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Institut Non-Linéaire de Nice, Universite´ de Nice–Sophia Antipolis, 1361 route des Lucioles, 06560 Valbonne, France

R. T. Scalettar
Physics Department, University of California, Davis, California 95616

G. Schmid and M. Troyer
Theoretische Physik, Eidgeno¨ssische Technische Hochschule Zu¨rich, CH-8093 Zu¨rich, Switzerland

A. Dorneich
Institut für Theoretische Physik, Universita¨t Würzburg, D-97074 Wu¨rzburg, Germany

~Received 25 May 2001; published 5 December 2001!

We use two quantum Monte Carlo algorithms to map out the phase diagram of the two-dimensional hardcore
boson Hubbard model with near (V1) and next near (V2) neighbor repulsion. At half filling we find three
phases: superfluid~SF!, checkerboard solid, and striped solid depending on the relative values ofV1 ,V2, and
the kinetic energy. Doping away from half filling, the checkerboard solid undergoes phase separation: The
superfluid and solid phases coexist but not as a single thermodynamic phase. As a function of doping, the
transition from the checkerboard solid is therefore first order. In contrast, doping the striped solid away from
half filling instead produces a striped supersolid phase: coexistence of density order with superfluidity as a
single phase. One surprising result is that the entire line of transitions between the SF and checkerboard solid
phases at half filling appears to exhibit dynamicalO(3) symmetry restoration. The transitions appear to be in
the same universality class as the special Heisenberg point even though this symmetry is explicitly broken by
the V2 interaction.
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I. INTRODUCTION

The boson Hubbard Hamiltonian1 has been studied as
model of the superconductor-insulator transition in mater
with preformed Cooper pairs,2–7 of helium in disordered and
restricted geometries,8–10 of spin-flop transitions in quantum
spin systems in external magnetic fields,11 and of supersolid
behavior.12,13As with the fermion Hubbard Hamiltonian, th
boson model explores the role of correlations in induc
ordered phases of many quantum mechanical particles,
the nature of the quantum phase transitions between t
phases. However, unlike the fermion case where it is v
difficult to reach low temperatures away from points of sp
cial particle-hole symmetry, quantum Monte Carlo~QMC!
simulations of the doped boson system have no ‘‘sign pr
lem’’ and hence can successfully be performed. Many fa
nating and unexpected features arise, for example reen
Mott insulating behavior,14 universal conductivity,1–5,15 and
supersolidity.12,13Another important question is the possib
ity that a normal conducting phase may exist, atT50, for
the two-dimensional bosonic Hubbard model.16 Until algo-
rithms are developed to deal with the sign problem in f
mion QMC the boson Hubbard Hamiltonian offers us t
best opportunity to explore systematically the details of
competition between phases with diagonal and off-diago
long range order with QMC simulations.

In this paper we extend some of the previous work wh
established the basic phase diagram of the model1,17–19 in
order to characterize the detailed critical properties of
transitions between the phases. We will use two recently
0163-1829/2001/65~1!/014513~9!/$20.00 65 0145
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veloped algorithms. The first20,21 is based on a duality trans
formation which enables an exact mapping of the bos
Hubbard Hamiltonian onto a model of conserved curren
and the second23,24 is based on a stochastic series expans
of the imaginary time evolution operator.

The paper is organized as follows. We will first review th
definition of the boson Hubbard model and some of its ba
qualitative properties. We will then provide a brief review
the two numerical algorithms we employ. Our presentat
of the results begins with a discussion of the half-filled s
tem which focusses on a scaling analysis of the transi
from a strong coupling solid to a weak coupling superflu
phase. Next, away from half filling, we discuss the nature
the coexistence of the solid and the superfluid. Finally,
present some concluding remarks and open questions.

II. THE BOSON HUBBARD MODEL

The hardcore boson Hubbard Hamiltonian is

H52t(̂
i,j &

~ai
†aj1aj

†ai!1V1(̂
i,j &

ninj1V2 (
^^ i,k&&

nink .

