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Effects of one- and three-dimensional inhomogeneities on the wave spectrum of multilayers
with finite interface thicknesses
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To describe a partially randomized multilayer structure with arbitrary thicknesses of the interfaces between
layers, we introduce a model in which the dependence of a material parameter along the axis of such a
superlattice is described by a Jacobian elliptic sine function with a random spatial modulation of its period.
Both one- and three-dimensional inhomogeneities of the period are considered. We develop the correlation
function for this model, and investigate the dispersion law and damping of averaged waves in this superlattice.
The dependencies of the widths of the gaps in the spectrum and the damping at the boundaries of all odd
Brillouin zones, on the thicknesses of the interfaces, and on the dimensionality, intensity, and correlation wave
number of the inhomogeneities are found. It is shown that experimental investigations of the widths of the gaps
and damping for several Brillouin zones could permit, in principle, determining all parameters of the super-
lattice as well as the parameters of the inhomogeneities from these spectral characteristics.
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[. INTRODUCTION magnetic waves in disordered media was considered in the
frameworks of geometrical optics. In Ref. 14 the dynamic
Multilayered media—one-dimensional superlattices—arecomposite elastic medium theory was suggested for calculat-
promising materials for use in various devices of high teching the wave spectrum in randomly layered one-dimensional
nology such as resonators, filters, mirrors, etc., for electromedia and media with three-dimensional inclusions.
magnetic, spin, and elastic waves. However, real multilayers One more method for investigating the influence of inho-
are not ideal periodic systems: they contain random violamogeneities on the wave spectrum of a superlattice was sug-
tions of the periodicity caused by technological and othegested in Ref. 15, the method of the random spatial modula-
reasons. That is why investigations of the spectrum of wavetion (RSM) of the period of the superlattice. This method is
in partially randomized superlattices have been carried ouan extension of the well-known theory of the random fre-
very intensively in recent years. Several methods exist nowuency(phas¢ modulation of a radio signH*’ to the case
for developing a theory of such superlattices. of spatial inhomogeneities in the superlattice. Laws of the
The modeling of the randomization by altering the orderdispersion and damping of the averaged spin, elastic, and
of successive layers of two different materidlsand B (of  electromagnetic waves were determined by this method for
different or the same thicknesss in wide use now. It is two models of superlattices: superlattices with an initial sinu-
assumed that neither the parameters of the materials nor tiseidal dependence of material parameters on a
layer thicknesses change when the system is randomizedoordinate:>'® and superlattices with a dependence in the
only the periodicity ABAB. .. in the arrangement of the form of rectangular spatial pulsé$®° These models corre-
layers corresponding to the ideal superlattice is destroyedipond to the two limiting cases of the relation between the
The different versions of this method differ in the types of thickness of the interfaceband the period of the multilayer
disruptions of the periodicity in the arrangement of the lay-structure. For the second modghe model of the sharp in-
ers: in some versions the layeksandB are arranged accord- terface d/I=0. For the first model, which is the limiting
ing to the Fibonacci or Thue-Morse sequence rule; in othersase of smooth interfaces, the thickness of the “layers” and
they form either partially correlated or totally uncorrelated “interfaces” is the same; the ratid/| =1/4 corresponds to
random sequences. A number of important and interestinthis model. It must be emphasized that not only in our
results have been derived with the help of this method irpaper$>'8-?°but in practically all works carried out to date
studies of the propagation of elastic spif=® and only these two models have been used in studies of the wave
electromagneticwaves. In several papers the study of wavespectrum in ideal as well as in randomized superlattices.
propagation in a superlattice was conducted in the frame- However, in real multilayers the ratid/| can have an
work of a method that consists in the numerical modeling ofarbitrary value between these limiting cases. To describe
the random deviations of the interfaces from their initial pe-such multilayer structures we have introduced in Ref. 21 a
riodic arrangemerit-° Another method was suggested inde- model in which the dependence of a material parameter
pendently in Refs. 11 and 12, where a form of the correlatioralong the superlattice axis is described by a Jacobian elliptic
function of a superlattice with inhomogeneities was postufunction. Depending on the value of the modulisof the
lated and then the wave spectrum and damping were calc@lliptic function, the model describes the limiting cases of
lated analytically. In Ref. 13 the propagation of the electro-multilayers with sharp interfaces& 1,d/I =0) and of sinu-
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soidal superlattices{=0,d/1=1/4), as well as all interme- This can be done if the function(x) is smoother in all

