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Coulomb glass in the random phase approximation
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A three-dimensional model of the electrons localized on randomly distributed donor sites of densityn and
with the acceptor charge uniformly smeared on these sites,2Ke on each, is considered in the random phase
approximation~RPA!. For the caseK51/2 the free energy, the density of the one-site energies~DOSE! «, and
the pair OSE correlators are found. In the high-temperature region (e2n1/3/T),1 (T is the temperature! RPA
energies and DOSE are in a good agreement with the corresponding data of Monte Carlo simulations. Ther-
modynamics of the model in this region is similar to the one of an electrolyte in the regime of Debye screening.
In the vicinity of the Fermi levelm50 the OSE correlations, depending on sgn(«1

•«2) and with very slow
decoupling law, have been found. The main result is that even in the temperature range where the energy of a
Coulomb glass is determined by Debye screening effects, the correlations of the long-range nature between the
OSE still exist.

DOI: 10.1103/PhysRevB.65.024206 PACS number~s!: 71.23.2k, 71.30.1h, 71.45.Gm
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I. INTRODUCTION

Electron-electron interactions affect considerably the lo
temperature behavior of doped semiconductors on both s
of the metal-dielectric transition.1–3 On the dielectric side the
Coulomb interaction between the localized electrons ma
the density of the one-site excitations~DOSE! to tend to zero
as a power law in the vicinity of the Fermi level, as argu
by Efros and Shklovskii.3 Because of the DOSE concerns t
low-temperature conductivity and tunneling characteris
of doped semiconductors, many investigations4,5 were
undertaken6–9 to elucidate the nature of this so-called Co
lomb correlation gap. The rare analytical results in t
area10–14 are due to the hardness of the problem conside
Today, the only well established analytical results12,14are the
temperature dependences ;TD21 for D>2 and
;@ ln(1/T)#21 for D51 found for g(m). As it was
shown,13 the nonlinear equation10 for g(«) at T50 is based
on some vague assumptions about decoupling of OSE co
lations. Mogylansky and Raikh11 managed to extend th
approach10 to the case of nonzero temperatures. The bas
their method comprises of the Metropolis algorithm15

adapted to analytical applications at the expense of the
indefinite assumptions. The first one is concerned with
decoupling of the pair OSE correlations. The second
admits the law of Markoff type for the approach to equili
rium in terms ofr as a formal ‘‘time’’: a charge transfe
between the sites with the distances from the interval (r,r
1dr) does not influence DOSE found ‘‘previously’’ in term
of r as a time. Recently, this approach11 has been extended t
include the pair correlations of OSE,16 and the solution has
been found for the two-dimensional case in the first orde
the perturbation theory on the pair potentialV(r), decreasing
no slower than 1/r2 asr tends to infinity. In the case of high
temperatures the parameterV(r)/T plays the role of the
small one in the theory.16 Because the approaches develop
are of a qualitative and uncontrolled character it is desira
to compare them to some well established analytical res
such as the high-temperature expansions of the free en
0163-1829/2001/65~2!/024206~9!/$20.00 65 0242
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and correlations for the Coulomb glass problem. Meanwh
it is well known17 that the development of the free energy
correlations in powers of the parameterV(r)/T gives diver-
gent terms in the case whereV(r) is the Coulomb potential.
Mayer’s approach to solving this problem18–21 is based on a
very complicated technique of the redevelopment of term
series with following resummations aiming to remove dive
gences from the terms of the new series. Later a quite dif
ent approach to this problem, using Fourier components
local densities as so-called ‘‘collective’’ variables~CV’s!,was
elaborated.22,23 Compared to Mayer’s approach, this one
considerably simpler. The central point of this approach c
sists of switching from the individual variables to CV’s v
the corresponding Jacobian. In many cases this Jacobian
the form of the integral on a CV measure with an exponen
form as the integrand. An exponent of this integrand sho
be considered as a part of an action for a statistical mech
ics of a nonlinearly self-interacting field. Already in the ze
approximation of this self-interaction the well-known ra
dom phase approximation~RPA! arises and the following
expansion of the exponent gives the cluster expansions
the free energy and correlators.24 Since the thermodynamic
of Debye electrolytes17,24 in the temperature range

e2n1/3

T
,1 ~1!

is well described by RPA, one should expect a similar beh
ior would take place for the Coulomb glass in this region
was our goal to investigate thermodynamics of a Coulo
glass~the free energy, DOSE, and the pair OSE correlato!
in RPA aiming to have the reliable results in the region wh
RPA is applicable. In the present paper the Coulomb gl
model with N•(12K) electrons localized onN donor sites
and with the acceptor charge2Ke ascribed to each dono
site is considered. The energy of the model considered
pends as on the donor site configurationR5@xi #1

N so on the
charge distributionm5@mi #1

N :
©2001 The American Physical Society06-1
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Ĥ@m#5
1

2 (
iÞ j

mimj

r i , j
1C@m#. ~2!