~1!

ai (ai
†) are destruction~creation! operators of hard-core

bosons on sitei of a two-dimensional~2D! L3L square
lattice, andni is the density at sitei. The hopping paramete
is chosen to bet51 to fix the energy scale.V1 (V2) is the
near~next near! neighbor interaction.
©2001 The American Physical Society13-1
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F. HÉBERT et al. PHYSICAL REVIEW B 65 014513
For weak couplings, the ground state of the Hamilton
is a superfluid. Increasing the near neighbor interact
strengthV1 at half filling drives a transition to a checke
board solid phase where the sites are alternately occu
and empty. This phase is characterized by a vanishing su
fluid densityrs long range density-density correlations, and
gap in the energy spectrum reflected, for example, as a
ishing compressibilityk and corresponding plateau in a pl
of densityr versus chemical potentialm. Increasing the nex
near neighbor interaction strengthV2 at half filling can like-
wise drive a transition to a striped solid, where horizontal~or
vertical! lines of sites are alternately occupied. This pha
also hasrs50,k50 and long range density-density correl
tions.

At V250, and after an appropriate sublattice spin ro
tion, the hard-core boson model is equivalent to the spi1

2

antiferromagneticXXZ model, with half filling correspond-
ing to the zero magnetization sector. The hoppingt maps
ontoJx/2 while the interaction strengthV1 maps ontoJz and
the chemical potentialm is related to the magnetic field a
h5m2zV1/2, wherez is the number of nearest neighbors
a lattice site. In this language, superfluid order correspo
to magnetic order in theXY plane, while density order cor
responds to magnetic order in theZ direction. The boson
superfluid-charge-density-wave~CDW! insulator phase tran
sition atV152t corresponds to theXY-Ising change in uni-
versality class atJx5Jz . At this, the Heisenberg point, th
Hamiltonian has anO(3) symmetry and as a consequen
the critical temperature is driven toTc50. This symmetry is
explicitly broken for other values ofV1 or for nonzeroV2.
The boson-Hubbard model with nonzeroV2 also has a spin
analog, namely, to a Hamiltonian with next-near neighb
exchange.

The behavior of the boson-Hubbard model away fro
half filling is considerably more complex. While the com
pressibility surely becomes nonzero, so that the state is n
Mott insulator, it is possible that, despite doping, the cha
correlations remain long ranged. If the doped holes are
bile and interspersed with the density ordered bosons,
has simultaneous superfluid order. On the other hand,
doped holes might phase separate leaving distinct region
the lattice with superfluid and charge ordering. We will ca
fully explore these alternate possibilities and describe
nature of the transitions between them.

III. THE MONTE CARLO ALGORITHMS

Until relatively recently, algorithms to simulate interac
ing quantum bosons on a lattice suffered significant we
nesses. Most importantly, they had problems with extrem
long autocorrelation times, which, as in classical Mon
Carlo, were caused by the inability of local changes to mo
configurations effectively through phase space. A related
ficulty was that local moves also resulted in global cons
vation laws which limited the accessible regions of pha
space and hence the measurements that could be perfor
In the last several years, ‘‘cluster’’ and ‘‘loop’’ algorithm
have very successfully addressed some of these problem25

Unfortunately, these algorithms do not work equally well
01451
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all regions of parameter space, notably away from half fi
ing. In addition, they are not simple to implement when t
Hamiltonian is made more complex, e.g., with the inclusi
of disorder or longer range interactions.26 In this section we
review two approaches which have short autocorrelat
times but also are easily implemented for these more gen
models.

Dual algorithm. To perform efficient boson simulation
we use a newly developed QMC algorithm based on
exact duality transformation of the Bosonic Hubba
model.20,21 This approach begins by expressing the partit
function as a path integral over coherent states. To imp
ment the duality transformation exactly we followed th
method of Ref. 22. The result is that hardcore bosons
represented by conserved ‘‘currents’’ that propagate in
positive imaginary time direction and which can make jum
in any spatial direction. The path integral is transformed in
a sum over all deformations of the currents, very similar
the world line algorithm. This formulation is similar to tha
of Refs. 2,3 in that it relies on the duality transformation, b
different in that this transformation is exact in our case. Co
sequently, with our algorithm we simulate the true hard-c
Hubbard model, whereas Refs. 2,3 study the very high d
sity ~many bosons/site! limit.