diate situations. We have also investigated the wave spechrections than the first harmonic of the Fourier series. Here

trum for this model in the absence of any inhomogeneities.q=2x/l, p=2m+1, and \/EBp are the exact Fourier coef-
The aim of the present paper is to calculate the spectrurficients for the functiorp(z) of the ideal superlattice,

and damping of the averaged waves in a partially random-

ized superlattice by the method of R&Mising the model of 27 RP/2
a superlattic® with an arbitrary ratiod/I. In Sec. Il we Bp= KIK-E) 1_R°' (4)

develop a correlation function for such a superlattice for one-

and three-dimensional inhomogeneities. In Sec. Ill we dewhere
velop the analytical equations for the spectrum and damping
of the superlattice. In Sec. IV we calculate the width of the R=exp< B 7T_K’> K'(0)=K(k'), &'=\I—x
gaps in the spectrum and the damping at the boundaries of K )’ ' '
odd Brillouin zones due to one- and three-dimensional inho- (5)

mogeneities, and discuss the results obtained. ) ) )
As in Refs. 15,19,20 we have introduced a coordinate

independent random phage which is characterized by a
Il. CORRELATION FUNCTION uniform distribution in the interval{ 7, ). This permits us

Any superlattice is characterized by the dependence dP satisfy the condition of ergodicity even in the case where
some material parametéy on coordinatex={x,y,z}. The u=0. )
physical nature of the parameta(x) can be different. This ~ The product of the functiom(x) and p(x+r) can be
parameter can be a density of matter or a force constant fgePresented in the form
the elastic system of a medium, the value of the magnetiza-
tion, anisotropy, or exchange for a magnetic system, and Sop(X-H’)p(X)
on. We represem(x) in the form © @
= > BB, {cosq[pr,—p’u(x)+pu(x+r)
A(X)=A[L+yp(x)], (1) Mo =0

. . +(p—p’)(z+ yla)]+cosqlpr,—p'u(x)

whereA is the average value of the parameteiis its rela-

tive rms variation,p(x) is a centered(p(x))=0) and nor- —pu(x+r)+(p+p')(z+ )}, (6)
malized (p(x)2)=1) function. The functiorp(x) describes
the periodic dependence of the parameter along the superl
tice axisz, as well as the random spatial modulation of this
parameter which, in the general case, can be a function of af
three coordinategs={x,y,z}. We represent this function in

the form (p(x+1)p(X)) ;= mE:O B cosp(ar,+x), )

a\l/%/_herep’ =2m’+1. The second summand vanishes after av-
eraging over the phasg. The terms withp’ # p in the first
ummand vanish as well, and after this averaging we have

1/2

K
p<x>=f<(ﬁ) s{%(z—u(xm o, @ e

x(x,r)=qlu(x+r)—u(x)]. ®

Averaging Eq.(7) over y with a Gaussian distribution func-
tion for y, we obtain a general expression for the correlation
function in the form

which has the form of the Jacobian elliptic sine function in
the absence of disordeu€0). HereK andE are the com-
plete elliptic integrals of the first and second kind, respec
tively, « is the modulus of these integrals, and the period

of the superlattice. The coefficient multiplying the elliptic o p2
function is the normalization constant, which follows from K(r= >, Bg cospqr,exp| — —Q(r)} 9
the condition(p(x)2)=1. The parameteat= /8K has been m=0 2

