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Electron-phonon interaction and ultrasonic attenuation
in the ruthenate and cuprate superconductors

M. B. Walker, M. F. Smith, and K. V. Samokhin
Department of Physics, University of Toronto, Toronto, Ontario, Canada M5S 1A7
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This article derives an electron-phonon interaction suitable for interpreting ultrasonic attenuation measure-
ments in the ruthenate and cuprate superconductors. The huge anisotropy found experimentally@C. Lupienet
al., Phys. Rev. Lett.86, 5986~2001!# in Sr2RuO4 in the normal state is accounted for in terms of the layered
square-lattice structure of Sr2RuO4, and the dominant contribution to the attenuation in Sr2RuO4 is found to be
due to electrons in theg band. The experimental data in the superconducting state are found to be inconsistent
with vertical line nodes in the gap in either the~100! or ~110! plane. Also, a general method, based on the use
of symmetry, is developed to allow for analysis of ultrasonic attenuation experiments in superconductors in
which the electronic band structure is complicated or not known. Our results, both for the normal-state
anisotropy and relating to the positions of the gap nodes in the superconducting state, are different from those
obtained from analyses using a more traditional model for the electron-phonon interaction in terms of an
isotropic electron stress tensor. Also, a brief discussion of the ultrasonic attenuation in UPt3 is given.

DOI: 10.1103/PhysRevB.65.014517 PACS number~s!: 74.25.Ld, 74.20.Rp
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I. INTRODUCTION

This article describes a theory of ultrasonic attenuation
the ruthenate and cuprate superconductors. It has been s
lated largely by the work of Lupienet al.1 which presented
the results of detailed experimental measurements of u
sonic attenuation in both the normal and superconduc
states of Sr2RuO4. The goal of that work was to use ultra
sonic attenuation as a tool to gain information on the pr
ence and location of nodes in the superconducting gap. Q
unexpectedly, however, they found a huge anisotropy in
measured attenuation, even in the normal state. Some of
results are shown in Fig. 1. Notice that the normal-state
tenuation of the longitudinal wave propagating along
@110# direction is lower by a factor of approximately 30 tha
that of the@100# longitudinal wave. Furthermore, the atten
ation of the transverse wave along the@100# direction is
lower than that of the transverse wave along the@110# direc-
tion by a factor of more than 1000. Lupienet al. note that
their results indicate the need for a new theory of
electron-phonon interaction allowing for a significant var
tion of the different sound-wave modes. They also sugg
that the lack of a reliable theory of ultrasonic attenuation
Sr2RuO4 has greatly hindered the use of this technique a
tool for gaining information about the location of the ga
nodes in this material.

The use of ultrasonic attenuation as a tool to locate
positions of nodes in the energy gaps of superconductors
been described, for example, by Moreno and Coleman.2 In
their model, the phonon strain field couples to a stress te
describing the flow of electron momentum. The electr
stress tensor is taken to be that appropriate to an isotr
electron fluid. This approach, which can be traced back
early work on ultrasonic attenuation in heavy-fermi
superconductors,3–5 in s-wave superconductors,7,8 and in nor-
mal metals,9 has also been used in the most recent attem
to understand ultrasonic attenuation in Sr2RuO4.10,11The use
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of an electron stress tensor appropriate to an isotropic fl
gives an elegant and simple formulation of the theory. Ho
ever, it seems clear that a new approach is needed if
wishes to be able to account in detail for the ultrasonic
tenuation observed in the recent experiments on Sr2RuO4.
The approach developed in this article takes account of
crystalline and electronic structure of Sr2RuO4, but also can
be shown to reduce to the traditional isotropic electro
stress-tensor approach in an appropriate limit~this limit not
being appropriate for Sr2RuO4).

This article shows that the strong anisotropy of the ult
sonic attenuation in Sr2RuO4 is intimately connected with its
layered square-lattice structure. We start from the idea
the electronic structure of Sr2RuO4 in the neighborhood of
the Fermi surface can be well described in terms of a sim
tight-binding Hamiltonian,12,13 in which a central role is
played by hopping matrix elements describing the hopp
of an electron from one ruthenium ion to a nearest-neigh
or next-nearest-neighbor ruthenium ion. To develop a mo
for the electron-phonon interaction, we assume that the h
ping matrix element depends on the distance between
ions, so that if a sound wave stretches the distance betw
two ions, the matrix element describing the hopping of
electron between these two ions changes. It is easily s
that a transversely polarized sound wave traveling in
@100# direction in the ruthenium-ion square lattice does n
stretch the nearest-neighbor bond between two ruthen
ions and, hence, is not coupled to the electrons~at least by a
nearest-neighbor coupling!. This is the reason for the ex
tremely low attenuation of the T100 sound wave reported
Ref. 1 ~see Fig. 1!. It is also easily seen that for a two- o
three-dimensional hexagonal lattice or for a thre
dimensional body-centered or face-centered lattice, or if
next-nearest-neighbor interaction is large, this argument d
not apply. Thus the highly unusual strongly anisotropic ult
sonic attenuation observed in Sr2RuO4 is directly related to
the layered square-lattice structure of this material. The
©2001 The American Physical Society17-1
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isotropy in the attenuation of longitudinal waves~e.g., for the
L100 and L110 waves of Fig. 1! also finds an elementar
qualitative and quantitative explanation in terms of t
model developed in detail below: this explanation depe
on the details of the Fermi surface geometry and will
given later.

After developing a detailed model for the electron-phon
interaction in Sr2RuO4 and confirming that the model ac
counts well for the ultrasonic attenuation in the normal sta
we proceed to an analysis of the ultrasonic attenuation in
superconducting state with the objective of gaining inform
tion on the positions of nodes in the superconducting ene
gap. The basic ideas here have been clearly set out in
article by Moreno and Coleman.2 They show that for a given
sound-wave propagation direction and polarization,

FIG. 1. Experimental data on the mode viscosity for the fo
in-plane sound-wave modes taken from Ref. 1. The mode visco
h plotted here is related to the attenuationa by the formulah
5arvs

3/(2pn)2, wherer is the density,vs is the sound velocity,
andn is the frequency. All sound-wave modes have both the dir
tion of propagation and the polarization lying in the basal pla
The nature of the mode (L for longitudinal andT for transverse! as
well as the Miller indices of the propagation direction are shown
the figure.
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nodes in the gaps can be described as either ‘‘active’’
‘‘inactive’’ and that the temperature dependence of the ult
sonic attenuation is very different in the two cases. Th
ideas are described in greater detail below and exploite
gain information on the positions of the gap nodes
Sr2RuO4. Our calculations are done in the hydrodynam
limit. The opposite~‘‘quantum’’! limit relevant for either
very pure samples, or very high frequencies, has been
sidered in Ref. 14.

A consequence of our work is the recognition that t
traditional isotropic electron–stress-tensor model of
electron-phonon interaction makes certain nodes ‘‘accid
tally’’ inactive for the case of longitudinal sound waves. Th
accidental inactivity is a consequence of the fact that
isotropic electron–stress-tensor model of the electr
phonon interaction is not sufficiently general to describe
alistically the electron-phonon interaction. In a more realis
model, all nodes are active for longitudinal phonons. Th
the isotropic electron–stress-tensor model for the electr
phonon model gives misleading results for the tempera
dependence of the ultrasonic attenuation associated with
gitudinal phonon modes in some cases and should no
used in studies aimed at determining the positions of
nodes in the gap of an unconventional superconductor.

