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Coulomb glass in the random phase approximation
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A three-dimensional model of the electrons localized on randomly distributed donor sites of aeasdy
with the acceptor charge uniformly smeared on these sité& on each, is considered in the random phase
approximation(RPA). For the cas& = 1/2 the free energy, the density of the one-site ene(@&sSE ¢, and
the pair OSE correlators are found. In the high-temperature regor’# T)<1 (T is the temperatujeRPA
energies and DOSE are in a good agreement with the corresponding data of Monte Carlo simulations. Ther-
modynamics of the model in this region is similar to the one of an electrolyte in the regime of Debye screening.
In the vicinity of the Fermi leveju=0 the OSE correlations, depending on sghg?) and with very slow
decoupling law, have been found. The main result is that even in the temperature range where the energy of a
Coulomb glass is determined by Debye screening effects, the correlations of the long-range nature between the

OSE still exist.
DOI: 10.1103/PhysRevB.65.024206 PACS nuni®er71.23-k, 71.30+h, 71.45.Gm
[. INTRODUCTION and correlations for the Coulomb glass problem. Meanwhile,

it is well knownt’ that the development of the free energy or
Electron-electron interactions affect considerably the low-correlations in powers of the parametép)/T gives diver-

temperature behavior of doped semiconductors on both sidegent terms in the case whevip) is the Coulomb potential.
of the metal-dielectric transitioh.> On the dielectric side the Mayer’s approach to solving this problétn?*is based on a
Coulomb interaction between the localized electrons makegery complicated technique of the redevelopment of terms in
the density of the one-site excitatiol30SE) to tend to zero  series with following resummations aiming to remove diver-
as a power law in the vicinity of the Fermi level, as arguedgences from the terms of the new series. Later a quite differ-
by Efros and Shklovski.Because of the DOSE concerns the ent approach to this problem, using Fourier components of
low-temperature conductivity and tunneling characteristicdocal densities as so-called “collective” variablé8V's),was
of doped semiconductors, many investigatfohswere elaborated®? Compared to Mayer’s approach, this one is
undertakefi® to elucidate the nature of this so-called Cou- considerably simpler. The central point of this approach con-
lomb correlation gap. The rare analytical results in thissists of switching from the individual variables to CV’s via
ared®*are due to the hardness of the problem consideredhe corresponding Jacobian. In many cases this Jacobian has
Today, the only well established analytical restfitéare the  the form of the integral on a CV measure with an exponential
temperature dependences ~TP~lforD=2 and form as the integrand. An exponent of this integrand should
~[In(@/T)]"* for D=1 found for g(u). As it was be considered as a part of an action for a statistical mechan-
shown!® the nonlinear equatidfifor g(¢) at T=0 is based ics of a nonlinearly self-interacting field. Already in the zero
on some vague assumptions about decoupling of OSE correpproximation of this self-interaction the well-known ran-
lations. Mogylansky and Raikh managed to extend the dom phase approximatioRPA) arises and the following
approacl’ to the case of nonzero temperatures. The base afxpansion of the exponent gives the cluster expansions for
their method comprises of the Metropolis algorifim the free energy and correlatofsSince the thermodynamics
adapted to analytical applications at the expense of the twof Debye electrolytés?*in the temperature range
indefinite assumptions. The first one is concerned with the
decoupling of the pair OSE correlations. The second one e2nl/3
admits the law of Markoff type for the approach to equilib-
rium in terms ofp as a formal “time”: a charge transfer T
between the sites with the distances from the interpap (
+dp) does not influence DOSE found “previously” in terms is well described by RPA, one should expect a similar behav-
of p as a time. Recently, this approathas been extended to ior would take place for the Coulomb glass in this region. It
include the pair correlations of OS€and the solution has was our goal to investigate thermodynamics of a Coulomb
been found for the two-dimensional case in the first order oflass(the free energy, DOSE, and the pair OSE correlators
the perturbation theory on the pair potentigp), decreasing in RPA aiming to have the reliable results in the region where
no slower than 32 asp tends to infinity. In the case of high RPA is applicable. In the present paper the Coulomb glass
temperatures the paramet®(p)/T plays the role of the model withN-(1—K) electrons localized oiN donor sites
small one in the theor}f Because the approaches developedand with the acceptor chargeKe ascribed to each donor
are of a qualitative and uncontrolled character it is desirablgite is considered. The energy of the model considered de-
to compare them to some well established analytical resultgends as on the donor site configuratl@ﬁr[xi]? so on the
such as the high-temperature expansions of the free energjarge distributiom=[m;]}:

