Ni1 and Ni2 appea
to overestimate the experimental numbers while the rem
ing MEAM potentials and the EAM potentials tend t
slightly undershoot the experimental numbers. These res
could be explained purely from structural arguments. In
literature there exists a relationship that relates the mic
scopic details of the system to the viscosity through a se
empirical function ofg(r ) and the Lindemann frequenc
vL ,17,43

h5
8p

9
vLmn0

2E
0

a

r 4g~r !dr, ~22!

wherem is the atomic mass,n0 is the atomic density, anda
denotes the first minimum of the radial distribution functio
The Lindemann frequency is proportional to the square r
of the melting temperature. The Lindemann frequency t
we use is 3.7531012 s21 which corresponds to 15.5 meV.43

We then adjust this value to the melting point of the pote
tial. In Table IV, we compare our viscosity values extrap
lated to the potentials melting point to the viscosity calc
lated from Eq. ~22!. Comparing the trends with the
calculated integral and its resulting viscosity, Eq.~22! ap-

he
-

TABLE III. Viscosity parameters assuming Arrhenius behav
for each potential. The units ofh0 are mPa s and ofEa are eV.

Viscosity
Potential h0 Ea Ea /kTm

A-EAM 3.61 0.224 1.7660.03
CY-EAM 3.38 0.277 2.0960.03
Ni1 10.36 0.656 4.0560.05
Ni2 11.76 0.601 3.8260.05
Ni3 4.48 0.200 1.2360.05
Ni4 3.84 0.157 1.1660.03
Expt. range 4.2–6.4 0.311–0.374 2.09–2.51
9-5
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F. J. CHERNE, M. I. BASKES AND P. A. DEYMIER PHYSICAL REVIEW B65 024209
pears to not be a valid expression for our systems. Re
however, that MEAM Ni1 and MEAM Ni2 had essentiall
the same structure and compared to the experimental s
ture factors had greater intensity for the second and t
peaks. Perhaps Eq.~22! should be modified to extend t
beyond the second and third nearest-neighbor distances.
thermore, the more intense correlations at longer distan
appear to contribute significantly to values for the viscos

In Fig. 3, we report the results for the self-diffusion coe
ficient of liquid nickel as a function of temperature. The so
line in the figure represents the self-diffusivity predicted
Protopapaset al.44 The solid data points are the sel
diffusivity calculated in this work. The open symbols repr
sent the self-diffusion calculated by Alemanyet al.10 and by
Mei and Davenport.2 Alemanyet al. utilized a tight-binding
potential for their study and Mei and Davenport utilize
Johnson’s26 first nearest-neighbor analytical EAM potentia
Considering the differences in the potentials, we see con

TABLE IV. Viscosity values calculated from Eq. 22. The Lin
demann frequency used is equal to 3.7531012ATmcalc/Tmexpt. The
units of h, a, and*0

ar 4g(r )dr are mPa s, Å, and Å5, respectively.

hcalc hsemiemp a *0
ar 4g(r )dr

Potential (Tmcalc) (Tm)

A-EAM 4.65 5.70 3.43 99.0
CY-EAM 4.26 5.82 3.43 98.2
Ni1 7.22 4.27 3.03 66.3
Ni2 9.45 4.23 3.03 66.3
Ni3 3.99 4.97 3.18 75.9
Ni4 4.24 4.29 3.13 72.3

FIG. 3. Self-diffusion coefficient of liquid nickel as a functio
of temperature. The solid line is the data predicted by Protopa
et al. ~Ref. 44!. Dashed lines correspond to an Arrhenius best
curve through calculated data points. The open circle correspon
data obtained by Mei and Davenport~Ref. 2!. Open diamonds are
the results of Alemanyet al. ~Ref. 10!.
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erable agreement between the CY-EAM, A-EAM, MEAM
Ni3, and MEAM Ni4 potentials. We also see agreement
tween the MEAM Ni1 and MEAM Ni2 potentials. The self
diffusivity appeared to obey the following Arrhenius-typ
equation:

D5D0expS 2
Ea

kbTD , ~23!

whereD0 is the self-diffusion prefactor. The values forD0
andEa appear in Table V. The data predicted by Protopa
et al.44 is comparable in value with the A-EAM, CY-EAM
MEAM Ni3, and MEAM Ni4, yet the slope for the data
Protopapaset al. is greater. The activation energy for th
data of Protopapaset al. is 0.818 eV/atom which differs from
our activation energies by as much as a factor of 2.

Oftentimes the self-diffusion coefficient is predicted fro
viscosity data using Stokes-Einstein or Sutherland-Eins
expressions. The Stokes-Einstein relationship is given by

D5
kbT

6pRh
~24!

and the Sutherland-Einstein expression is

D5
kbT

4pRh
, ~25!

where the atomic radiusR is calculated from the atomic vol
ume. Applying both relationships to the Angelo potential, w
obtain the results shown in Fig. 4. From the figure, it
observed that the Sutherland-Einstein relationship, Eq.~25!,
provides a closer agreement to the calculated self-diffus
coefficient. Although the Sutherland-Einstein relationsh
provides good qualitative predictions for the self-diffusio
coefficient for pure liquid metals, one must exercise caut
in applying either of the expressions where accurate s
diffusivities are needed.

Examining the functional form of Eqs.~24! and ~25!, we
recognize that the expressions could be generalized as

DRh

kbT
5const, ~26!

where const51/6p and 1/4p for the Stokes-Einstein and
Sutherland-Einstein equations, respectively. In Fig. 5,
plot Eq. ~26! for each of the potentials. The lower solid lin

as
t
to

TABLE V. Arrhenius diffusion parameters for each potentia
The units ofEa are eV and ofD0 are 1025 cm2 s21.