Although the emphasis in this article will be on ultrason
attenuation in Sr2RuO4 because of the availability of exper
mental data for this material,1 it should be noted that ou
detailed results for theg band are also applicable~except for
the interlayer interaction! to cuprate superconductors such
YBa2Cu3O61x ; furthermore, it is a simple matter to develo
an appropriate interlayer electron-phonon interaction for
YBa2Cu3O61x structure analogous to the result for Sr2RuO4
developed here. The analysis in Sec. V allows us to m
some general statements about the symmetry-imposed p
erties of the electron-phonon interaction and their manife
tions for the ultrasonic attenuation in unconventional sup
conductors, in particular, in UPt3.

The discovery15 of superconductivity in the layered pe
ovskite Sr2RuO4 and the proposal16 that the superconducting
Cooper pairs in that material formed in a spin-triplet sta
have stimulated considerable interest and study~see Ref. 17
for a review of the properties of Sr2RuO4, and Ref. 18 for a
review of the symmetry classification and the physical pro
erties of unconventional superconductors in general!. Until
recently, it was thought that the superconducting order
Sr2RuO4 could be described by the order parameterd(k)
} ẑ(kx1 iky).

12,16 Because the Fermi surface of Sr2RuO4 has
a quasi-two-dimensional cylindrical form19 with no points at
kx5ky50, the Fermi surface for this order parameter is fu
gapped. More recently, however, power-law temperature
pendences more characteristic of a gap having line no
have been found in a number of experiments, including s
cific heat,20,21 nuclear quadrupole resonance~NQR!,22 pen-
etration depth,23 thermal conductivity,24,25 and ultrasonic
attenuation.1 It is not easy to reconcile the presence of trip
Cooper pairs, a broken-time-reversal symmetry, and
nodes in the gap. A number of proposals to do so have n
ertheless been made. These include spin-triplet states ch
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ELECTRON-PHONON INTERACTION AND ULTRASONIC . . . PHYSICAL REVIEW B65 014517
terized by vectorsd(k) of the form d(k)} ẑ@sin(kxa)
1i sin(kya)# ~Refs. 26–28! and having vertical line nodes i
~100! planes, so-calledf-wave states characterized byd(k)
} ẑ(kx1 iky)kxky or by d(k)} ẑ(kx1 iky)(kx

22ky
2),10,11,27,29

having vertical line nodes in~100! and~110! planes, respec
tively, by f-wave states characterized byd(k)} ẑkz(kx
1 iky)

2 ~Refs. 2, 31, and 32! and having horizontal lines
nodes in the planekz50, by states characterized byd(k)
} ẑ(kx1 iky)cos(kzc) ~Ref. 29! and having horizontal line
nodes in the planekz5p/(2c), or by states characterized b
d(k)} ẑ@sin(kxa/2)cos(kya/2)1i cos(kxa/2)sin(kya/2)#cos(kzc/
2) ~Refs. 29 and 30! and having horizontal line nodes in th
planekz5p/c. The analysis of the ultrasonic attenuation e
periments given below allows many of these possibilities
be ruled out and suggests that attention be focused on t
possibilities characterized by the existence of horizontal
nodes.

The structure of the article is as follows. Section II dev
ops a tight-binding model of the electron-phonon interact
accounting for the details of the layered square-lattice st
ture occurring in the ruthenate and cuprate superconduc
Section III evaluates a formula giving the ultrasonic atten
ation in the normal state of Sr2RuO4 in terms of the model
electron-phonon interaction given in Sec. II and shows t
the extremely strong and unusual anisotropy of the atten
tion is accounted for by the model. Section IV makes use
the model electron-phonon interaction to determine the
tivity or inactivity of the gap nodes for various propose
superconducting gap structures for Sr2RuO4, thus allowing
statements to be made about which of the various propo
for the gap structure are consistent with the experime
ultrasonic attenuation data. Section V shows that a deta
model of the electron-phonon interaction is not necessar
determine which nodes in the superconducting state are
tive or inactive by showing how to obtain such informatio
from symmetry arguments only. Such arguments are su
ciently powerful to be applicable to cases where the de
opment of a detailed model of the electron-phonon inter
tion is not available. Our detailed model for Sr2RuO4 is
shown to be consistent with these arguments~although the
isotropic electron stress tensor model is not!, and further-
more, some new results relating to the interpretation of
trasonic attenuation in UPt3 are presented. The Append
gives a discussion of the universality of the low-temperatu
temperature-independent contribution to the attenuation
the superconducting state, showing that the presence~or ab-
sence! of universal behavior is associated with the activ
~or inactivity! of the gap nodes.

II. ELECTRON-PHONON INTERACTION IN LAYERED
CUPRATE AND RUTHENATE SUPERCONDUCTORS

The approximate two-dimensional nature19 of the Fermi
surface of Sr2RuO4 suggests that it can be described, to
first approximation, in terms of electrons interacting prin
pally through intraplanar interactions. The Fermi surfa
consists of three sheets~see Fig. 2!, which can be thought o
as being derived from the three ruthenium orbitalsdxy , dxz ,
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and dyz .17,33,34The Hamiltonian describing the band stru
ture of a single plane can thus be written12

Hplane5 (
n,n8,n,n8,s

tn,n8~r n2r n8!cn,n,s
† cn8,n8,s , ~1!

wherecn,n,s
† creates an electron with spins in the nth (n

5$xy,xz,yz%) ruthenium orbital on the ruthenium ion at th
site n of the ruthenium square lattice. Because of thesz
plane of reflection symmetry at the center of the RuO4 plane,
there is no overlap between thexy orbitals and those ofxz
and yz symmetry. This means that one sheet of the Fe
surface~the g sheet! can be attributed to thexy orbitals,
while thea andb sheets result from hybridization of thexz
and yz orbitals. Also, from symmetry, there is no neare
neighbor overlap between thexz and yz orbitals, while the
largest overlap integral for anxz orbital is expected to be
with nearest-neighbor ions in the6x directions, since the
lobes of these orbitals point in these directions rather tha
the 6y directions. This means that thexz and yz orbitals
form approximately independent one-dimensional ban
with the hybridization of these bands giving relatively sm
perturbations to the energies, except where the bands c
A schematic view of the Fermi surface is shown in Fig. 2

To derive an expression for the electron-phonon inter
tion, we assume that the hopping matrix elements in Eq.~1!
in the vibrating lattice depend on the instantaneous positi
of the ruthenium ions,r n5r n

(0)1un, wherer n
(0) is the equi-

librium position of the ion at lattice siten, and un is its
displacement from equilibrium. The lowest-order contrib
tion to the electron-phonon interaction is found by expand
the hopping matrix elements in powers of the ionic displa
mentsun and keeping only linear terms. First consider doi
this for only the nearest-neighbor hopping matrix eleme
for the xz orbitals that lie in the6x directions relative to
each other, since this is a relatively simple effectively on
dimensional case. This results in the interaction

He2ph,plane
xz 5

gxz

a (
n,s

~un,x2un1a,x!

3~cxz,n,s
† cxz,n1a,s1cxz,n1a,s

† cxz,n,s!. ~2!

FIG. 2. Schematic of the Fermi surface of Sr2Ru2O4 showing
the a, b, and g bands. Also shown are portions of thea and b
bands that are predominantlyxz in character.
7-3
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Here un,x is the xth component of displacement of thenth
ion in the plane, andun1a,x refers to the ion one Bravais
lattice vectora in the positivex direction from thenth ion.
Notice that, for reasons of symmetry, this expression d
not contain displacements normal to the bond axis. T
~even though we have not assumed that the forces betw
the ions are central!, only displacements that stretch the bo
distance contribute to the electron-phonon interaction in
case. Introducing the lattice Fourier transforms of the s
variables in Eq.~2! and summing this Hamiltonian over a
planes in the crystal, gives

He2ph
n 5

1

AN
(

q, j ,k,s,G
gk1q/2,q, j

n Aq, j cn,k1q1G,s
† cn,k,s , ~3!

where n5xz, G is a reciprocal lattice vector,Aq, j5a2q, j
†

1aq, j , aq, j destroys a phonon corresponding to wave vec
q and polarizationj, andN is the total number of ruthenium
ions in the crystal. The wave vectorsq and k are three-
dimensional wave vectors and this Hamiltonian is for t
whole crystal. Here

gk1q/2,q, j
n 5gq, jF j

n~k,q!, ~4!

with

gq, j52A2i S \vq, j

Mv j
2 D 1/2

, ~5!

