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Interaction corrections at intermediate temperatures: Magnetoresistance in a parallel field
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We consider the correction to conductivity of a two-dimensional electron gas due to electron-electron
interaction in the parallel magnetic field at arbitrary relation between temperature and the elastic mean free
time. The correction exhibits nontrivial dependence on both temperature and the field. This dependence is
determined by the Fermi-liquid constant, which accounts for the spin-exchange interaction. In particular, the
sign of the slope of the temperature dependence is not universal and can change with the increase of the field.
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Introduction. In a previous papérwe have developed a fore did not account for Fermi-liquid renormalizations. The
theoretical framework for studying interaction corrections toresulting temperature dependence of the conductiatgo
conductivity of the two-dimensional electron gé2DEG) see Ref. 1)tis qualitatively erroneous: in particular for the
due to electron-electron interactions for the arbitrary relatiorcase of the fully polarized system Ref. 12 has the incorrect
between temperaturk and the elastic mean free time To  sign and Ref. 13 finds no temperature dependence &esdl
describe strong coupling between electrons we used the coRef. 1 for more details In this paper we calculate the mag-
ventional Fermi-liquid constants. In particular, we fouhd netoconductivity for an arbitrary relation betwe&nr, and
that the temperature dependence of the longitudinal conduthe Zeeman enerdy, (however, we are limiting ourselves to
tivity in a 2DEG is determined by a single Fermi-liquid con- E,<Eg; the case of strong fields where the electron system
stantFJ, which describes the strength of the spin-exchangés close to full polarization will be addressed elsewhere
interaction. In principle, its value can be found from a mea- Method.The expression for the leading interaction correc-
surement of the Pauli spin susceptibility tion to conductivity can be found either by means of the
diagrammatic technigdeor using the quantum kinetic
equationt Both methods are completely equivalent and re-

2 2
= 9 MBV, (1) sult in the following expression for the correctibn:
1+Fg
00y * dw J o\ (*qdq
whereug is the Bohr magnetomy is the bare electron Lande oo Im . T dw wCOthz_T o Am
factor, and the density of statesshould be obtained from a A
measurement of the specific héat 7~ 1< T<Eg). Unfortu- X[TrDR(@,q) 1By @,0), (2a)

nately, to the best of our knowledge no measurement of the . .

spin susceptibility has been reported for the 2DEG created #¥n€re  the  retarded interaction propagator
the interface of a semiconductor heterostructure, which cultDR(®,9) 15,0, :0,0, IS @ Matrix in spin space, and the form
rently is the most common type of an experimental sample.factor B, is defined agsee Eqs(4.16 and also Eq(3.26
However, we have conjecturkthat the same constafty  of Ref. 1]

should describe the transport properties of the 2DEG in an

external magnetic field. In this paper we address the case of B (.q) v2q?l 72 3v2g?
the parallel magnetic field and calculate the magnetoconduc- od @,0) =1 57— 3 3~ 2
tivity. The case of the perpendicular magnetic field and the CHC—1Un)*  27CH(C—1/7)
theory of the Ha.II resistance was discussed in a recent faper. 2[C—(—iw+1/)]

Early theoretical efforts focused on calculating the mag- + 5
netoconductivity within the diffusive approximatign'! C(C—1/7)
While perfectly justified for metallic thin films, this approxi- _ )
mation might be inappropriate for understanding of recent 2C—1Ur(C—(—iwt1)

. : . : + . (2b)

experiment$ in semiconductor heterostructures, since these Cvzg? C-1/r

measurements are performed in a regime where the tempera- _
ture T is of the same order of magnitude as the inverse scatising the notation
tering timer ! (obtained from the Drude conductivjtyThe : 5
opposite, ballistic limit was considered recently in Refs. 12 Clw,q)=\(—io+1n)?+vig? (€

and 13. While giving a reasonable description of the magne- o )
toresistance for weak interaction and at small fields, the au- N the absence of magnetic field one can choose a basis
thors of Refs. 12 and 13 did not realize that both the tem€orresponding to the singlétharge and triplet channels in
perature and the magnetic field dependence arise due which the interaction propagator becomes diagofl
large-distanceas compared with\¢) processes and there- =diag(PY, DR, DR, DR). The interaction propagator in the
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singlet channel is taken in the unitary limiand hence is electrong factor. Consequently, the exact Green’s functions
independent of the corresponding Fermi-liquid parametepf noninteracting electrons now depend on magnetic field.
F?) and becomes proportional to the inverse of the electronidhey are related to the Green’s functions in the absence of
polarization operator the field as

pRo_ L 7 GR'A(E)HGR'A( e %EZ&Z),

wherea, is the Pauli matrix in the spin space, and we chose
thez axis along the direction of the magnetic field. Repeating
all the considerations of Ref. 1, one finds that two-particle
ropagatorsthat depend on the difference of the electron
nergiey are also modified by the field. This modification
depends on the spin state of the two particl€onsider first

a system of noninteracting electrons. Identification of the sin-

—iw
C(w,q)— 17

On the contrary, the triplet channel propagator depends OB
the Fermi-liquid constanfj