Self-diffusivity
Potential D0 Ea Ea /kTm

A-EAM 56.0 0.364 2.8660.05
CY-EAM 108.0 0.476 3.5960.06
Ni1 139.5 0.618 3.8060.05
Ni2 203.7 0.704 4.4760.06
Ni3 62.4 0.394 2.4260.03
Ni4 59.6 0.381 2.8160.05
9-6
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in the plot represents the constant for the Sutherland-Eins
model, 1/4p. Aside from the data scatter, Eq.~26! does hold
for all the potentials except for MEAM Ni1 and MEAM Ni2
Each potential gives a slightly different constant which i
plies that the constant in Eq.~26! is potential dependent.

Under the assumption that Eqs.~26! and ~23! are valid,
we plot in Fig. 6 the natural logarithim ofh/T as a function
of Tm /T. We chose in Fig. 6 to plot with finer detail th
experimental data A-EAM, CY-EAM, MEAM Ni3, and
MEAM Ni4 for a closer comparison. MEAM Ni1 and

FIG. 4. Self-diffusivity calculated for the potential of Angel
et al. A comparison between the Green-Kubo diffusivity, Stoke
Einstein relationship@Eq. ~24!#, and Sutherland-Einstein relation
ship @Eq. ~25!#. Solid data points are calculated from Green-Ku
relationships. Open squares from Eq.~25!. Open circles from
Eq. ~24!.

FIG. 5. Plot of Eq.~26! vs temperature. The solid line represen
a value constant from the Sutherland-Einstein expression, Eq.~25!.
Dashed lines are least-squares fits for each data set.
02420
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MEAM Ni2 are beyond the range of the graph.Tm is taken
as the value found in Table II. For the experimental curv
Tm was taken to be 1726 K. With the A-EAM potential w
also aquired data below the experimental melting point
1726 K to see if the trend continued below 1478 K, the pr
referenced melting point of the potential. By analyzing o
data in this manner, we recognize that each of the EAM a
experimental curves have essentially the same slope w
the slope of the MEAM Ni3 and Ni4 potentials is slightl
lower. This high correlation between the potentials and
experimental points indicates that A-EAM, CY-EAM
MEAM Ni3, and MEAM Ni4 represent nickel very well
Furthermore, considering the errors associated with
method in determining the melting points, A-EAM, CY
EAM, and MEAM Ni4 could very well lie on the same line

Another approach that has been recently suggested
Dzugotov45 which relates the self-diffusion coefficient to th
excess entropy of the liquid, which is related to the rad
distribution functiong(r ). The relation for the dimensionles
diffusion coefficient Dzugotov proposed was

D* 50.049eS2, ~27!

whereS2 is the excess entropy of the system and is defin
as

S2522prE
0

`

$g~r !ln@g~r !#2@g~r !21#%r 2dr, ~28!

wherer is the atomic density,r is the radial position, and
g(r ) is the radial distribution function. Once the dimensio
less diffusion coefficient is calculated the actual diffusi
coefficient can be calculated using the following relatio
ship:

D5D* GEs2, ~29!

-
FIG. 6. Plot of the natural logarithim ofh/T vs Tm /T. Solid

lines represent experimental lines from the 1950s and 19
Dashed lines are best fits through the data obtained in this wo
9-7
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wheres is the position of the first maximum in the radi
distribution function.GE corresponds with the Enskog coll
sion frequency, given by

GE54s2g~s!rApkbT

m
, ~30!

whereg(s) is the value of the radial distribution function a
s andm is the mass of the atom.D* exhibits some tempera
ture and potential dependence through the characteristic
g(r ) with temperature and potential chosen. To test Dzu
tov’s universal scaling law, we took the radial distributio
function of the Cai-Ye potential at 1725 K and calculated
diffusion coefficient from Dzugutov’s expressions for th
self-diffusivity. We obtained a diffusion coefficient of 3.5
31025 cm2/s. The equilibrium molecular dynamics resu
in a self-diffusivity of 4.5031025 cm2/s. Although the self-
diffusivities are comparable, these numbers suggest tha
universal scaling law might not be universal. In fact, Ho
et al.46 suggested that the universal scaling law is valid
many-body potentials when the actual excess entropy is u
rather than the simple two-body approximation for the e
cess entropy. Thus we concur with Hoytet al. that the simple
two-body approximation to the excess entropy does not p
vide valid estimates for the self-diffusivity through the un
versal scaling law.
s.

n

J.

ry
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V. CONCLUSIONS

We have examined a variety of liquid nickel properti
predicted from two EAM potentials as well as four MEAM
potentials. Of these potentials each gives reasonable s
tures compared to experimental data. The melting points
termined by the moving interface method were in fair agr
ment for all of the potentials with the potential of Ange
et al. yielding the worst results. On the other hand, the ot
calculated properties of the EAM potential of Angeloet al.
agree well with the available experimental values. The m
ing points may be affected by the choice of theCmin param-
eter in the screening function of the MEAM. The se
diffusion coefficient and the viscosity appear to be depend
upon the details of the liquid structure out to the seco
and third nearest-neighbor distances. In other wor
the long-distance correlations appear to increase the visco
and decrease the diffusion coefficient. In addition, t
study extends the work of Foiles1 by illustrating that
MEAM potentials, even though short ranged, describe
structure of the liquids effectively. Of the MEAM potentia
for nickel examined, MEAM Ni3 and MEAM Ni4 appear to
provide the best agreement with the available experime
data.
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