F j
n~k,q!5gn(

R
~ q̂•R̂!@R̂•ej~q!#cos~k•R!, ~6!

wherevq, j is a phonon frequency,v j is the sound velocity
for a phonon of polarizationj, ej (q) is a unit vector in the
direction of the phonon polarization,M is the total mass of
the ions in a primitive unit cell, and a caret~as inq̂) indicates
a unit vector. Since we are interested in this article only
low-frequency phonons, the expression~6! is given to the
lowest nontrivial order in the phonon wave vectorq. The
result of this section for the interaction of phonons with t
xz electrons as described by Eq.~2! is given by Eqs.~3!, ~4!,
~5!, and~6! with n5xz and with the sum overR containing
a single term withR equal to the Bravais lattice vectora.

Similarly, the interaction of phonons with theyz electrons
is described by Eqs.~3!, ~4!, ~5!, and ~6! with n5yz and
with the sum overR containing a single term withR equal to
the Bravais lattice vectorb. Also, the coupling constant i
calledgab[gxz5gyz.

The nearest-neighbor interaction of phonons with thexy
(g band! electrons is described by Eqs.~3!, ~4!, ~5!, and~6!
with n5xy and with the sum overR containing two terms
with R equal to the Bravais lattice vectorsa and b. The
coupling constant is calledgg.

The next-nearest-neighbor interaction of phonons with
xy (g band! electrons is described by Eqs.~3!, ~4!, ~5!, and
~6! with n5xy and with the sum overR containing two
terms withR equal to the Bravais lattice vectorsa1b and
a2b. The coupling constant is calledg8g.
01451
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So far, we have considered only electron-phonon inter
tions associated with the stretching of bonds between i
lying in a single plane. It is reasonable to expect these in
actions to be larger than the interplanar ones because
separation between RuO4 planes is relatively large, althoug
this should be confirmed by comparison with experime
However, the intraplanar interactions that we have cons
ered so far do not affect transverse phonon modes that h
their wave vector in the basal plane and their polarizat
perpendicular to this plane. This is because, to first orde
the displacements, such phonon modes do not stretch
bond distances and, more rigorously, because the basal p
is a plane of reflection symmetry. Hence, to account for
attenuation of these phonon modes, it is necessary to
sider interplanar interactions.

In describing the interplanar interactions it is reasona
to consider first interactions involvingxz and yz orbitals
since these orbitals have lobes sticking out of the pla
whereas the lobes of thexy orbitals lie in the plane. The fac
that the parts of the Fermi surface that are made up from
xz andyz orbitals show the largest corrugations37 along the
c-axis direction support this consideration.30 In addition we
choose to consider interactions between ruthenium ion
the corner and the body center of the unit cell~which are the
nearest-neighbor interplane pairs!. Unfortunately, thexz and
yz orbitals are not a convenient basis for describing t
interaction. For this reason, the new basiscjz5(cxz

1cyz)/A2 and chz5(2cxz1cyz)/A2 will be introduced.
Clearly, thejz orbitals will interact well with themselves
along body diagonals in the directions of the vectorsa1b
1c and 2a2b1c, while thehz orbitals will interact well
with each other along the body diagonals2a1b1c and a
2b1c.

The nearest-neighbor body-diagonal interactions betw
jz orbitals are described by Eqs.~3!, ~4!, ~5!, and ~6! with
n5jz and with the sum overR containing two terms withd
equal to the Bravais lattice vectors12 (a1b1c) and 1

2 (2a
2b1c). Also, the nearest-neighbor body-diagonal intera
tions betweenhz orbitals are described by Eqs.~3!, ~4!, ~5!,
and~6! with n5hz and with the sum overR containing two
terms withR equal to the Bravais lattice vectors1

2 (2a1b
1c) and 1

2 (a2b1c). The coupling constants for these tw
interactions satisfygjz5ghz. Because the best simple ap
proximation to the band structure is in terms of thexz andyz
states, and not in terms of thejz andhz states, the electron
phonon interaction derived in thejz and hz representation
should be transformed back to thexz andyz representation.

III. ULTRASONIC ATTENUATION IN THE NORMAL
STATE OF Sr2 RuO4

As noted in the Introduction, there is an extremely stro
anisotropy of the ultrasonic attenuation in the normal state
Sr2RuO4. This section shows how this anisotropy can
accounted for in terms of the electron-phonon interaction
described and the known Fermi-surface geometry
Sr2RuO4.

The attenuation constanta j (q) for an acoustic phonon o
wave vector q and polarization j is given by a j (q)
7-4
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ELECTRON-PHONON INTERACTION AND ULTRASONIC . . . PHYSICAL REVIEW B65 014517
5(v jtq, j )
21, wheretq, j is the phonon lifetime. Because th

formula for the ultrasonic attenuation in the superconduct
state is closely related to that for the normal state, the la
more general formula for the superconducting state will
given here, and the formula for the attenuation in the norm
state immediately follows. The result of evaluating the ph
non lifetime in the hydrodynamic limit~the electron quasi-
particle mean free path much shorter than the phonon w
length! from the self-energy of the phonon Green’s functi
in the superconducting state is

1

tq, j
5

16vq, j
2 NF

rv j
2 E

0

`de

e S 2
] f

]e D
3^F j

2~k,q!tk Re Ae22uDku2&FS , ~7!

whereNF is the density of states at the Fermi level in t
normal state,f (e) is the Fermi distribution function, and th
Fermi surface average is defined by

^F j
2~k,q!&FS5

E F j
2~k,q!dSk /vk

E dSk /vk

. ~8!

The integration overdSk in this equation is over all~the g,
xz, and yz) sheets of the Fermi surface, with the electro
phonon matrix element chosen appropriately for each sh
The expression~7! is valid for all singlet superconductin
phases, as well as for unitary triplet phases, for wh
uDku25ud(k)u2. This formula is similar to that employed i
Ref. 2, except that in our expression the electron-pho
matrix elementF j (k,q) replaces the isotropric electron stre
tensor of Ref. 2. Also, the formula has been generalized to
applicable to anisotropic multisheet Fermi surfaces. T
quantitytk is the Bogoliubov quasiparticle lifetime, and fo
Eq. ~7! to be valid, the conditionkBT@\/tk must be satis-
fied ~see the Appendix for a more detailed discussion!.

One aspect of the above discussion that is unsatisfac
is the failure to give a full treatment of the Coulomb inte
action so that charge neutrality is preserved in the disto
lattice that occurs in the presence of a longitudinal sou
wave. A microscopic treatment of this question for our tig
binding multiband model is beyond the scope of this artic
This question has, however, been treated in early work
ultrasonic attenuation in metals with anisotropic Fer
surfaces.35 There it was found that charge neutrality can
simply imposed in terms of an appropriately chosen spati
varying chemical potential. This leads to the same form
for the attenuation as is obtained when the charge-neutr
correction is neglected, except that the original electr
phonon matrix element is replaced by a related effec
electron-phonon matrix element. Translated into our no
tion, their result is that the electron-phonon matrix elem
F j (k,q) in Eq. ~7! should be replaced by the effectiv
electron-phonon matrix element

F̃ j~k,q!5F j~k,q!2^F j~k,q!&FS . ~9!
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Therefore, in what follows, Eq.~7! with F j replaced byF̃ j
will be assumed to be the correct expression for the pho
relaxation rate. It should be noted that, for phonons pro
gating along high-symmetry directions,F̃ j (k,q) differs from
F j (k,q) only for longitudinal phonons.