introduced in Ref. 21 as an effective thickness of the interyypere

faces in the initial ideal superlattice; the numerical coeffi-

cient has been chosen so thitt=1/4 for the limiting case QN =g%([u(x+r)—u(x)]? (10

of the sinusoidal superlattice; in so doing the main variation i )

of the value of the parameté(x) occurs over the lengtti 'S the structure function of the random displacemerts).
for all values ofd/I. As in Refs. 19,20 for the superlattice This function does_not depend on the model of a superlattice.
with sharp interfaces we assume here that the fungt{od) It has been found in Ref. 15 for the cases of one-, two-, and

can be represented in the form of a Fourier series even fc}pree—dlmensmnal mhor_nogeneltles.
u(x)#0 In Ref. 22 some refinements of these results have been

carried out, according to which the parametefiguring in
Ref. 15 has been represented in the form

P(X)z \/EmE:O Bp Si”p[Q(Z_ U(X))+ ¢] (3) o= 7u(kﬁ+ 2kf)l/2/q, (11)
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wherek andk, are the correlation wave number of inho- *

mogeneities along the axis and in thexy plane, respec- K(r)= E Bg cospqr,F,, (18
tively, and y,= v/, where y/ is the rms fluctuation of m=0

u(z). Taking into account Eq.11) the structure function for where

the case of one-dimensional inhomogeneities obtained in

Ref. 15 can be represented in the form (l—Dp)exp(—pzyﬁkor)Jer, Py.<1, 19

P exd — (pyukor)?/2], Pye>1,

where Dp=exp(—3y3p2). Numerical analysis shows that
these expressions approximate the exact expressi#r{rof
well enough for the corresponding valuesyoy,, .

Q(r,) =2y exp(— k) +kjr,—1] (12

or in the limiting cases of large and small

292(kir,— 1), Kkr>1,
Qry~{ o ” (13

(vukir2)?, kjr,<1. 1. SPECTRUM AND DAMPING OF WAVES

According to the results of Ref. 15 the approximate equa- We consider the equation for waves in the superlattice in
tions (13) can be used for the superlattice in the entire regior*the form
of variation of the variable, for the limiting cases of small 5
(py,<1) and large py,>1) rms fluctuation ofi(z). They Viut(v—ep(2))u=0, (20)
lead to the following approximate expression for the correyhere the expressions for the variapieand the parameters
lation function of the superlattice in the one-dimensionalg andy are different for waves of different nature. For spin

case waves whenu=M,+iM, describes the circular projection
" of the transverse components of the magnetizakiibnand
_ 2 the parameter of the superlattidéx) is the magnetic anisot-
K(r,) mZ:O B2 cospqr,®,, (14) ropy B(x), we havé®
where w— g B

TVIS &= (21)

_[exr{— pzyﬁ(kHrz— Dl Pyt (15  wherew is the frequency g(H+ BMy), g is the gyro
= ® wo= o) .
o lexd—(prkr)®2l, py>1 magnetic ratiog is the exchange parametét, is the value
. ic th di ional inh . h of the magnetizationg is the average value of the anisot-
strE&Lrésggil?ign ;;sir;elrfr:)errr:lona Inhomogeneities eropy, andy is its relative rms variation. We assume here that
only the value of the anisotropy depends on coordinates,
while the direction of the anisotropy axis coincides with the
exp(—kor)}, (16)  direction of the external magnetic field and does not de-
pend on coordinates. In the scalar approximation both the
spectrum of elastic waves in a medium with an inhomoge-
neous density and the spectrum of electromagnetic waves in
a medium with an inhomogeneous dielectric permeability are
Kor>1, also described by this equation with redefinitions of the pa-

(17 rameters. For elastic waves we have

2
1+ —

1 2 +
Kol Kor

— 2
QN =67} 1- 1

or in the limiting cases of large and small

1 2
Kor

(’}/ukor)z, k0r<1,

2v;

Q(r)~

v=(wlv)? e=vy, (22
wherek,=k =k, is the correlation wave number of the ran-
dom functionu(x).

