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We reformulate Fourier-space crystallography in the language of cohomology of groups. Once the problem
is understood as a classification of linear functions on the lattice, restricted by a particular group relation and
identified by gauge transformation, the cohomological description becomes natural. We review Fourier-space
crystallography and group cohomology, quote the fact that cohomology is dual to homology, and exhibit
several results, previously established for special cases or by intricate calculation, that fall immediately out of
the formalism. In particular, we prove that two phase functions are gauge equivalent if and only if they agree
on all their gauge-invariant integral linear combinations and show how to find all these linear combinations
systematically.
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[. INTRODUCTION tation of Sec. IV in homological language. Section X com-
pares our results to a real-space treatment.
The discovery in 1984 of crystals with fivefold

symmetry} and therefore no periodicity, revived interest in Il. EOURIER-SPACE CRYSTALLOGRAPHY
Bienenstock and Ewald’s 1962 reformulation of crystallog-
raphy in Fourier spaceMermin and collaborators have ap-
plied this Fourier-space crystallography to the classificatio
of the space groups of quasiperiodic and periodic crystals,

modulated crystal$,and color groupé.We show here that . Lo ST o .
this technique, by now familiar to crystallographers, has éjn(jer symmetry operations with |nd|st|ngU|shab|I|ty. We will
particularly simple expression in the language of homologi-'€VieW Fourier-space crystallography only tersely, in order to
cal algebra. establish the notation; for a more developed exposition, we

Section Il quickly reviews the basis of Fourier-space crys-efer to Ref. 10. _ , , _ ,
The reciprocal latticeC (or simply lattice, since there is

tallography. The phase functichy(k), defined fork in the , , " . .
reciprocal lattice andy in the point group, facilitates the M° direct-space lattice of translations in the aperiodic gases

classification of space groups. We review the gauge equivdS the closure under addition of the set of Bragg poknt
lence of two phase functions. In Sec. Ill, we consider theVhich the Fourier transform(k) of the direct-space density

necessary extinctions that occur in the diffraction patterrfunction does not vanish. Crystals, periodic or quasiperiodic,

when g leavesk invariant, yet® (k) does not vanish. It have reciprocal lattices generated as all integral linear com-
) g . . . .. . .

would be simple if two phase functions that agreed at alPinations of a finite set of vectors; we do not consider

such pairs ¢,k) were gauge equivalent, but in fact there areNoncrystals. A different density functie' is said to be in-

two crystallographic counterexamples; however, when wélistinguishable fromp if all spatially averaged-point cor-

consider the gauge equivalence of linear combinations of/ation functions, representing macroscopic physical mea-

phase functions, we can state the regTiteorem 1 that two surements, are the same for the two densities: in Fourier

phase functions are equivalent if and only if all their gauge-SPace:

equivalent linear combinations agree. Section IV reviews , , o .

work by Mermin and Kaig on the most important such p'(k1)p' (k) --p'(Ky)=p(k1)p(ka)-p(kn) (1)

linear combination, one that relates to a ray representation Qb g |attice vectors summing to zer@k;=0). This holds

the point group and necessitates an electronic degeneracy iflang only if

the system. Section V places the phase funciom a co-

homo_logy group, while Sec. V_I puts gauge-invariant linear p' (k)=e2mxK5(k), 2

combinations of phase functions in a related homology

group. In Sec. VII, we invoke the duality of these cohomol-where y, called a gauge function, is any real-valued linear

ogy and homology groups to prove Theorentah alterna- function (taking values modulo )L(Ref. 11) on £. We are

tive, elementary, proof being presented in the Appendie  particularly interested in the case that the first density func-

also prove that for any phase function there exists a gauge ition in Eq. (2) results from acting on the second with an

which it takes only rational valuegvith set denominator  elementg of a point group,GC O(3), for then

Section VIII applies our results to simplifying the classifica- _

tion of space groups, and Sec. IX addresses the ray represen- p' (k)=p(gk)=e>"?Mp(k), 3

Mermin and others have argued persuasfreljnat the
pheoretical significance of quasicrystals lies not so much in
relaxing the requirement of periodicity as in replacing exact
identity of a density functione.g., electronic or nuclepr
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where®,, the particular gauge function for ths is called  whenevergk=k, yet they are not symmorphic. Lacking
a phase function. Phase functions are constrained by thgonzero gauge-invariantby(k), the two space groups

group-compatibility condition fog, he G, 12,2,2, and12,3 exhibit no systematic extinctions. For the
other 228 periodic space groups and for all known quasiperi-
Dyn(k)=Dy(hk)+Dp(k), (4)  odic space groups, it happens to be the case that two phase

a consequence of the group action on the lattice. functions are related by a gauge if and only if they agree on

