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Interaction corrections at intermediate temperatures: Magnetoresistance in a parallel field
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We consider the correction to conductivity of a two-dimensional electron gas due to electron-electron
interaction in the parallel magnetic field at arbitrary relation between temperature and the elastic mean free
time. The correction exhibits nontrivial dependence on both temperature and the field. This dependence is
determined by the Fermi-liquid constant, which accounts for the spin-exchange interaction. In particular, the
sign of the slope of the temperature dependence is not universal and can change with the increase of the field.
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Introduction. In a previous paper1 we have developed a
theoretical framework for studying interaction corrections
conductivity of the two-dimensional electron gas~2DEG!
due to electron-electron interactions for the arbitrary relat
between temperatureT and the elastic mean free timet. To
describe strong coupling between electrons we used the
ventional Fermi-liquid2 constants. In particular, we found1

that the temperature dependence of the longitudinal con
tivity in a 2DEG is determined by a single Fermi-liquid co
stantF0

s , which describes the strength of the spin-exchan
interaction. In principle, its value can be found from a me
surement of the Pauli spin susceptibility

x5
g2mB

2n

11F0
s

, ~1!

wheremB is the Bohr magneton,g is the bare electron Land
factor, and the density of statesn should be obtained from a
measurement of the specific heat~at t21!T!EF). Unfortu-
nately, to the best of our knowledge no measurement of
spin susceptibility has been reported for the 2DEG create
the interface of a semiconductor heterostructure, which
rently is the most common type of an experimental samp3

However, we have conjectured1 that the same constantF0
s

should describe the transport properties of the 2DEG in
external magnetic field. In this paper we address the cas
the parallel magnetic field and calculate the magnetocond
tivity. The case of the perpendicular magnetic field and
theory of the Hall resistance was discussed in a recent pa4

Early theoretical efforts focused on calculating the ma
netoconductivity within the diffusive approximation.5–11

While perfectly justified for metallic thin films, this approx
mation might be inappropriate for understanding of rec
experiments3 in semiconductor heterostructures, since th
measurements are performed in a regime where the temp
ture T is of the same order of magnitude as the inverse s
tering timet21 ~obtained from the Drude conductivity!. The
opposite, ballistic limit was considered recently in Refs.
and 13. While giving a reasonable description of the mag
toresistance for weak interaction and at small fields, the
thors of Refs. 12 and 13 did not realize that both the te
perature and the magnetic field dependence arise du
large-distance~as compared withlF) processes and there
0163-1829/2001/65~2!/020201~4!/$20.00 65 0202
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fore did not account for Fermi-liquid renormalizations. Th
resulting temperature dependence of the conductivity~also
see Ref. 14! is qualitatively erroneous: in particular for th
case of the fully polarized system Ref. 12 has the incorr
sign and Ref. 13 finds no temperature dependence at all~see
Ref. 1 for more details!. In this paper we calculate the mag
netoconductivity for an arbitrary relation betweenT, t, and
the Zeeman energyEz ~however, we are limiting ourselves t
Ez!EF ; the case of strong fields where the electron syst
is close to full polarization will be addressed elsewhere!.

Method.The expression for the leading interaction corre
tion to conductivity can be found either by means of t
diagrammatic technique5 or using the quantum kinetic
equation.1 Both methods are completely equivalent and
sult in the following expression for the correction:1

dsxx

sD
5ImE

2`

` dv

p

]

]v S vcoth
v

2TD E
0

`qdq

4p

3@Tr D̂R~v,q!#Bxx~v,q!, ~2a!

where the retarded interaction propaga

@D̂R(v,q)#s1s2 ;s3s4
is a matrix in spin space, and the form

factor Bxx is defined as@see Eqs.~4.16! and also Eq.~3.26!
of Ref. 1#

Bxx~v,q!5H vF
2q2/t2

C3~C21/t!3
1

3vF
2q2

2tC3~C21/t!2

1
2@C2~2 iv11/t!#

C~C21/t!2

1
2C21/t

CvF
2q2 S C2~2 iv11/t!

C21/t D 2J , ~2b!

using the notation

C~v,q!5A~2 iv11/t!21vF
2q2. ~3!

In the absence of magnetic field one can choose a b
corresponding to the singlet~charge! and triplet channels in
which the interaction propagator becomes diagonalD̂R

5diag(D s
R ,D t

R ,D t
R ,D t

R). The interaction propagator in th
©2001 The American Physical Society01-1
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singlet channel is taken in the unitary limit~and hence is
independent of the corresponding Fermi-liquid parame
Fr) and becomes proportional to the inverse of the electro
polarization operator

D s
R52

1

PR
, ~4!

PR~v,q!5nS 12
2 iv

C~v,q!21/t D . ~5!

On the contrary, the triplet channel propagator depends
the Fermi-liquid constantF0

s

D t
R52

F0
s

n1F0
sPR

52
1

n

C21/t

iv1
F0

s11

F0
s

~C21/t!