An approximate equation for the correlation function o
the superlattice in the three-dimensional casepfgr>1 can
be written in the entire region of variation of the variablia
the same way as this has been done in the one-dimensional
case. But forpy,<1 this way is impossible in the three- wheree, is the average value of the dielectric permeability,
dimensional case, because the equation@qr) diverges v is its rms deviation, and is the speed of light. Equation
whenr—0. To overcome this difficulty we used in Ref. 20 (20) becomes more complicated when inhomogeneities of
the exact Eq(16) for Q(r), and represented the exponent inthe elastic modulus, of the exchange parameter, or of the
Eqg. (9) for K(r) as a power series iy,. Here we use an- magnetization are considered: terms of the foNuj(Vp)
other approach that leads to a simpler form of the equatiomppear in the equation in these cases. Inhomogeneities of the
for the wave spectrum of the superlattice. Namely, we apdirection of the anisotropy axis also complicate the equation
proximate the correlation function fary,<1 by the sum of because they lead to the appearance of a stochastic magnetic
an exponential function and a constant. In so doing we obtaistructure in a ferromagnet, which interacts with spin waves.
an approximate equation fot(r) in the form In this paper we do not concern ourselves with such cases.

wherey is the rms fluctuation of the density of the material
fandv is the wave velocity. For an electromagnetic wave we
have

v=gqo(wlC)? e=vy, (23
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Replacing to the right hand side of EQO) by the density We restrict ourselves to the case of small values of the
of a point sourced(x—Xg,) we obtain the equation for the function u(x) corresponding tqy,<1. First we consider
Green functionG(x,Xg) one-dimensional inhomogeneities. Substituting @d) with

5 ®, corresponding to the upper line of E3.5) into Eq.(32)
VEG(x,X0) +[v—ep(X) JG(X,X0) = 6(X—Xo).  (24)  and performing the integration we obtain the spectral density

ilfltteé);;entmg the Green function in the form of a Fourier S(K) = 8(ky) 8(k,) So(ky), (34)
where (k;) are Dirac delta functions, and
— i kx
G(X,Xo) J er dk, (25) SO:,yﬁkH 2 Bz exqp,yu)Z (35)
we obtain the integral equation for the Fourier components 2m % lp‘(p%’ﬁku)zﬂkz—pQ)z
of the Green function Herep=+*1, =3, ... . Substituting Eq¢34) and(35) into
_ Eq. (33) and performing the integration with respecktpwe
(V_kz)Gk:(;‘f Gy, pk—k, Ak + e'kxo, (26)  obtain the equation for the complex variable= v’ +i ¢ in
the form
Averaging this equation over the ensemble of the random o,
realizations of the functiop(x) we obtain , A? ) exp(pyy) A(1—ip2y2ky/\vy)
V_kZTE Ipl C 2 2 2 2
_ 5P (ri—ip?yik) 2+ (k,—pa)
(V_k2)<Gk>:8f (Gy,pr—k)dky+e¥o.  (27) (36)

whereA = \2&, v1=v—k;—kJ. In the case of the absence
of inhomogeneities 4,=0) this equation reduces to the
equation obtained in Ref. 21 for the wave spectrum in the

Increasing the subscripts dnby unity in Eq.(26), express-
ing le from this equation, and substituting it into EQ7),

we obtain ideal superlattice with finite thicknesses of interfaces.
The complete equatio86) is very complicated for ana-
(r—k2)(G) = zf f<pkklpklk2Gk2>dk dkot eik%0 lytical analysis. But with the proviso that/v<1, the reso-
v k=e p—K>2 102 ' nances corresponding to differemtin the sum in Eq.(36)

' (28) influence one another only slightly. That is why we can re-

. . i strict ourselves to the two-wave approximation in the vicin-
Decoupling the averaged product in the integrand of(E8§). ity of each odd Brillouin zone boundaky=k,,=ng/2, keep-

in an ap_pro;dmation corresponding to the Bourreting in the sum only the ternp=n corresponding to the
approximatiort, Brillouin zonen considered:

(Pk—k, Pk, —k,Ck,) ={Pk—k; Pk, —k ) Gk ) (29) (v=KA[(Vry—in2y2k)?— (ng—k,)]

we obtain the averaged Green function in the form A2
= Bhy expny)2(L=in®ylk /vy (37)

(G =

k2 62[ S(k—ky)dk;

-1
eikXo, 30
v— k% l (30

Let us make some further simplifications in this equation. We
will consider the waves to be propagating along thaxis

Here S(k) is the spectral density of the superlattice de-(Kz=K, »1=v). Under the conditiomyZk/q<1 we can

fined by the formula neglect both the imaginary part of the coupling parameter
and the shift of the crossing resonance point and obtain the
(prpr)=S(k)s(k+k"), (31 equation in the form
or by the inverse Fourier transformation of the correlation A2
function of the superlattic&(r): (v=k?)[v—in®y’ka—(ng—k)?]= TB‘ZM exp(ny,)>?.
(38)
S(k)= (277)3f K(rye ™ dr. (320 Solutions of this equation have been well investigated for the

case of the model of the sinusoidal superlatficen=1,
Laws of the dispersion and damping of the averagedln=1) as well as for the model of the sharp interfddé8

waves are determined by the equation for the complex fre(Bjn=2v2/mn). In the absence of inhomogeneities,(
quencyv= v’ +i§&, which follows from the vanishing of the =0) the gaps\v,=v, —v_=ABj, existin the wave spec-

denominator of the Green function: trum at the B_riIIouin zone boundarida_ns k_mz na/2; herev..
are the solutions of Eq38). In the vicinity of k;,, the spec-
_ trum has the form shown schematically in Fig. 1 by two solid
S(k—ky)dky .
v—kK=¢e| ——— (33)  curves(we use the extended zone schenWhen inhomo-
v—ki geneities appear the solutions become complex. The gap in
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v _Vm)/ABm

0

(k- krn)/krn

FIG. 1. Dispersion curves near the Brillouin zone boundaries

k=k,, for the ideal superlatticésolid curve$ and for partially ran-
domized superlatticegdashed curve for the small and dotted-
dashed curve for large intensity of inhomogenejties

the spectrumAv,=v', — v’ decreases with the increasing
v, (dashed curves in Fig.),land at last closes: the spectrum

of the averaged waves is described now by a continuous

curve with a point of inflection ak=k,, (the dotted-dashed
curve in Fig. 1. Simultaneously with the increase ¢f the
damping ¢ increases, whose dependencekohas a maxi-

mum atk=Kk,,. So, the Brillouin zone boundaries are the
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1.2
n=1

1§

AN
08l v s 1
N AY —
$= AY \\ %
%0.6 * AN {x"
RN e

FIG. 2. The dependencies of the gap widths in the spectrum
on d/I for the different Brillouin zonesn=1, 3, 5, and 7(solid
curves for the ideal superlattice. The relationd v,/A v, are also
shown forn=3 (dashed curye n=5 (dotted-dashed curyeand
n=7 (dotted curve

82

1-D
2_ 2 p
v-ki=7 2 Bf

Lﬁ—ivﬁpzko)z—(k—pq)z

D

+—P 1 (43)
v—(k—pq)zl

most sensitive points of the spectrum with respect to the
influence of inhomogeneities. At these points the expressions

for Av, and ¢, have the forms

Av,
A =RelL,, (39
& 1
1= 5 (N in=ImLy). (40)
Here
La=[Bfy exp(nyy)2—(n3y5n)?]*2 (41)

where n=Kkjg/A. Both the width of the gapA v, and value
of the dampingé, depend on the parameters of the initial
ideal superlatticed, A, andd/l), characteristics of the in-
homogeneities ¥, and »), and the Brillouin zone number.