The phase function defines algebraically the action of thé!l their gauge-invariant parts of the fordn,(k). If we knew
point group on the density and so, together with the Iatticérl‘IS t?c, be truefln ad.va?ce, wel could ufse r']t to sflmpl[fy the
and orientation, encodes the information of the traditionaII)/,C assification of equivalence classes of phase functions by

defined space group. However, altogether too much freedosfSt finding all gauge-invariant parts compatible with E4).
remains, for two phase functiond’ and & related by a Absent this proposition, the gauge-invariant parts are insuf-
gauge function through ficient: we must find a clever choice of gauge in which all

noninvariantphases vanish.
TN _ _ For the two peculiar cases in which one cannot make all
Dg(k) = Pg(k) = x(gk—k) ©) noninvariant phases vanish, Mermin has constructed a
yield indistinguishable densities. To classify space groupsgauge-invariant linear combination of two phase functions,
one therefore first computes all possible phase functions sat-
isfying Eq. (4), then groups into gauge-equivalence classes Dy(kn) = Pn(ky), ©)

phase functions differing only by a gauge, as in E}. To o1 4 gpecific choice of commuting point-group elemegts
complete the cIassﬁycann, one must also consider scale ingnqh and lattice vector,, andk,, where neithexb,(kp,)
variance and the orientation @ with respect tol. Refer- ®,(k,) is gauge invariant. By showing that the group-
ence 10 Q|scus§es in detail the classification of Brava'%ompatibility condition(4) permits the gauge invarias) to
classes, arithmetic crystal classes, and space-group types. l8s,me a value either @ymmorphia or 1/2 (nonsymmor-
the present work, we are concerned only with equivalenc%hic)' he derives the existence of the two nonsymmorphic

classes of phase functions. space groupk2,2,2, for point group 222 on the orthorhom-

Unti now, the grouping into gaugg—equivaler_lce cl_asse ic | lattice and12,3 for point group 23 on the cubit
has required a clever choice of specific gauge in which al attice.

but a few values ofby(k) vanish; homological algebra pro- - = tpe a0t that a gauge invariant of the forbn(k) is sim-
vides a more systematic approach to the classification, for l|5ly a linear combination of one phase, while H6) is a

is precisely the group of functions satisfying B@) with the  jinea combination of two, suggests a generalization of the
identification (5) that constitutes the fundamental object Ofuntrue converse about gauge-invariant single phases

cohomology. Theorem 1Two phase functions are related by a gauge if
and only if they agree on all their gauge-invariant linear
IIl. EXTINCTIONS, AN UNTRUE PROPOSITION, combinations, of the forr; ®, (k;).

AND A THEOREM We will show (Sec. V) that an appropriate homology
The class containing the triviab, for which all values 9"0UP systematically classifies all gauge invariants @®t.

®4(k) vanish, is called symmorphic. Perhaps the most direcY!l) that its duality to a cohomology group proves the theo-
result of Fourier-space crystallography concerns necessaf¢™M- Because the proof of Theorem 1 does not rely on the
extinctions in the diffraction patterns of materials with cer- SPECIfiC generating relations of the lattice, it applies equally

tain nonsymmorphic space groups. The simplest example dP crystals, quasicrystals, and modulated aperiodic crystals as
the n-point correlation function in Eq(1), p(k)p(—K) well as to “standard” and “nonstandard” latticéd.While

=|p(K)|?, is proportional to the intensity in a diffraction nonstandard lattices have not yet been identified in nature,

experiment. As is well known, materials with certain space®PServations of high-symmetry aperiodic lattices in liquid
4314 and plasmas suggest that our results may find

groups show zero intensity at particular lattice poikts CryStals’
From the Fourier-space point of view, if some point-group@Pplication.
elementg leavesk invariant and if®4(k)#0, Eq. (3) re-
quires thatp(k) itself should vanish. IV. NECESSARY DEGENERACIES
By Eq. (5), the conditiongk=k means that all specimens
® in a particular equivalence class of phase functions will
take the same value for that choicegpndk, regardless of
gauge. We call the particular valdey(k) a gauge-invariant
pag.y definition, if two phase functions are related by agssarfilylinﬂ, and thehashsociated little grow@,C G consist-
gauge(5), then they agree on all their gauge-invariant parts,Ing of elementsy such that
but the converse is not true: out of the 230 periodic space k,=q—gq 7)
groups in three dimensions, there are precisely two nonsym- g
morphic space groups with no nonzero gauge-invarianis in the latticel’ The Hamiltoniarh, of the electronic prob-
®y(k). Thus they agree with their symmorphic cousinslem at Bloch wave vectoqg describes all bands &t bands

