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Fourier-space crystallography as group cohomology
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We reformulate Fourier-space crystallography in the language of cohomology of groups. Once the problem
is understood as a classification of linear functions on the lattice, restricted by a particular group relation and
identified by gauge transformation, the cohomological description becomes natural. We review Fourier-space
crystallography and group cohomology, quote the fact that cohomology is dual to homology, and exhibit
several results, previously established for special cases or by intricate calculation, that fall immediately out of
the formalism. In particular, we prove that two phase functions are gauge equivalent if and only if they agree
on all their gauge-invariant integral linear combinations and show how to find all these linear combinations
systematically.
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I. INTRODUCTION

The discovery in 1984 of crystals with fivefol
symmetry,1 and therefore no periodicity, revived interest
Bienenstock and Ewald’s 1962 reformulation of crystallo
raphy in Fourier space.2 Mermin and collaborators have ap
plied this Fourier-space crystallography to the classificat
of the space groups of quasiperiodic and periodic crystals3–5

modulated crystals,6 and color groups.7 We show here tha
this technique, by now familiar to crystallographers, ha
particularly simple expression in the language of homolo
cal algebra.

Section II quickly reviews the basis of Fourier-space cr
tallography. The phase functionFg(k), defined fork in the
reciprocal lattice andg in the point group, facilitates the
classification of space groups. We review the gauge equ
lence of two phase functions. In Sec. III, we consider
necessary extinctions that occur in the diffraction patt
when g leavesk invariant, yetFg(k) does not vanish. It
would be simple if two phase functions that agreed at
such pairs (g,k) were gauge equivalent, but in fact there a
two crystallographic counterexamples; however, when
consider the gauge equivalence of linear combinations
phase functions, we can state the result~Theorem 1! that two
phase functions are equivalent if and only if all their gaug
equivalent linear combinations agree. Section IV revie
work by Mermin and Ko¨nig on the most important suc
linear combination, one that relates to a ray representatio
the point group and necessitates an electronic degenera
the system. Section V places the phase functionF in a co-
homology group, while Sec. VI puts gauge-invariant line
combinations of phase functions in a related homolo
group. In Sec. VII, we invoke the duality of these cohom
ogy and homology groups to prove Theorem 1~an alterna-
tive, elementary, proof being presented in the Appendix!. We
also prove that for any phase function there exists a gaug
which it takes only rational values~with set denominator!.
Section VIII applies our results to simplifying the classific
tion of space groups, and Sec. IX addresses the ray repre
0163-1829/2001/65~2!/024201~7!/$20.00 65 0242
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tation of Sec. IV in homological language. Section X com
pares our results to a real-space treatment.

II. FOURIER-SPACE CRYSTALLOGRAPHY

Mermin and others have argued persuasively8,9 that the
theoretical significance of quasicrystals lies not so much
relaxing the requirement of periodicity as in replacing ex
identity of a density function~e.g., electronic or nuclear!
under symmetry operations with indistinguishability. We w
review Fourier-space crystallography only tersely, in order
establish the notation; for a more developed exposition,
refer to Ref. 10.

The reciprocal latticeL ~or simply lattice, since there is
no direct-space lattice of translations in the aperiodic cas!
is the closure under addition of the set of Bragg pointsk at
which the Fourier transformr(k) of the direct-space densit
function does not vanish. Crystals, periodic or quasiperiod
have reciprocal lattices generated as all integral linear c
binations of a finite set of vectorsk; we do not consider
noncrystals. A different density functionr8 is said to be in-
distinguishable fromr if all spatially averagedn-point cor-
relation functions, representing macroscopic physical m
surements, are the same for the two densities: in Fou
space,

r8~k1!r8~k2!¯r8~kn!5r~k1!r~k2!¯r~kn! ~1!

for all lattice vectors summing to zero ((k i50). This holds
if and only if

r8~k!5e2p ix~k!r~k!, ~2!

