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Quantum phase transitions in the two-dimensional hardcore boson model
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We use two quantum Monte Carlo algorithms to map out the phase diagram of the two-dimensional hardcore
boson Hubbard model with nea¥{) and next near\{,) neighbor repulsion. At half filing we find three
phases: superflui(SF), checkerboard solid, and striped solid depending on the relative valiés, @, and
the kinetic energy. Doping away from half filling, the checkerboard solid undergoes phase separation: The
superfluid and solid phases coexist but not as a single thermodynamic phase. As a function of doping, the
transition from the checkerboard solid is therefore first order. In contrast, doping the striped solid away from
half filling instead produces a striped supersolid phase: coexistence of density order with superfluidity as a
single phase. One surprising result is that the entire line of transitions between the SF and checkerboard solid
phases at half filling appears to exhibit dynami€gB) symmetry restoration. The transitions appear to be in
the same universality class as the special Heisenberg point even though this symmetry is explicitly broken by
the V, interaction.
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. INTRODUCTION veloped algorithms. The firét?%is based on a duality trans-
formation which enables an exact mapping of the boson

The boson Hubbard Hamiltoniamas been studied as a Hubbard Hamiltonian onto a model of conserved currents,
model of the superconductor-insulator transition in materialsind the secoridis based on a stochastic series expansion
with preformed Cooper paifs, of helium in disordered and ~ of the imaginary time evolution operator. .
restricted geometrié; ° of spin-flop transitions in quantum ~ The paper is organized as follows. We will first review the
spin systems in external magnetic fieldsnd of supersolid definition of the boson Hubbard model and some of its basic
behavior213As with the fermion Hubbard Hamiltonian. the 9dualitative properties. We will then provide a brief review of
boson model explores the role of correlations in inducingth® two numerical algorithms we employ. Our presentation
ordered phases of many quantum mechanical particles, arfi the rgsults begins with a d|s_cuss,|on of _the half-filled sys-
the nature of the quantum phase transitions between the which focusses on a scaling analysis of the transition
phases. However, unlike the fermion case where it is very’®m @ strong coupling solid to a weak coupling superfluid
difficult to reach low temperatures away from points of spe-Phase. Next, away from half filling, we discuss the nature of
cial particle-hole symmetry, quantum Monte CaflQMC) the coexistence of the solid and the superfluid. Finally, we
simulations of the doped boson system have no “sign probPresent some concluding remarks and open questions.
lem” and hence can successfully be performed. Many fasci-

nating and l_Jnexpecte_d Eeatqres arise, for e_x_arrlgll% reentrant Il. THE BOSON HUBBARD MODEL
Mott insulating behaviot? universal conductivity;>° and
supersolidity*>'3Another important question is the possibil-  The hardcore boson Hubbard Hamiltonian is

ity that a normal conducting phase may exist,Tat0, for

the two-dimensional bosonic Hubbard modeUntil algo-

rithms are developed to deal with the sign problem in fer- H=—t>, (a;'aj+a;rai)+V12 nin;+V, > ning.
mion QMC the boson Hubbard Hamiltonian offers us the (i.j) (i) ((i.k))

best opportunity to explore systematically the details of the 1)
competition between phases with diagonal and off-diagonal
long range order with QMC simulations. a, (aiT) are destruction(creatior) operators of hard-core

In this paper we extend some of the previous work whichbosons on sité of a two-dimensional2D) L XL square
established the basic phase diagram of the ntddel®in  lattice, andn; is the density at site The hopping parameter
order to characterize the detailed critical properties of thés chosen to bé=1 to fix the energy scalé/; (V,) is the
transitions between the phases. We will use two recently derear(next neay neighbor interaction.
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For weak couplings, the ground state of the Hamiltonianall regions of parameter space, notably away from half fill-
is a superfluid. Increasing the near neighbor interactionng. In addition, they are not simple to implement when the
strengthV; at half filling drives a transition to a checker- Hamiltonian is made more complex, e.g., with the inclusion
board solid phase where the sites are alternately occupieaf disorder or longer range interactioffsin this section we
and empty. This phase is characterized by a vanishing supereview two approaches which have short autocorrelation
fluid densityp, long range density-density correlations, and atimes but also are easily implemented for these more general
gap in the energy spectrum reflected, for example, as a vamrodels.
ishing compressibility« and corresponding plateau in a plot ~ Dual algorithm To perform efficient boson simulations
of densityp versus chemical potential. Increasing the next we use a newly developed QMC algorithm based on the
near neighbor interaction strengify at half filling can like- exact duality transformation of the Bosonic Hubbard
wise drive a transition to a striped solid, where horizofsal model?*?! This approach begins by expressing the partition
vertica) lines of sites are alternately occupied. This phasdunction as a path integral over coherent states. To imple-
also hasp,=0,«=0 and long range density-density correla- ment the duality transformation exactly we followed the
tions. method of Ref. 22. The result is that hardcore bosons are