We come now to a consideration of the case of three-

dimensional inhomogeneities. Substituting ELg), with F,
corresponding to the upper line of E(9), into Eg. (32),

and performing the integration we obtain the spectral density

¥ap?ko(1-Dy)
[(¥5p%ko)?— (k—pq)?]?

1
Sto="- Ep: Bfm{

+7T2Dp5(k—p(Z])}, (42)
wherep=+*1, =3, ... . Substituting Eq42) into Eq.(33)
and performing the integration with respectkpwe obtain
the equation for the complex variabiein the form

In the two-wave approximation in the vicinity of each odd
Brillouin zone boundank~k,,=ng/2, keeping in the sum
only the termp=n, and using the same simplification that
yielded Eq.(38), we obtain

1-D, D,

+ .
”L—iyﬁn%q—(k_nq)z v—(k—nq)?
(44)

<
|
=~
N
I
=N

This equation is a cubic equation inand in contrast to Eq.
(38) for the one-dimensional case its solution cannot be rep-
resented in an explicit form analogous to E(9)—(41).

FIG. 3. The dependence of the width of the gap, ond/l and
y?2 at p=4 for the 1D case.
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0.6 0.15
n=1 /‘"
i
« 1D Y
04 0.1
<
W
0.05
0 0.1 Y2 0.2 0.3 0 0.1 72 02 0.3
u
u

FIG. 4. The dependence of the width of the gip, on y2 at FIG. 6. The dependence of the dampisigon y2 at =4 for
n=4 for the 1D and 3D cases for the superlattice with sharp interhe 1D and 3D cases for the superlattice with sharp interfaces
faces €/1=0, solid curvep and sinusoidal superlatticel{l =1/4, (g1 =0, solid curvesand sinusoidal superlatticel{l = 1/4, dashed
dashed curves curves. The scales for the 1D and 3D cases are shown by the

arrows.
IV. NUMERICAL RESULTS AND THEIR DISCUSSION

The quantityB, in Egs. (38)—(44) is a transcendental d/l. The dependence on for the limiting cased/I=0 is

function of d/I. That is why we investigate these equationsdetermined by the expressi@%‘zzﬁ/wn, and in the lim-

by numerical methods. Results of these investigations at th@ing case of the sinusoidal superlatticd/=1/4) all the

pointsk;,=ng/2 are shown in Figs. 2-8. Fourier harmonics, except the first, vanish. This means that
The spectrum of waves in an ideal superlattice with ann this case the first order of perturbation theory does not

arbitrary ratiod/l in the absence of inhomogeneitiey,(  give a contribution to the gap widths. The latter are deter-

=0) has been studied in Ref. 21. Widths of the gaps in thisnined by terms of higher orders which were not taken into

case are determined by the dependence andd/l of the  account in our analysis. The ratiog\ v,/Av; are shown

coefficients of the expansion of the functip(z) in the Fou-  also in Fig. 2 fom=3, 5, and 7. As has been noticed in Ref.
rier series:

Ap B 1D
"= (45) 7 R B

A Bl

These dependencies are depicted in Fig. 2fed, 3, 5, and 1y
7 (solid curves$. From this figure we notice that the width of

7
.y
A
r////////

the gap for the first Brillouin zone depends slightly dA fm W%,/%g%
because the coefficient before the first Fourier harmonic de- 305 = ‘j////”

pends slightly on the form of the functiom(z):B;
=2\2/7~0.9 for the limiting case of a superlattice with _ [

sharp interfacesd/l =0), andB;=1 for the other limiting 0= 13 10°
case of the sinusoidal superlattic#/|(= 1/4). The widths of

the gapsAv, for n>1 strongly depend on as well as on (a) 04

061

Viiirgy 90,
0.34 ' LA
LT

®) 04
FIG. 5. The dependence of the dampifigon d/I and y? at 7 FIG. 7. The dependence of the width of the gap; ond/I and
=4 for the 1D case. yﬁ at =4 for the 1D(a) and 3D(b) cases.
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n=3 1 T ID " 3
R N "