The simulation is done in the standard way. A deformat
is suggested and it is accepted or rejected in a way satisf
detailed balance. A feature of this algorithm which is n
easily implemented in the world line algorithm is that th
imaginary time step is not subdivided by a checkerbo
break-up, and so a particle can hop several lattice sites
time. This has the great advantage that it enables us to m
sure the correlation function of the superfluid order para
eter^ai

†aj& for largeu i2 j u, which is very difficult to measure
efficiently in older approaches.

Stochastic series expansion. The stochastic series expan
sion ~SSE! algorithm with operator loop update23,24was used
for additional calculations on larger systems in the gra
canonical ensemble. This algorithm does not suffer fr
time discretization errors and is one of the most effect
algorithm for quantum systems. It has been shown to be
effective as the loop algorithm25 for models where the loop
algorithm can be applied. In bosonic models it is better th
the loop algorithm, since it does not suffer from the exp
nential slowing down of the loop algorithm when the chem
cal potential is tuned away from half filling.24

Measurements. The energyE is obtained as the expecta
tion value of the Hamiltonian and is used to determine
chemical potential via the relationm5]E/]N, from simula-
tions in the canonical ensemble. Hysteretic behavior inE
also provides supporting evidence in characterizing the o
of phase transitions.

It is straightforward to measure the density-density cor
lations and their Fourier transform, the structure factor

c~ l!5^nj1 lnj&,

S~q!5(
l

eiq• lc~ l!. ~2!
3-2
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QUANTUM PHASE TRANSITIONS IN THE TWO- . . . PHYSICAL REVIEW B 65 014513
These quantities characterize the diagonal long range o
Divergence ofS(p,p) in the thermodynamic limit indicate
checkerboard order, and inS(p,0) or S(0,p) striped order.
On finite lattices, the structure factor at the appropriate m
mentum diverges as the system size in the ordered phas
that a scaling analysis of simulations on different lattice si
can demonstrate long range order. From the density it
comes the compressibility which characterizes Mott insu
ing behavior.

It is also crucial to obtain the winding number, since
will be used to determine the superfluid densityrs}^W2&, a
relationship first emphasized in the context of quant
Monte Carlo simulations by Ceperley and Pollock.27 While
global conservation laws on winding and particle numb
preclude the straightforward evaluation of the superfluid d
sity in the dual algorithm and other traditional world-lin
approaches, we used methods which circumvent
difficulty.17,20 Specifically, we calculate the ‘‘pseudo
current-current correlation function at different imagina
times. The ‘‘pseudocurrent’’ is defined as the net number
bosons which jumped in a given direction in one imagina
time step. It can be shown easily that the Fourier transfo
of this correlation function approaches^W2& as the~Matsub-
ara! frequency approaches zero.17,20

Meanwhile, the global loop updates of the SSE algorit
allow modifications of the particle number and of the win
ing numbers. The superfluid densityrs can thus be measure
directly from the winding number fluctuations in these a
proaches. Two of us have recently developed a metho
measure Green’s functions such as^ai

†aj& in the SSE algo-
rithm. We refer to Ref. 24 for details of this method. Valu
for the superfluid density obtained via the dual and SSE
gorithms, although obtained very differently, are entire
consistent.

IV. PHASE DIAGRAM AND TRANSITIONS
HALF FILLING

As we have already described, at half filling, one c
easily recognize the existence of at least three phases
weakV1 andV2 it is clear that a superfluid phase exists an
as we will see below, this extends to very strong repulsi
when the competing interactions nearly balance. IfV1 domi-
nates, the energy cost of having near neighbors become
high and the bosons organize themselves into a checkerb
solid. On the other hand, whenV2 dominates, it is less costly
to have near neighbors compared to next near neighbors
the bosons organize themselves in a striped solid. What is
obvious is whether there are other phases, for example
persolids separating the solid phases from the super
phase. In previous work12,20,21we demonstrated that at ha
filling there are no supersolid phases in this model. This
confirmed in the present work where we determine the ph
diagram more accurately than before and study in detail
nature of the transitions. The caseV250 andV152 serves
as a good test for our simulations, since it corresponds to
well-understood Heisenberg point of theXXZ model.