<1 D

0163-1829/2001/62)/0242069)/$20.00 65 024206-1 ©2001 The American Physical Society



S. A. BASYLKO, V. A. ONISCHOUK, AND A. ROSENGREN PHYSICAL REVIEW B5 024206

IIl. BACKGROUND: COLLECTIVE VARIABLES

N 1 mym;
Alm]=22> —— +C[m]. )] N . |
2{F) i We present in this section the integral representation for

the free energyy(B) (from now onB=1/T). Then we use
Herem,=L for the neutral andn;= —K for the ionized site. this representation to get the RPA formula fog(8) and
The whole sem=[m;]) obeys the electroneutrality condi- compare to MC simulation data.
tion
A. Energy in the terms of CV
In the replica approach it is the replicated partition func-

; m;=0. @ tion
S
From now on the cap above some varia@eg., the energy 35 —K -
(2)] meansR dependence, and ; means the distances be- Zn=Try ex _BE Hn(ma) ®)

tween the sites. The expressi®) has been written in di-
mensionless form with the scalas ' for lengths an&?n?®  which one has to calculate to find thén by the formula

for energies and temperatures. The cons@m], not de- _

pending onR, has been added into E(@) to remove thek . -2y

=0 Fourier component of the bare Coulomb potential. Ac- Fn(B.K)= I'”;( Bs ) ©)

tually, the constanC[ m] depends only oK, provided the =

electroneutrality conditior{3) is fulfilled; its specific value In expression(5): sis an integer, T'P’g means the sum over the

will be given later. In all calculations concerning with the whole set of charge stateﬁsna]l ,a=1,2---s, obeying the

equilibrium averages we use the Ising spin varialstesn-  electroneutrality condition(3) for eacha. The overlines in

stead ofm; : expressiong5) and (6) denote the averaging on the Poisson
distribution of the specimenR:

=(1-2K)+o;, where oy==*1. (4)

dx1 dx2 de

The cas& =1/2 is the simplest one because summing on the j ' J ~ QOwxe, X (D)
independent Ising spins provides the electroneutrality in the
thermodynamic limit> In the present work we confine our- We choose as CV's the Fourier compone@tgof the devel-
selves to the casK=1/2. A side benefit is that the Fermi opment
level u(T,K)=0 in this case. This becomes evident if we
take into account the invariance of the sums in equilibrium Ao KL A N
averages with respect to the—L changing. As the conse- QX)=1 N > Qeexplikx) ®)
guence, we get two symmetry relationsEy(T,K) k#0
=Fn(T,L), for the free energy, and(T,K)=—u(T,L), for  for the local charge density
the Fermi-level, provided we define last as the derivative of
Fn on the number of the electromé- (1—K) at N being a . N
constant. Our approach is based on the combination of the Q(x)=2> ma(x—x). 9
CV (Refs. 17, 22, and 23and the replic® methods. Be- =t
sides, we used Monte Car{dIC) simulations® to elucidate  p,q electroneutrality conditiof@) implies O,=0 at K=0.
the region of RPA applicability. From now on we work with the regularized Coulomb poten-

The remaining part of this paper is organized as follows
In Sec. Il we give some background to our approach and flnaI
the free energy in RPA. We compare our analytical results to 1
MC simulation data and find good quantitative agreement in D(X)=— D 5keXQiE§), ék:#_
the region(1). In Sec. lll we present DOSE found in RPA, < 2+ a?
compare it to MC simulation data and once more get the
evidence of the good applicability of RPA in regié¢t). In Besides, all sum¥, and productgl, are considered as hav-
Sec. IV we present the formulas for the pair OSE correlatoring the ultraviolet regularizatiofk|<A. We will take the
in RPA. Being cumbersome, they, however, have a 3|mp|élmltS A—o andae—0 only in final results. The insert of the
behavior in the asymptotic regimie>r 4 (r 4 is the screening €xpansion(10) into the formula(2) gives us the energy ex-
radiug. Quite unexpectedly, it turns out that near the Fermipression through CV's. The constant in EQ) has to be
level »=0 in an energy strip of the orddr > a very slow chosen as
decoupling of OSE correlations exists, attractive for OSE of N
the same signs and repulsive for those of opposite sign. In ~ 1 2
Sec. V we present a qualitative comparison of our formulas Clm]=®o- (_NZ m; )
to the ones of Blanter and RaikhIn Sec. VI we formulate
our conclusion. to remove from the energy