The phonon lifetime in the normal state can be calcula
from Eq. ~7! by putting the superconducting energy g
equal to zero, which gives

1

tq, j
5

8vq, j
2 tn

rv j
2

NF@^F j
2~k,q!&FS2^F j~k,q!&FS

2 #, ~10!

wheretn is the electron lifetime in the normal state.
In some early work7,9 on ultrasonic attenuation the mod

Hamiltonian was formulated in terms of the potential ener
V(x), assumed to be a function of the continuous elect
position coordinatex and describing the interaction of th
electron with the lattice and with impurities. In this formu
lation, two problems arise that are eliminated by a canon
transformation to a coordinate system fixed to the mov
lattice. The first is that the perturbation of the potential due
the distorted lattice is not necessarily small. This probl
does not occur in the tight-binding formulation because
perturbation is naturally formulated in terms of a strain c
ordinate ~i.e., the ratio of the displacement to the phon
wavelength! rather than simply a displacement coordina
@see Eq.~2!#. The second problem is that it is simpler to wo
in a coordinate system in which the impurities are static
the zero-order Hamiltonian so that the electron’s energy
conserved in the impurity scattering process. In the tig
binding approach of this article the impurities are static
the zero-order Hamiltonian. For example, potential scatter
by impurities can be modeled by adding an extra te
Un,ni

cn,ni ,s
† cn,ni ,s to the Hamiltonian for thenth orbital on

the impurity site labeled byni . There is no dependence o
this impurity potential on the ion displacements, and the i
purities are thus static in this representation. Thus, our
proach has features qualitatively similar to those of so
previous approaches,7,9 even though the details of implemen
tation are different.

Before proceeding further, we show that our formulati
reduces to the traditional isotropic electron–stress-tensor
mulation in an appropriate limit. It is known36 that for hex-
agonal crystals, sound-wave propagation is isotropic with
spect to rotations about thec axis. ~This is not true for
tetragonal crystals, such as Sr2RuO4.! Therefore, we expec
that the isotropic electron–stress-tensor model could give
appropriate description of sound-wave attenuation in a tw
dimensional hexagonal lattice, particularly if the Fermi s
face is taken to be a small circle about the pointk50 so that
the electron energy spectrum can be approximated by tha
free electrons, but with an effective mass. For these reas
we consider for the moment a two-dimensional hexago
lattice. The quantityF j (k,q) defined in Eq.~6! can be writ-
ten in the form

F j~k,q!5g(
ab

q̂a f ab~k!ej b , ~11!
7-5
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wherea andb are summed over thex andy components of
two-dimensional vectors. Here

f ab~k!5(
R

R̂aR̂b cos~k•R! ~12!

and the sum overR is over three nearest-neighbor hexago
Bravais-lattice vectors that make angles of 120° with e
other. Now, for a Fermi surface that is a small circle s
rounding the pointk50, the approximation cos(k•R)'1
2 1

2 (k•R)2 is valid. This leads to the result

f̃ ab~k![ f ab~k!2^ f ab~k!&FS

52 3
8 a2~kakb2 1

2 k2dab! ~13!

where a is the lattice constant. This is precisely the for
taken by the effective electron-phonon interaction in the i
tropic electron–stress-tensor model used by m
authors2–11 and shows that our formulation of the theory
ultrasonic attenuation is equivalent to theirs in an appropr
limit.

To prepare for a more detailed study of the ultraso
attention as observed in Ref. 1 explicit expressions
F j (k,q) @derived from Eq. ~6!# are now given for our
Sr2RuO4 model for the case that both the phonon wave v
tor q and its polarization vectorej (q) are in the basal plane
Furthermore, a simple model of isotropic phonons is
sumed in which the polarization vector is parallel to t
wave vector for longitudinal phonons and perpendicular
the wave vector for transverse phonons, even when the w
vector is not along a high-symmetry direction. The directi
of the phonon wave vectorq in the basal plane is characte
ized by the anglef that it makes with thex ~i.e., a) axis.

For longitudinal phonons interacting with electrons in t
g sheet of the Fermi surface via nearest-neighbor inte
tions

FL
g~k,q!5gg@cos2f cos~kxa!1sin2f cos~kya!#. ~14!

For transverseT1 phonons (T1 phonons have their polar
ization as well as their wave vector in the basal plane! inter-
acting with electrons in theg sheet of the Fermi surface vi
nearest-neighbor interactions

FT1
g ~k,q!5gg cosf sinf@cos~kxa!2cos~kya!#. ~15!

For longitudinal phonons interacting with electrons in t
xz sheets of the Fermi surface via nearest-neighbor inte
tions

FL
xz~k,q!5gab cos2f cos~kF

aba!, ~16!

while for interactions with electrons in theyz sheets of the
Fermi surface

FL
yz~k,q!5gab sin2f cos~kF

aba!. ~17!

In arriving at this result, this hybridization of thexz andyz
bands has been neglected, as have interband transitions
bands are thus one dimensional and characterized by
Fermi wave vectorkF

ab .
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For transverseT1 phonons interacting with electrons i
thexz sheets of the Fermi surface via nearest-neighbor in
actions

FT1
xz~k,q!52gab cosf sinf cos~kF

aba!, ~18!

while for interactions with electrons in theyz sheets of the
Fermi surface

FT1
yz~k,q!5gab cosf sinf cos~kF

aba!. ~19!

Now assume that the attenuation of longitudinal phono
is dominated by their interaction with electrons on thea and
b sheets of the Fermi surface as described by Eqs.~16! and
~17! ~and that the interaction with electrons of theg sheet
can be neglected!. The attenuation will therefore be propo
tional to

^FL
2&FS2^FL&FS

2 5pab@gab cos~kF
ab!#2

3~cos4f1sin4f2pab!. ~20!

Herepab is defined to be the fraction of the density of stat
associated with thexz ~or theyz) band.~The fraction of the
density of states associated with theg band is calledpg, so
that pg12pab51.!

It is convenient to define the longitudinal anisotropy to
h l00/h110 where the mode viscosities of the L100 and L1
phonons,hL100 and hL110, respectively, are defined in th
caption to Fig. 1. The experimental value of the longitudin
anisotropy is approximately 30~see Fig. 1!. The theoretical
formula for the longitudinal anisotropy in the case that t
attenuation is dominated by phonon interactions with el
trons in thexz andyz bands is@from Eq. ~20!#

hL100

hL110
5

12pab

1
2 2pab

. ~21!

Using the experimentally determined value19 pab50.21
gives a longitudinal anisotropy from Eq.~21! of 2.7. This
value of the longitudinal anisotropy is too small by a fact
of 10 to account for the experimentally observed va
~which is 30!. Thus interactions of longitudinal phonons wit
electrons in thea andb sheets of the Fermi surface cann
account for the strong anisotropy of the attenuation of lon
tudinal phonons observed in Sr2RuO4,1 and these interac
tions must be dominated by other interactions.

Now suppose that the attenuation of longitudinal phono
is dominated by their interaction with electrons in theg band
and neglect the contribution to the attenuation from electr
in the xz and yz bands. The longitudinal anisotropy in th
case is given by

hL100

hL110
5

^cos2~kxa!&g2pg^cos~kxa!&g

^$ 1
2 @cos~kxa!1cos~kya!#%2&g2pg^cos~kxa!&g

.

~22!