HR(w,q)= V( 1

. (5

PR= _ Fg __ E C-1r 6) glet and triplet channels corresponds to the choice of a basis
t v+ FgTIR v g ' in spin space, namely using the states with the total &pin
o+ ——(C—1/7) and itszcomponent,. The singlet channel is the state with
0 L=0 and it is unaffected by the magnetic field, as is lthe

and describes spin-exchange coupling. For details of thee0 component of the triplet. For the remaining two compo-
derivation of the propagators and E¢®). we refer the reader Nents the Zeeman splitting results in the shift of the fre-
to Refs. 1 and 6. quencyw in all diffusions byL,E,.

Using the explicit form of propagator&}) and (6) we In the presence of electron-electron interaction one takes
evaluate the integral Eq(2) and find the temperature- into account the external magnetic field mostly in the same
dependent correction to conductivity in the absence of exterhanner. The only difference is that tgefactor is renormal-

nal magnetic field: ized by the spin-exchange interaction similarly to the Pauli
susceptibility Eq(1). Consequently, the Zeeman splitting is
o=op+ Soc+ dot. (7a)  also renormalized:
Here the chargésingle) channel contribution is given by gugH
Er =",
soe= Tl S 2|EF) 7b | LR
o - L o2 T ) 70 Thus the conductivity correctiof®) is modified as
and the triplet channel correction is Soy(H) * dw d 10} gdq
———=Im| — —|wcoth—=| | —
op —w T d 2T 4
3F e Tr 1 3t(T F”)}
oT= pu 7 -5 T, 0
(L+Fg) mh AL 8 ><[[D_Ef(w,q)+DF<w,q>]BXX<w,q> (82
31— 1 (1+F2) ¢ | (EF) (79
- ——In nl—|. C
Fo Vemtn AT + 2 DRLE j0,0)B(0+LES)};
L=+1
The factor of 3 in the triplet channel correction E@c) is (8b)

due to the fact that all three spin components of the tripIe(Nhere the form factoB
state contribute equally. The functié(T ) smoothly decays gators in thel,=0 channels expressici8a are still given

from unity to zero and the functiot{T r;Fg) is nonmonoto- by Eqgs.(4) and (6), while the propagators in expressitb)

nous only in the narrow regior 0.25> Fo> —0.5where it are modified by the Zeeman energy as follotv diffusive
has a maximum al 7=1/(1+Fg). For numerical reasons |imit was discussed in Ref. 11

both f(T7) andt(T~;Fg) change the result only by a few
percent and therefore their explicit for(given in Ref. 1 is

«(®,q) is given by Eq.(2), propa-

Fo

R . _
inessential for the present discussion. Di(LE; jw,)= oTTR * . ' ©
. . . . . - V+FOH (LZEZ vqu)

The correction7) is written in the approximation of con-
stant (i.e., momentum-independgntg. For the system i
close to the Stoner instability such as é{f)<(1+Fyg) MR(LES ;0,q)=v| 1— " . (10
<1, this limits the applicability of Eq(7) by temperatures ClotLE; ,q)—1r
smaller thanT* = e-(1+F§)?, see Ref. 1. Note that the numerator of the polarization operator @)