Heremi5L for the neutral andmi52K for the ionized site.
The whole setm5@mi #1

N obeys the electroneutrality cond
tion

(
1

N

mi50. ~3!

From now on the cap above some variable@e.g., the energy
~2!# meansR dependence, andr i , j means the distances be
tween the sites. The expression~2! has been written in di-
mensionless form with the scalesn21/3 for lengths ande2n1/3

for energies and temperatures. The constantC@m#, not de-
pending onR, has been added into Eq.~2! to remove thekW
50 Fourier component of the bare Coulomb potential. A
tually, the constantC@m# depends only onK, provided the
electroneutrality condition~3! is fulfilled; its specific value
will be given later. In all calculations concerning with th
equilibrium averages we use the Ising spin variabless i in-
stead ofmi :

2mi5~122K !1s i , where s i561. ~4!

The caseK51/2 is the simplest one because summing on
independent Ising spins provides the electroneutrality in
thermodynamic limit.25 In the present work we confine ou
selves to the caseK51/2. A side benefit is that the Ferm
level m(T,K)50 in this case. This becomes evident if w
take into account the invariance of the sums in equilibri
averages with respect to theK→L changing. As the conse
quence, we get two symmetry relations:FN(T,K)
5FN(T,L), for the free energy, andm(T,K)52m(T,L), for
the Fermi-level, provided we define last as the derivative
FN on the number of the electronsN•(12K) at N being a
constant. Our approach is based on the combination of
CV ~Refs. 17, 22, and 23! and the replica26 methods. Be-
sides, we used Monte Carlo~MC! simulations15 to elucidate
the region of RPA applicability.

The remaining part of this paper is organized as follow
In Sec. II we give some background to our approach and
the free energy in RPA. We compare our analytical result
MC simulation data and find good quantitative agreemen
the region~1!. In Sec. III we present DOSE found in RPA
compare it to MC simulation data and once more get
evidence of the good applicability of RPA in region~1!. In
Sec. IV we present the formulas for the pair OSE correlat
in RPA. Being cumbersome, they, however, have a sim
behavior in the asymptotic regimer .r d (r d is the screening
radius!. Quite unexpectedly, it turns out that near the Fer
level m50 in an energy strip of the orderT21/2 a very slow
decoupling of OSE correlations exists, attractive for OSE
the same signs and repulsive for those of opposite sign
Sec. V we present a qualitative comparison of our formu
to the ones of Blanter and Raikh.16 In Sec. VI we formulate
our conclusion.
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II. BACKGROUND: COLLECTIVE VARIABLES

We present in this section the integral representation
the free energyFN(b) ~from now onb51/T). Then we use
this representation to get the RPA formula forFN(b) and
compare to MC simulation data.

A. Energy in the terms of CV

In the replica approach it is the replicated partition fun
tion

ẐN
s 5TrN

K expS 2b (
a51

s

ĤN~ma!D ~5!

which one has to calculate to find thenFN by the formula

FN~b,K !5 lim
s→0

S 12ẐN
s

bs
D . ~6!

In expression~5!: s is an integer, TrN
K means the sum over th

whole set of charge states@mj
a#1

N ,a51,2•••s, obeying the
electroneutrality condition~3! for eacha. The overlines in
expressions~5! and ~6! denote the averaging on the Poiss
distribution of the specimensR:

Q̂̄5E dxW1

V E dxW2

V
•••E dxWN

V
Q~xW1 ,xW2 , . . .xWN!. ~7!

We choose as CV’s the Fourier componentsQ̂kW of the devel-
opment

Q̂~xW !5AKL

N (
kWÞ0

Q̂kW exp~ ikWxW ! ~8!

for the local charge density

Q̂~xW !5(
i 51

N

mid~xW2xW i !. ~9!

The electroneutrality condition~3! implies Q̂k50 at kW50.
From now on we work with the regularized Coulomb pote
tial

Fc~xW !5
1

N (
kW

F̃k exp~ ikWxW !, F̃k5
4p

kW21a2
. ~10!