Here the subscriptg on the angular brackets~as in ^&g) in-
dicates that the average is over theg sheet of the Fermi
surface only. To begin with, for the purposes of obtaining
qualitative understanding of Eq.~22!, neglect^cos(kxa)&g
7-6
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ELECTRON-PHONON INTERACTION AND ULTRASONIC . . . PHYSICAL REVIEW B65 014517
since numerical estimates show that it is small. Now n
that at theX point of the Fermi surface,kxa5p andky50,
so cos(kxa)1cos(kya)50. Because theg sheet of the Ferm
surface passes close to this point, the value of cos(kxa)
1cos(kya) will be small here and this will contribute to
large value of the longitudinal anisotropy. Furthermore,
should be noted that theX point is a saddle point of the
electron energy versusk surface, so that the Fermi velocit
vk goes to zero there. This means that in carrying out
Fermi-surface average using Eq.~8!, points close to theX
point will be more heavily weighted, thus further enhanci
the magnitude of the longitudinal anisotropy. To obtain
explicit value for the longitudinal anisotropy, we make use
the tight-binding approximation to«k given in Ref. 13, with
the parameters given in that article. Thus we use, for
electron energy in theg band, ek5E012t@cos(kxa)
1cos(kya)#14t8 cos(kxa)cos(kya), with parameters (E0
2EF ,t,t8)5(20.4,20.4,20.12). This allows Eq.~22! to be
evaluated numerically@including now the relatively smal
effect of a nonzero ^cos(kxa)&g#, giving the result
(hL100/hL110)537. This is in reasonable agreement with t
experimentally determined value of approximately 30~see
Fig. 1!, considering the fact that no attempt was made
adjust the Fermi-surface parameters to improve the ag
ment and that the inclusion of a relatively small contributi
from the less anisotropic attenuation due the thexz and yz
electrons would also reduce the calculated longitudinal
isotropy. The conclusion is that electrons on theg sheet of
the Fermi surface give the dominant contribution to the
trasonic attenuation and that the detailed Fermi-surface s
ture for electrons on theg sheet is important for understand
ing the large anisotropy in the attenuation of the longitudi
sound waves.

So far, only the effect of the nearest-neighbor electr
phonon interactions on the ultrasonic attenuation has b
discussed. Note that for these interactions, the ultrasonic
tenuation of the T100 waves is zero@see Eqs.~15!, ~18!, and
~19! for f50#. This is because transverse waves propaga
in the 100 direction do not stretch the nearest-neigh
bonds. Such waves do, however, stretch the next-nea
neighbor bonds, and attenuation of the T100 waves from
next-nearest-neighbor electron-phonon interaction is to
expected. This attenuation associated withT1 basal-plane
phonons interacting withg-sheet electrons can be found
terms of the quantity

F8T1
g ~k,q!5g8g cos~2f!sin~kxa!sin~kya!. ~23!

The fact that the attenuation of the T100 phonons is ab
1000 times smaller than that of the L100 or T110 phonon
a good indication that, in Sr2RuO4 the next-nearest-neighbo
electron-phonon interactions are in general less impor
than the near-neighbor interactions.

The formula

hT100

hL100
5S g8g

gg D 2
^sin2~kxa!sin2~kya!&FS

^cos2~kxa!&FS

~24!
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@from Eqs.~14! and ~23!#, together with the experimentally
measured values of the viscositieshT100 and hL100, can be
used to put an upper limit on the magnitude ofg8g/gg of
0.041. This is an upper limit because, as will be argued
low, a different interaction could be responsible for the T1
attenuation. This upper limit is surprisingly small, given th
the ratio of the next-nearest-neighbor to nearest-neigh
hopping matrix elements for theg band as estimated from
the parameters assumed in Ref. 13 is about 0.3. Ther
however, noa priori reason why the sensitivity of a hoppin
matrix element to bond stretching should be directly prop
tional to the magnitude of the matrix element itself.

There is at present no experimental information on
attenuation ofT2 phonons: i.e., by definition those transver
phonons with their propagation vectorq lying in the basal
plane and their direction of polarization perpendicular to
basal plane. The attenuation obtained from a consideratio
the body-diagonal electron-phonon interaction describ
above is given in terms of

FT2
jz,hz~k,q!5gjz,hz@cosf sin~ 1

2 kxa!cos~ 1
2 kya!

1sinf cos~ 1
2 kxa!sin~ 1

2 kya!#sin~ 1
2 kzc!.

~25!

Some factors of order unity have been absorbed into
definition of gjz,hz. When squared and averaged over t
Fermi surface, this formula gives an attenuation independ
of the direction ofq in the basal plane.

Similarly, the attenuation ofT1 phonons by the body-
diagonal electron-phonon interaction with thexz and yz
bands is described by

FT1
jz,hz~k,q!5agjz,hz cos~2f!cos~ 1

2 kzc!

3sin~ 1
2 kxa!sin~ 1

2 kya!. ~26!

Here,a is a numerical constant of order unity. The intera
tion of T1 phonons by the body-diagonal electron-phon
interaction with theg-sheet electrons is described by a
identical formula, except we puta51 and call the coupling
constantg9g.

IV. ULTRASONIC ATTENUATION
IN THE SUPERCONDUCTING STATE

Now that a satisfactory model for the electron-phon
interaction has been established, it is possible to proc
with confidence to an interpretation of the ultrasonic atte
ation measurements1 performed in the superconducting sta
of Sr2RuO4. The basic idea is to use the principles describ
by Moreno and Coleman2 to gain information about the lo
cation of the gap nodes in Sr2RuO4. Evidence for the exis-
tence of gap nodes, some of which is presented in Fig
from Ref. 1, has been summarized in the Introduction.

At low temperatures in a superconductor with gap nod
only Bogoliubov quasiparticles in the neighborhood of t
nodes are thermally excited, and hence only these quas
ticles can interact with the phonons to absorb them~and thus
7-7
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to attenuate a sound wave!. The lifetime of a phonon is given
by Eq. ~7!. Everything depends on the behavior of t
electron-phonon matrix elementF̃ j (k,q) at the wave vectors
k corresponding to the nodes. If this matrix element is n
zero at the nodes for a particular phonon, then the pho
can interact well with the nodal Bogoliubov quasiparticle
and the nodes are said to be active for that particular pho
If, on the other hand, the matrix element is zero at the no
for a particular phonon, then the coupling of the phonon
Bogoliubov quasiparticle precisely at the node is zero a
grows as the distance from the node is increased. In this c
the nodes are said to be inactive for the phonon in quest
The ultrasonic attenuation at temperatures well below
gap in the case where only inactive nodes are presen
proportional toT2 times the ultrasonic attenuation when a
tive nodes are present,2 as illustrated in Fig. 3.

Suppose that the only nodes in the superconducting
are vertical line nodes in the~110! planes. Then it is clea
from Eq. ~15! that the electron-phonon matrix element f
the T110 phonon is zero at the nodes@sincekx56ky for k in
a ~110! plane#, and~110! nodes are thus inactive for the T11
phonon. For T100 phonons, the nearest-neighbor elect
phonon matrix element of Eq.~15! is zero for allk because
f50. Thus, for the T100 phonon, its activity is determin
by the next-nearest-neighbor interaction given by Eq.~23! or
Eq. ~26!, which shows that the T100 phonon is active f
nodes in the~110! planes. Similarly, Eq.~14! can be used to
show that the electron-phonon matrix elementF̃ is nonzero
at nodes in~110! planes for both L100 (f50) and L110
(f5p/4) phonons, showing that both of these modes
active. Thus, if the only nodes in the gap are those in~110!
planes, the attenuation of the T110 sound wave would
crease significantly more slowly on increasing the tempe
ture from zero than that of the T100, L100, or L110 sou
waves. From Fig. 1 this is clearly not the case, thus rul
out states that have nodes only in~110! planes. In particular
this rules out a superconducting spin-singlet state ofkx