- \ o1 3D 2
- AR E:
4 , /A\I‘i‘:‘:‘:‘\“‘:‘\\@‘ : 3 ;

. AR S :

0.05{ ERSN N N

. 0.05 !
02 ot
1 i
P -, 0 1 ,Y2X102 2 3
u

FIG. 8. The dependence of the dampifigon d/I and yﬁ at ¢

; 2 —
— 4 for the 3D case. FIG. 9. The dependence of the dampigigon y;, at =4 and

d/I =0 for the 1D and 3D cases. The scales for the 1D and 3D cases

) . are shown by the arrows.
21, the experimental measurement of the ratio between the

widths of the gaps at the boundaries of the first and any other ) ) ] )
Brillouin zones offers the possibility of determining the d@mping with the further increase of . In Fig. 6 the depen-

thickness of the interfaces in a multilayered medium. dencies of; on 7 are depicted for both the 1D and 3D
When inhomogeneities appear the width of the gap incases for the limiting cased/I =0 (solid curveg and d/I

addition to its dependence aifl andn, now depends also on = 1/4 (dashed curvesThe dependence @ for the 1D case

the intensity of the inhomogeneitieg and on their dimen- has a sharp peak at the same valug/pfvhere the gap v,

sionless correlation wave numbsr The latter is determined closes(Fig. 4). It should be noted that the scales for the 1D

for the one-dimensiondlLD) and three-dimension&BD) in- and 3D cases on the graph are different, and the difference

homogeneities by the expressions between the values of the damping for the cases of one- and
three-dimensional inhomogeneities reaches an order of mag-
nitude.
_ kia/A, 1D, We come now to a consideration of the valuef\ef, and

(46) ¢, for the third Brillouin zone 6=3). In Fig. 7 the depen-

dencies ofAv5 on d/l and yﬁ are shown forp=4 for the
In Figs. 3, 4, 5, and 6 the dependencies\of, and¢, on  ON€- and three-dimensional cadédgs. 7a) and 7b), re-
spectively. The width of the gap\ v for the 1D casgFig.

d/I and 52 are shown forp=4. The width of the gap\ v, > ,
for the first zone for the one-dimensional inhomogeneities’ (@] strongly depends od/l as well as ony; . That is why

(Fig. 3 decreases with the increaseff, andA v, closes at ~ the surfaced v,(d/l, 7 for the 1D case has a more compli-
some critical value ofy? that is approximately the same for catéd form fom=3 than forn=1 (see Fig. 3 The closing
the superlattice with any ratid/l. In Fig. 4 the dependencies ©f the gapA vz occurs at a much smallerf than the closing

of Av, on y2 are depicted for the one- and three-dimensionaPf e gapAv,, in our case §=4), for instance, by two

inhomogeneities for the limiting cases of the superlattice®d€rs Of magnitude. The gapv; for the 3D casgFig. 7(b)]

with the sharp interfacesi(l =0, solid curvesand the sinu- d€Pends oml/l as strongly as in the 1D capeig. 7(@)]. But
soidal superlatticed/| = 1/4, dashed curvgsAll curves cor- 'S depen<2:ience ory, is not so strong, and the surface
responding to intermediate values ofl align themselves Avs(d/l,y) has a simpler form in the 3D case than in the
between these two limiting curves. One can see that 1D case. In Fig. 8 the damping in the one-dimensional
decreases much more slowly with the increase of 3D inhocase is shown as a function dfl and ;. The surface
mogeneities as compared with the 1D case: the gap for 3®s(d/I,¥7) has a much more complicated form than the sur-
has a rather large value when the gap for 1D is alreadyace gl(dll,yﬁ) (see Fig. % because of the strong depen-
closed. dence of¢; on d/l. In Fig. 9 the dependencies gt on yﬁ