Besides, all sums(k and products)k are considered as hav
ing the ultraviolet regularizationukW u<L. We will take the
limits L→` anda→0 only in final results. The insert of the
expansion~10! into the formula~2! gives us the energy ex
pression through CV’s. The constant in Eq.~2! has to be
chosen as

C@m#5F̃0•S 1

2N (
i 51

N

mi
2D ~11!

to remove from the energy
6-2
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ĤN@m#5(
k

8 nk~Q̂kQ̂2k21! ~12!

the term withkW50. In expression~12! the stroke above the
sum symbol means summing over the half space$kW :0,kx

2

1ky
21kz

2<L2, kz>0%. From now on the presence of th
stroke above a symbol of a sum or a product means
action on this half space. The functionnk entering Eq.~12! is
defined as

nk5
kd

2

kW21a2
, kd

254pbKL. ~13!

It can be simply proven, using the electroneutrality condit

~3! and Ising spins~4!, thatC@m#5 1
2 KLF̃0, i.e., it does not

actually depend on the charge configurationm. Notwith-
standing, we prefer to keep the form~11! since OSE calcu-
lation breaks electroneutrality.

B. Jacobian

For thes charge distributions@mj
a#1

N , with a51,2, . . . ,s,
on the same specimenR, we define the real variable
Ĉk

a and Ŝk
a as the real and imaginary parts of CV’s:Q̂k

a

5Ĉk
a1 iŜk

a . These real variables obey the symmetry relatio

Ĉk
a5Ĉ2k

a , Ŝk
a52Ŝ2k

a , so that as functions ofkW they are
actually defined on the half space described above. In pa
lel with the depending on the specimenR CV, we consider
the ‘‘free’’ variablesQk

a5Ck
a1 iSk

a , with the same symmetry
relations as for the CV with the ‘‘hats,’’ and switch to the
free variables in the expression~5! for the replicated partition
function

ẐN
s 5expS s•(

k
8 nkD

3TrN
KF E dQ expS 2(

k
8 nkQW k•QW 2kD •J~QW ,mW !G

~14!

using the Jacobian

J~QW ,mW !5 )
a51

s

)
k

8 d~Ck
a2Ĉk

a!•d~Sk
a2Ŝk

a!. ~15!

The measuredQ in the formula ~14! is defined asdQ

5)a51
s )k8dCk

a
•dSk

a . In the formulas~14! and ~15! QW k and

mW j mean the vectors in thes-dimensional space and expre
sions likeQW k•QW 2k mean the scalar products in this spac
The exceptional simplicity of the Poisson formula~7! allows
us to make the exact averaging in Eq.~15! and get for the
Jacobian~15! an integral representation in terms of CV me
sure in the CV-Fourier space. To do this, we put into us
the real fields
02420
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za~xW !5
1

AKLN
(
kÞ0

zk
a exp~ ikW•xW !, 1<a<s, ~16!

the real variablespk
a andqk

a defined on the half space aszk
a

5pk
a1 iqk

a and the measure in the CV-Fourier spacedz

5)k8(dpW k /ps)•(dqW k /ps). Then, using the integral repre
sentation for thed functions and Poisson averaging~7!, we
get

J~QW ,mW !5E dzexpF22i(
k

8 ~CW kpW k

1SW kqW k!G•)
j 51

N

exp@ imW j zW~xj !#. ~17!

In the final step we transform the Jacobian inserting
identity23

exp@ imW •zW~x!#5expF (
n52

`
i n

n!
vn~mW •zW !G ~18!

which expresses the left-hand side of Eq.~18! through the
irreducible sums

v~zW•mW !5S 1

KLND n/2

(
^k11k21•••kn&50

~mW zWk1!

3~mW zWk2!•••~mW zWkn!. ~19!

In Eq. ~19! the symbol^k11k21•••1kn&50 means that
ki11ki21•••kipÞ0 for any subset, but@k1 ,k2 , . . .kn# it-
self. By inserting the identity~18! into formula ~17! we get
the integral representation of the Jacobian

J~QW ,mW !5E dzexpF22i(
k

8 ~CW kpW k1SW kqW k!

1 (
n52

`
i n

n!
Vn~zW•mW !G ~20!

with Vn(zW•mW )5( j 51
N vn(zW•mW j ). Now, having inserted the

integral representation~20! into formula ~14! and taken the
Gaussian integral ondQ measure, we get the integral repr
sentation for the replicated partition function, our starti
point:

ẐN
s 5expH s•(

k
8 Fnk1 lnS p

nk
D G J •TrN

K

3F E dzexpS 2(
k

8
zWk•zW2k

nk
1 (

n52

`
i n

n!
Vn~zW•mW !D G .