At V,=0, and after an appropriate sublattice spin rota-fepresented by conserved “currents” that propagate in the
tion, the hard-core boson model is equivalent to the gpin- positive imaginary time direction and which can make jumps
antiferromagneticX XZ model, with half filling correspond- in any spatial direction. The path integral is transformed into
ing to the zero magnetization sector. The hoppingaps @ sum over all deformations of the currents, very similar to
onto J,/2 while the interaction strengtf; maps ontal, and  the world line algorithm. This formulation is similar to that
the chemical potential is related to the magnetic field as of Refs. 2,3 in that it relies on the duality transformation, but
h=u—2zV,/2, wherez is the number of nearest neighbors of different in that this transformation is exact in our case. Con-
a lattice site. In this language, superfluid order correspondgequently, with our algorithm we simulate the true hard-core
to magnetic order in th&Y plane, while density order cor- Hubbard model, whereas Refs. 2,3 study the very high den-
responds to magnetic order in tfZedirection. The boson Sity (many bosons/sijdimit.
superfluid-charge-density-wav€DW) insulator phase tran- The simulation is done in the standard way. A deformation
sition atV;= 2t corresponds to th¥ Y-Ising change in uni- 1S suggested and it is accepted or rejected in a way satisfying
versality class afl,=J,. At this, the Heisenberg point, the detailed balance. A feature of this algorithm which is not
Hamiltonian has ar©(3) symmetry and as a consequence?asn)/ imple;mented in the world .Iir.1e algorithm is that the
the critical temperature is driven T, =0. This symmetry is imaginary time step is not subdivided by a checkerboard
explicitly broken for other values of, or for nonzeroV,. ~ break-up, and so a particle can hop several lattice sites at a
The boson-Hubbard model with nonzeve also has a spin ime. This has the great advantage that it enables us to mea-
analog, namely, to a Hamiltonian with next-near neighborSure the correlation function of the superfluid order param-
exchange. eter(aiTaj> for large|i—j|, which is very difficult to measure

The behavior of the boson-Hubbard model away fromefficiently in older approaches.
half filling is considerably more complex. While the com-  Stochastic series expansiofhe stochastic series expan-
pressibility surely becomes nonzero, so that the state is not$on (SSB algorithm with operator loop upddfé?*was used
Mott insulator, it is possible that, despite doping, the chargdor additional calculations on larger systems in the grand
correlations remain long ranged. If the doped holes are motanonical ensemble. This algorithm does not suffer from
bile and interspersed with the density ordered bosons, onéme discretization errors and is one of the most effective
has simultaneous superfluid order. On the other hand, th@lgorithm for quantum systems. It has been shown to be as
doped holes might phase separate leaving distinct regions &ffective as the loop algorittinfor models where the loop
the lattice with superfluid and charge ordering. We will care-algorithm can be applied. In bosonic models it is better than

fully explore these alternate possibilities and describe théhe loop algorithm, since it does not suffer from the expo-
nature of the transitions between them. nential slowing down of the loop algorithm when the chemi-

cal potential is tuned away from half fillirfg.
MeasurementsThe energ)E is obtained as the expecta-
lll. THE MONTE CARLO ALGORITHMS tion value of the Hamiltonian and is used to determine the