(10

(11)
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Zexpik-x), 1=ass, (16

Am] =3 5(QQ 1) (12 2(%) = J% k
Z0

the term withk=0. In expression(12) the stroke above the the real variablep; andqg defined on the half space a8
sum symbol means summing over the half spfic®@<k?  =pg+iqg and the measure in the CV-Fourier spate
+k§+ k?<A2? k,=0}. From now on the presence of the =1II,/(dpy/#°)-(dq,/=°). Then, using the integral repre-
stroke above a symbol of a sum or a product means theentation for the5 functions and Poisson averagi(g, we
action on this half space. The functiep entering Eq(12) is  get
defined as

@ J(Q,ﬁ)zJ dzexr{—ZiEk' (CyPx

_ 2_
V= 2t kg=47BKL. (13

N

-_]"[l expim;z(x))]. (17)

|=

+S.a)

It can be simply proven, using the electroneutrality condition

. . _ 1 = . .
(3) and Ising sping4), thatC[m]=3;KL®o, i.e., it does not |5 the final step we transform the Jacobian inserting the
actually depend on the charge configuration Notwith- identity?®

standing, we prefer to keep the forthl) since OSE calcu-

lation breaks electroneutrality. © n

exp{irﬁ.f(x)]:ex;{ 22 ;Twn(ﬁ-i) (18

B. Jacobian

For thes charge d|str|but|on§ma]1 ,witha=1,2,...s, Which expresses the left-hand side of Ef8) through the

on the same specimeR, we define the real variables irreducible sums
C2 and $ as the real and imaginary parts of CV&?

n/2
=C2+i82. These real variables obey the symmetry relations w(z-m)= —) > (MZy)
A ca 2 i 5 KLN/  (k1+k2¥7- -kny=0
=C?%,, S=-$5%,, so that as functions df they are
actually defined on the half space described above. In paral- X(MZyp) - - - (MZp). (19

lel with the depending on the specim&CV, we consider

the “free” variablesQg=C{+iSt, with the same symmetry In Eq. (19) the symbol(k;+k,+ ---+k,)=0 means that
relations as for the CV with the “hats,” and switch to these kj; + ki, + - - - ki, #0 for any subset, bufky ks, .. .Kkg] it-
free variables in the expressi@) for the replicated partition  self. By inserting the identity18) into formula(17) we get

function the integral representation of the Jacobian
‘§=exp<s;’ Vk) J(é,rﬁ)zf dzexp{—Zi%' (Cpt Scar)
o2 2 - i L
X Try fdQex;:(—; Vka'Q—k)’J(Q:m)} +> o7 Va(zm (20)
n=2
(14

with Vn(z m) E 1wn(z m) Now, having inserted the
using the Jacobian integral representatm(QO) into formula (14) and taken the
Gaussian integral odQ measure, we get the integral repre-
sentation for the replicated partition function, our starting

IQ.m)= H [1" aci-Ch-asi-8). s Pt
s _ ’ m K
The measuralQ in the formula(14) is defined asdQ ZN—exp[s-; Van( Vk)” TN
=TI5_,11,dC2.dS}. In the formulas(14) and (15) Q and

m; mean the vectors in thedimensional space and expres- % J dzexp( _sr Ak, > ﬂVn(i. rﬁ)) _
sions like Q- Q_ mean the scalar products in this space. 45 n=2 n!