~21!

When going from the initial expression~5! for the replicated
partition function to the final one~21! we have used the way
via the Jacobian integral representation~20! different from
6-3



r
th

g

po

it

e

l
l

e

y

e

C
gh
in
r

is
en-

tita-
ion
te,

of

t

h

f
wo

f
sti-

e

s-
he

ns

are

S. A. BASYLKO, V. A. ONISCHOUK, AND A. ROSENGREN PHYSICAL REVIEW B65 024206
other approaches.17,23,24This way makes all calculations fo
the free energy, DOSE, and the OSE correlators to be of
same type.

C. RPA for F N„b…

From now on we confine ourselves to the caseK51/2, for
which the electroneutrality condition~3! does not have to be
taken into account specifically.25 The RPA corresponds to
Vn50 for all n>3. Having inserted Ising spins~4! into V2
from Eq. ~20!, we get

V2~zW,mW !5(
k

8 ~zWk ,DzW2k!, Da,b5
1

N
•(

j 51

N

s j
as j

b.

~22!

So,D is the matrix in as-dimensional replica space. Havin
taken Gaussian integrals in the formula~21! ~with Vn50 for
n>3) and transforming the determinants arising into ex
nential form, we get, after some simple algebra,

ẐN5expS s•(
k

8 @nk2 ln~11nk!# D •TrN

3FexpS N(
n>2

~21!n

n
•gn•Sp~D̆n! D G ~23!

with D511D̆, Sp as the trace in the replica space, and w
gk andgn defined as

gk5S nk

11nk
D , gn5

1

N S (
k

8 gk
nD , n>2. ~24!

The symbol TrN in Eq. ~23! means the trace without th
restrictions due to the electroneutrality condition~3!. Note
that all gn entering Eq.~23! allow for going to the limitsL
→`, a→0. It is shown below that TrN@•••# entering Eq.
~23! equals to exp@N ln 21O(1)#, where O~1! is the order of
the corresponding term atN→`. So, from Eq.~23! we get
immediately in the leading order onN: bFN /N52 ln 2
1(1/N)(k8@ ln(11nk)2nk#. This expression is the specia
case of the common formula~we have returned to natura
dimensions in this case!

bFN /V52nFK lnS 1

K D1L lnS 1

L D G2kd
3/12p ~25!

which helps us to understand the meaning of two terms
tering it. Since at high temperatures each of theN donor sites
is ionized with probabilityK and is neutral with probability
L, the first term in Eq.~25! is nothing but the entropy densit
ascribed to the sites in the unit volume. The second term
the Debye correction to the free energy of the electrolyt28

with the effective ionic forcef 5e2nKL and the radius of the
Debye screeningr d5kd

215(4pb f )21/2. In Fig. 1 the energy
e(T) per site found from the formula~25! is compared with
the data of MC simulations. The deviation between the M
data and the theoretical predictions, seen in the hi
temperature region, has the natural explanation in grow
size influence with increasing temperature, the screening
02420
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dius r d;AT being comparable to the specimen size. As
seen from Fig. 1, at a given temperature the deviations m
tioned decrease with increasingN. Thus it follows from this
comparison that the theoretical results are in good quan
tive agreement with the MC data in the temperature reg
~1!. In conclusion, we shortly discuss the method to estima
in the limit N→`, orders of terms, arising as the result
expanding the exponent entering formula~23! under trace
sign. The method will be illustrated by the example29 L2

5TrN$exp@2(Ng2/2)Sp(D̆2)#%. By developing the exponen

in powers ofNSp(D̆2) we will have to deal with sums~on
the sitesi , j , . . . and the replica indicesa,b, . . . ) of the
monos, i.e., products of Ising spinss j

a . Such a mono gives a
nonzero contribution, after TrN has been taken, only if eac

spins j
a enters into it with anevenpower. Since the matrixD̆

has the zero diagonal elements in replica space and onlyone
sum on the site indices@see Eq.~22!# such an even power o
s j

a can only arise in that case when, as the minimum, t

terms belonging to thedifferent D̆ matrices have the indexj
as common. Because eachD̆ has the factor (1/N) @see Eq.
~22!# these coincidences considerably reduce the power oN
in the mono contribution. Using this method, we have e
mated the orders of all terms TrN$@NSp(D̆2)#p% with p
50,1,2, . . . andfound that each of them has to be of th
order O~1!, at N→`, except the one withp50. The p50
case gives the result 2Ns which has been used in the expre
sion for FN . We have estimated, too, contributions from t
termsn>3 entering the exponent of Eq.~23! and shown that
all they are of the order O~1/N! at N→`.