Although a nonzero value of the invariant combinat{6n
implies no necessary extinctions in the diffraction pattern,
Konig and Mermint® have given it a definite physical inter-
pretation. They consider a reciprocal-space vegiaorot nec-
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may repel or cross. If for commuting and h in G, the (dx)(g)=x°g— x (12
invariant(6) does not vanish, every level must be degenerate

with some other level af, so bands cross at least in pairs. and

We outline the argument first because the gauge invaf@nt

falls out of the first-homology calculation below and second (dP)(g,h)=Dgeh—Dgpt Dy,. (13
because it relates to a second cohomology group.

Konig and Mermin expand the Bloch wave in reciprocal-  Equation (12) identifies those 1-cochains that are co-
lattice vectorsk and express the action af in the point boundaries of 0-cochains as the group of gauge transforma-

group onk in terms of the unitary operatay(g), with tions [by Eq. (5)]; we defineB"=im(C""1—-C") as the set
2idog(K) of all n-coboundaries. Similarly, the right-hand side of Eq.

U(g)|ky=e""d gk —kg). (8 (13) must vanish if® is to satisfy the group-compatibility

d

The operatordJ(g) commute with the Hamiltoniah, and  relation (4); we definez"=ker(C"—C"*1) as the set of all

constitute a ray representation @f;, for n-cocycles: that is,n-cochains with vanishing cobound-
) aries.
U(g)U(h)=e ?"*skny(gh). C) The quotient grougH*=2%/B*, or cocycles modulo co-

boundaries, is called the first cohomology group&fwvith
coefficients inC* . Membership irz* establishes group com-
N(g,h)=e 27 Pg(kn) (10) pa'FibiIity, while modding out byB! .identifi?s' functions dif-
fering only by gauge transformation, $&" is exactly the
from G X G to the unit circle is called the factor systemcat  group of equivalence classes of phase functions.
Suppose the is a nondegenerate energy levehgf, and

let [4) be the corresponding eigenvector. Since the Hamil- v, INVARIANTS AND THE FIRST HOMOLOGY GROUP
tonian commutes with all th&J(g), |##) must also be an

The map

eigenvector of each, so To prove Theorem 1, we must find all gauge-invariant
linear combinations of phase functions. Suppose the linear
U(g)u(h)|g)=U(h)U(g)|). (11)  function f:H*—R/Z takes an equivalence class of phase

) ) _ _ functions to a real number; we may think of any gauge in-
Comparing this commutation of matricesto the ray repre-  yariant in these terms. Since the value of a gauge invariant is
sentation(9), Konig and _Merm|_n find, for commuting and  {he same for any membdr of an equivalence clag®}, we
h, that Eq.(6) must vanish. If it does not, every band must may write f({®})=f(®) as only a slight abuse of notation.

cross at least one other bandat We may turn this around to think o mappingf to a
number.
V. GAUGE-EQUIVALENCE CLASSES AND THE FIRST To produce a number in the unit interval, a cochain acts
COHOMOLOGY GROUP on integral linear combinations of ordered sets each contain-

s ing one lattice vector and group elements, which we can
Brown'® traces the theory of group cohomology to a 1904Write (following Brown’s conventio®®) = k[ g1i|dail*|gni]

g .
work by Stﬁhuthon rai/ rzpres_ebnta;trl]onslsuc:c\_ ast_ ). ¥Veh for kje £ andgj; € G. Since.L already absorbs any integral
now use this theory to describ€ he classification ol Phasg,eficients, we need not write them explicitly. Such linear

fu!’lctions. up to gauge equivalentin Sec. X, we comparé  -,mbinations are called-chains and the set of afi-chains
this Fourier-space cohomology to group cohomology in real'C”zﬁ[G”]

space crystallography. T o .

The phase functiod,, which maps the lattic& to the eacAhC(())tﬂ:a?l?r?r)olggch: tﬁg%ggﬁgm_xk‘[g‘] In C, act on
real numbers modulo unity, has three defining characteris-
tics: (i) it is linear, (ii) it satisfies the group-compatibility
condition(4), and(iii) it is defined only modulo gauge func- (CD,c>=Z D4 (k) e RIZ. (14
tions of the form(5). Cohomology conveniently packages :
functions of just such description. : : i :