wherex, called a gauge function, is any real-valued line
function ~taking values modulo 1! ~Ref. 11! on L. We are
particularly interested in the case that the first density fu
tion in Eq. ~2! results from acting on the second with a
elementg of a point group,G,O~3!, for then

r8~k!5r~gk!5e2p iFg~k!r~k!, ~3!
©2001 The American Physical Society01-1
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whereFg , the particular gauge function for thisg, is called
a phase function. Phase functions are constrained by
group-compatibility condition forg, hPG,

Fgh~k!5Fg~hk!1Fh~k!, ~4!

a consequence of the group action on the lattice.
The phase function defines algebraically the action of

point group on the density and so, together with the latt
and orientation, encodes the information of the traditiona
defined space group. However, altogether too much free
remains, for two phase functionsF8 and F related by a
gauge function through

Fg
8~k!2Fg~k!5x~gk2k! ~5!

yield indistinguishable densities. To classify space grou
one therefore first computes all possible phase functions
isfying Eq. ~4!, then groups into gauge-equivalence clas
phase functions differing only by a gauge, as in Eq.~5!. To
complete the classification, one must also consider scale
variance and the orientation ofG with respect toL. Refer-
ence 10 discusses in detail the classification of Brav
classes, arithmetic crystal classes, and space-group type
the present work, we are concerned only with equivale
classes of phase functions.

Until now, the grouping into gauge-equivalence clas
has required a clever choice of specific gauge in which
but a few values ofFg(k) vanish; homological algebra pro
vides a more systematic approach to the classification, f
is precisely the group of functions satisfying Eq.~4! with the
identification ~5! that constitutes the fundamental object
cohomology.

III. EXTINCTIONS, AN UNTRUE PROPOSITION,
AND A THEOREM

The class containing the trivialF, for which all values
Fg(k) vanish, is called symmorphic. Perhaps the most dir
result of Fourier-space crystallography concerns neces
extinctions in the diffraction patterns of materials with ce
tain nonsymmorphic space groups. The simplest exampl
the n-point correlation function in Eq.~1!, r(k)r(2k)
5ur(k)u2, is proportional to the intensity in a diffractio
experiment. As is well known, materials with certain spa
groups show zero intensity at particular lattice pointsk.
From the Fourier-space point of view, if some point-gro
elementg leavesk invariant and ifFg(k)Þ0, Eq. ~3! re-
quires thatr(k) itself should vanish.

By Eq. ~5!, the conditiongk5k means that all specimen
F in a particular equivalence class of phase functions w
take the same value for that choice ofg andk, regardless of
gauge. We call the particular valueFg(k) a gauge-invariant
part.

By definition, if two phase functions are related by
gauge~5!, then they agree on all their gauge-invariant pa
but the converse is not true: out of the 230 periodic sp
groups in three dimensions, there are precisely two nons
morphic space groups with no nonzero gauge-invar
Fg(k). Thus they agree with their symmorphic cousi
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whenevergk5k, yet they are not symmorphic. Lackin
nonzero gauge-invariantFg(k), the two space groups
I212121 and I213 exhibit no systematic extinctions. For th
other 228 periodic space groups and for all known quasip
odic space groups, it happens to be the case that two p
functions are related by a gauge if and only if they agree
all their gauge-invariant parts of the formFg(k). If we knew
this to be true in advance, we could use it to simplify t
classification of equivalence classes of phase functions
just finding all gauge-invariant parts compatible with Eq.~4!.
Absent this proposition, the gauge-invariant parts are ins
ficient: we must find a clever choice of gauge in which
noninvariantphases vanish.

For the two peculiar cases in which one cannot make
noninvariant phases vanish, Mermin has constructed
gauge-invariant linear combination of two phase function

Fg~kh!2Fh~kg!, ~6!

for a specific choice of commuting point-group elementsg
and h and lattice vectorskh and kg , where neitherFg(kh)
nor Fh(kg) is gauge invariant. By showing that the grou
compatibility condition~4! permits the gauge invariant~6! to
assume a value either 0~symmorphic! or 1/2 ~nonsymmor-
phic!, he derives the existence of the two nonsymmorp
space groupsI212121 for point group 222 on the orthorhom
bic I lattice and I213 for point group 23 on the cubicI
lattice.