FIG. 1. Energye(T) per one site vs temperatureT for the case
K5 0.5. MC simulations with the periodic boundary conditio
were made with averaging on five specimen of eachN: 100,
500, 2500. Statistical errors of the averaging on MC chains
less than the symbol sizes. The theoretical formulae(T)
52Ap/T•(K•L)3/2 was found from Eq.~25! of the text via the
Gibbs rule.
6-4
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III. RPA FOR G

It is convenient to deal withG(e), defined throughg(«),
by the relationg(«)5b•G(b«), and withêj5b• «̂ j instead
of OSE being defined4 as «̂ j5dĤN /dmj . Having taken the
derivatived/dmj of the energy~2! and used the definition~8!
for CV’s and the expansion~10! for the Coulomb potential,
we get

êj5~1/ANKL!•(
kÞ0

nk•Q̂2k exp~ ikWxW j !

2~mj /NKL!•(
kÞ0

nk . ~26!

The main object of our interest,

@eivêj #T5 lim
s→0

TrNFeivêj (mc)
•)

a51

s

e2bĤN(ma)G , ~27!

is related toG(e) via the Fourier transform

G~e!5@d~e2êj !#T5E dv

2p
e2 ive@exp~ ivêj !#T. ~28!

The c index in the formula~27! has been used to mark th
one out of all replicas to whichêj belongs. To switch in
formula ~27! to CV’s the technique already described in Se
II was used. Omitting details, we present here only the fi
result for the caseK51/2 in RPA:

@eivêj #T5 lim
s→0

expFs•(
k

8 @nk1 ln~p/nk!#2~4v2/N!

3S (
k

8 nkD G•TrNS )
k

8@ps
•detG j~k!] 21

3exp$2@AW j ,G j
21~k!AW j #2~4iv/N!nk•s j

c% D
~29!

with

G j
a,b5~da,b /nk1D j

a,b!, D j
a,b5(

lÞ j
s l

a
•s l

b , ~30!

AW j5~2/AN!~ iv•eW c2sW j /2!, eW c5@dc,a#a51
s . ~31!

The following transformations aim to extract and then e
clude the terms of order O(1/N) in the thermodynamic limit:

)
k

8 @psdetG j~k!#215expFs•(
k

8 @ ln~nk /p!2 ln~11nk!#

1s•S 1

N
(

k

8 gkD 1
1

2
g2NSp~D̆ j

2!G ,

~32!
02420
.
l

-

(
k

8 @AW j ,G~k! j
21AW j #5S 4

N (
k

8 gkD •S 2v21
1

4
s2 ivs j

cD .

~33!

As in Eq. ~29! so in Eq. ~32! is the series present whic
becomes divergent after taking the regularization out. Ho
ever, inserting the expressions~32! and ~33! into Eq. ~29!
gets the mutual compensation of these divergences, and
get the result

@eivêj #T5 lim
s→0

expS s•(
k

8 @ ln~11nk!2nk#

2g1v2D •TrNFexpS 1

2
Ng2•Sp~D̆ j

2!2 ig1vs j
cD G
~34!

remaining finite after removing the regularization, withg1
being defined as

g15~4/N!(
k

8 ~nk2gk!5~4/N!(
k

8 S nk
2

11nk
2D 5

1

2 S p

T3D 1/2

.

~35!

SinceD̆ j does not depend onsW j , the Trj on thesW j together
with the exp(2ig1vsj

c) can be taken out of the brackets
Eq. ~34!. The trace TrN on the rest terms, already calculate
in Sec. II, gets the result exp@s•N ln 21s•O(1)#. With the
first exponent in Eq.~34!, depending ons, it gives the free
energy found in RPA up to order O~1!, so we have

@eivêj #T5 lim
s→0

$exp~2s•b•FN
RPA2g1v2!•Trj@eig1vs j

c
#%

5e2g1v2
•cos~g1v!. ~36!

Then G(e) is found by insertion of Eq.~36! into Eq. ~28!.
For DOSEg(«) we have then

g~«!5
1

4AplT1/2FexpS 2
~l/T1/22«!2

4lT1/2 D
1expS 2

~l/T1/22«!2

4lT1/2 D G , l5Ap/2. ~37!