The map®, which takesgge G to @, is an example of a \:Lvi,l[e; (]:i Eitl_ew)}ge]addltlve group structure df: k[g.]
1-cochain, the set of all of which we call!. We denote by ! L
L*=Hom(L,R/7) the group of all real-valuedmod 1) lin-
ear functions on the lattic€; the phase functiomb is in
L£* .2 More generally, am-cochain inC" is a function that
mapsn group elements fron® to £*. HereC" has a group
structure under addition. The gauggetaking no point-group
arguments, is a 0-cochain. ok[g]=gk—k (15)

Connecting these functions is a coboundary nmaygG"

—C"*1 such that two maps in a row yield zero identically, and
d"odM=0. Applied specifically to the lowest-order
cases? ok[glh]=(hk)[g]—k[gh]+k[h]. (16)

By direct analogy with the coboundary operator in Egs.
(12) and(13), we define a boundary mapC,—C,_4 such
that two maps in a row yield zero. Note thiatlecrements the
number of copies o6 in the chain, whereas the operator
on cochains increments it. In the lowest-order c&3es,
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1-cycles are chains=X;k;[ g;] satisfying cally, summing overg in Eqg. (4) and noting thatz gy,
=304, we find

ac=2 (giki—k;)=0. 17 G| ®p,(K)= x(hk—k), (20

Let Zl=ker(CliCO) denote the set of all 1-cycles. Apply- Wherex(k)=—24®4(k) clearly satisfies the definition of a
ing the bracket(14) to ¢ satisfying Eq.(17), we find that 9auge funct|_on. ThetG| times any phase functlor_l is a pure
1-cycles give gauge-invariant linear combinations of phase$Jauge, proving the lemma. Note that we nmayt divide by

and since the condition for gauge invariance ofeneral G| to show tha_t all p_hase functions are gauge equivalent to
linear combination of phases;® (k;) is, by Eq.(5), pre-  #"% becausg is defined only modulo unity.

cisely Eq.(17), all such gauge-invariant linear combinations Having found a gauge in which a phase function takes

come from 1-(':ycles In the case tlat k[g] in Eq. (17), the rational values, we definé’ =Hom(L, (/7)C L7 and quote
o : Py the following standard result from cohomology.

gauge invariant takes the forhy(k) for gk=k, but in gen- Lemma 3 For G a finite group andZ a free Abelian

eral a I_inear combinatio_n, such as E), must b_e allowed. roup, the groupsi™(G,£’) andH, (G, £) are dual through

Similarly, 1-boundaries are those 1-chains that carp bracke(14) () H"XH,— /7.

be written as boundaries of 2-chains, as in B or inte- Duality means that iX serves as a minimal basis fblr; ,

J
gral linear combinations thereof:B;=im(C,—C,). Be- there exists a bas{sp*} for H! labeled byx € X and that any
caused~d=0, every 1-boundary is a 1-cycle, representing ab € H! can be decomposed uniquely as a linear combination
gauge invariant. Again applying the bracket we discover thabf the basis element®* with integral coefficients equal to
the phases at boundari¢$6) are necessarily zero by the (®,x)/(®* x). Therefore, if we know the valugb,x) of a
group-compatibility — condition (4). Thus, although phase function on each of the nontrivial gauge invariants
1-boundaries are gauge invariants, they are trivial. We modpanningH,, by linearity we know® up to gauge transfor-
them out in defining the first homology group & with mation. This proves Theorem 1.
coefficients inL: We give in the Appendix an alternative, elementary proof
of Theorem 1 by constructing the gauge function relating
H1=2Z,/B;. (18 two phase functions that agree on all gauge-invariant linear

i [ Vi ; : mbinations.
First homology is the group of nontrivial gauge invariants. combinations

We have already commented that a real-valued fundtion
on H! is unaffected by gaugé.e., by the addition of a co- VIIl. CALCULATING SPACE GROUPS (EXAMPLE )
boundary to a cocylé) and that the addition of a boundary . -
to a cyclex does not change any phase. These facts establish Homological algebra offers a powerful tool for systemati

that the bracket, which we introduced in EG4) as a func- E:nacl)ls/eflfrsglensg li'}' gi;gi;:,\ilsnigtsg Iz)éif;hgorzrg t’_ it Ll#]rége\r/\—le
tion C1XC;—R/Z, is in fact well defined onH*xH,, 9 P gauge.

which we mav express conciselv thus: have the gauge invariants, we no longer have to prove on a
y exp y ' case-by-case basis that all other phases can be made to van-
_ ish. As an example, we compute the two possible space-
+ +oy)= U
(®+dx, x+ay)=(P, x), (19 group classes on the body-centered orthorhombic direct-
where® is a phase functiond® =0), dy a gauge transfor- Space latticéwhich is face centered in reciprocal sppagth

mation of the form(5), xe C; a cycle @x=0), anddy a  the point group 222. Instead of having to hunt for the gauge
boundaryy e C,. invariant (6), we shall see it fall out of the formalism

naturally.