The fact that a gauge invariant of the formFg(k) is sim-
ply a linear combination of one phase, while Eq.~6! is a
linear combination of two, suggests a generalization of
untrue converse about gauge-invariant single phases.

Theorem 1. Two phase functions are related by a gauge
and only if they agree on all their gauge-invariant line
combinations, of the form( iFgi

(k i).
We will show ~Sec. VI! that an appropriate homolog

group systematically classifies all gauge invariants and~Sec.
VII ! that its duality to a cohomology group proves the the
rem. Because the proof of Theorem 1 does not rely on
specific generating relations of the lattice, it applies equa
to crystals, quasicrystals, and modulated aperiodic crysta
well as to ‘‘standard’’ and ‘‘nonstandard’’ lattices.12 While
nonstandard lattices have not yet been identified in nat
observations of high-symmetry aperiodic lattices in liqu
crystals13,14 and plasmas15 suggest that our results may fin
application.

IV. NECESSARY DEGENERACIES

Although a nonzero value of the invariant combination~6!
implies no necessary extinctions in the diffraction patte
König and Mermin16 have given it a definite physical inter
pretation. They consider a reciprocal-space vectorq, not nec-
essarily inL, and the associated little groupGq#G consist-
ing of elementsg such that

kg[q2gq ~7!

is in the lattice.17 The Hamiltonianhq of the electronic prob-
lem at Bloch wave vectorq describes all bands atq; bands
1-2
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FOURIER-SPACE CRYSTALLOGRAPHY AS GROUP COHOMOLOGY PHYSICAL REVIEW B65 024201
may repel or cross. If for commutingg and h in Gq the
invariant~6! does not vanish, every level must be degener
with some other level atq, so bands cross at least in pair
We outline the argument first because the gauge invarian~6!
falls out of the first-homology calculation below and seco
because it relates to a second cohomology group.

König and Mermin expand the Bloch wave in reciproc
lattice vectorsk and express the action ofg in the point
group onk in terms of the unitary operatorU(g), with

U~g!uk&5e2p iFg~k!ugk2kg&. ~8!

The operatorsU(g) commute with the Hamiltonianhq and
constitute a ray representation ofGq , for

U~g!U~h!5e22p iFg~kh!U~gh!. ~9!

The map

l~g,h!5e22p iFg~kh! ~10!

from G3G to the unit circle is called the factor system atq.
Suppose thatE is a nondegenerate energy level ofhq , and

let uc& be the corresponding eigenvector. Since the Ham
tonian commutes with all theU(g), uc& must also be an
eigenvector of each, so

U~g!U~h!uc&5U~h!U~g!uc&. ~11!

Comparing this commutation of matricesU to the ray repre-
sentation~9!, König and Mermin find, for commutingg and
h, that Eq.~6! must vanish. If it does not, every band mu
cross at least one other band atq.

V. GAUGE-EQUIVALENCE CLASSES AND THE FIRST
COHOMOLOGY GROUP

Brown18 traces the theory of group cohomology to a 19
work by Schur19 on ray representations such as Eq.~9!. We
now use this theory to describe the classification of ph
functions up to gauge equivalence.20 In Sec. X, we compare
this Fourier-space cohomology to group cohomology in re
space crystallography.

The phase functionFg , which maps the latticeL to the
real numbers modulo unity, has three defining characte
tics: ~i! it is linear, ~ii ! it satisfies the group-compatibility
condition~4!, and~iii ! it is defined only modulo gauge func
tions of the form~5!. Cohomology conveniently package
functions of just such description.

The mapF, which takesgPG to Fg , is an example of a
1-cochain, the set of all of which we callC1. We denote by
L* 5Hom(L,R/Z) the group of all real-valued~mod 1! lin-
ear functions on the latticeL; the phase functionFg is in
L* .21 More generally, ann-cochain inCn is a function that
mapsn group elements fromG to L* . HereCn has a group
structure under addition. The gaugex, taking no point-group
arguments, is a 0-cochain.

Connecting these functions is a coboundary map,d:Cn

→Cn11, such that two maps in a row yield zero identical
d(n11)+d(n)50. Applied specifically to the lowest-orde
cases,22
02420
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~dx!~g!5x+g2x ~12!

and

~dF!~g,h!5Fg+h2Fgh1Fh . ~13!