In region ~1! g(«) has a cupola shape with its center at«
50. With decreasing of the temperature the depletion
DOSE shape in the center«50 rises starting with the tem
perature (p/16)1/3. This depletion would be considered as t
start of the Coulomb correlation gap if the RPA were app
cable below this temperature. To compare our result~37! to
MC data we were forced to run simulations with specime
of largeN. Matrices of intersite Coulomb interactions did n
get into access memory, so lengths of MC chains were c
paratively short. As is seen from Fig. 2, the RPA is in t
6-5
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qualitative agreement with the MC data atT510, provided
the specimen size is large enough. Nevertheless, evenT
510 a small quantitative deviation exists between theory
MC experiment. This disagreement was shown to decre
with increasing temperature. In the temperature range
.T.1 the RPA results remain in qualitative agreement w
MC data, but the deviations are then not explained by
small specimen sizes and grow with decreasing tempera
In this temperature range, as we believe, the hi
temperature corrections to RPA similar to those known fr
the classical plasma theory24 could have improved the com
parison to MC simulations. In the low-temperature regio
T,1, RPA does not correctly describe the DOSE behav
even on a qualitative level.

IV. OSE CORRELATIONS

Here we define the pair OSE correlatorg(«1 ,«2 ,r ) and
calculate it in the RPA. As in the case ofg(«), it is conve-
nient to work with êj5b• «̂ j and with G(e1 ,e2 ,r ) defined
via the relationg(«1 ,«2 ,r )5b2

•G(b«1 ,b«2 ,r ).

A. Definition of g„«1 ,«2 ,r …

For a given specimenR and charge distribution@mj #1
N let

us consider the number of sites from the total set@2< j
<N# being in the spherical layer (r ,r 1dr) around the site
j 51 and with energiesêj from the strip (e2 ,e21de2),
provided the site j 51 has its energy in (e1 ,e11de1).

FIG. 2. The shape of the DOSE,g(«), for the case ofK50.5
andT510. MC simulations with the periodic boundary conditio
were made for one specimen of eachN: 500, 2500, 12 500, 62 500
The MC curves have diminishing height of maxima with increas
N. The last two~N512500 andN562500! merge. The formula~37!
of the text was for full down curve.
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Evidently, this number is( j 52
N d(ê12e1)d(êj2e2)d(r 1,j

2r )de1de2dr. Having averaged this number over the the
mal equilibrium and the distributions of the sites@2< j
<N#, we define the correlator by the relation

~N21!•$@d~ ê12e1!d~ ê22e2!d~r 1,22r !#T% j 52
N de1de2dr

54pr 2S N21

V D •G~e1 ,e2 ,r !de1de2dr. ~38!

The left-hand side of Eq.~38! is this number averaged ove
the thermal equilibrium and the positions of all sites but t
first one. It follows from the definition~38! thatG(e1 ,e2 ,r )
is the probability density to find one out of (N21) sites with
energy in the interval (e2 ,e21de2) and being placed in the
spherical layer (r ,r 1dr) around a given sitej 51 provided
the energy of given site is in the interval (e1 ,e11de1). Since
the left-hand side of Eq.~38! does not depend on the first si
position, averaging on the position of this site does n
change the definition~38!. So we can finally define
G(e1 ,e2 ,r ) by the following relation:

@d~ ê12e1!d~ ê22e2!d~r 1,22r !#T5S 4pr 2

V D •G~e1 ,e2 ,r !.

~39!

From this last definition the symmetry ofG with respect to
the transposition of its energy variables is evident. Beca
the energiesê1 ,ê2 depend onR only through the mutual site
distances we have the identity

@d~ ê12e1!d~r 1,22r !#T5S 4pr 2

V D •G~e1!. ~40!

It follows from Eq. ~39! and~40! that G(e1 ,e2 ,r ) is related
to G(e1) through the self-consistency conditions

E G~e1 ,e2 ,r !de25G~e1!, E G~e1 ,e2 ,r !de1de251.

~41!

If we expect the decoupling of correlations takes place
large r the formula for this decoupling being in the corr
spondence with the self-consistency conditions~41! has the
form

G~e1 ,e2 ,`!5G~e1!•G~e2!. ~42!

Our RPA results will be shown to obey the decoupling co
dition ~42!. As for the case ofG(e), all calculations are
convenient to do with the Fourier transformG̃ of the cor-
relator entering Eq.~39!. What we actually calculate is th
replicated form of thisG̃,
S 4pr 2

V D •G̃~v1 ,v2 ,r !5 lim
s→0

TrNFd~r 1,22r !expS (
a51

2

iva•sa
c 2b (

a51

s

ĤN~ma!D G . ~43!
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B. RPA for G„e1 ,e2 ,r …

Switching to CV’s in the formula~43! is quite analogous to the cases of DOSE and the replicated partition function, s
only present here the final result forK51/2 in RPA:

S 4pr 2

V D G̃~v1 ,v2 ,r !5 lim
s→0

eQ
•E E d~r 1,2

y 2r !