Until relatively recently, algorithms to simulate interact- chemical potential via the relatiom=JE/JN, from simula-
ing quantum bosons on a lattice suffered significant weaktions in the canonical ensemble. Hysteretic behavioEin
nesses. Most importantly, they had problems with extremely2|S0 provides supporting evidence in characterizing the order
long autocorrelation times, which, as in classical MonteOf phase transitions.
Carlo, were caused by the inability of local changes to move It is straightforward to measure the density-density corre-
Conﬁgurations effective'y through phase Space_ A re'ated difl.ations and their Fourier transform, the structure factor
ficulty was that local moves also resulted in global conser-
vation laws which limited the accessible regions of phase C(l):<nj+|nj>,
space and hence the measurements that could be performed.
In the last several years, “cluster” and “loop” algorithms
have very successfully addressed some of these proBfems. S(q)=2 eid (1) )
Unfortunately, these algorithms do not work equally well in [ '
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These quantities characterize the diagonal long range order 0.3 - - - - - - .
Divergence ofS(,r) in the thermodynamic limit indicates
checkerboard order, and B(7,0) or S(0,7) striped order.
On finite lattices, the structure factor at the appropriate mo-
mentum diverges as the system size in the ordered phase, s
that a scaling analysis of simulations on different lattice sizes 0.2
can demonstrate long range order. From the density itself
comes the compressibility which characterizes Mott insulat-
ing behavior. 0.15
It is also crucial to obtain the winding number, since it
will be used to determine the superfluid dengity(W?), a 01k
relationship first emphasized in the context of quantum
Monte Carlo simulations by Ceperley and PollGéivhile
global conservation laws on winding and particle numbers 0-05
preclude the straightforward evaluation of the superfluid den-
sity in the dual algorithm and other traditional world-line
approaches, we used methods which circumvent this 24 26 28 3 32 34 36 38
difficulty.1”?° Specifically, we calculate the “pseudo” Vv,
current-current correlation function at different imaginary
times. The “pseudocurrent” is defined as the net number of FIG. 1. The structure factd®(, ) (circles, S(,0) (square}
bosons which jumped in a given direction in one imaginaryand the superfluid densitys (triangles at half filling for V,=6 as
time step. It can be shown easily that the Fourier transfornfunctions ofV,. L=12,8=12.
of this correlation function approach@é/?) as the(Matsub-
ara frequency approaches zefc?° (7,7) and (mr,0) [or (0,m)], respectively. Figure 1 shows
Meanwhile, the global loop updates of the SSE algorithnthese two quantities for fixed; asV, is varied. We see that
allow modifications of the particle number and of the wind-as V, is increasedS(,) falls to zero,pg takes a finite
ing numbers. The superfluid densjiy can thus be measured value while S(7r,0) remains zero. This indicates ar ()
directly from the winding number fluctuations in these ap-solid to superfluid phase transition. Increasingfurther, pg
proaches. Two of us have recently developed a method teanishes abruptly whil&(7,0) takes a finite value indicat-
measure Green’s functions such(aéa,-} in the SSE algo- ing a superfluid to striped+,0) solid.
rithm. We refer to Ref. 24 for details of this method. Values Putting together the transition points obtained from sev-
for the superfluid density obtained via the dual and SSE aleral such slices, we arrive at the ground state phase diagram
gorithms, although obtained very differently, are entirelyin the (V1,V,) plane at half filling. This is shown in Fig. 2.
consistent. Two remarks are in order. It is interesting to note in Fig. 2
that even for the large values ®; andV, we simulated,
there is no direct transition between the checkerboard and
striped phases: It seems that the superfluid phase might al-
ways intervene. If that is so, the two solid phases would
As we have already described, at half filling, one caneventually meet as bottf; andV, go to infinity. This is in
easily recognize the existence of at least three phases. For
weakV; andV, it is clear that a superfluid phase exists and, ' ' ' $
as we will see below, this extends to very strong repulsions 4r Solid (,0)
when the competing interactions nearly balancé/,lfdomi- '
nates, the energy cost of having near neighbors becomes too
high and the bosons organize themselves into a checkerboard V 3T P
solid. On the other hand, whéf, dominates, it is less costly 2 e
to have near neighbors compared to next near neighbors and X 38
the bosons organize themselves in a striped solid. What is not
obvious is whether there are other phases, for example, su- Superfluid
persolids separating the solid phases from the superfluid 1F
phase. In previous wotk?*?we demonstrated that at half
filling there are no supersolid phases in this model. This is . .
confirmed in the present work where we determine the phase 0 2 4\, 6 8
diagram more accurately than before and study in detail the 1
nature of the transitions. The ca¥g=0 andV,;=2 serves FIG. 2. The ground state phase diagram in thg,/,) plane.
as a good test for our simulations, since it corresponds to thehe dashed line indicates first order transitions, the solid line ex-
well-understood Heisenberg point of theXZ model. hibits what appears to be dynamically resto@(B) symmetry ex-
The checkerboard and striped solids have structure factoksept at {/,=2,V,=0) where the symmetry is explicit in the Hamil-
which diverge asL?, with momentum ordering vectors tonian(see text below