Equation ~12! identifies those 1-cochains that are c
boundaries of 0-cochains as the group of gauge transfor

tions @by Eq. ~5!#; we defineBn5 im(Cn21→
d

Cn) as the set
of all n-coboundaries. Similarly, the right-hand side of E
~13! must vanish ifF is to satisfy the group-compatibility

relation ~4!; we defineZn5ker(Cn→
d

Cn11) as the set of all
n-cocycles: that is,n-cochains with vanishing cobound
aries.

The quotient groupH15Z1/B1, or cocycles modulo co-
boundaries, is called the first cohomology group ofG with
coefficients inL* . Membership inZ1 establishes group com
patibility, while modding out byB1 identifies functions dif-
fering only by gauge transformation, soH1 is exactly the
group of equivalence classes of phase functions.

VI. INVARIANTS AND THE FIRST HOMOLOGY GROUP

To prove Theorem 1, we must find all gauge-invaria
linear combinations of phase functions. Suppose the lin
function f :H1→R/Z takes an equivalence class of pha
functions to a real number; we may think of any gauge
variant in these terms. Since the value of a gauge invarian
the same for any memberF of an equivalence class$F%, we
may write f ($F%)5 f (F) as only a slight abuse of notation
We may turn this around to think ofF mapping f to a
number.

To produce a number in the unit interval, a cochain a
on integral linear combinations of ordered sets each cont
ing one lattice vector andn group elements, which we ca
write ~following Brown’s convention18! ( ik i@g1i ug2i u¯ugni#
for k iPL andgji PG. SinceL already absorbs any integra
coefficients, we need not write them explicitly. Such line
combinations are calledn-chains and the set of alln-chains
Cn5L@Gn#.

A cochainF in C1 and a chainc5( ik i@gi # in C1 act on
each other through the bracket

^F,c&5(
i

Fgi
~k i !PR/Z. ~14!

We let C1 inherit the additive group structure ofL: k@g1#
1k8@g1#5(k1k8)@g1#.

By direct analogy with the coboundary operator in Eq
~12! and~13!, we define a boundary map]:Cn→Cn21 such
that two maps in a row yield zero. Note that] decrements the
number of copies ofG in the chain, whereas thed operator
on cochains increments it. In the lowest-order cases,23

]k@g#5gk2k ~15!

and

]k@guh#5~hk!@g#2k@gh#1k@h#. ~16!
1-3
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DAVID A. RABSON AND BENJI FISHER PHYSICAL REVIEW B65 024201
1-cycles are chainsc5( ik i@gi # satisfying

]c5(
i

~gik i2k i !50. ~17!

Let Z15ker(C1→
]

C0) denote the set of all 1-cycles. Apply
ing the bracket~14! to c satisfying Eq.~17!, we find that
1-cycles give gauge-invariant linear combinations of phas
and since the condition for gauge invariance of ageneral
linear combination of phases( iFgi

(k i) is, by Eq. ~5!, pre-
cisely Eq.~17!, all such gauge-invariant linear combinatio
come from 1-cycles. In the case thatc5k@g# in Eq. ~17!, the
gauge invariant takes the formFg(k) for gk5k, but in gen-
eral a linear combination, such as Eq.~6!, must be allowed.

Similarly, 1-boundaries are those 1-chains that c
be written as boundaries of 2-chains, as in Eq.~16! or inte-

gral linear combinations thereof:B15 im(C2→
]

C1). Be-
cause]+]50, every 1-boundary is a 1-cycle, representing
gauge invariant. Again applying the bracket we discover t
the phases at boundaries~16! are necessarily zero by th
group-compatibility condition ~4!. Thus, although
1-boundaries are gauge invariants, they are trivial. We m
them out in defining the first homology group ofG with
coefficients inL:

H15Z1 /B1 . ~18!