22ky
2

symmetry, as well as a spin-tripletf state with d5 ẑ(kx

1 iky)(kx
22ky

2).
Next consider the case that the only nodes in the su

conducting gap are vertical line nodes in the~100! planes.
Arguments similar to those given above show that th
~100! nodes are active for L100, L110, and T110 sou
waves, but inactive for T100 sound waves. In this case

FIG. 3. Qualitative behavior of the ultrasonic attenuation re
tive to that in the normal state vs temperature relative toTc . The
attenuation of sound for the case where only inactive nodes
present grows more slowly by a factor ofT2 relative to that where
active nodes are present, at temperatures well belowTc .
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attenuation of the T100 sound wave should increase m
edly more slowly with temperature at low temperatures th
that of the other three sound-wave types, and this is not
case. This rules out states that have only~100! line nodes,

such as thef-wave state withd5 ẑ(kx1 iky)kxky .
The arguments of the previous paragraphs have igno

the effects of thea andb sheets of the Fermi surface. Ou
implementation of our model is inaccurate for the behav
of the electron-phonon matrix element at~110! nodes for the
a and b sheets of the Fermi surface because we have
taken into account properly the hybridization of thexz and
yz bands, which is important in the@110# directions. A more
detailed discussion could be given to remedy this deficien
This will not be necessary, however, as it will be seen t
the more general and powerful symmetry arguments of
following section confirm the conclusions reached above

It should be noted that the electron-phonon interact
developed in this article gives results that are significan
different from those obtained when the electron-phonon
teraction is formulated in terms of an isotropic electron str
tensor ~e.g., see Refs. 2, 10, and 11!. This can seen, for
example, in the top panel of Fig. 2 of Ref. 11, where a mo
with gap nodes in~110! planes is analyzed, and the L10
mode shows behavior characteristic of interaction with in
tive nodes, since its calculated attenuation grows much m
slowly as the temperature is increased from zero than
calculated attenuation of the T100 mode. As noted in Ref.
the intensity of the coupling of the L100 phonon to the ele
trons in the isotropic electron–stress-tensor model is prop

tional to the factor (k̂x
22 1

2 )2, which is zero in~110! planes,
making the~110! nodes inactive. This inactivity of the~110!
nodes for the L100 phonon is an ‘‘accidental’’ inactivity; i.e
it is a particularity of the isotropic electron–stress-tens
electron-phonon interaction which would not be present i
more general model and~as demonstrated in the follow sec
tion! is not required by symmetry. In fact, as shown abo
the ~110! nodes are active for L100 phonons for the electro
phonon interaction developed in this article. Thus it see
clear that the isotropic electron–stress-tensor model sh
not be used in interpretations of ultrasonic attenuation
periments which aim at locating the positions of the g
nodes in an unconventional superconductor.

Finally note that the electron-phonon matrix element
the attenuation of transverseT2 phonons in Sr2RuO4 ~i.e.,
those that have a propagation vectorq in the basal plane and
a polarization perpendicular to the basal plane! is given by
Eq. ~25!. The factor sin(kzc/2) contained in this expressio
means that this matrix element is zero for horizonal no
lying in the planekz50 or on thekz52p/c surface of the
Brillouin zone. Thus, horizontal nodes atkz50 or at kz
52p/c are inactive forT2 phonons, and the comparison o
the attenuation forT2 phonons with that for other active
phonons can be used as a test for such nodes. Unfortuna
it is more difficult to find a definitive test for horizonta
nodes that might appear atkz5p/c, such as in the proposa
of Ref. 30, since there does not appear to be any pho
mode that is inactive for such nodes. This is related to

-

re
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ELECTRON-PHONON INTERACTION AND ULTRASONIC . . . PHYSICAL REVIEW B65 014517
fact that such nodes are not required by the symmetry of
order parameter, but are accidental.

So far we have investigated only the effects of the re
tively large differences in the temperature dependence of
attenuation that are expected to occur as a result of the
ferences between active and inactive nodes. Such differe
do not appear to occur in the experimental results curre
available for Sr2RuO4. There is, however, an intriguing
smaller difference in the temperature dependence noted
Lupien et al.1 This is that the ratio of the attenuation of th
T100 mode in the superconducting state to its normal-s
value is somewhat larger at low temperatures than that of
other measured sound wave modes~see Fig. 1!. This attenu-
ation is much smaller than that of the other measured sou
wave modes and was accounted for above in terms o
second-neighbor intraplanar electron-phonon interact
This is not the only possibility, however. It is possible th
the interplanar body-diagonal electron-phonon interact
could be the most important for this mode. This interact
has the characteristic feature that the squared matrix elem
contains the factor cos2(kzc/2). If there are horizontal node
close to either thekz50 or kz52p/c planes where this fac
tor has its maximum, then this would give the T100 soun
wave modes a boost in attenuation at low temperatures
tive to the other observed nodes, in agreement w
experiment.

In summary, the results of ultrasonic attenuati
experiments,1 when looked at in the light of the above
theoretical considerations, provide evidence against ver
line nodes in either the@100# or @110# plane. Also, the ex-
periments are consistent with horizontal line nodes. Fina
as to the positions of the horizontal line nodes, positio
close to either thekz50 or kz52p/c planes appear to b
favored.

V. CRYSTALLOGRAPHIC SYMMETRY, THE ELECTRON-
PHONON INTERACTION, AND ACTIVE NODES

In the last section an explicit model of the electro
phonon interaction was used to deduce the activity of no
of different types relative to a given sound-wave mod
While there is reason to believe that the model for
electron-phonon interaction is a relatively good one, sinc
accounts well for a number of unusual features of the so
attenuation in the normal state of Sr2RuO4, it is nevertheless
of interest to develop an approach that is not dependen
the details of the particular model. Such an approach, wh
exploits the crystallographic symmetry, is indeed possi
and will now be sketched. Such symmetry arguments will
particularly useful in cases where the electronic struct
may not be well known or is sufficiently complicated that
detailed model is difficult to develop.

In this section, the Hamiltonian describing the electro
phonon interaction will be taken to be that of Eq.~3!, where
the matrix elementgk1q/2,q, j

n will be assumed to be com
pletely general and subject only to the restrictions impo
by symmetry. For example, from the properties of the H
miticity of the Hamiltonian, its time-reversal invariance, a
its invariance with respect to spatial inversion in
01451
e

-
e

if-
es
ly

by

te
e

d-
a

n.
t
n
n
nt

-
la-
h

al

y,
s

s
.
e
it
d

on
h
e
e
e

-

d
-

ruthenium-ion position, it follows thatgk1q/2,q, j
n is pure

imaginary, is an even function of its argumentk1q/2, and is
an odd function of its argumentq.

Symmetry arguments can be used to show that, fo
transverse phonon with wave vectorq along the@110# direc-
tion and its polarizationj in the basal plane, perpendicular
q, vertical lines nodes in~110! planes are inactive. Suppos
that k has its basal-plane component in the@110# direction.
Then under a reflection in a plane normal to the basal pl
and containingq, cn,k,s must have a definite parity~i.e.,
either cn,k,s→1cn,k,s or cn,k,s→2cn,k,s). Also, Aq, j→
2Aq, j . From these properties it follows thatgk1q/2,q, j

n 50 for
all k lying in the same~110! plane that containsq. A related
argument shows that fork lying in the plane perpendicular to
q, gk,q, j

n 50. For this latter argument, it is necessary to a
sume thatuqu!uku, so that gk1q/2,q, j

n can be replaced by
gk,q, j

n . Thus, for a T110 sound wave, the vertical line nod
in the ~110! planes are inactive. Furthermore, there are
symmetry arguments that show that~110! nodes are inactive
for T100, L100, or L110 sound waves, and they must the
fore, in general, be active.