The exceptional simplicity of the Poisson formui& allows (22)
us to make the exact averaging in E@5) and get for the

Jacobian(15) an integral representation in terms of CV mea-When going from the initial expressids) for the replicated
sure in the CV-Fourier space. To do this, we put into usingpartition function to the final oné1) we have used the way
the real fields via the Jacobian integral representati@®) different from
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other approache¥:>>?*This way makes all calculations for A - ' '
the free energy, DOSE, and the OSE correlators to be of the R
same type.

C. RPA for F(B8) 2r

From now on we confine ourselves to the cksel/2, for
which the electroneutrality conditiof8) does not have to be
taken into account specificaffy. The RPA corresponds to
V,=0 for all n=3. Having inserted Ising sping) into V,
from Eq. (20), we get

In(-e(T))

N

- e 1

Vo(zm)=2>" (z,,Dz_y), D*P=— ojia}’ i 1
K

N
(22)

So,D is the matrix in as-dimensional replica space. Having
taken Gaussian integrals in the form2d) (with V,=0 for i 0 o 4 5
n=3) and transforming the determinants arising into expo-
nential form, we get, after some simple algebra,

[&)]

In(T)

FIG. 1. Energye(T) per one site vs temperatufefor the case
Try K= 0.5. MC simulations with the periodic boundary conditions
were made with averaging on five specimen of eath100,
500, 2500. Statistical errors of the averaging on MC chains are

_ )n . ] .
eX[(NE ( - San) (23) less than the symbol sizes. The theoretical formd@r)

Z_N:exp< S.Ekl [Vk—h"l(l"r‘ Vk)] .

=—/7lT-(K-L)¥? was found from Eq(25) of the text via the
Gibbs rule.

with D=1+D, Sp as the trace in the replica space, and with

gk and vy, defined as

n=2

dius ry~ T being comparable to the specimen size. As is

1 ) seen from Fig. 1, at a given temperature the deviations men-
, N

’)’n:N(EI gE

4%
1+ 14" !

=2. (24 tioned decrease with increasitg Thus it follows from this
comparison that the theoretical results are in good quantita-

The symbol Ty in Eq. (23) means the trace without the tive agreement with the MC data in the temperature region
restrictions due to the electroneutrality condititd). Note ~ (1). In conclusion, we shortly discuss the method to estimate,
that all y,, entering Eq.(23) allow for going to the limitsA in the limit N—c, orders of terms, arising as the result of
—o, a—0. It is shown below that T - - -] entering Eq.  expanding the exponent entering formy8) under trace
(23) equals to expNIn 2+0(1)], where @1) is the order of ~ sign. The method will be illustrated by the exanffld,

the corresponding term &t—c. So, from Eq.(23) we get  =Tr{exd —(Ny,/2)Sp0?)]}. By developing the exponent
immediately in the leading order oN: BFy/N=-In2 . <2 ; -

; . P . powers ofNSp(D~) we will have to deal with sumgon
T(AMN) 2 TIn(1+1J =nd. This expression is the special the sitesi,j, ... and the replica indicea,b, ...) of the
case of the common formulave have returned to natural . . o .

monosi.e., products of Ising spins;'. Such a mono gives a

dimensions in this case T :
nonzero contribution, after Jrhas been taken, only if each

spin o? enters into it with arevenpower. Since the matrik
has the zero diagonal elements in replica space andardy

sum on the site indicdsee Eq(22)] such an even power of
which helps us to understand the meaning of two terms en.. a can only arise in that case when, as the minimum, two

tering it. Since at high temperatures each oflh@onor sites
is ionized with probabilityk and is neutral with probability terms belonging to thelifferent D matrices have the indeix

L, the first term in Eq(25) is nothing but the entropy density as common. Because eathhas the factor (N) [see Eq.
ascribed to the sites in the unit volume. The second term i§22)] these coincidences considerably reduce the powst of
the Debye correction to the free energy of the electréfyte in the mono contribution. Using this method, we have esti-
with the effective ionic forcd =e?nKL and the radius of the mated the orders of all terms JINSp®D?)]P} with p
Debye screeningg=kg *=(478f) Y2 In Fig. 1 the energy =0,1,2 ... andfound that each of them has to be of the
e(T) per site found from the formulé25) is compared with  order 1), at N—o, except the one witlp=0. Thep=0

the data of MC simulations. The deviation between the MCcase gives the resulf¥2 which has been used in the expres-
data and the theoretical predictions, seen in the highsion forF . We have estimated, too, contributions from the
temperature region, has the natural explanation in growingermsn=3 entering the exponent of E®3) and shown that
size influence with increasing temperature, the screening raall they are of the order @Q/N) at N— .