First homology is the group of nontrivial gauge invariants
We have already commented that a real-valued functiof

on H1 is unaffected by gauge~i.e., by the addition of a co-
boundary to a cocyleF! and that the addition of a boundar
to a cyclex does not change any phase. These facts esta
that the bracket, which we introduced in Eq.~14! as a func-
tion C13C1→R/Z, is in fact well defined onH13H1 ,
which we may express concisely thus:

^F1dx, x1]y&5^F, x&, ~19!

whereF is a phase function (dF50), dx a gauge transfor-
mation of the form~5!, xPC1 a cycle (]x50), and]y a
boundary,yPC2 .

VII. DUALITY AND THE PROOF OF THEOREM 1

We note a striking similarity betweenH1 andH1 . While
the former contains all linear functions satisfying group co
patibility, identifying those related by gauge transformatio
the latter contains all linear gauge invariants, identifying a
whose difference is made trivial by group compatibility.
fact, homological algebra affirms their duality. Before stati
this central result, we note the following.24

Lemma 2. For G a finite group withuGu elements andF
PH1, uGuF50 ~where 0PH1 denotes the set of phase fun
tions gauge equivalent to zero!. In other words, for any phas
function F, there exists a gauge in which everyFg(k) is
rational with denominatoruGu.

This is quite plausible, since the only constraints
phases are those imposed by group compatibility~4! applied
through the constituent relations of the point group. Spec
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cally, summing overg in Eq. ~4! and noting that(gFgh
5(gFg , we find

uGuFh~k!5x~hk2k!, ~20!

wherex(k)52(gFg(k) clearly satisfies the definition of a
gauge function. ThenuGu times any phase function is a pur
gauge, proving the lemma. Note that we maynot divide by
uGu to show that all phase functions are gauge equivalen
zero, becausex is defined only modulo unity.

Having found a gauge in which a phase function tak
rational values, we defineL85Hom(L,Q/Z)#L* and quote
the following standard result from cohomology.25

Lemma 3. For G a finite group andL a free Abelian
group, the groupsHn(G,L8) andHn(G,L) are dual through
the bracket~14! ^,&: Hn3Hn→Q/Z.

Duality means that ifX serves as a minimal basis forH1 ,
there exists a basis$Fx% for H1 labeled byxPX and that any
FPH1 can be decomposed uniquely as a linear combina
of the basis elementsFx with integral coefficients equal to
^F,x&/^Fx,x&. Therefore, if we know the valuêF,x& of a
phase function on each of the nontrivial gauge invariantx
spanningH1 , by linearity we knowF up to gauge transfor-
mation. This proves Theorem 1.

We give in the Appendix an alternative, elementary pro
of Theorem 1 by constructing the gauge function relat
two phase functions that agree on all gauge-invariant lin
combinations.

VIII. CALCULATING SPACE GROUPS „EXAMPLE …

Homological algebra offers a powerful tool for systema
cally finding all gauge invariants. By Theorem 1, it furthe
more frees us from having to specify a gauge: once
have the gauge invariants, we no longer have to prove o
case-by-case basis that all other phases can be made to
ish. As an example, we compute the two possible spa
group classes on the body-centered orthorhombic dir
space lattice~which is face centered in reciprocal space! with
the point group 222. Instead of having to hunt for the gau
invariant ~6!, we shall see it fall out of the formalism
naturally.

The calculation is straightforward. First, we calculate t
group Z1 of gauge invariants by acting with the bounda
operator] on 1-chainsk@g#. We then wish to remove from
the list all boundaries inB1 , since these represent th
‘‘trivial’’ consequence of group compatibility~4!; to do so,
we let ] act on 2-chainsk@guh#. After this elimination, we
find a homology group with only two elements. The ent
procedure is easily automated; for example, the NullSpac@ #
and LatticeReduce@ # functions of Wolfram’s Mathematica
program can be used to find minimal bases overZ for Z1
andB1 .

Let êi, i 51,2,3, constitute the usual Cartesian axes.
name the three sides of the conventional reciprocal cex
5aê1, y5bê2, andz5cê3, wherea, b, andc are all differ-
ent, and generate the face-centered reciprocal latticeL ~dual
to the body-centered direct lattice! with the vectorsb1
5 1

2 (011), b25 1
2 (101), andb35 1

2 (110) @all in terms of the
1-4
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(x,y,z) basis#. The point group isG5$e,d1 ,d2 ,d3%, where
dj leaves êj invariant, d1d25d3 et cycl., anddi

25e, the
identity. G is generated byd1 andd2 .