, ~6!

and describes spin-exchange coupling. For details of
derivation of the propagators and Eqs.~2! we refer the reade
to Refs. 1 and 6.

Using the explicit form of propagators~4! and ~6! we
evaluate the integral Eq.~2! and find1 the temperature-
dependent correction to conductivity in the absence of ex
nal magnetic field:

s5sD1dsC1dsT . ~7a!

Here the charge~singlet! channel contribution is given by

dsC5
e2

p\

Tt

\ F12
3

8
f ~Tt!G2

e2

2p2\
lnS EF

T D , ~7b!

and the triplet channel correction is

dsT5
3F0

s

~11F0
s!

e2

p\

Tt

\ F12
3

8
t~Tt;F0

s!G
23S 12

1

F0
s

ln~11F0
s!D e2

2p2\
lnS EF

T D . ~7c!

The factor of 3 in the triplet channel correction Eq.~7c! is
due to the fact that all three spin components of the trip
state contribute equally. The functionf (Tt) smoothly decays
from unity to zero and the functiont(Tt;F0

s) is nonmonoto-
nous only in the narrow region20.25.F0

s.20.5 where it
has a maximum atTt51/(11F0

s). For numerical reason
both f (Tt) and t(Tt;F0

s) change the result only by a few
percent and therefore their explicit form~given in Ref. 1! is
inessential for the present discussion.

The correction~7! is written in the approximation of con
stant ~i.e., momentum-independent! F0

s . For the system
close to the Stoner instability such as 1/(eFt)!(11F0

s)
!1, this limits the applicability of Eq.~7! by temperatures
smaller thanT* 5eF(11F0

s)2, see Ref. 1.
In parallel magnetic field electrons acquire addition

Zeeman energyEz5gmBH, which is proportional to the
magnitudeH of the field, the Bohr magnetonmB , and the
02020
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e
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electrong factor. Consequently, the exact Green’s functio
of noninteracting electrons now depend on magnetic fie
They are related to the Green’s functions in the absenc
the field as

GR,A~e!→GR,AS e2
1

2
EzŝzD ,

whereŝz is the Pauli matrix in the spin space, and we cho
thez axis along the direction of the magnetic field. Repeat
all the considerations of Ref. 1, one finds that two-parti
propagators~that depend on the difference of the electr
energies! are also modified by the field. This modificatio
depends on the spin state of the two particles.5 Consider first
a system of noninteracting electrons. Identification of the s
glet and triplet channels corresponds to the choice of a b
in spin space, namely using the states with the total spiL
and itsz componentLz . The singlet channel is the state wit
L50 and it is unaffected by the magnetic field, as is theLz
50 component of the triplet. For the remaining two comp
nents the Zeeman splitting results in the shift of the f
quencyv in all diffusions byLzEz .

In the presence of electron-electron interaction one ta
into account the external magnetic field mostly in the sa
manner. The only difference is that theg factor is renormal-
ized by the spin-exchange interaction similarly to the Pa
susceptibility Eq.~1!. Consequently, the Zeeman splitting
also renormalized:

Ez* 5
gmBH

11F0
s

.

Thus the conductivity correction~2! is modified as

dsxx~H !

sD
5ImE

2`

` dv

p

]

]v S v coth
v

2TD E qdq

4p

3H @D s
R~v,q!1D t

R~v,q!#Bxx~v,q! ~8a!

1 (
Lz561

D t
R~LzEz* ;v,q!Bxx~v1LzEz* ,q!J ;

~8b!

where the form factorBxx(v,q) is given by Eq.~2!, propa-
gators in theLz50 channels expression~8a! are still given
by Eqs.~4! and~6!, while the propagators in expression~8b!
are modified by the Zeeman energy as follows~the diffusive
limit was discussed in Ref. 11!:

D t
R~LzEz* ;v,q!52

F0
s

n1F0
sPR~LzEz* ;v,q!

, ~9!

PR~LzEz* ;v,q!5nF12
2 iv

C~v1LzEz* ,q!21/t
G . ~10!

Note that the numerator of the polarization operator Eq.~10!
is not changed by the Zeeman energy. As a result, the po
the propagator Eq.~9! at q50 depends only on the bar
Zeeman energyEz with the bare electrong factor. This is a
1-2
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manifestation of the Larmor theorem: the frequency of a
mogeneous collective mode~which is the meaning of the
pole at q50) cannot be renormalized by electron-electr
interaction.

Results.Given the expression for the correction Eq.~8!
and the explicit expression for the triplet propagator in
presence of the Zeeman field Eq.~9!, further calculation con-
sists of evaluating the integral in Eq.~8!. The integral is
similar to its zero-field counterpart~see Ref. 1!. The resulting
magnetoconductivity can be written as~also depicted in
Fig. 1!

s~H,T!2s~0,T!5
e2

p\ F 2F0
s

~11F0
s!