The calculation is straightforward. First, we calculate the
group Z, of gauge invariants by acting with the boundary
We note a striking similarity betweedd! andH,. While ~ operatord on 1-chaink[g]. We then wish to remove from
the former contains all linear functions satisfying group com-the list all boundaries inB;, since these represent the

patibility, identifying those related by gauge transformation,“trivial” consequence of group compatibility4); to do so,
the latter contains all linear gauge invariants, identifying anywe let d act on 2-chaink[g|h]. After this elimination, we
whose difference is made trivial by group compatibility. In find a homology group with only two elements. The entire
fact, homological algebra affirms their duality. Before statingprocedure is easily automated; for example, the NullSplce
this central result, we note the followirg. and LatticeRedud¢d functions of Wolfram’s Mathematica
Lemma 2 For G a finite group with|G| elements andb ~ program can be used to find minimal bases oXeor Z;
e H?, |G|® =0 (where 0= H! denotes the set of phase func- andB; .
tions gauge equivalent to zerdn other words, for any phase Let €, i=1,2,3, constitute the usual Cartesian axes. We
function @, there exists a gauge in which evedy,(k) is  name the three sides of the conventional reciprocal xell
rational with denominato}G|. =ae!, y=b#&, andz=c@&®, wherea, b, andc are all differ-
This is quite plausible, since the only constraints onent, and generate the face-centered reciprocal laftitgdual
phases are those imposed by group compatibiijyapplied to the body-centered direct latticevith the vectorsb,
through the constituent relations of the point group. Specifi=3(011), b,=3(101), andb;=3(110) [all in terms of the

VII. DUALITY AND THE PROOF OF THEOREM 1
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(x,y,2) basid. The point group iG={e,d;,d,,ds}, where =~ =®Pg,(b;)=Pg (by)=0; in our comparatively pedestrian
d; leaves® invariant, d;d,=d; et cycl., anddiz=e, the  approach, the list of phases that can be discarded is inherent
identity. G is generated by, andd,. in the calculation of the boundarid®,. Significantly, the
To calculate the group of gauge invariarifs, we apply  present calculation is easy to automate, requiring no “judi-
d to the (additive) generators of 1-chains. The chaikjse] cious choice” of generators and gauges, while verification
are cycles, since leaves all vectors invariant. We can show that one gets “a representative of every clad& built in to
that they are also boundaries, for by group compatibility, the procedure. We lose the elegance of Mermiegquiva-
lent) calculation, but we hope we make up for some of the
k[gh]=(hk)[g]+k[h], (21)  loss in the compact and general statement of Theorem 1 as
proved in Sec. VII. We have generalized and applied essen-
tially the ideas demonstrated in this section to the simulta-
neous computation of a large number of cases, including
nonstandard and modulated latti¢és.

where= denotes equality up to the boundati] g|h]. Set-

ting g=h=e, we then haveé[e]=0, so we leave it out of

the computation. Equatio(2l) furthermore tells us that we

need consider only the generating elemafitsandd,, not

% Of,ledéasny verifies that IX. SECOND COHOMOLOGY AND THE FACTOR
SYSTEM

(abiLdi D= €ijk| = Sik— Sy 22 In general, the cohomology group”(&,9t) consists of
where the subscript indicates the resulting lattice compo- cocycles frorm copies of a groug to a module)t with the
nent in the by,b,,bs) basis,dis the Kronecker delta, anel  identification of coboundaries. Having classified the phase
the totally antisymmetric tensor. functions inH! with =G and M=L’, we can calculate

With i=1,2,3 and restricted to 1, 2, we can think of the the factor systeni10). However, the factor system also has a
left-hand side of Eq(22) as a 3x6 matrix whose three- cohomological existence in its own right, with a different
dimensional null space over the integerZ js(aside from the  group® and different modulé)t. Consider
boundaries we have already eliminateld is a standard re-
sult of linear algebra that row reduction without division A(g,h)=—=(In\)/(2mi) =D y(ky), (26)
yields a primitive basis over the integéfsye find for this

basis taking values in the modul®t=[0,1)=R/Z. From here on,

we will use the term “factor system” to refer t& rather than

z,=x[d,] to \. Sinceg andh reside in the little groupp=G,, A is a
’ 2-cochain inC?(Gg,R/Z). The action ofge G, onx in the
z,=Yy[d,], moduleR/Z is trivial:  xg=x.
We can again impose group compatibility as a cocycle
23=—by[d,]+ by d;]. (23  condition:

We now know all the gauge invariants and seek, by comput-(dA)(g;,9,,93)=A(9;1,9,) —A(95,9,93) + A(9105,93)
ing B4, to identify those that are related by group compat-

ibility (4). —A(92,93)=0. (27)
To find the 1-boundaries not already identified, we MUSThe equivalence to group compatibility follows from the
apply d to the 27 two-chains, definitions(7) and (26).29]
) If two ray representationg) differ by a quantum phase
b;[d;|d]; 24 .
il 24 e?7o(@ (one for each geG, so that U’'(g)
this number is reduced to 18 if we notice th@|h;h,] has  =e277(9y(g), the corresponding factor systems differ by

the same boundary a$ik)[g|h;]+k[gh;|h,]—k[h;|h,],  the coboundary of:
so that in Eq.(24) we may restrick to 1, 2.

After eliminating duplications and zeros, we get seven A(g,h)—A’(g,h)=(do)(g,h)=0(g)—a(gh)+o(h).
boundaries. Rearranging the rows into echelon form, we find (28
only three that are linearly independentz;, z,, and 2,
are all boundaries. This identifies al’enmultiples of the
cycle z; in Hy, which therefore contains just a single non-
zero invariant:

Since the quantum phase has no physical consequence, we
identify ray representations related by E&8). The set of
phase-equivalence classes of ray representations is the sec-
ond cohomology groupH*(G,,R/Z) =Z?/B.

H.(G,L) =10, z3). (25) As a final appllcapon qf group cohomology, we consider a
lattice vectork left invariant by a point-group elemerm
Since Z3;=0, ®(z3) can take values only 0 and 1/2. e G. Letting 8=(g)={g"|neZ}, the cyclic group gener-

The invariantzs is precisely the linear combinatid6) of ated byg, andt= L, we expresk e £ as a 0-cochain. The
phases used in Ref. 5 to distinguish the symmorphicocycle condition dk)(g")=g"k—k=0 expresses the re-
[1222,d(z3)=0] from the nonsymmorphic[l2,2,24, qguirement thatk be fixed byg. Since there are n¢—1)-
®(z3)=1/2] space group. Mermin’s rather shorter calcula-cochains, there is no identification of coboundaries, and the
tion rests on a clever choice of gauge ensurihgl(b3) cohomologyH®=Z0 is the group of alk left invariant byg.
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now compare our formulation, using the Fourier-space lattice
L, to the traditional approach, described in terms of the pe-
riodic IatticelT in rea}l space. In terms df, we can describe APPENDIX: ELEMENTARY PROOF OF THEOREM 1
L as the lattice of integer-valued homomorphismsLonC
=Hom(L,Z). (For mathematical convenience and to allow We have already shown that duality proves Theorem 1,
direct comparison with Hiller, we have in this section ab-which we may restate: a phase function is gauge equivalent
sorbed the conventional factor ofrfdnto £.) In the three- to zero if and only if it vanishes on all gauge-invariant linear
dimensional case, if we choose a basis a,, a; of L, then ~ combinations or, equivalently, a 1-cocycle is a coboundary

we can describel in terms of the dual basik;, ks, ks, iff it vanishes on all cycles. The implicatioffonly if” )
where(ki|a;)= 6; (Kronecker delta statements come immediately, so we prove the converse.
Any real-valued linear form o has the form{k|x) for a Although standard treatises on homological algebra prove

fixed vectorx in real space. Recall that our phase functionsduality of H" andH, (Lemma 3, the following elementary

@, take values ifR/Z, notR: that is, we identifyd (k) with demonstration of Theorem 1 also explicitly constructs the

®4(k) +n, for any integen. This corresponds to identifying gauge transformationy for which ®(k)=x(gk—k) if @

X with x+a, for anyae L. Thus there is a one-to-one corre- vanishes on all gauge invariants. The proof extends familiar

spondence between phase functions and elements of the qu@eas from the linear algebra of vector spaces to that of free

tient groupR®/L, and we can writab (k) =(k|x,) for some ~ modules(over Z). _ _

real-space vectax,, identified with any of its translates by ~ Define the linear functiofy on all 0-boundariegic € By

lattice vectors. (ceCy) by

In Fourier-space crystallography, the phase functidgs

are required to satisfy the group-compatibility conditi@n

or, equivalently, the cocycle conditiord®)(g,h)=0 [cf. (X,dc)=(®,c). (A1)