To calculate the group of gauge invariants,Z1 , we apply
] to the ~additive! generators of 1-chains. The chainsk@e#
are cycles, sincee leaves all vectors invariant. We can sho
that they are also boundaries, for by group compatibility,

k@gh#8~hk!@g#1k@h#, ~21!

where8 denotes equality up to the boundary]k@guh#. Set-
ting g5h5e, we then havek@e#80, so we leave it out of
the computation. Equation~21! furthermore tells us that we
need consider only the generating elementsd1 and d2 , not
d35d1d2 .

One easily verifies that

~]bi@dj # !k5ue i jk u2d ik2d jk , ~22!

where the subscriptk indicates the resulting lattice compo
nent in the (b1 ,b2 ,b3) basis,d is the Kronecker delta, ande
the totally antisymmetric tensor.

With i 51,2,3 andj restricted to 1, 2, we can think of th
left-hand side of Eq.~22! as a 336 matrix whose three-
dimensional null space over the integers isZ1 ~aside from the
boundaries we have already eliminated!. It is a standard re-
sult of linear algebra that row reduction without divisio
yields a primitive basis over the integers;26 we find for this
basis

z15x@d1#,

z25y@d2#,

z352b1@d2#1b2@d1#. ~23!

We now know all the gauge invariants and seek, by comp
ing B1 , to identify those that are related by group comp
ibility ~4!.

To find the 1-boundaries not already identified, we m
apply ] to the 27 two-chains,

bi@dj udk#; ~24!

this number is reduced to 18 if we notice thatk@guh1h2# has
the same boundary as (h2k)@guh1#1k@gh1uh2#2k@h1uh2#,
so that in Eq.~24! we may restrictk to 1, 2.

After eliminating duplications and zeros, we get sev
boundaries. Rearranging the rows into echelon form, we
only three that are linearly independent:z1 , z2 , and 2z3
are all boundaries. This identifies allevenmultiples of the
cycle z3 in H1 , which therefore contains just a single no
zero invariant:

H1~G,L!5$0, z3%. ~25!

Since 2z380, F(z3) can take values only 0 and 1/2.
The invariantz3 is precisely the linear combination~6! of

phases used in Ref. 5 to distinguish the symmorp
@ I222,F(z3)50# from the nonsymmorphic@ I212121 ,
F(z3)51/2# space group. Mermin’s rather shorter calcu
tion rests on a clever choice of gauge ensuringFd1

(b3)
02420
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5Fd2
(b1)5Fd3

(b2)50; in our comparatively pedestria
approach, the list of phases that can be discarded is inhe
in the calculation of the boundariesB1 . Significantly, the
present calculation is easy to automate, requiring no ‘‘ju
cious choice’’ of generators and gauges, while verificat
that one gets ‘‘a representative of every class’’5 is built in to
the procedure. We lose the elegance of Mermin’s~equiva-
lent! calculation, but we hope we make up for some of t
loss in the compact and general statement of Theorem
proved in Sec. VII. We have generalized and applied ess
tially the ideas demonstrated in this section to the simu
neous computation of a large number of cases, includ
nonstandard and modulated lattices.27

IX. SECOND COHOMOLOGY AND THE FACTOR
SYSTEM

In general, the cohomology groupHn(G,M) consists of
cocycles fromn copies of a groupG to a moduleM with the
identification of coboundaries. Having classified the pha
functions inH1 with G5G and M5L8, we can calculate
the factor system~10!. However, the factor system also has
cohomological existence in its own right, with a differe
groupG and different moduleM. Consider

L~g,h!52~ ln l!/~2p i !5Fg~kh!, ~26!

taking values in the moduleM5@0,1)5R/Z. From here on,
we will use the term ‘‘factor system’’ to refer toL rather than
to l. Sinceg andh reside in the little groupG5Gq , L is a
2-cochain inC2(Gq ,R/Z). The action ofgPGq on x in the
moduleR/Z is trivial: xg5x.