Tt

\
KbS Ez

2T
,F0

sD
1KdS Ez

2pT
,F0

sD1m~Ezt,Tt;F0
s!G .

~11!

In the ballistic limit Tt@1 the dominating contribution is
given by the first term in Eq.~11!, where the dimensionles
function Kb(x,F0

s) contains two contributions:

Kb~x,F0
s!5K1~x!1K2~x,F0

s!, ~12a!

where

K1~x!5x cothx21, ~12b!

and

K2~x,F0
s!5

11F0
s

2F0
s E

x

x/(11F0
s)

dy
]

]y
~y cothy!

3S y2
x

11F0
sD F1

y
1

2F0
s

~112F0
s!y2x

G .

~12c!

If the magnetic field is strong,x@1, the expression Eq
~12! simplifies to

Kb~x@1,F0
s!5g~F0

s!x211OS 1

xD , ~13!

where the dimensionless functiong(z), not to be confused
with the Landeg factor, is

g~z!5
1

2z
ln~11z!1

1

2~112z!
1

zln2~11z!

~112z!2
.

For the smallest magnetic field,x!11F0
s , we have

Kb~x!11F0
s ,F0

s!'
x2

3
f ~F0

s!, ~14!

where

f ~z!512
z

11zF1

2
1

1

112z
2

2

~112z!2
1

2ln2~11z!

~112z!3 G .
02020
-
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The diffusive limit Tt!1 is characterized by the function

Kd~h,F0
s!52

1

4pF0
s (

Lz561
ReE

2`

` dx

x2 F ]

]x
~x cothpx!G

3~x2Lzh!ln
x2Lzh

x2Lzh/~11F0
s!

52
1

2pF0
s (

n51

` H 1

n S ln
n21h2

n21
h2

~11F0
s!2
D

2
4h

n2 S arctan
h

n
2arctan

h

n~11F0
s!

D J
2

1

p FC1RecS 12
ih

11F0
sD G , ~15!

whereC50.577 . . . is Euler’s constant, andc(x) is the di-
gamma function. For weak interaction (F0

s!1) Eq. ~15! re-
produces the result of Ref. 8. At the smallest magnetic fi
h!11F0

s Eq. ~15! reduces to

Kd~h!'
3F0

sz~3!

2p~11F0
s!2

h2, ~16!

where z(x) is the Riemann zeta function,z(3)51.202. In
the opposite limith@1 we have~see also Ref. 11!

Kd~h!'
1

p H 12
1

F0
s

ln~11F0
s!J ln

h

11F0
s

2
1

2pF0
s

ln2
1

11F0
s

. ~17!

Finally, for intermediate values 11F0
s!h!1 we obtain

FIG. 1. Magnetoconductivity in a parallel field for different va
ues ofF0

s .
1-3
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Kd~h!'2
1

2p
ln2

h

11F0
s

1OS ln
h

11F0
sD . ~18!

The crossover between the ballistic and the diffusive
gimes is described by the dimensionless funct
m(Ezt,Tt;F0

s). In the absence of the fieldm(0,Tt;F0
s)50.

Similarly to the functiont(Tt;F0
s) in Eq. ~7c!, this function

appears to be numerically small and does not modify the s
of the two limiting expressions Eqs.~15! and ~12! by more
than one per cent.

Discussion.The resulting temperature dependence of
conductivity correction Eq.~8! is summarized in Figs. 2 and
3. In the ballistic regimeds}T. Remarkably, the value an
the signof the slope depends on the field~for discussion of
the diffusive limit see Ref. 10!. At zero field1 the correction
is given by all four~the singlet and three components of t
triplet! spin channels so that]s/]T}113F0

s/(11F0
s). For

stronger fieldsEz.T the Lz561 channels are gapped an

FIG. 2. Temperature dependence of the conductivity correcti
in the presence of the parallel field.
io

an

od

02020
-
n

m

e

we are left with one singlet and one triplet channel]s/]T
}11F0

s/(11F0
s). The crossover is described by Eqs.~12!

and shown in Fig. 3. This picture is valid up to fields of ord
(11F0

s)2EF . At the strongest fieldsEz* .EF when the sys-
tem is fully polarized the spin does not play a role any m
and one retrieves the universal singlet channel result@see Eq.
~7b!#

]s

]T
5

e2t

p\2
;

Tt

\
*0.1; Ez* .EF . ~19!

This conclusion is in agreement with recently reported m
surements of magnetoresistance in GaAs.15

We are grateful to B. L. Altshuler, V. Falko, S. V
Kravchenko, and A. K. Savchenko for stimulating disc
sions. One of us~I.A.! was supported by the Packard fou
dation. Work at Lancaster University was partially funded
EPSRC-GR/R01767.

s FIG. 3. Slope of the temperature dependence of the conduct
correction~in the ballistic limit! as a function of the parallel mag
netic field.
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