The checkerboard and striped solids have structure fac
which diverge asL2, with momentum ordering vector
01451
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(p,p) and (p,0) @or (0,p)], respectively. Figure 1 show
these two quantities for fixedV1 asV2 is varied. We see tha
as V2 is increased,S(p,p) falls to zero,rs takes a finite
value while S(p,0) remains zero. This indicates a (p,p)
solid to superfluid phase transition. IncreasingV2 further,rs
vanishes abruptly whileS(p,0) takes a finite value indicat
ing a superfluid to striped (p,0) solid.

Putting together the transition points obtained from s
eral such slices, we arrive at the ground state phase diag
in the (V1 ,V2) plane at half filling. This is shown in Fig. 2
Two remarks are in order. It is interesting to note in Fig.
that even for the large values ofV1 and V2 we simulated,
there is no direct transition between the checkerboard
striped phases: It seems that the superfluid phase migh
ways intervene. If that is so, the two solid phases wo
eventually meet as bothV1 andV2 go to infinity. This is in

FIG. 1. The structure factorS(p,p) ~circles!, S(p,0) ~squares!,
and the superfluid densityrs ~triangles! at half filling for V156 as
functions ofV2 . L512,b512.

FIG. 2. The ground state phase diagram in the (V1 ,V2) plane.
The dashed line indicates first order transitions, the solid line
hibits what appears to be dynamically restoredO(3) symmetry ex-
cept at (V152,V250) where the symmetry is explicit in the Hami
tonian ~see text below!.
3-3
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F. HÉBERT et al. PHYSICAL REVIEW B 65 014513
contrast with the mean field result12 that the two phases mee
at (V1 ,V2)5(4,2). The second remark is thatV2 does not
need to be larger thanV1 in order for striped order to win
over checkerboard order. For example, (V1 ,V2)5(6,4) is in
the striped phase. This is important because it makes
striped phase more likely to appear physically since o
might expect near neighbor repulsion to be stronger t
next near neighbor.

Figure 1 also shows that (p,p)-SF transition appear
smooth suggesting a continuous phase transition. This
be examined in detail below. On the other hand, Fig. 1 a
shows that the SF-(p,0) transition is very sudden, suggestin
a first order transtion. To verify the first order nature of t
SF-(p,0) transition we look for hysteresis inS(p,0) and^E&
asV2 is increased and then decreased, always starting a
simulation from the last configuration of the previous ru
The results are shown in Fig. 3. Hysteresis is clearly se
supporting the evidence for a first order transition. Simi
parameter sweeps through the (p,p)-SF transition exhibit
no hysteresis.

To determine the order of the transition from check
board solid to superfluid we do finite size scaling. Since
Heisenberg point (V152,V250) is very special@explicit
O(3) in the Hamiltonian#, we first did the analysis awa
from it by fixing V153 and finding the transition asV2 is
changed ~see Fig. 1!. Since from Fig. 1, the SF to
(p,p)-solid transition appears continuous, we will first pr
ceed by assuming a second order transition and carrying
the appropriate finite size scaling. What this analysis w
show is that while a quite reasonable data collapse can
achieved, the requisite dynamic critical exponent is anom
lously small. This will lead us to perform a more caref
analysis which will reveal the true, and more subtle, criti
behavior.

In Fig. 4 we showrs versus V2 for system sizesL
56,8,10,12. In a quantum phase transition, the finite s
scaling function not only depends on the appropriately sca
distance to the critical point, but also on the ratio of t

FIG. 3. Hysteresis of~a! the energyE and ~b! S(p,0), asV2 is
increased and decreased showing the striped solid to supe
transition to be first order.
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lattice dimensions in space and imaginary time. It is stand
to assume the following form for the superfluid density:1

rs}
1

Lz
FS V22V2

c

L21/n
,b/LzD . ~3!