In Fig. 5 the damping; is shown for the 1D case as a are shown at/|=0 for both the 1D and 3D cases. The
function of d/I and yﬁ for »=4. The graph in this figure dependence in the 1D case has a sharp peak just at the same
corresponds to the choice of the minus sign before the sewalue ofy? at which the corresponding gap closes. Note that
ond term in Eq.(40). This choice of the sign is justified in the scales for the 1D and 3D cases on the graph are different,
Ref. 18, where susceptibilities of the sinusoidal superlatticeind the difference between the values of the damping for the
are investigated. With the increaseﬁﬁ a linear increase of cases of one- and three-dimensional inhomogeneities is two
the dampingé, occurs at the beginning, which results from orders of magnitude. All graphs in Figs. 3—9 correspond to
the first term of Eq(40); the second term of this equation is the value of the dimensionless correlation wave numker
equal to zero this time becaukg has only a real component. =4. In Fig. 10 the phase diagram for the existence of an
The gap closes at some criticﬁ and the second term of Eq. open gapA v in the 1D case is shown in the coordinatks
(40) subtracts from the first one leading to a decrease of thand yﬁ for =2, 4, and Gthe region of existence of an open

77 koq/A, 3D.
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case. Equatiori48) describes the dependencies&fon n,
d/I, and yﬁ that were shown in Figs. 6 and 9, but only in the
regions ofylzj where¢, increases with increasingzu.

Let us summarize the results obtained. The widths of the
gapsAv, at the boundaries of Brillouin zones are the most
sensitive points of the spectrum of a superlattice in relation
to the influence of inhomogeneitié® the increase of their
rms deviationsy,). This sensitivity depends on the number
of the Brillouin zonen and on the relative thickness of the
interfacesd/l. The width Av, of the first zone practically
does not depend od/l, and has the least sensitivity to the
influence of inhomogeneities. Far>1 the sensitivity is
higher the largem and the smalled/l. That is why with
increasing disorder the successive closing of the gaps in the

FIG. 10. The phase diagram for the existence of an open gappectrum takes place beginning with large valuea dbwn

Awvzin the spectrum in the coordinatdd and yﬁ for =2, 4, and
6.

gap is situated under the corresponding curVais diagram
is the solution of the equation,=0 whereL , is defined by

Eq. (41). The curve withy=4 corresponds to the cross sec- dimensional

tion of the surface\ v in Fig. 7(a) with the planed/I, 2 in

to n=1. The effects of inhomogeneities on the wave spec-
trum depend on their dimensionality: the one-dimensional
inhomogeneities affect the spectrum more strongly than do
the three-dimensional ones. A gap in the spectrum decreases
much more slowly with increasing, for the case of three-
inhomogeneities than it does for one-
dimensional inhomogeneities with the same correlation wave

this figure. The other curves in Fig. 10 show how this crossnumber. A gap in the 3D case still has enough large value

section changes ag changes.

when the gap corresponding in the 1D case is already closed.

As noted above the solution of E¢4) for the 3D case The damping induced by three-dimensional inhomogeneities
cannot be represented in an explicit form, and this equatioman be smaller by several orders of magnitude than the
has been solved numerically. But the following approximatedamping induced by one-dimensional inhomogeneities with
analytical solution of Eq(44) can be used for small values the same values of, and 7.

of n?y2<1:

Av, 3 (Ny)A(2n3yin/B,)? “n
AT 2 14 (2nyiglB,)?
3 n5 4
én 3 Yu?? 49)

A2 l+(2n3y377/Bn)2.

Equation(47) describes well the dependenciesfof, onn,
d/I, and yﬁ which were shown in Figs. 4 andly for the 3D

From this entire analysis we can conclude that a detailed
investigation ofAv, and &, permits, in principle, determin-
ing from these spectral characteristics all the parameters of
the superlattice), |, andd, as well as the parameters of the
inhomogeneitiesy, and 7.
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