In a similar way it can be shown that symmetry requir
that ~100! vertical nodes be inactive for T100 sound wave
while these nodes are in general active for T110, L100,
L110 sound waves.

Making use of the fact that the basal plane is a plane
reflection symmetry, one can also show that line nodes in
planekz50 and in the planekz52p/c are inactive forT2
sound waves havingq in the basal plane and polarized pe
pendicular to the basal plane.

In the long-wavelength limituqu!uku, the symmetry argu-
ments given above can be formulated in a particularly sim
form. In this limit, the functionF̃ j

n(k,q) determining the
symmetry of the electron-phonon interaction@and which can
be obtained from Eqs.~9! and ~6!# can be written as

F̃ j
n~k,q!5gn (

a,b5x,y,z
f ab

n ~k!q̂aej ,b . ~27!

~Note that, in the isotropic electron–stress-tensor mo
f ab(k)5 k̂ak̂b2(1/d)dab , whered is the dimensionality of
the system; this isotropic stress-tensor expression is not
here.! If, for a given k, there is a symmetry operation from
the crystallographic point group which leavesk invariant,
but changes the sign ofq̂aej ,b , then the matrix elemen
f ab

n (k) vanishes@one should also use the fact that in sym
metry operations,ej and q transform like vectors and
ej (2q)5ej (q)#. In particular, one of the consequences
that there are no zeros ofF̃ j

n(k,q) required by symmetry for
all longitudinal waves, so the nodes are always active for
polarization. Also, it is clear that a symmetry-imposed li
zeros for transverse waves can be present only ifk is in a
high-symmetry plane.

Interband transitions of electronic quasiparticles ha
been ignored in our discussion. Such transitions are expe
to play a role only when two bands cross, and since there
relatively few quasiparticles associated with such poin
7-9



,
s

ce
le

ra

la
-
r
u
t
g

r

at

a

te
r-

th

s

.
c

su
th
ic

ov

r
th
.
lu
th
m

th
s

ith

est
bor

sed
a-
s a
py
of
n

the
gat-
e

not
have
ong
he

ass-
f
e
out
ting

re
as

osi-
es

ed

ry
or
se-

ro-

the
r

at-
the
dif-
od

an
pic
cting
ive.

d-
48.
o

r
ith
of
as

M. B. WALKER, M. F. SMITH, AND K. V. SAMOKHIN PHYSICAL REVIEW B 65 014517
their effects in general should not be important. However
a case is encountered where interband transitions play a
nificant role they will have to be investigated carefully, sin
the symmetry properties of the electron-phonon matrix e
ment for such transitions are different from those for int
band transitions.

As an application of these ideas to a material with a re
tively complicated Fermi surface,38,39 consider ultrasonic at
tenuation in UPt3,40,41which is believed to give evidence fo
the existence of basal-plane line nodes in the supercond
ing gap. We examine the consequences of the conjecture
the order parameter is characterized by a singlet-state
D(kx ,ky ,kz) transforming in accordance with theE2g repre-
sentation of the point groupD6h or by the triplet-state orde
parameterdz(kx ,ky ,kz) which transforms according toE2u .
~These are two of the most commonly assumed candid
for the order parameter; e.g., see Ref. 10.! First note that
from their symmetry classification, both of these order p
rameters change sign under reflection in the basal plane.~The
space group of UPt3 is P63 /mmc, which has asz reflection
plane.! Hence,

D~kx ,ky ,kz!52D~kx ,ky ,2kz!,

dz~kx ,ky ,kz!52dz~kx ,ky ,2kz!. ~28!

The constraints of this equation require the order parame
to be zero atkz50; i.e., there will be a line of nodes whe
ever a sheet of the Fermi surface cuts the basal plane.@The
Fermi surface consists of several sheets,38,39 with each sheet
having its own gap, but all gaps are expected to have
same symmetry and to satisfy Eq.~28!.# Note that Eq.~28!
also requires the order parameters to be zero at surface
the hexagonal Brillouin zone atkz56p/c. This is because
(kx ,ky ,1p/c) and (kx ,ky ,2p/c) are equivalent points
There are two toroidal sheets of the Fermi surface that
the surfacekz5p/c of the Brillouin zone38,39and hence give
line nodes there. The presence of these Brillouin-zone
face line nodes, associated by symmetry with those in
basal plane, does not seem to have been previously not

Because the basal plane of UPt3 is a plane of reflection
symmetry, symmetry arguments similar to those given ab
show that both basal-plane line nodes andkz5p/c Brillouin-
zone-surface line nodes are inactive forT2 sound waves with
qia and polarization parallel toc, but active forT1 sound
waves withqia and polarization parallel tob. The tempera-
ture dependence of the ultrasonic attenuation data40,41 shows
that the nodes are active forT1 sound waves and inactive fo
T2 sound waves, giving clear evidence of the existence of
basal plane andkz5p/c Brillouin-zone-surface line nodes
These comments extend previous discussions to inc
Brillouin-zone-surface line nodes and also ensure that
analysis remains valid for the complex Fermi-surface geo
etry that actually occurs in UPt3.

VI. CONCLUSIONS

The electron-phonon interaction in Sr2RuO4 has a strong
anisotropy that is highly unusual. The unusual nature of
interaction can be attributed to certain structural propertie
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Sr2RuO4, these being that the structure is a layered one w
a relatively large distance between the RuO4 layers and that
the Ru ions in a layer form a square lattice with the larg
electron-phonon interaction being between nearest-neigh
Ru ions. A detailed model electron-phonon interaction ba
on the idea of a tight-binding Hamiltonian with hopping m
trix elements that depend on the ion displacements doe
good job of quantitatively accounting for the huge anisotro
observed1 in ultrasonic attenuation in the normal state
Sr2RuO4. The dominant contribution to the attenuatio
comes from the interaction of phonons with electrons in
g band. The attenuation of transverse sound waves propa
ing in the@100# direction and having their polarization in th
basal plane is exceptionally small because such waves do
stretch the nearest-neighbor bond lengths and, hence,
no nearest-neighbor electron-phonon interaction. The str
anisotropy for the propagation of longitudinal waves in t
basal plane can be related to the fact that theg sheet of the
two-dimensional Fermi surface describes a large circle p
ing close to theX point of the Brillouin zone. An analysis o
the ultrasonic attenuation data1 in the superconducting stat
in terms of our model electron-phonon interaction rules
the possibilities that the only nodes in the superconduc
gap are vertical lines nodes in~100! planes or vertical line
nodes in~110! planes. The experiments performed so far a
consistent with the existence of horizontal line nodes such
those proposed in Refs. 29 and 30. With respect to the p
tions of horizontal line nodes, positions close to the plan
kz50 or kz52p/c appear to be favored, but a more detail
analysis is need to confirm this.

A general method~based on crystallographic symmet
arguments! of determining the existence of inactive nodes f
a given sound wave mode is developed. This method is u
ful even when it is not possible to develop a detailed mic
scopic model for the electron-phonon interaction.

As a by-product of our theory, we also propose that
ultrasonic attenuation data in UPt3 can be interpreted in favo
of the existence of horizontal line nodes in the planekz5
6p/c, as well as in the planekz50.

Our results, both for the anisotropy of the ultrasonic
tenuation in the normal state and for questions related to
positions of gap nodes in the superconducting state, are
ferent from those obtained when using the traditional meth
of modeling the electron-phonon interaction in terms of
isotropic electron stress tensor. In particular, the isotro
electron–stress-tensor model makes certain supercondu
gap nodes accidentally inactive, when they are in fact act

Note added in proof.A fundamental justification of our
Eq. ~9! has been given in terms of a model explicitly inclu
ing Coulomb interactions between the electrons in Ref.
We would like to thank V. Mineev for drawing this article t
our attention.
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APPENDIX: SYMMETRY AND UNIVERSALITY
OF ULTRASONIC ATTENUATION

One of the remarkable features of unconventional sup
conductors is that some of their transport coefficients at
‘‘universal’’ ~i.e., independent of the disorder concentratio!
values at sufficiently low temperatures. In particular, univ
sality was first predicted for electrical conductivity ofd-wave
superconductors in Ref. 42~see also Ref. 43! and for thermal
conductivity in Refs. 44 and 45 and observed experiment
in thermal conductivity in Ref. 46. In this appendix, we stu
the low-temperature behavior of ultrasonic attenuation in
conventional superconductors, using the model formulate
Sec. II.