Eqg. (13)]. In terms of the vectors, in real space, this con-

dition becomes(k|xgpn) = (hk|xg) +(k|xp). Recall what it , o ,

means to leh (an orthogonal transformation on real space W& can do so consistent with linearity because, by hypoth-

act onk (a vector in Fourier spage by definition, {hk|x) esis,(®,zy=0 for all gauge invariantge kerd. As a sloeual

—(k|h~1x). Thus the group-compatibility condition be- €@se Of Eq.(Al), for c=k[g], we have ®4(k)=x(gk

comes —k), which almost make® gauge equivalent to zero. How-
ever, to establish thab is purely a gaugéthus proving the

Xgh:h_lxg+xh- (29)  theorem, we must extendy, which we have so far defined

only on By, to a linear functiony defined on allC.=C,. To

In order to compare this with the notation of Ref. 30, letextendy to y on C,, write the rectangular matri¥ whose

s(g)=Xy-1 and replacey andh with g~* andh™*, respec- n_=rank(B,) columns are the integral expansions of a mini-

tively: mal basis ofB, in a basis ofC,; M hasn,=rank(Cy)=n,
rows. M mapsB, to Cy by inclusion.
s(hg) =Xg-1p-1=Xp-1+hxg-1=s(h) +hs(g). (30 MTM is angx n, matrix; if MTM is not singular, we can
This is exactly the cocycle condition used in Ref. 30, Propoform the left inverse oM as M =(M™™M)"'M". To show
sition 5.1. MTM nonsingular, observe that the columns Mfare all

Finally, consider gauge equivalence: we identify phasdndependent over the integers, so that we can find a matrix
. . . ! i —
functions®, and® related by a gauge transformation as in M with n, rows andn, —n. columns, all columns orthogo-

31 A — AW
Eq. (5). In the periodic case we are considering, the gaug&@l to those oM.* Then, Xn, square matriA=(MM") is
function can be described by(k) =(kly), where agairy is  therefore nonsingular. Sind&andA" are both nonsingular,

a real-space vector considered moduldf the second phase SO IS
function @é corresponds toxé in real space, then the condi-
tion (5) can now be expressed agk|xg)—(k|xg)=

T

(gk—Kly) orxé—xgzgfly—y. In terms ofs(g) = X4-1 and ATA:(M M 0 )

s'(g)=xg-1, this becomes 0 MM’
s(g)=s'(g)=y=ay, GD byt since de®"A)#0, we must have dé{{" M)#0.

which is exactly the coboundary condition in Ref. 30. Think of ¥ as a row vector of ranky; define y=%M

In conclusion, the cohomology group!=Z*/B* that we  (row vector of rankn,). This completes the construction of a
consider here agrees, in the periodic case, with the cohomalinear xy on all C, such that® (k)= x(gk—k), proving
ogy groupH(G,RR®/L) described in Ref. 30. Theorem 1.

024201-6



FOURIER-SPACE CRYSTALLOGRAPHY AS GROUP COHOMOLOGY

PHYSICAL REVIEW@ 024201

1D. Shechtman, I. Blech, D. Gratias, and J. W. Cahn, Phys. ReVPA. Janner and T. Janss¢Rhysica(Amsterdam 53, 1 (1971]

Lett. 53, 1951(1984).

2A. Bienenstock and P. P. Ewald, Acta Crystallogs, 1253
(1962.

3D. S. Rokhsar, D. C. Wright, and N. D. Mermin, Phys. Re\BB
8145(1988.

4D. A. Rabson, N. D. Mermin, D. S. Rokhsar, and D. C. Wright,
Rev. Mod. Phys63, 699(1991).

SN. D. Mermin, Rev. Mod. Phys54, 3 (1992; 64, 635E) (1992:
64, 1163E) (1992; 66, 249E) (1994).

6N. D. Mermin and R. Lifshitz, Acta Crystallogr., Sect. A: Found.
Crystallogr.48, 515(1992; R. Lifshitz and N. D. Merminjbid.
50, 72 (1994); 50, 85 (1994.

R. Lifshitz, Rev. Mod. Phys69, 1181(1997.

8N. D. Mermin, Phys. Rev. Let8, 1172(1992.

9N. D. Mermin, Phys. Status Solidi A51, 275(1995.

103, Drager and N. D. Mermin, Phys. Rev. Left6, 1489(1996.

" Henceforth, we shall understand the provision “modulo unity” to
apply to all such functiongOther workers in this field use the
symbol= to denote equality modulo ).

12N, D. Mermin, D. S. Rokhsar, and D. C. Wright, Phys. Rev. Lett.