One approach is to simulate several sets of lattice sizes,
set with a different space/imaginary time aspect ratio ass
ated with different guesses forz. Instead, we first use anothe
approach which is to choose the inverse temperature la
enough (b520 usually suffices! so that the second argume
in F is a constant asL is varied. With this choice,rsL

z must
then be independent ofL at the critical point. The best inter
section was found whenz50.25, giving a critical interaction
valueV2

c50.765~see Fig. 4!. Replotting this figure using the
scaled variable (V22V2

c)L1/v we obtain very good data col
lapse shown in Fig. 5. This collapse yields the value of
correlation function exponentn50.36.

Once these critical exponents were found, we redid
simulations but with the two parameter finite size scali
analysis mentioned above in which the temperature is va
with L, b}Lz, in order to keep the second argument in E
~3! constant. This reproduced the same values found foz
andn.

id

FIG. 4. rs as a function ofV2 for L56,8,10,12. The intersection
gives the critical valueV2

c50.765.

FIG. 5. Same as Fig. 4 but using the scaling variablesrsL
0.25

and uV22V2
cu1/n. This yields the valuesz50.25 andn50.36.
3-4
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QUANTUM PHASE TRANSITIONS IN THE TWO- . . . PHYSICAL REVIEW B 65 014513
Scaling analyses and data collapse of this level of qua
are rather commonly used to draw conclusions concern
the appropriate critical behavior and universality. Howev
the value of the dynamical critical exponentz50.25 is sur-
prisingly small. All previous debate12,28 had been whetherz
51 or z52. This leads us to reexamine the process and
particular, check the validity of the above finite size scali
analysis, by applying exactly the same assumptions
methodology to the transition at the Heisenberg point, wh
we know they should not hold. We obtain very similar sc
ing data, with the same values ofz andn.

The similarity between the behavior of the superfluid de
sity near the Heisenberg point with that at finiteV2 suggests
that the entire line of phase transitions separating the SF
(p,p)-solid phases might be in the same class as the Hei
berg point. However, especially given the possibility of ge
erating ‘‘acceptable’’ finite size scaling plots despite t
known critical behavior, that we have just demonstrated,
conjecture clearly requires careful testing, which we sh
now describe.

The Heisenberg point is very special in that the Ham
tonian has anO(3) symmetry which is explicitly broken
everywhere else in the (V1 ,V2) plane. In two dimensions
this continuousO(3) symmetry can be broken only at ze
temperature and there is no finite temperature phase tra
tion. The transition temperaturesTc of the Ising order in the
(p,p) solid and of the Kosterlitz-Thouless transition in th
SF phase drop to zero with infinite slope as the Heisenb
point is approached:34

Tc}1/lnuV122tu. ~4!

The same behavior appears for the Kosterlitz-Thouless t
sition as a function of chemical potential close to the Heis
berg point

Tc}1/lnum22V1u. ~5!

Away from the Heisenberg point the Hamiltonian does n
exhibit O(3) symmetry at the transition between SF a
(p,p) solid. Nevertheless it is possible that theO(3) sym-
metry is dynamically restored. This happens, e.g., in a th
dimensionalXXZ model in a magnetic field.35 There the
critical lines of the Ising- andXY-like phases meet in a bi
critical point withO(3) symmetry, although the symmetry o
the underlying Hamiltonian is onlyO(2)3O(1). A similar
scenario has been proposed in theSO(5) theory of high
temperature superconductivity,36 although is has been argue
recently that theO(5) symmetric point of anO(3)3O(2)
symmetric model is an unstable fixed point, and the symm
try not enlarged at the bicritical point there.37

To check if a dynamically restored symmetry exists a
in our two-dimensional model, we first need to determ
accurately a transition point away from the special Heis
berg point. To this end, we fixedV153 and studied, for
many values ofV2 and L, the behavior ofS(p,p) and the
condensateN(kW50)5ã†(kW50)ã(kW50), where ã is the
Fourier transform of the destruction operator. The results
N(kW50) are shown in Fig. 6 and indicate that the transiti
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happens at 0.760,V2,0.762 forV153. Furthermore, a sub
stantial jump inN(k) is indicated over this narrow window
of parameters. This very abrupt transition argues for a d
continuous transition similar to that at the Heisenberg po