Ok=
K

BFN/V=—n|KIn —K312w (25

1+L|1
k)Ll
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. RPAFOR G

It is convenient to deal witls(e), defined throughy(e),
by the relationg(e) = B- G(Be), and Withéj=ﬁ- (::J- instead
of OSE being definédas ;= 6Hy/6m; . Having taken the
derivatives/ ém; of the energy(2) and used the definitiof8)
for CV’'s and the expansiofiL0) for the Coulomb potential,
we get

éj=(1/\/r\|KL)-k¢O v Q_y expl(ikx))
—(mjINKL)- X, . (26)
k#0
The main object of our interest,
= ~ S ~
[€“®]r=lim Try| e'“sm). [] eﬁHN(ma)}, (27)
s—0 a=1

is related toG(e) via the Fourier transform

T — do = —————
Gle)=[a(e—8) 1= | 5 *Texpliod)]r. (29

The c index in the formula27) has been used to mark that

one out of all replicas to whiciﬁaj belongs. To switch in
formula (27) to CV's the technique already described in Sec.
Il was used. Omitting details, we present here only the final
result for the cas&=1/2 in RPA:

[e'“®]r=lim ex
s—0

p[s;’ [ v+ In(7/v) ]~ (4w?IN)

X -Try

3

]'k[ "[S- detl"; (k)] *

xexp{—[A; T {KA]]- (4iw/N) vy o}

(29)
with
P#P=(5,5/n+DFY),  DFP=> of-ob, (30
I#]
A=C2NN)(iw-6.—02), €=[.al5-1. (31

The following transformations aim to extract and then ex-
clude the terms of order O() in the thermodynamic limit:

l'k[’ [ wedetlj(k)] t=ex

[{S-EI [In(v/7)—In(1+ v)]
K

1

1

+s- +Ey2NSF{I5j2)

E,QK
k

(32

PHYSICAL REVIEW B5 024206
1
—w?+ ZS_ i wajc .

(33

As in Eq. (29 so in Eq.(32) is the series present which
becomes divergent after taking the regularization out. How-
ever, inserting the expressio32) and (33) into Eq. (29

gets the mutual compensation of these divergences, and we
get the result

! re —1r 4 !
2 AT (), 1Aj]=(ﬁ§ O

[€“%]=lim ex
s—0

p(s-Ek’ [IN(1+ v) — 1]
o

remaining finite after removing the regularization, with
being defined as

SinceD; does not depend oa;, the Tr on theo; together
E/ith the exp(—iylwaD can be taken out of the brackets in

g. (34). The trace Ty on the rest terms, already calculated
in Sec. Il, gets the result ej@NIn2+s-0O(1)]. With the
first exponent in Eq(34), depending ors, it gives the free
energy found in RPA up to order(D, so we have

1
2

_’)’1(1)2) 'TrN N’)/2S[X|5J2)_|’ylw0'j:)

(34

2 1/2

Py
1+ 2

1

2

m

T3

yl=<4/N>§’ (vk—gk>=<4/N>2k’ (

Yy

(39

[€“®],= lim{exp(—s- B- FRPA= y102) - Trj[ € 100j ]}
s—0
=e "19%. cog y, ). (36)
Then G(e) is found by insertion of Eq(36) into Eg. (298).
For DOSEg(e) we have then

o]
A= 1m/2.

() 1 (MTV?—g)?
E)— ——]— e ————————
FE T T 4NTY?

2

In region (1) g(¢) has a cupola shape with its centereat
=0. With decreasing of the temperature the depletion of
DOSE shape in the center=0 rises starting with the tem-
perature ¢r/16)Y3. This depletion would be considered as the
start of the Coulomb correlation gap if the RPA were appli-
cable below this temperature. To compare our re@i} to

MC data we were forced to run simulations with specimens
of largeN. Matrices of intersite Coulomb interactions did not
get into access memory, so lengths of MC chains were com-
paratively short. As is seen from Fig. 2, the RPA is in the

(MTYV2—g)?