2

o—e S(m,m)/L
== S(r,0)/L° T

A—Aps

IV. PHASE DIAGRAM AND TRANSITIONS
HALF FILLING

p=12

Solid (rn,7)
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10 / J 0.5 0.6 07 v, 08 0.9
. / (b) , . .
peSts ey s . FIG. 4. ps as a function o, for L=6,8,10,12. The intersection
2.3 24 v, 25 2.6 gives the critical valud/5=0.765.

FIG. 3. Hysteresis ofa) the energyE and(b) S(,0), asV, is lattice dimensions in space and imaginary time. It is standard
increased and decreased showing the striped solid to superfluid assume the following form for the superfluid den&ity:
transition to be first order.

1 2~ V3
contrast with the mean field restfithat the two phases meet ps™ EF< W,B/LZ> : )
at (V1,V5)=(4,2). The second remark is thet does not

need to be larger thax; in order for striped order to win . . . .

_ o One approach is to simulate several sets of lattice sizes, each
over checkerboard order. For exampléy (V) =(6,4) is in set with a different space/imaginary time aspect ratio associ-
the striped phase. This is important because it makes thg o P ginary P

. . . ) ated with different guesses farinstead, we first use another
striped phase more likely to appear physically since one o .

: : : approach which is to choose the inverse temperature large
might expect near neighbor repulsion to be stronger thar(]anou h 3= 20 usually sufficesso that the second argument
next near neighbor. gh b= y 9

Figure 1 also shows thatm()-SF transition appears in F is a constant ak is varied. With this choicepsL* must

smooth suggesting a continuous phase transition. This Wiﬁhen. be independent afat the cr|t'|c'al pomt'. .The' best |n'ter—
be examined in detail below. On the other hand, Fig. 1 alsgectloncwas found whe;n=0.25, giving a gr|t!cal mter.actlon
shows that the SF+,0) transition is very sudden, suggesting vaIueV2=Q.765(see Tgﬁ; Replotthg this figure using the

a first order transtion. To verify the first order nature of theScaled variable\(;—V3)L ™ we obtain very good data col-
SF-(mr,0) transition we look for hysteresis 8(w,0) and(E) lapse shown in Flg. 5. This collapse vyields the value of the
asV, is increased and then decreased, always starting a ney¢'relation function exponent=0.36. ,
simulation from the last configuration of the previous run. Once these critical exponents were found, we redid the
The results are shown in Fig. 3. Hysteresis is clearly seersimulations but with the two parameter finite size scaling
supporting the evidence for a first order transition. Similar2nalysis mentioned above in which the temperature is varied

parameter sweeps through the, (r)-SF transition exhibit With L, B<L?, in order to keep the second argument in Eq.
no hysteresis. (3) constant. This reproduced the same values foundzfor

To determine the order of the transition from checker-2nd .
board solid to superfluid we do finite size scaling. Since the

Heisenberg point \(;=2,V,=0) is very special[explicit 0.4

O(3) in the Hamiltonia, we first did the analysis away e 6x6 t

from it by fixing V;=3 and finding the transition a¢, is Y 8x8 i

changed (see Fig. 1 Since from Fig. 1, the SF to ' ::12)(12

(7, 7)-solid transition appears continuous, we will first pro- - X

ceed by assuming a second order transition and carrying out g o2l

the appropriate finite size scaling. What this analysis will —»

show is that while a quite reasonable data collapse can be e =20, V,=3

achieved, the requisite dynamic critical exponent is anoma- 0.1t

lously small. This will lead us to perform a more careful

analysis which will reveal the true, and more subtle, critical .ﬂ//rr”‘/i

behavior. %200 ~100 3 100
In Fig. 4 we showp versusV, for system sizes (v, -0.765)L"**