A sensitive test of this suggestion is that if theO(3) sym-
metry is indeed restored at the criticalV2, the transition can
only take place at zero temperature. To verify this we d
simulations at finite temperature to determine the transit
temperatures as a function ofV2. For V2,0.761, the transi-
tion is from a normal bosonic liquid to the (p,p) solid, and
is expected to be in the 2D Ising universality class. T
transition temperatures were determined from cross
points of the fourth order Binder cumulant ratios
2^S(p,p)2&/3^S(p,p)&2 for different system sizesL, and
plotted in Fig. 7. ForV2.0.761, the transition is from a
normal bosonic liquid to a superfluid, and is expected to
in the 2D XY universality class. The critical temperature
TKT of this phase were determined from the universal ju
of the superfluid densityrs at the critical temperature. In Fig
7 we see very clearly that the transition temperature plun
to zero as we approach the criticalV2. In addition, the way

FIG. 6. The number of bosons in the zero momentum mode,
condensate, as a function of 1/L for different next near neighborV2

repulsion values.b52L.

FIG. 7. The transition temperatureT versusV2. At the critical
V2('0.761) the transition temperature drops to zero. This sugg
possible restoration of theO(3) symmetry.
3-5
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F. HÉBERT et al. PHYSICAL REVIEW B 65 014513
the critical temperatures of both the SF and solid phases
to zero is well fitted by21/lnuV22V2cu, just as is the case a
the Heisenberg point.

It seems very likely, therefore, that in the ground sta
T50, the transition at half filling from the checkerboa
solid to the superfluid proceeds via a dynamical restora
of symmetry and is in the same class as the special Hei
berg point atV152,V250. However, our simulations wer
done atfinite, albeit very low, temperatures. Consequen
for the moment, we cannot exclude the possibility that
very low temperatures the transition is first order. These
sues and the finite temperature phase transition are curr
being studied further.38

It is interesting to compare this with what happens
other systems. In the 2D extended fermion Hubbard mo
there is a similar competition between an antiferromagn
ordered phase and a charge density wave phase. In the
of fermions, the entire zero temperature phase diagram in
(U,V1) ~onsite and near neighbor repulsion! plane at half
filling is believed to be insulating. There is no metallic
superconducting region. This is thought to arise in part
cause of the peculiar nature of the two-dimensional Fe
surface, which has perfect nesting and a logarithmic div
gence of the density of states at half filling. Both these f
tures act to enhance the tendency for diagonal long ra
order. However, little has been pinned down precisely as
the nature of the phase transitions in two dimensions. In
dimension, the question has been addressed, and the tr
tion between the two insulating states has been argued t
second order at weak coupling and first order at strong c
pling, with an intervening tricritical point.29,30 Recent work
has called this into question, and suggested that an inter
ing bond-ordered-wave phase is important.31

In the 1D soft-core boson-Hubbard model, the grou
state phase diagram in theU ~on-site repulsion! andV1 ~near
neighbor repulsion! was also studied extensively18 at filling
n51. As in the case of 2D reported here, there is a we
coupling superfluid phase which is supplanted by order
insulating Mott and charge density wave phases at largU
andV1, respectively. A study of hysteresis loops and the f
energy barriers indicated that the transition out of the CD
phase to the superfluid is second order at weak coupling,
that the transition from CDW to Mott phase at strong co
pling is first order. We see that there are similarities with
2D hardcore case reported here, but there also differen
namely, here there could be a dynamically restoredO(3)
symmetry which was explicitly broken in the Hamiltonian

V. DOPED SYSTEM

Now we examine the phase transitions and various ph
when the system is doped away from half filling. The ha
core boson-Hubbard Hamiltonian, Eq.~1! has particle-hole
symmetry. That is, the transformationai→ai

† mapsni→1
2ni , interchanging occupied and empty sites, but leaves
Hamiltonian unchanged apart from trivial constants. The
fore it is sufficient to do the simulations below half fillin
and use this symmetry to calculate physical quantities ab
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A. Evolution of checkerboard solid

To explore what happens to the checkerboard solid w
the system is doped, we performed a series of simulation
various values ofV1 as the number of bosons in the system
lowered from half filling. We did this mostly with the canon
cal dual QMC algorithm where the number of bosons is fix
and the chemical potential is calculated from the energy
add a particle to the system

m5E~Nboson11!2E~Nboson!. ~6!