We can again impose group compatibility as a cocy
condition:

~dL!~g1 ,g2 ,g3![L~g1 ,g2!2L~g2 ,g2g3!1L~g1g2 ,g3!

2L~g2 ,g3!50. ~27!

@The equivalence to group compatibility follows from th
definitions~7! and ~26!.28#

If two ray representations~8! differ by a quantum phase
e2p is(g) ~one for each gPGq! so that U8(g)
5e2p is(g)U(g), the corresponding factor systems differ b
the coboundary ofs:

L~g,h!2L8~g,h!5~ds!~g,h![s~g!2s~gh!1s~h!.
~28!

Since the quantum phase has no physical consequence
identify ray representations related by Eq.~28!. The set of
phase-equivalence classes of ray representations is the
ond cohomology group,H2(Gq ,R/Z)5Z2/B2.

As a final application of group cohomology, we conside
lattice vectork left invariant by a point-group elementg
PG. Letting G5^g&5$gnunPZ%, the cyclic group gener-
ated byg, andM5L, we expresskPL as a 0-cochain. The
cocycle condition (dk)(gn)[gnk2k50 expresses the re
quirement thatk be fixed byg. Since there are no~21!-
cochains, there is no identification of coboundaries, and
cohomologyH05Z0 is the group of allk left invariant byg.
1-5
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X. COMPARISON TO REAL-SPACE COHOMOLOGY

It has long been known that cohomology groups can
used to classify the space groups of periodic crystals;24,29

Hiller gives a particularly approachable exposition.30 We
now compare our formulation, using the Fourier-space lat
L, to the traditional approach, described in terms of the
riodic latticeL in real space. In terms ofL, we can describe
L as the lattice of integer-valued homomorphisms onL, L
5Hom(L,Z). ~For mathematical convenience and to allo
direct comparison with Hiller, we have in this section a
sorbed the conventional factor of 2p into L.! In the three-
dimensional case, if we choose a basisa1 , a2 , a3 of L, then
we can describeL in terms of the dual basisk1 , k2 , k3 ,
where^k i uaj&5d i j ~Kronecker delta!.

Any real-valued linear form onL has the form̂ kux& for a
fixed vectorx in real space. Recall that our phase functio
Fg take values inR/Z, notR: that is, we identifyFg(k) with
Fg(k)1n, for any integern. This corresponds to identifying
x with x1a, for anyaPL. Thus there is a one-to-one corr
spondence between phase functions and elements of the
tient groupR3/L, and we can writeFg(k)5^kuxg& for some
real-space vectorxg , identified with any of its translates b
lattice vectors.

In Fourier-space crystallography, the phase functionsFg
are required to satisfy the group-compatibility condition~4!
or, equivalently, the cocycle condition (dF)(g,h)50 @cf.
Eq. ~13!#. In terms of the vectorsxg in real space, this con
dition becomes^kuxgh&5^hkuxg&1^kuxh&. Recall what it
means to leth ~an orthogonal transformation on real spac!
act onk ~a vector in Fourier space!: by definition,^hkux&
5^kuh21x&. Thus the group-compatibility condition be
comes

xgh5h21xg1xh . ~29!

In order to compare this with the notation of Ref. 30,
s(g)5xg21 and replaceg andh with g21 andh21, respec-
tively:

s~hg!5xg21h215xh211hxg215s~h!1hs~g!. ~30!

This is exactly the cocycle condition used in Ref. 30, Pro
sition 5.1.