58, 2099(1987. Up to rotation and scale, the standand-ld

(sublattice in the plane is the set of all integral linear combina-

tions of the 2th roots of unity, corresponding to a principal
ideal; nonprincipal lattices, possible for almost ati=246, cor-
respond to nonprincipal ideals.

183 R.RennandT. C. Lubensky, Phys. Rex8& 2132(1988; T.
C. Lubensky, T. Tokihiro, and S. R. Renn, Phys. Rev. L&T.
89(1991; T. C. Lubensky, S. R. Renn, and T. Tokihiro,Qua-
sicrystals: The State of the Ardited by D. P. DiVincenzo and
P. J. SteinhardfWorld Scientific, Singapore, 1991

4L, Navailles, P. Barios, and H. Nguyen, Phys. Rev. L&t 545
(1993.

5w, M. Itano, J. J. Bollinger, J. N. Tan, B. Jelenkavi¢-P. Huang,
and D. J. Wineland, Scien@&¥9 686(1998; J. J. Bollinger, T.
B. Mitchell, X.-P. Huang, W. M. Itano, J. N. Tan, B. M. Jelen-
kovic, and D. J. Wineland, Phys. Plasnias? (2000.

16A. Konig and N. D. Mermin, Phys. Rev. B6, 13 607 (1997;
Proc. Natl. Acad. Sci. U.S.206, 3502(1999; Am. J. Phys68,
525 (2000.

1"The special points admitting nontrivial G fall into three cat-
egories: (1) lattice points(2) kq# 0, which in the periodic case
putsg on a Brillouin-zone boundary, an@®) k=0, i.e.,q in-

variant underm. The first category is uninteresting because Eq.

(6) always vanisheffor commutingg, h e G,) as a consequence
of Eq. (4). The third category is similarly uninteresting, since the
corresponding phase must vanish.
18K S. Brown,Cohomology of Group&Springer, New York, 1982
191, sSchur, J. Reine Angew. Mati27, 20 (1904); reprinted in |.
Schur,Gesammelte Abhandlungé8pringer, Berlin, 1978 \ol.
1, p. 86.

have discussed the connection between group cohomology and
gauge in the context of the Poincayeoup and electromagnetic
potentials.

2conforming to mathematical notation, we use HGRB) to mean
the set of linear functions mappirginto B, ker(d) to indicate
the kernel of a magpl (i.e., the set of arguments thdtmaps to
zerog, im(d) for its image[i.e., if d mapsA to B, that subset of
B that can be written ad(a) for someae A], R to denote the
real numbers/ the integerst() the rationals, an&/Z the interval
[0, D).

220ne convenient formulation of the general rule states

(do)(9y,-+-Gn+1)=0(91,---On)Gn+1
+(—=Do(91.92,+- GGt D)+
+(=1)"0(9192,93:-+- Gn+1)

+(=1)"0(gr. 83, Gns1)-
By o(g)h=0(g)~h, one should understand that group element
h acts on a membdc of £ before the functiorr(g) then acts on
hk.
2The general recipe is

kL9192 **|9nD) = (9nK)[91]92] **|gn-1]+ (= 1)
XK[g1]92] - *[Gn-1Gn]+- -+ (=)

XK[9192l"*19n]+ (= 1)"K[ 2|3 --|gn].
While this differs from Brown’s formula, his duality theorem
(7.4) can be seen still to follow by reversing the order of the
group elementg); and replacing each with its inverse.

24E. Ascher and A. JannéCommun. Math. Physl1, 138(1968]
state in direct-space language as corollary 2.1.1 the first state-
ment in our Lemma 2 for crystallographiperiodio groups,
ascribing to Schur the method of summing over group elements.
For an interpretation of this result in terms of real-space crystal-
lography, see their proposition 5.1.

ZBrown (Ref. 18, theorem 7.4, p. 147. A “free” Abelian group
(represented additivelyis one for which no nontrivial integral
linear combination of a minimal set of generators vanishes.

26N. JacobsonBasic Algebra (Freeman, San Francisco, 197dee
Sec. 3.7.

27B. Fisher and D. A. Rabson, math-ph/0105@L@publishedl

2The astute reader will notice the absence gf a; element acting
to the left on the first term. This is because of the trivial group
actionA(91,92)°93=A(91.92)-

29E. Ascher and A. Janner, Helv. Phys. A@8, 551 (1965; T.
Janssen, A. Janner, and E. Ascher, Phy§icasterdam 42, 41
(1969.

30H. Hiller, Am. Math. Monthly 93, 765 (1986.

31Since the columns ol are independent ovet, they are inde-
pendent ovef), which is a field, so we can choose the columns
of M’ as not just independent of thoseMf but also orthogonal.

024201-7