V2
dyW 1dyW 2TrNS H expF S 4i

N D S (
a51

2

vasa
c D •S (

k
8 nkD G•F)

k
8 E dpW k

ps

3expS 2~pW k ,GkpW k!22i (
a51

2

~pW k ,AW a!•cos~kWyW a!D G•F)
k

8 E dqW k

ps

3expS 2~qW k ,GkqW k!22i (
a51

2

~qW k ,AW a!•sin~kWyW a!D G J D ~44!

with

Q5s•(
k

8 @nk1 ln~p/nk!#24v1v2Fc~r !24~v1
21v2

2!•S 1

N (
k

8 nkD ,

AW a5~2/AN!•S ivaeW c2
1

2
sW aD , a51,2,

Gk
a,b5~da,b /nk1Da,b

(2) !, Da,b
(2)5S 1

ND •(
j 53

N

s j
as j

b . ~45!

Note thatD (2) does not depend onsW 1,2 and therefore the calculations withD (2) can be done at the constant replicated sp
sW 1,2. The following transformation of Eq.~44! consists of taking Gaussian integrals and selecting those terms from a
determinants which survive in the thermodynamic limit,N→`. The algebra is simple but cumbersome, so we present
only the final result of the manipulations mentioned:

G̃~v1 ,v2 ,r !5exp@22v1•v2•Fp~r !2~v1
21v2

2!•Fp~0!#•S cos$~v11v2!•@Fd~r !2Fp~0!#%

11exp@Fd~r !#

1
cos$~v12v2!•@Fd~r !1Fp~0!#%

11exp@2Fd~r !# D , ~46!
ra

as
a

-

where the potentialsFp(r ) andFd(r ) are defined as

Fp~r !5S 4

ND(
k

8 S nk
2

11nk
D •cos~kW rW !5S p

4T3D 1/2

•S 12e2a

a D ,

Fd~r !5S 4

ND(
k

8 S nk

11nk
D •cos~kW rW !5~kd

2/2pr !•e2a

~47!

with a5(kd•r ) andkd
25(p/T). It is seen thatFd(r ) is pro-

portional to the Coulomb potential screened with Debye
dius r d . In the screening region (a.1) we can neglect
Fd(r ) in comparison toFp(r ) because the latter behaves
the unscreened Coulomb potential. We consider here the
ymptotical behavior in the regiona.1. Aiming to compare
our results with those of Blanter and Raikh16we consider in
detail only the cases of (e1 ,e2):(e,e),(e,2e) and (0,e).

C. eÀaÄ0 approximation for G

In this approximation we haveFd(r )50,Fp(r )5g0•x,
where g05(p/4T3)1/2 and x51/a. The three above men
tioned special cases are
02420
-

s-

G~e,6e,r !5
1

16pg0A12x2
•FexpS 2

g0•~11y!2

2~16x! D
1expS 2

g0•~12y!2

2~16x! D
12•expS 2

g0•y2

2~16x!
2

g0

2~17x! D G , ~48!

G~0,e,r !5

expS 2
e2

4g0•~12x2!
D

16pg0A12x2
•FexpS 2

e1g0

2~11x! D
1expS 2

g02e

2~11x! D1expS 2
g01e

2~12x! D
1expS 2

g02e

2~12x! D G . ~49!

In formula ~48! we have used the variabley:e5g0•y. By
taking x50 in the formulas~48! and ~49! it is easily seen
6-7
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that the decoupling relations~42! are fulfilled in all cases
considered. Developing in smallx in Eq. ~48!, with y
5O(1), we get

G~e,6e,r !

G~e,6e,`!
516~g0x/2!•@y2tanh~g0y/2!#21O~x2!.

~50!

The development~48! in smallx andy up to second order in
x gives

G~e,6e,r !

G~e,6e,`!
516

g0•x

2
•y2S 12

g0

2 D 2

1x2
•S 1

2
2

g0

2
1

g0
2

8 D .

~51!

As it follows from Eq. ~51!, in the ‘‘low-energy’’ region
g0•y2,x we have attractive correlations proportional tox2

whereas in the rest of the region,g0•y2.x, decoupling
obeys the law~50! depending on sgn(e1•e2) and propor-
tional to x.