In Fig. 8 we show a typical result forV153. At low
densities~in this case whenr,0.4) we see thatrs is finite
while S(p,p) is small and decreasing as we move aw
from r50.5. In addition, finite size studies show thatrs is
essentially unchanging whileS(p,p)→0 for a fixed r
,0.4 asL grows. Therefore, this corresponds to a superfl
phase. The structure factor reaches its maximum atr50.5
while rs is zero there. This is the checkerboard solid d
cussed in the previous section.

Between the superfluid phase and the half filling check
board solid, i.e., for 0.4,r,0.5, Fig. 8 shows that both th

FIG. 9. The particle densityr as a function of the calculated
chemical potentialm. The slope is the compressibilityk5]r/]m.

FIG. 8. The structure factorS(p,p) and superfluid densityrs

versus the particle densityr. For 0.4,r,0.5, bothrs andS(p,p)
are finite.
3-6
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structure factor and superfluid density are nonvanishing. F
thermore, this is not a finite size effect: For larger syste
rs maintains its value whileS(p,p) diverges withL2 as it
should in the case of long range density wave order. T
therefore, is a candidate for a checkerboard supersolid ph

To verify this possibility, and check the thermodynam
stability of the supersolid phase we show in Fig. 9 the d
sity r as a function of the calculated chemical potentialm.
We see that for all the density values where Fig. 8 show
supersolid, i.e., 0.4,r,0.5, the curve in Fig. 9 has negativ
slope and therefore negative compressibilityk5]r/]m.
Consequently, the apparent checkerboard supersolid pha
not stable thermodynamically and undergoes phase sep

FIG. 10. Histogram of the particle density as the chemical
tential m is changed. The double peaks show phase separation

FIG. 11. The phase diagram forV250. The solid line shows the
continuous transition to the Mott phase at full filling, the dash
line shows the discontinuous first order transitions from the su
fluid to the checkerboard solid at half filling. The tip of the lob
r50.5 is the Heisenberg point.
01451
r-
s,

s,
se.

-

a

e is
ra-

tion into a mixture of checkerboard solid and superfluid. T
same behavior had previously been established for the m
netization process of the spin-1/2XXZ model on smaller
lattices.11

To establish this phase separation further, we simula
the system in the grand canonical ensemble wherem is the
input parameter andr is calculated. If the system undergoe
phase separation, as shown in Fig. 9, then, for the co
sponding value ofm, a histogram of the density should sho
two peaks, one atr50.5 and the other atr,0.5. This is
indeed what happens as shown in Fig. 10 for an 838 system
at V152.86. The simulation is done for several values of t
chemical potential. The phase transition takes place for thm
value with equal peaks. We verified that the peak separa
does not change when the system size is increased.

By repeating the simulations that led to Fig. 9 for vario
values of V1, we map out the phase diagram in th

-

r-

FIG. 12. Top:S(0,p) ~circles! andS(p,0) ~triangles!. Bottom:
^Wx

2& ~circles! and ^Wy
2& ~triangles!. The larger^W2& ~circles! is

parallel to the stripes, the lower is transverse. The system i
38,V150,V255,b56.

FIG. 13. Particle densityr versus chemical potentialm. There is
a sharp increase in the compressibility asm is increased when the
system goes from the superfluid to the supersolid phase.
3-7
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(t/V1 ,m/V1) plane forV250. The transitions between th
superfluid and the (p,p)-solid phases are first order exce
at half filling which is the special Heisenberg point. This
shown in Fig. 11. This phase diagram is in agreement w
the mean field/spin wave analysis in Ref. 33.