4NTY? 87
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Evidently, this number isZ],5(e,—e;)(e;—e,)(ry;
—r)de;de,dr. Having averaged this number over the ther-
mal equilibrium and the distributions of the sit¢2<]j
=<N], we define the correlator by the relation

(N_l)'{[5(él_el)5(é2_e2)5(r1,2_r)]T}}\‘=2deldeZdr

N—1
=4wr2(T) -G(ey,e,,r)dedeydr. (39

The left-hand side of E¢38) is this number averaged over
, ‘ , the thermal equilibrium and the positions of all sites but the
-4 -2 0 2 4 first one. It follows from the definitiori38) thatG(e,,e,,r)

€ is the probability density to find one out dli(-1) sites with

FIG. 2. The shape of the DOSB(e), for the case ok=0.5  €nergy in the intervald;,e,+de;) and being placed in the
andT=10. MC simulations with the periodic boundary conditions SPherical layer i(,r +dr) around a given sit¢=1 provided
were made for one specimen of ed¢h500, 2500, 12 500, 62500. the energy of given site is in the intervad,(.e; +de;). Since
The MC curves have diminishing height of maxima with increasingthe left-hand side of Eq38) does not depend on the first site
N. The last twa(N=12500 andN=62500 merge. The formulg37) position, averaging on the position of this site does not
of the text was for full down curve. change the definition(38). So we can finally define

G(e;,e,,r) by the following relation:

gualitative agreement with the MC data®&t 10, provided ~ ~ _ 4rr?

the specimen size is large enough. Nevertheless, evén at [o(er—ey)d(e~e,) 5(r1,2—r)]T—( Y, )-G(el,ez,r).
=10 a small quantitative deviation exists between theory and (39
MC experiment. This disagreement was shown to decrea . I .
with increasing temperature. In the temperature range f[irom this Ias_,t_ deﬂmt_lon the symmetry G_wnh_respect to
>T>1 the RPA results remain in qualitative agreement withthe transpo§|t|9n of its energy variables is evident. Because
MC data, but the deviations are then not explained by todhe energie®; e, depend orR only through the mutual site
small specimen sizes and grow with decreasing temperaturélistances we have the identity

In this temperature range, as we believe, the high-

temperature corrections to RPA similar to those known from [5(8—ey)d(F1—1)] :(4
the classical plasma thedfycould have improved the com- v 12 T
parison to MC simulations. In the low-temperature region,

T<1, RPA does not correctly describe the DOSE behavioft follows from Eq. (39) and(40) thatG(e,,e,,r) is related
even on a qualitative level. to G(e;) through the self-consistency conditions

41
Here we define the pair OSE correla@fs;,£,,r) and ) ) “D
calculate it in the RPA. As in the case gfs), it is conve- If we expect the decoup_llng of cor_relauo_ns tgkes place at
nient to work withe = 3-8, and with G(e,.e,,r) defined larger the formula for this decoupling being in the corre-
X . i e 1:=2s spondence with the self-consistency conditios$) has the
via the relationg(eq,e5,r)=B"-G(Be1,Beo,I). form

r2

\Y

) -G(ey). (40

A. Definition of g(&;,£,,r) G(e;,e;,2)=G(ey) - G(ey). (42

For a given specimeR and charge distributio[‘mj]T let  Our RPA results will be shown to obey the decoupling con-
us consider the number of sites from the total g2&j  dition (42). As for the case ofG(e), all calculations are
<N] being in the spherical layer (r+dr) around the site convenient to do with the Fourier transfor@ of the cor-
j=1 and with energieéj from the strip €,,e,+de,), relator entering Eq(SS?. What we actually calculate is the
provided the site j=1 has its energy in €;,e;+de;). replicated form of thisG,