=6,8,10,12. In a quantum phase transition, the finite size
scaling function not only depends on the appropriately scaled FIG. 5. Same as Fig. 4 but using the scaling varialplgs™2>
distance to the critical point, but also on the ratio of theand|V,—VS|Y*. This yields the valueg=0.25 andv=0.36.
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Scaling analyses and data collapse of this level of quality 0.08 - -
are rather commonly used to draw conclusions concerning *—e V,=0.750
the appropriate critical behavior and universality. However, ::xzjg';g‘;
the value of the dynamical critical exponent 0.25 is sur- 008 L, vz;o:7eo
prisingly small. All previous debaté?® had been whether . < V,=0.761
=1 orz=2. This leads us to reexamine the process and, in S ooal LoVEdIE

. o e ; x 0. > V,=0.765
particular, check the validity of the above finite size scaling =1 — v§=o.77o
analysis, by applying exactly the same assumptions and
methodology to the transition at the Heisenberg point, where 0.02 L
we know they should not hold. We obtain very similar scal- B=2L
ing data, with the same values nfand v.

The similarity between the behavior of the superfluid den- 0, ST o o5 ooi 005
sity near the Heisenberg point with that at finife suggests ' L ' |
that the entire line of phase transitions separating the SF and
(7r,7r)-solid phases might be in the same class as the Heisen- FIG. 6. The number of bosons in the zero momentum mode, the
berg point. However, especially given the possibility of gen-condensate, as a function ot lfor different next near neighbar,
erating “acceptable” finite size scaling plots despite therepulsion valuesp=2L.
known critical behavior, that we have just demonstrated, this
conjecture clearly requires careful testing, which we shalhappens at 0.760V,<0.762 forV,= 3. Furthermore, a sub-
now describe. stantial jump iNN(K) is indicated over this narrow window

The Heisenberg point is very special in that the Hamil-of parameters. This very abrupt transition argues for a dis-
tonian has anO(3) symmetry which is explicitly broken continuous transition similar to that at the Heisenberg point.
everywhere else in theV,V,) plane. In two dimensions A sensitive test of this suggestion is that if tB¢3) sym-
this continuousO(3) symmetry can be broken only at zero Metry is indeed restored at the critidj, the transition can
temperature and there is no finite temperature phase tranginly take place at zero temperature. To verify this we did
tion. The transition temperaturd@s of the Ising order in the ~Simulations at finite temperature to determine the transition
(7,1 solid and of the Kosterlitz-Thouless transition in the temperatures as a function . ForV,<0.761, the transi-
SF phase drop to zero with infinite slope as the Heisenberfon is from a normal bosonic liquid to ther( ) solid, and

point is approachet! Is expected to be in the 2D lIsing universality class. The
transition temperatures were determined from crossing
T 1/In|V,—2t. (4)  points of the fourth order Binder cumulant ratios 1

—(S(,7)?)13(S(m,))? for different system sizek, and
The same behavior appears for the Kosterlitz-Thouless trarpiotted in Fig. 7. ForV,>0.761, the transition is from a
sition a.S. a function of chemical potential close to the Heisennorma| bosonic ||qu|d to a Superﬂuid' and is expected to be
berg point in the 2D XY universality class. The critical temperatures
Tyt of this phase were determined from the universal jump
Teoed/In| =2V (5 of the superfluid density; at the critical temperature. In Fig.
7 we see very clearly that the transition temperature plunges

Away from the Heisenberg point the Hamiltonian does notiy ,er0 as we approach the critid. In addition, the way
exhibit O(3) symmetry at the transition between SF and

(7r,7r) solid. Nevertheless it is possible that t8¢3) sym- 0.8
metry is dynamically restored. This happens, e.g., in a three-
dimensionalXXZ model in a magnetic fieltf There the
critical lines of the Ising- anXY-like phases meet in a bi-
critical point withO(3) symmetry, although the symmetry of
the underlying Hamiltonian is onl®(2) X O(1). A similar
scenario has been proposed in t8€X5) theory of high
temperature superconductivityalthough is has been argued 04
recently that theD(5) symmetric point of arD(3)x0O(2) I
symmetric model is an unstable fixed point, and the symme- I
try not enlarged at the bicritical point theteé. 02 | .