In summary, in terms of natural parameters the asympt
correlation behavior is as follows. The condition~1! of RPA
applicability together with one for the screening regime@x
,1and y5O(1)# can be expressed as 1,T,p•r 2, «2

;p/T and the low-energy regime corresponds to«2,T/2r .
Note that in the case that both of these conditions are
filled, the inequality (T/p)1/2,r ,T2/2p has to be valid. In
this region the correlators~48! obey the attractive law
;T/pr 2. The ‘‘high-energy’’ region, where the inequalityr
.T2/2p is fulfilled, corresponds tor .T2/2p. In this region
the asymtotic behavior~50! works and decoupling obeys th
law ;sgn(«1•«2)•(T/p)1/2

•(1/r ). To investigate the
asymptotic behavior ofG(0,e,r ) at x→0,y5O(1) we have
developed formula~49! in powers of smallx, assuminge
5O(1):

G~0,e,r !

G~0,e,`!
512x2

•F e2

4g0
1

e2

8
1

g0•e

4
•tanhS e

2D2
1

2

1
g0

2
2

g0
2

8 G . ~52!

It follows from Eq. ~52! that for e.1 ~i.e., «.T) a correla-
tion repulsion obeying the law;T/r 2 takes place and with
diminishinge this repulsion slowly goes over into attractiv
correlation characteristic to the low energy region.

V. DISCUSSION

To what extent do the results found depend on the mod
Specifically, does the decoupling of the OSE correlations
pend on the features of the model considered? In Ref. 16
only one we were able to find on this subject, the DOSE a
the OSE pair correlators have been calculated from s
consistent equations~see the discussion in Sec. I! for the
two-dimensional case and for pair potentialsV(r ), without
singularities atr 50 and decreasing no slower than 1/r 2 as
r→`. So, any comparison of our results to those of Ref.
inevitably has to be of a qualitative character, even in
region V(r )/T,1 where RPA is assumed to be applicab
02420
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The comparison of the formulas~29!–~33! of Ref. 16 to our
Eq. ~37! for DOSE does not confirm the functional form
g(«); f («/T) of the temperature dependence found in R
16. Our formula~51!, taken ate50, shows attractive corre
lations decoupling via;T/r 2 whereas the formula~43! of
Ref. 16 shows attractive decoupling;V(r )/T. In our case
the asymptotic behavior at«;T gives a decoupling of the
repulsive type;AT•«2/r 2 whereas the decoupling foun
from the formula16 ~47! is repulsive, as well, but with a dif-
ferent temperature dependence:;V2(r )/T2. It would be
very interesting to solve the equations16in the high-
temperature region~1! for the three-dimensional case an
with Coulomb pair interaction asV(r ) in order to compare to
our results.

VI. CONCLUSION

In this section we use natural dimensions for all variab
considered. We have considered in RPA a Coulomb g
model with randomly distributed donor sites and with acce
tor charges equally smeared on donors,2K•e on each. Our
results for the energy and DOSE were shown to be in g
agreement with MC simulation data in the temperature
gion T.e2

•n1/3. In this region the thermodynamics of th
Coulomb glass model is similar to the one for an electrol
in the Debye screening regime with screening radiusr d
5(T/pe2n)1/2. We have investigated the behavior of th
OSE correlatorg(«1 ,«2 ,r ) in the asymptotic regimer
.r d : the casesg(«,6«,r ) were considered at the energ
scale«2;(n•e6/T). We have shown that in the low-energ
region, where the inequality (T/e2n1/3)1/2,r •n1/3

,(T/4p2e2n1/3)2 fulfills, the attractive correlation exists be
tween sites decreasing according to the law;(T/ne2r 2).
In the region, where r •n1/3.(T/4p2e2n1/3)2, this
decoupling changes into the regime obeying the new
;sgn(«1•«2)(T/e2r ). The repulsion between sites with OS
of different signs of («2m) is well known since the early
theories2–4 treating the Coulomb gap phenomena atT50.
The attractive correlations between sites of the same sg«
2m) were noted in the narrow energy strip near the Fe
level m in the simulations of Davies, Lee, and Rice27 made at
T50. The main result of our work is that even in the tem
perature region, where the thermodynamics of a Coulo
glass is mainly determined by the Debye screening effe
unscreened correlations of long-range nature still exist
tween OSE’s. Because a similarity takes place between
OSE correlations found in our investigation and those27 for
T50 we believe that our results would shed some light
the structure of the low-temperature states of Coulo
glasses.
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