2 2 s
(47\7 )-é(wl,wz,r)zIimTrN{é(rl,z—r)exp( > iwa~a§—,821 HN(ma)”. (43)

s—0 a=
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B. RPA for G(ey,e,,r)
Switching to CV's in the formuld43) is quite analogous to the cases of DOSE and the replicated partition function, so we

only present here the final result f&r=1/2 in RPA:
4i ;[ dp
el e

Amr?\ _ S(ri,—r) . .
( v )G(wl,wz,r)lem eQ-J J'TdyldszrN

s—0 a=1 k k T
2 da
- - . - > - - / k
Xexp(—(pk,rkpk)—zl El(pk,Aa%cos(kya))Hl;[ f—s
a= v
2
Xex% _(qkarqu)_Zi Zl (qkiAa) 'Sin(kya)) l] ) (44)
with 1
Q=s-2>' [vk+In(w/vkn—4w1w2<bc<r>—4<wi+wé)-(NE' vk),
k k
» o 1.
Aa=(2/\/ﬁ)-(|wae°— Eaa), a=12,
1 N
(= (Gunln 08, DG=( 3] S ofet 9
, , Pt

Note thatD(® does not depend 061,2 and therefore the calculations with® can be done at the constant replicated spins

51’2. The following transformation of Eq44) consists of taking Gaussian integrals and selecting those terms from arising
determinants which survive in the thermodynamic lilfNt~c. The algebra is simple but cumbersome, so we present here
only the final result of the manipulations mentioned:

coq (w1t wy) - [Py(r)—Pp(0)]}

é(wl,wz,m:exq—zwl-w2~<1>p(r>—(wi+w§>-<bp<0>]-(

1+exgdy(r)]
cos (w1~ wy) - [Py(r)+Dy(0)]} (46)
1+exd —dy(r)] '
|
where the potential® ,(r) and®y(r) are defined as Sleser)- 1 exp{ - Yo- (1+Yy)2
(4)2, V2 [ (1—e—a) T 16wy 1— X2 2(1=x)
D)=\ -codkr)=—]| - ,
p(r) N/ < 1+ vy Lkr) 4T3 o texd — Yo- (1-y)?
2(1%x)
by = 2 S (2] cogkP) = (K2i2ar) - e~ 2
AN/ 1y —\Rdlem 42 exd — Yoo¥T Y (48)
(47) 2(1xx) 2(1¥x)/]|
with a=(kg-r) andk§=(7-r/T). It is seen thatb4(r) is pro-
portional to the Coulomb potential screened with Debye ra- e?
dius Mg In the ;creening regiona(>1) we can neglect B Ayg-(1—x2) e+ 7,
®y(r) in comparison teb,(r) because the latter behaves as  G(0.e,r) = > -lexp —
the unscreened Coulomb potential. We consider here the as- 167 yov1—x 2(1+x)
ymptotical behavior in the regioa>1. Aiming to compare —e te
our results with those of Blanter and Ralfive consider in +ex;{ IO +ex;{ 0
detail only the cases ofe(,e,):(e,e),(e,—e) and (0Og). 2(1+x) 2(1-x)
C.e *=0 imation for G +exp — L (49
. € "=0 approximation ror 2(1—X) .

In this approximation we have(r)=0,d,(r) =y X,
where yo=(7/4T%)Y? and x=1/a. The three above men- In formula (48) we have used the variablee=y,-y. By
tioned special cases are taking x=0 in the formulas(48) and (49) it is easily seen
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that the decoupling relationg2) are fulfilled in all cases The comparison of the formuld29)—(33) of Ref. 16 to our
considered. Developing in smak in Eqg. (48), with y  Eq. (37) for DOSE does not confirm the functional form
=0(1), we get g(e)~f(e/T) of the temperature dependence found in Ref.
16. Our formula(51), taken ate=0, shows attractive corre-
lations decoupling via~T/r? whereas the formul#43) of
Ref. 16 shows attractive decouplingV(r)/T. In our case
(500 the asymptotic behavior at~T gives a decoupling of the
The development48) in smallx andy up to second order in fepulsive type~8/f.82_/r2 whereas the decoupling found
X gives from the formuld® (47) is repulsive, as well, but with a dif-
ferent temperature dependenceV3(r)/T2. It would be

G(e,=e,r)

Gle ze.0) — L* (7ox/2)- [y~ tanf(yoy/2)]*+ O(x").

G(e,+e,r) YoX > L (1 % 2 very interesting to solve the equatidfis the high-

Gle *e,2) slx—=—yll-5] ¥ |5-5+5 temperature regioril) for the three-dimensional case and
(51) with Coulomb pair interaction a¢(r) in order to compare to

our results.