To check if a dynamically restored symmetry exists also
in our two-dimensional model, we first need to determine
accurately a transition point away from the special Heisen- 0 , ! , ! ,
berg point. To this end, we fixed;=3 and studied, for 07 0.8 0.9 1
many values oV, andL, the behavior ofS(7,7) and the Vo /t

e s [
cond'ensateN(k—O)—a (k—O)a(!(—O), where a is the FIG. 7. The transition temperatufieversusV,. At the critical
Fourier transform of the destruction operator. The results fovz(%0_761) the transition temperature drops to zero. This suggests

N(IZ=O) are shown in Fig. 6 and indicate that the transitionpossible restoration of th@(3) symmetry.

06 - 4
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the critical temperatures of both the SF and solid phases drop 15 : T . T , T

to zero is well fitted by 1/In|V,—Vy|, just as is the case at Triangles: S(r.7) 8X8, p=6

the Heisenberg point. [ Circles: p.L, A V,=3, V,=0
It seems very likely, therefore, that in the ground state, FERN

T=0, the transition at half filling from the checkerboard 10 - / \ .

solid to the superfluid proceeds via a dynamical restoration / \

of symmetry and is in the same class as the special Heisen- - / \

berg point atvV,=2,V,=0. However, our simulations were / \

done atfinite, albeit very low, temperatures. Consequently, 5 s A —

for the moment, we cannot exclude the possibility that at / \

very low temperatures the transition is first order. These is- . / \

sues and the finite temperature phase transition are currently ““;}f‘\ /3*1* -

being studied furthet® P e S S
It is interesting to compare this with what happens in 03 04 0.5 06 0.7

other systems. In the 2D extended fermion Hubbard model, P

there is a similar competition between an antiferromagnetic £ g The structure factoB(r, ) and superfluid density,

Ofdefed phase and_a charge density wave pha;e. In th? CqRfsus the particle densify. For 0.4<p<0.5, bothps andS(r, )

of fermions, the entire zero temperature phase diagram in thge finite.

(U,V,) (onsite and near neighbor repulsjoplane at half

filling is believed to be insulating. There is no metallic or A. Evolution of checkerboard solid

superconducting region. This is thought to arise in part be- .
cause of the peculiar nature of the two-dimensional Ferm{ To explore what happens to the checkerboard solid when

surface, which has perfect nesting and a logarithmic diver-he system is doped, we performed a series of simulations at

gence of the density of states at half filling. Both these feay ar1ous values o¥/, as the number of bosons in the system is

; lowered from half filling. We did this mostly with the canoni-
tures act to enhance the tendency for diagonal long rangg . L
order. However, little has been pinned down precisely as t al dual QMC algorithm where the number of bosons is fixed

the nature of the phase transitions in two dimensions. In on nd the chemical potential is calculated from the energy to

dimension, the question has been addressed, and the tran%fi-d a particle to the system

tion between the two insulating states has been argued to be =E(Nposort 1) — E(Nposon)- (6)

second order at weak coupling and first order at strong cou-

pling, with an intervening tricritical poirt’=° Recent work In Fig. 8 we show a typical result fov,;=3. At low

has called this into question, and suggested that an interve@ensities(in this case whep<0.4) we see thap, is finite

ing bond-ordered-wave phase is importéit. while S(7,7) is small and decreasing as we move away
In the 1D soft-core boson-Hubbard model, the groundirom p=0.5. In addition, finite size studies show thatis

state phase diagram in thi(on-site repulsionandV, (near  essentially unchanging whil&(m,7)—0 for a fixed p

neighbor repulsionwas also studied extensivelyat filing  <0.4 asL grows. Therefore, this corresponds to a superfluid

n=1. As in the case of 2D reported here, there is a weakphase. The structure factor reaches its maximum=a6.5

coupling superfluid phase which is supplanted by orderedyhile p, is zero there. This is the checkerboard solid dis-

insulating Mott and charge density wave phases at lafge cussed in the previous section.

andVy, respectively. A study of hysteresis loops and the free  Between the superfluid phase and the half filling checker-

energy barriers indicated that the transition out of the CDWhoard solid, i.e., for 0.4 p<0.5, Fig. 8 shows that both the
phase to the superfluid is second order at weak coupling, and

that the transition from CDW to Mott phase at strong cou- 0.7 . : : . .
pling is first order. We see that there are similarities with the
: 8X8, p=6
2D hardcore case reported here, but there also differences, V.23 V.20
namely, here there could be a dynamically resto@@®) 06 7 .
symmetry which was explicitly broken in the Hamiltonian.