In the absence of vertex corrections, the ultrasonic atte
ation coefficient in the hydrodynamic approximation is giv
by

a j~q,T!

a j~q,Tc!
5

1

tn
E

0

`

deS 2
] f

]e D Aj~q,e!

Re ẽ~e !
, ~A1!

where j 5L,T1 ,T2 labels the phonon polarization and

Aj~q,e!5
1

2 Im ẽ~e !
^F̃ j

2~k,q!&FS
21

3K F̃ j
2~k,q! Re

u ẽ~e !u21 ẽ2~e!22uDku2

Aẽ2~e!2uDku2
L

FS

.

~A2!

The temperature-independent ultrasonic attenuation in
normal state is given by

a j~q,Tc!5
8vq, j

2

rv j
3

NFtn^F̃ j
2~k,q!&FS . ~A3!

The expression~A1! is similar to that given in Ref. 3, the
only difference being in the angular dependence of
electron-phonon interaction~see also Ref. 6!. To reproduce
the results obtained with the help of the isotropic elect
stress tensor, one should replaceF̃ j (k,q)→( k̂•q̂)@ k̂•ej (q)#

2(1/d)@ q̂•ej (q)#.
The functionẽ(e) describes the self-consistent renorm

ization of quasiparticle energy due to impurity scattering a
satisfies the equation

ẽ5e1
i

2tn

g~ ẽ !

cos2d01g2~ ẽ !sin2d0

, ~A4!

whereg(e) is the retarded Green’s functionG at coinciding
points ~see Ref. 18 for a review of the effects of disorder
unconventional superconductors!. Assuming electron-hole
symmetry,
01451
ian
es

r-
in

-

ly

-
in

u-

e

e

n

-
d

g~e!5K e

Ae22uDku2L
FS

. ~A5!

In particular, for quasi-2Dd-wave order parametersDk
5D0 cos 2w (dx22y2 symmetry! or Dk5D0 sin 2w (dxy sym-
metry! and a cylindrical Fermi surface, g(e)
5(2/p)K(D0 /e), whereK(x) is the complete elliptic inte-
gral. The functionẽ(e) determines, for example, the invers
mean free time of quasiparticles,

1

t~e!
52 Im ẽ~e !, ~A6!

and the disorder-averaged quasiparticle density of st
~DOS!:

N~e!5NF Re g„ẽ~e !…. ~A7!

The behavior of the attenuation coefficient strongly d
pends on the value of the phase shiftd0. Here we consider
two limiting cases of weak impurities~Born limit!, when
d0→0, and strong impurities~unitary limit!, when d0
→p/2.

The solution of Eq.~A4! at zero energy is purely imagi
nary in both cases:ẽ(e50)5 iG0, where

G05D0 exp~2pD0tn! ~A8!

in the Born limit and

G05D0A p

2D0tn ln D0tn
~A9!

in the unitary limit. The zero-energy scattering rateG0 deter-
mines the crossover energy scale separating two qualitati
different types of the behavior of the observable quantities
the typical energy of excitations~temperature! is greater than
G0, then one can neglect the self-consistent energy renorm
ization and use the quasiparticle Boltzmann equation for
culating the kinetic properties in the superconducting st
~for the application of this approach to unconventional sup
conductors, see, e.g., Ref. 47!. In contrast, if the typical en-
ergy is smaller thanG0, then the self-consistency effects b
come important, and the quasiparticle Boltzmann equatio
not applicable. In the former case, the imaginary part ofẽ is
small compared to Reẽ→e, and we obtain

a j~q,T!

a j~q,Tc!
5

1

tn
E

0

`

deS 2
] f

]e DAj~q,e!

e
, ~A10!

where

Aj~q,e!52t~e!
^F̃ j

2~k,q! Re Ae22uDkuu2&FS

^F̃ j
2~k,q!&FS

. ~A11!

The expression~A10! is equivalent to Eq.~7! for isotropic
impurity scattering. It should be noted that the quasiparti
scattering rate~A6! in the Born limit decreases with energ
7-11
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in the superconducting state, and at some temperatureT*
.(vtn)Tc the applicability condition of the hydrodynami
approximation is violated. It turns out, however, that in re
experimental conditions for Sr2RuO4, the crossover tempera
ture T* is so small that we neglect this complication here

In the low-temperature regime, we replace Imẽ by G0,
take the limit Reẽ→0, calculate the integral over energ
and obtain

a j~q,T!

a j~q,Tc!
5

1

2tn

K F̃ j
2~k,q!

G0
2

~G0
21uDku2!3/2L

FS

^F̃ j
2~k,q!&FS

.

~A12!

We see that, atT,G0, the ultrasonic attenuation does n
depend on temperature.

In the Born limit, for typical disorder concentrations
cuprates and ruthenates,G0 turns out to be exponentially
small compared toTc ~in particular, in the experimental con
ditions of Ref. 1, D0tn; l n,ab /j0,ab;10, so thatG0 /Tc
,1023). For this reason, only the ‘‘high-temperature’’ lim
is relevant for Born impurities.

For unitary impurities, however,G0 can be as large a
0.1Tc , which means that, on one hand, there might be
clear power-law behavior ofa(T) at G0,T!Tc ~it was
pointed out, e.g., in Ref. 3!, and, on the other hand, th
low-temperature regime can be observable. The contr
tions to the ultrasonic attenuation from active and inact
nodes can be easily separated because of their differen
pendences on the impurity concentration. For active l
nodes at a cylindrical Fermi surface,
o,

.

A.

tt.

J.

01451
l

o

u-
e
de-
e

K F̃ j
2~k,q!

G0
2

~G0
21uDku2!3/2L

FS

5
F0

2

p

1

D0
, ~A13!

whereF0 is the value ofF̃ j (k,q) at the line of nodes. There
fore, as seen from Eqs.~A3! and~A12!, the ultrasonic attenu-
ation does not depend on the impurity concentration. In c
trast, for inactive line nodes,

K F̃ j
2~k,q!

G0
2

~G0
21uDku2!3/2L

FS

5
F08

2

p

G0
2

D0
3

ln
D0

G0
, ~A14!

whereF08 is the value of the transverse derivative ofF̃ j (k,q)
at the line of nodes. Therefore, in this case, the ultraso
attenuation does depend on the impurity concentration. C
paring Eqs.~A13! and ~A14!, we see that the contribution
from inactive nodes is typically much smaller than that fro
active ones, and one can make a conclusion that if, fo
given polarization and propagation, there are active no
present, the attenuation coefficient is universal at low te
peratures. In particular, the attenuation of longitudinal wa
should always be universal. On the other hand, for exam
the attenuation of the in-planeT2 waves for the order param
eters with horizontal line nodes atkz50 cannot be universal
because such nodes are inactive. Also, for anf-wave order
parameterd(k)} ẑ(kx1 iky)kxky , the attenuation coefficien
of the T110 phonons is universal, whereas that of the T1
phonons is not. For the order parameterd(k)} ẑ(kx

1 iky)(kx
22ky

2) the situation is opposite: the T100 attenu
tion is universal, but T110 is not. It should be noted that
calculations based on the isotropic electron–stress-te
model give different results.6
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