As it follows from Egq. (51), in the “low-energy” region

Yo+ Y?><x we have attractive correlations proportionalxto

whereas in the rest of the region,-y?>x, decoupling VI. CONCLUSION

obeys the law(50) depending on sge-e;) and propor- In this section we use natural dimensions for all variables

tional tox. _considered. We have considered in RPA a Coulomb glass

In summary, in terms of natural parameters the asymptotigyode| with randomly distributed donor sites and with accep-
correlation behavior is as follows. The conditith of RPA o, charges equally smeared on donor - e on each. Our
applicability together with one for the screening regifixe  yesults for the energy and DOSE were shown to be in good
<land y=0(1)] can be expressed as<IT<m-r? & agreement with MC simulation data in the temperature re-
~7/T and the low-energy regime corresponds:fe<T/2r.  gion T>e?-n%%, In this region the thermodynamics of the
Note that in the case that both of these conditions are fulcoylomb glass model is similar to the one for an electrolyte
filled, the inequality T/)"*<r <T?/2m has to be valid. In iy the Debye screening regime with screening radiys
this region the correlator448) obey the attractive law =(T/me?’n)¥2 We have investigated the behavior of the
~T/ar?. The “high-energy” region, where the inequality OSE correlatorg(e;,e,,r) in the asymptotic regimer
>T?/27 is fulfilled, corresponds to>T?/27. In this region >r4: the casegy(s,+¢,r) were considered at the energy
the asymtotic behaviais0) works and decoupling obeys the scales?~(n-€%T). We have shown that in the low-energy
law ngn(gl'32)_’(T/7T)1/2'(1/r)- To investigate the |(egion, where the inequality T(e2nY3)Y2<y.nl3
asymptotic behavior 06(0e,r) atx—0y=0(1) we have < (T/47262n13)2 fuffills, the attractive correlation exists be-
developed formula49) in powers of smallx, assuminge  tween sites decreasing according to the laWT/ne?r?).

=0(1): In the region, where r-nY®>(T/4n%e?n3)?2, this
decoupling changes into the regime obeying the new law
M =1-—x2. e_z + e_z + yo_'e.tam—(f) _ E ~sgn(e;-£,)(T/e?r). The repulsion between sites with OSE
G(0e,») 4y, 8 4 2] 2 of different signs of ¢ — ) is well known since the early
2 theorie$~* treating the Coulomb gap phenomenaTat0.
+ Yo_ %o ) (52)  The attractive correlations between sites of the sameesgn(
2 8 — ) were noted in the narrow energy strip near the Fermi

It follows from Eq. (52) that fore>1 (i.e.,e>T) a correla- |€vel u in the simulations of Davies, Lee, and Ri€enade at
tion repulsion obeying the lawT/r? takes place and with 1 =0 The main result of our work is that even in the tem-
diminishinge this repulsion slowly goes over into attractive Perature region, where the thermodynamics of a Coulomb

correlation characteristic to the low energy region. glass is mainly determined by the Debye screening effects,
unscreened correlations of long-range nature still exist be-

tween OSE’s. Because a similarity takes place between the
OSE correlations found in our investigation and tHéger

To what extent do the results found depend on the model?P=0 we believe that our results would shed some light on
Specifically, does the decoupling of the OSE correlations dethe structure of the low-temperature states of Coulomb
pend on the features of the model considered? In Ref. 16, thglasses.
only one we were able to find on this subject, the DOSE and
the OSE pair correlators have been calculated from self-
consistent equationésee the discussion in Seg. for the
two-dimensional case and for pair potenti®lér), without This research was supported by The Swedish Royal Acad-
singularities ar =0 and decreasing no slower than?lds  emy of Sciences and by The Swedish Natural Research Sci-
r—o, So, any comparison of our results to those of Ref. 16ence Council. Two of ugv.O. and S.B). are grateful to the
inevitably has to be of a qualitative character, even in theRussian Foundation for Fundamental Research for partial
regionV(r)/T<1 where RPA is assumed to be applicable.financial support through Grant No. RFFR 00 15 97334,
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