V. DOPED SYSTEM

Now we examine the phase transitions and various phases 04 r | ]
when the system is doped away from half filling. The hard-
core boson-Hubbard Hamiltonian, E@.) has particle-hole . . . . .
symmetry. That is, the transformatiag—a/ mapsn,—1 03 1 3 5 9 11 13
—n;, interchanging occupied and empty sites, but leaves the
Hamiltonian unchanged apart from trivial constants. There-
fore it is sufficient to do the simulations below half filing  FIG. 9. The particle densitp as a function of the calculated
and use this symmetry to calculate physical quantities abovehemical potentiak. The slope is the compressibility=dp/du.
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FIG. 10. Histogram of the particle density as the chemical po-

tential x is changed. The double peaks show phase separation.
FIG. 12. Top:S(0,7) (circles and S(7r,0) (triangles. Bottom:

structure factor and superfluid density are nonvanishing. FudWi) (circles and (Wy) (triangles. The larger(W?) (circles is
thermore, this is not a finite size effect: For larger systemspara”el to the stripes, the lower is transverse. The system is 8
ps Maintains its value whil&(, ) diverges withL? as it

should in the case of long range density wave order. Thistion into a mixture of checkerboard solid and superfluid. This
therefore, is a candidate for a checkerboard supersolid phassame behavior had previously been established for the mag-
To verify this possibility, and check the thermodynamic netization process of the spin-12XZ model on smaller

X8,V1=O,V2=5,,B=6.

stability of the supersolid phase we show in Fig. 9 the deniattices!
To establish this phase separation further, we simulated

sity p as a function of the calculated chemical potenial

We see that for all the density values where Fig. 8 shows ge system in the grand canonical ensemble wheis the
supersolid, i.e., 04 p<0.5, the curve in Fig. 9 has negative input parameter ang is calculated. If the system undergoes
slope and therefore negative compressibility=dp/du. phase separation, as shown in Fig. 9, then, for the corre-
Consequently, the apparent checkerboard supersolid phasesisonding value of:, a histogram of the density should show
not stable thermodynamically and undergoes phase sepam@vo peaks, one ap=0.5 and the other gh<<0.5. This is
indeed what happens as shown in Fig. 10 for a88system
atV,=2.86. The simulation is done for several values of the
chemical potential. The phase transition takes place fouthe

7 T T T T T T T T T T T T =
6 _ MOTT |NSULATORV value with equal peaks. We verified that the peak separation
I T does not change when the system size is increased.
5 | T | By repeating the simulations that led to Fig. 9 for various
T values of V;, we map out the phase diagram in the
4 SUPERFLUID g
%: ' \\\a\ 1 8X8, B=6 -
3 el . 08 | V,=0,v,=5 _
(m,70) ,
2 + SOLID e . 0.6 .
L /./o/ - a |
T e 1 04 | ]
O i I . I . I . I ) I . ! 02 | |
0 01 02 03 04 05 06 0.7 _
v, 0 . ! . ! .
-5 15 25

FIG. 11. The phase diagram fo,=0. The solid line shows the
continuous transition to the Mott phase at full filling, the dashed
line shows the discontinuous first order transitions from the super-

n

FIG. 13. Particle density versus chemical potential. There is

system goes from the superfluid to the supersolid phase.

fluid to the checkerboard solid at half filling. The tip of the lobe a sharp increase in the compressibility @a$s increased when the

p=0.5 is the Heisenberg point.
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7 ‘ ‘ ‘ ‘ ‘ — nels created by the stripes. If this were the case, the super-
6 | MOTT INSULATOR - fluid dens.ity t.ra_nsverse to th_e_ stripes would be .vanishingly
- small, which it is not. In addition, it was shown in Ref. 21
5| _— that (a'(r)a(r’)) is finite as|r—r'|— transverse to the
- SUPERFLUID stripes in the supersolid phase.
- 4 &i’q By repeating the simulations that led to Figs. 12 and 13,
B \’%\\ we map out the phase diagram in theé\,,u/V,) plane.
S This is shown in Fig. 14. The narrow regions sandwiched
STRIPED ) .
2 between SF and+,0) solid phases are the stable supersolid
SOLID P h
1 - phases.
e As can be seen in Fig. 12, the transition from the SF to the
T ‘ ‘ ‘ supersolid phase appears to be first order. The transition from
0 01 02 03 04 05 06 0.7 the supersolid to the striped solid phase is continuous as is
A seen from the behavior of the superfluid density as half fill-