B. Evolution of striped solid

Now we investigate the effect of doping on the strip
solid phase present at half filling. The top part of Fig.
shows the structure factorsS(p,0) and S(0,p) for V1
50,V255. For r,0.3 we see that the system is isotrop
S(p,0)5S(0,p) and vanishing. Forr.0.3 the symmetry is
broken and one of the two vanishes while the other is la
~diverges with the system size!. That signals the formation o
stripes along thex or y directions. It is remarkable that th
stripes start forming at such small densities. The figure a
shows that at the same densities where the stripes form
superfluid density is no longer isotropic,rs

xÞrs
y . The super-

fluid densities in thex and y directions are defined byrs
x

5^Wx
2&/4tb and rs

y5^Wy
2&/4tb, where Wx (Wy) is the

winding number in thex (y) direction. In addition, the fig-
ure shows clearly that the superlfuid density along the stri
is larger than transverse to the stripes. Nonetheless, the
perfluid density in the transverse direction does not van
Therefore, once again we apparently have a phase whic
both superfluid and solid, thus another candidate for the
persolid phase.

Again we check the thermodynamic stability of the sup
solid phase by calculatingr as a function ofm. This is
shown in Fig. 13. We see that the compressibility~slope!
never becomes negative indicating that phase separatio
absent. In addition, we see that the compressibility increa
sharply atr50.3 which is the density at which stripes for
~see Fig. 12!. This indicates that, contrary to the checke
board case, the striped supersolid phase is indeed therm
namically stable and has a higher compressibility than
superfluid phase.

It is worth emphasizing that the striped supersolid isnot
merely a one-dimensional superfluid phase along the ch

FIG. 14. The phase diagram forV150. The narrow regions
sandwiched between SF and (p,0) solid phases are the stable s
persolid phases.
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nels created by the stripes. If this were the case, the su
fluid density transverse to the stripes would be vanishin
small, which it is not. In addition, it was shown in Ref. 2
that ^a†(rW)a(rW8)& is finite as urW2rW8u→` transverse to the
stripes in the supersolid phase.

By repeating the simulations that led to Figs. 12 and
we map out the phase diagram in the (t/V2 ,m/V2) plane.
This is shown in Fig. 14. The narrow regions sandwich
between SF and (p,0) solid phases are the stable superso
phases.

As can be seen in Fig. 12, the transition from the SF to
supersolid phase appears to be first order. The transition f
the supersolid to the striped solid phase is continuous a
seen from the behavior of the superfluid density as half
ing is approached. We see from the lower part of Fig. 12 t
both branches of the superfluid density, parallel and tra
verse to the stripes, go to zero smoothly as half filling
approached. In fact, both branches behave asur21/2u, indi-
cating a second order transition with a unit exponent.

VI. CONCLUSIONS

The boson-Hubbard model exhibits many fascinat
quantum phases and phase transitions. In this paper, we
shown that the detailed critical behavior at those transitio
that is, both the order of the transitions and the critical e
ponents, can now be determined with recently develo
quantum Monte Carlo algorithms. Our principal conclusi
is that, although a first order transition cannot be categ
cally ruled out at the moment, the superfluid to checkerbo
solid transition at half filling appears to proceed via a d
namical restoration of the explicitly brokenO(3) symmetry,
and is therefore in the same class as the Heisenberg p
This confirms that, for the bosonic Hubbard model at h
filling, there is no supersolid phase between the chec
board solid and superfluid phases,12 unlike what is observed
in other models.28,39 The details of the finite temperatur
phase diagram are currently being worked out.38 In addition,
by examining the density histograms from a grand canon
algorithm, we verified again that what was previous
thought to be a checkerboard supersolid phase, is in fa
phase separated mixture of superfluid and solid regions.

As for the striped phases, we showed, from the hyster
of the energy and structure factor, that the superfluid
striped solid transition,at half filling, is first order. The tran-
sition from the superfluid phase to the striped superso
phase~away from half filling! also appears to be first orde
in disagreement with Refs. 32,33. We also showed, from
behavior of the superfluid density, that the transition from
striped supersolid phase to the striped solid phase is se
order with the superfluid density vanishing asrs;ur21/2u.
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