Finally, consider gauge equivalence: we identify pha
functionsFg andFg8 related by a gauge transformation as
Eq. ~5!. In the periodic case we are considering, the ga
function can be described byx(k)5^kuy&, where againy is
a real-space vector considered moduloL. If the second phase
function Fg8 corresponds toxg8 in real space, then the cond
tion ~5! can now be expressed aŝkuxg8&2^kuxg&5

^gk2kuy& or xg82xg5g21y2y. In terms ofs(g)5xg21 and
s8(g)5xg218 , this becomes

s~g!2s8~g!5y2gy, ~31!

which is exactly the coboundary condition in Ref. 30.
In conclusion, the cohomology groupH15Z1/B1 that we

consider here agrees, in the periodic case, with the coho
ogy groupH1(G,R3/L) described in Ref. 30.
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APPENDIX: ELEMENTARY PROOF OF THEOREM 1

We have already shown that duality proves Theorem
which we may restate: a phase function is gauge equiva
to zero if and only if it vanishes on all gauge-invariant line
combinations or, equivalently, a 1-cocycle is a cobound
iff it vanishes on all cycles. The implication~‘‘only if’’ !
statements come immediately, so we prove the converse

Although standard treatises on homological algebra pr
duality of Hn andHn ~Lemma 3!, the following elementary
demonstration of Theorem 1 also explicitly constructs
gauge transformationx for which Fg(k)5x(gk2k) if F
vanishes on all gauge invariants. The proof extends fam
ideas from the linear algebra of vector spaces to that of
modules~over Z!.

Define the linear functionx̃ on all 0-boundaries]cPB0
(cPC1) by

^x̃,]c&[^F,c&. ~A1!

We can do so consistent with linearity because, by hypo
esis,^F,z&50 for all gauge invariantszPker]. As a special
case of Eq.~A1!, for c5k@g#, we have Fg(k)5x̃(gk
2k), which almost makesF gauge equivalent to zero. How
ever, to establish thatF is purely a gauge~thus proving the
theorem!, we must extendx̃, which we have so far defined
only on B0 , to a linear functionx defined on allL5C0 . To
extendx̃ to x on C0 , write the rectangular matrixM whose
nc5rank(B0) columns are the integral expansions of a mi
mal basis ofB0 in a basis ofC0 ; M hasnr5rank(C0)>nc
rows.M mapsB0 to C0 by inclusion.

MTM is anc3nc matrix; if MTM is not singular, we can
form the left inverse ofM as M̃5(MTM )21MT. To show
MTM nonsingular, observe that the columns ofM are all
independent over the integers, so that we can find a ma
M 8 with nr rows andnr2nc columns, all columns orthogo
nal to those ofM.31 Thenr3nr square matrixA5(MM 8) is
therefore nonsingular. SinceA andAT are both nonsingular
so is

ATA5S MTM 0

0 M 8TM 8
D ,

but since det(ATA)Þ0, we must have det(MT M)Þ0.
Think of x̃ as a row vector of ranknc ; definex5x̃M̃

~row vector of ranknr!. This completes the construction of
linear x on all C0 such thatFg(k)5x(gk2k), proving
Theorem 1.
1-6



e

ht,

d.

to
e

tt

a
l

-

q
e
he

and
c

nt

he

tate-

nts.
tal-

l

up

ns

FOURIER-SPACE CRYSTALLOGRAPHY AS GROUP COHOMOLOGY PHYSICAL REVIEW B65 024201
1D. Shechtman, I. Blech, D. Gratias, and J. W. Cahn, Phys. R
Lett. 53, 1951~1984!.

2A. Bienenstock and P. P. Ewald, Acta Crystallogr.15, 1253
~1962!.

3D. S. Rokhsar, D. C. Wright, and N. D. Mermin, Phys. Rev. B37,
8145 ~1988!.

4D. A. Rabson, N. D. Mermin, D. S. Rokhsar, and D. C. Wrig
Rev. Mod. Phys.63, 699 ~1991!.

5N. D. Mermin, Rev. Mod. Phys.64, 3 ~1992!; 64, 635~E! ~1992!;
64, 1163~E! ~1992!; 66, 249~E! ~1994!.

6N. D. Mermin and R. Lifshitz, Acta Crystallogr., Sect. A: Foun
Crystallogr.48, 515~1992!; R. Lifshitz and N. D. Mermin,ibid.
50, 72 ~1994!; 50, 85 ~1994!.

7R. Lifshitz, Rev. Mod. Phys.69, 1181~1997!.
8N. D. Mermin, Phys. Rev. Lett.68, 1172~1992!.
9N. D. Mermin, Phys. Status Solidi A151, 275 ~1995!.
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