ing is approached. We see from the lower part of Fig. 12 that
FIG. 14. The phase diagram faf;=0. The narrow regions photh branches of the superfluid density, parallel and trans-
sandwiched between SF and,Q) solid phases are the stable su- yerse to the stripes, go to zero smoothly as half filling is
persolid phases. approached. In fact, both branches behavépasl/2), indi-
cating a second order transition with a unit exponent.
(t/V1,ulV,) plane forV,=0. The transitions between the
superfluid and thet,)-solid phases are first order except
at half filling which is the special Heisenberg point. This is
shown in Fig. 11. This phase diagram is in agreement with The boson-Hubbard model exhibits many fascinating

VI. CONCLUSIONS

the mean field/spin wave analysis in Ref. 33. quantum phases and phase transitions. In this paper, we have
. . . shown that the detailed critical behavior at those transitions,
B. Evolution of striped solid that is, both the order of the transitions and the critical ex-

Now we investigate the effect of doping on the stripedPOnents, can now be determined with recently developed
solid phase present at half filling. The top part of Fig. 129uantum Monte Carlo algorithms. Our principal conclusion
shows the structure factor§(m,0) and S(0,m) for Vv, IS that, although a first order transition cannot be categori-
=0,V,=5. For p<0.3 we see that the system is isotropic, cally ruled out at the moment, the superfluid to checkerboard
S(w,0)=S(0,7r) and vanishing. Fop>0.3 the symmetry is SO|IC|- transition at half filling appears to proceed via a dy-
broken and one of the two vanishes while the other is largéamical restoration of the explicitly brokéd(3) symmetry,
(diverges with the system sizeThat signals the formation of and is therefore in the same class as the Heisenberg point.
stripes along the or y directions. It is remarkable that the This confirms that, for the bosonic Hubbard model at half
stripes start forming at such small densities. The figure als§!ling, there is no supersolid phase between the checker-
shows that at the same densities where the stripes form, ttRoard solid and superfluid phaséanlike what is observed
superfluid density is no longer isotropjel# pY . The super- N other model$®* The details of the finite temperature
fluid densities in thex and y directions are defined by} phase dlggram are currently being worked Bun addition, .
=<W§)/4t,8 and p}5’=<W§>/4tﬁ, where W, (W,) is the by examining the d_e_n5|ty hls_tograms from a grand ca_nonlcal
winding number in thex (y) direction. In addition, the fig- algorithm, we verified again that what was previously

ure shows clearly that the superlfuid density along the stripethotht to be a checkerboard supersolid phase, is in fact a

) X hase separated mixture of superfluid and solid regions.
IS Iarger than. transverse to the strlpes._NonetheIess, ‘h‘? Sé' As for the striped phases, we showed, from the hysteresis
perfluid density in the transverse direction does not vanish

Therefore, once again we apparently have a phase whichﬁ:{ the energy and structure factor, that the superfluid to
both superfluid and solid, thus another candidate for the s riped solid transitionat half filling, is first order. The tran-

ersolid hase Yition from the superfluid phase to the striped supersolid
P A iap h. K the th d ic stabilitv of th phase(away from half filling also appears to be first order,
Soli dg?alrr:avg/: (i)yef:alcflatiﬁ;pmgsygafrgrlwccﬁoi '(;]};LO Th?ssiiper-in disagreement with Refs. 32,33. We also showed, from the
shown in Fig. 13. We see that the compressibiliops behavior of the superfluid density, that the transition from the

. stri rsolid phase to the stri lid phase i n
never becomes negative indicating that phase separation suiped supersolid phase to the striped solid phase is second

absent. In addition, we see that the compressibility increas,esS"der with the superfluid density vanishing as-|p—1/2.

sharply atp=0.3 which is the density at which stripes form
(see Fig. 12 This indicates that, contrary to the checker-
board case, the striped supersolid phase is indeed thermody-
namically stable and has a higher compressibility than the We acknowledge useful conversations with E. W. Fire.
superfluid phase. This work was supported by NSF-DMR-9985978. We also

It is worth emphasizing that the striped supersolichas  thank ETH-Zurich and HLRSStuttgar} for very generous
merely a one-dimensional superfluid phase along the chamgrants of computer time.
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