In parallel magnetic field electrons acquire additionalis not changed by the Zeeman energy. As a result, the pole of
Zeeman energye,=gugH, which is proportional to the the propagator Eq(9) at qg=0 depends only on the bare
magnitudeH of the field, the Bohr magnetopg, and the Zeeman energ§, with the bare electrog factor. This is a
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manifestation of the Larmor theorem: the frequency of a ho- e ——
mogeneous collective modevhich is the meaning of the 29 F,=-01
pole atq=0) cannot be renormalized by electron-electron 1 Tr=01
interaction. 7
Results.Given the expression for the correction E8) Ne I -0
and the explicit expression for the triplet propagator in the & 7 o1
presence of the Zeeman field E§), further calculation con- ; 4'
sists of evaluating the integral in E@8). The integral is 3 ]
similar to its zero-field counterpafee Ref. L The resulting ‘i'f %
magnetoconductivity can be written dalso depicted in g | F,- 04
Fig. 1) 5] Tr=20
e2 2Fg TT EZ [ 10 = T T T T T T T T T T T T T T T
o(H,T)—o(0,T)= gy m sz ﬁ,Fo 00 05 L0 15 20 25 30 35 40
0 E /2T
+ Kd<£,Fg +m(E, 7, TFY) |. FIG. 1. Magnetoconductivity in a parallel field for different val-
27T ues ofFg.
(1) The diffusive limit Tr<1 is characterized by the function
In the ballistic limit T=>1 the dominating contribution is
given by the first term in Eq(11), where the dimensionless K (hE 1 E R © dx| ¢ h
: o ; TR . JF)=— e| —|—(xcothmx
function K,(x,Fg) contains two contributions: a(h,Fo) AmFS L oy ax( mX)
Kp(X,Fg) =K1 (x)+Ky(x,Fg), (129 w—L-h
X (x—L,h) In—————
where N LhI(1+FY)
K1(x)=xcothx—1 12 -
1(x)=xcothx—1, (12b 1 1 | n2+ h2
= — —_ n—
and 2,7T|:8' n=1 n 2+ h2
n —
1+F§ a9 1+F§)?
Kax g == ["4 ay Ly cothy) o
2Fg Jx y 4h h h
— — | arctan- —arctaR———
X 1 2F§ n2 n n(1+Fg)
x| y— - .
Y 1+Fg/ Y (1+2F3)y—x
(129 1
L , ——| C+Rey| 1- , (15)
If the magnetic field is strongs>1, the expression Eq. ™ 1+F3

(12) simplifies to , . .

whereC=0.577 ... is Euler’s constant, ang/(x) is the di-

o " 1 gamma function. For weak interactiof{<1) Eq.(15) re-
Kp(x>1.Fg)=9(Fo)x=1+0} 2/, (13 produces the result of Ref. 8. At the smallest magnetic field

. . . h<1+Fg Eqg. (15 reduces to
where the dimensionless functi@{z), not to be confused

with the Landeg factor, is 3FI4(3)
Ka(h)~————h?, (16
1 1 zIn2(1+2) 2m(1+Fg)
0(z2)= ==In(1+2)+ + > -
2z 2(1+27)  (1+22) where Z(x) is the Riemann zeta functiord(3)=1.202. In

For the smallest magnetic field<1+Fg, we have the opposite limith>1 we have(see also Ref. J1

2 1 1
< s Er " f(EC Kg(h)~—11=— In(1+Fg) tIn
Ko(x<1+Fg,Fg)~ 5 1(FQ), (19 om=~2 Fg ( R T
where 1 1
— ~In? - 17)
z (1 1 2 2In2(1+2) 2mFo  1+Fg
f(z)=1— — - S+ . . , , :
1+z|2 1+2z (1+22) (1+22)° Finally, for intermediate values-£Fj<h<1 we obtain
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_ FIG. 2. Temperature depend_ence of the conductivity corrections g 3. Slope of the temperature dependence of the conductivity
in the presence of the parallel field. correction(in the ballistic limit as a function of the parallel mag-

netic field.
Kq(h)~— imz +0| In ) (18 ~ Wwe are left with one singlet and one tripl_et chanael/ oT
27 14+F§ 1+Fg «1+FJ/(1+Fg). The crossover is described by E¢$2)

and shown in Fig. 3. This picture is valid up to fields of order

The crossover between the ballistic and the diffusive re{1+ Fg)2EF_ At the strongest field&* >Er when the sys-
gimes is described by the dimensionless functiontem is fully polarized the spin does not play a role any more
m(E,7,T7;Fg). In the absence of the fiel(0,T7;F3)=0.  and one retrieves the universal singlet channel r¢satt Eq.
Similarly to the functiont(Tr;Fg) in Eqg. (70), this function  (7b)]
appears to be numerically small and does not modify the sum )
of the two limiting expressions Eq¢15) and (12) by more (7_‘7: e, T_T>O 1: E*>E (19)
than one per cent. T p2’ e

Discussion.The resulting temperature dependence of th
conductivity correction Eq(8) is summarized in Figs. 2 and
3. In the ballistic regimeSoe T. Remarkably, the value and
the signof the slope depends on the figlir discussion of We are grateful to B. L. Altshuler, V. Falko, S. V.
the diffusive limit see Ref. 20 At zero field the correction  Kravchenko, and A. K. Savchenko for stimulating discus-
is given by all four(the singlet and three components of the sions. One of ugl.A.) was supported by the Packard foun-
triplet) spin channels so thato/dT>1+3Fg/(1+Fg). For  dation. Work at Lancaster University was partially funded by
stronger fieldsE,>T the L,= =1 channels are gapped and EPSRC-GR/R01767.

®rhis conclusion is in agreement with recently reported mea-
surements of magnetoresistance in GaAs.
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