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Eigenstates of a small Josephson junction coupled to a resonant cavity
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We carry out a quantum-mechanical analysis of a small Josephson junction coupled to a single-mode
resonant cavity. We find that the eigenstates of the combined junction-cavity system are strongly entangled
only when the gate voltage applied at one of the superconducting islands is tuned to certain special values. One
such value corresponds to the resonant absorption of a single photon by Cooper pairs in the junction. Another
special value corresponds tdwo-photonabsorption process. Near the single-photon resonant absorption, the
system is accurately described by a simplified model in which only the lowest two levels of the Josephson
junction are retained in the Hamiltonian matrix. We noticed that this approximation does not work very well as
the number of photons in the resonator increases. Our system shows also the phenomenon of “collapse and
revival” under suitable initial conditions, and our full numerical solution agrees with the two level approxi-
mation result.
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[. INTRODUCTION the Josephson junction emerged naturally from the quantum-
mechanical analysis.

Circuits involving small Josephson junctions have the po- In the present paper, we carry out a full quantum-
tential to behave as macroscopic two-level systems whicinechanical investigation of a model for a Josephson junction
can be externally controlled. Indeed, several recent expericoupled to a single-mode resonant photonic cavity. Our
ments have demonstrated that such a system can be placedw@del Hamiltonian is, as we demonstrate here, equivalent to
a coherent superposition of two macroscopic quantum stateth)at studied in Ref. 12, via a canonical transformation. How-
The experiments have involved small superconducting loopgver, we consider a different parameter region where the
and also so-called Cooper pair boxes. In the former case, §harging and Josephson energy of the junction are compa-
was shown experimentally that the loop could exist in a rable in magnitude. Also we go beyond the analysis of that
coherent superposition of two macroscopic states of differerpaper by including a large number of eigenstates of both the
flux through the loop. In the case of the Cooper pair box, thelosephson and the photon Hamiltonian, in calculating the
system was placed into a superposition of two states havingnergy levels of the coupled system. When the system is at
different numbers of Cooper pairs on one of the supercontesonance, we find that the entangled states are indeed, as
ducting island$=® Such a coherent superposition had beerexpected, well described by a basis of two states of the com-
proposed by several authdr8. bined system. We also find a variety of entangled states,

One possible application of such two-state systems is as @pending on the value of the control paraméter offset
quantum bit(qubit) for use in quantum computinbAt suf-  voltage, including, at certain values, an eigenstate which is a
ficiently low temperatures, this Josephson qubit will havesuperposition of two states in which the number of photons
little dissipation, and hence may be coherent for a reasonabffers by 2. We have also verified that our system shows the
length of time, as is required of a qubit. But in order for it to phenomenon of “collapse and revival” similar to that seen in
be potentially useful in computation, it must be possible toquantum optics? Our approach is similar to that applied by
prepare entangled states of two such qubits—that is, states Bveritt et al** to a SQUID ring in a resonant cavity, though
the two qubits which cannot be expressed simply as produdur Hamiltonian is not equivalent.
states of the two individual qubits. The remainder of this paper is organized as follows. In

Such entangled states have now been created and manipeec. Il, we give the model Hamiltonian, present several of its
lated in systems involving atoms in a highcavity® Only ~ properties, and describe our method of solving it. The fol-
recently has there been any theoretical study of entanglel@wing section gives numerical results obtained from the
states involving Josephson junction circuits. Shnirmarmodel. The last section contains a concluding discussion, an
et al™ have considered low-capacitance Josephson junctior@stimate for some of the parameters used in our model, and a
coupled to an inductor-capacitfrC) circuit in the two level ~ description of possible problems for future work.
approximation. Buisson and Hekkitfghave studied the
states of a single Cooper pair box coupled to the photon
mode in an electromagnetic resonant cavity. Both Refs. 11 Il. MODEL
and 12 considered junctions such that the charging energy is
much larger than the Josephson energy. Evetitil 1* have
carried out a similar investigation of the states of a small We consider an underdamped Josephson junction in a
superconducting quantum interference deviaeSQUID—  largeQ electromagnetic cavity which can support a single
i.e., a small superconducting lopgoupled to a resonant cav- photon mode. The system is assumed to be described by the
ity. In all of these studies, entangled states of the photon anfibllowing model Hamiltonian:

A. Model Hamiltonian
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H= thoton+ Hy+Hec. (1) where

Here Hynoton IS the Hamiltonian of the cavity mode, which

we express in the fortpeen="rw(a'a+1/2), wherea'

anda are the usual photon creation and annihilation opera-
tors.H, is the Josephson coupling energy, which we write in2nd
the form’H ;= —J cosy, wherel is the Josephson energy of _ _
the junction andy is the gauge-invariant phase across the Hini =~ J(cOSy—COSP). ©
junction (defined more precisely belowd is related tol ., In the absence of{;,; the Hamiltonian is the sum of two
the critical current of the junction, by=7%1./(2|e|). Finally,  independent parts, corresponding to the Josephson junction
Hc is the capacitive energy of the junction, which we write and the resonant photon modk;, couples these two to-

as He=1U(n—n)?, whereU=4€?/C is the charging en- 9ether.

ergy of the junction with capacitancg€, n is an operator

which represents the difference between the number of Coo- B. Method of solution

per pairs on the two superconducting islands which make up | s convenient to diagonaliz& in a complete basis con-

the junction, andh is a tunable experimental parameter re-sisting of the direct product of the eigenfunctionstof; and

lated to thg gate voltage which is applied at one of the SUH hoton - The eigenfunctions oHynoon are, of course, har-

perconducting islands. monic oscillator eigenstates; theth eigenstate has wave
The gauge-invariant phase differengés the term which  function

couples the Josephson junction to the cavity. It may be writ-

ten as y=¢— 2w/ Dy)[A-dI=gp—A, where @,

=hc/(2e) is the flux quantumg is the phase difference hn(q)=

across the junction in a particular gauge,is the vector Vym2'n!

potential, and the line integral is taken across the junction. . . :

We assume thaf arises from the electromagnetic field of where le)z(y) Is a Hermite polynomial of Qrde_n, andy

the cavity normal mode. In Gaussian units, and assuming the (@/%)"0. An eigenfunctionys(¢) of H,, with eigenvalue

Coulomb gauge V-A=0), this vector potential takes the Ej(n) can be written agi(¢$)=exp(ng)n(¢), and satisfies

form A= JhcZwV(a+a')e, wheree is the unit polarization 1€ Schrdinger equatiortty,i(¢) = Ei(¢). This equation
vector of the cavity mode and is the volume of the cavity. can _be written  out explicitly using the representation
Here we assumed that the junction dimensions are mucfi— —!(d/d¢), which follows from the commutation relation
smaller than the wavelength of the resonant cavity mode, sgeweem and ¢, as

that the cavity electric field is approximately uniform within

HJJ%U(n—F)Z—J cos¢ (5)

exp(—y2/2)Hy(y), ()

2
the junction..Given this representation oy the phase factor d7Y(x) + (% +20Q cos 2() Y(x)=0, ®)
A can be written a#®\=(g/+/2)(a+a"), where dx? U
4\/—|e| where x=¢/2, Y(X)=7(4/2), and Q=4J/U. This is a
g= 7 Iy 2) Mathieu equation with characteristic valae=8E;/U, and
Vh oV potential of strengthQ. The eigenvalue&; are determined

. by the requirement that the wave functiofi,¢), should be
andlj=e- | is the effective length across the junction parallelsingle valued, i.e., thats($) = y(¢p-+2), or equivalently
to e. The definition of the Hamiltonian is completed by writ- Y (x+ ) = exp(=2inm)Y(X). We therefore defin&,(x) as a
ing down the commutation relations for the various operafjoquet solution of the Mathieu equatid8), with Floquet
tors. The only nonzero commutators gra,a']=1, and exponenty=2k—2n, wherek=0,%1,+2 Wedenote

[n,¢]=—i. . . — —
It is useful to make a change of variablep the corresponding _elgenvalue Bfy; by Ey«(n). For O<n
<0.5, the lowest eigenvalue correspondskte0, followed

=iVhwl2(a’'—-a);q=V#/(2w)(a'+a). Thenp and q sat-

isfy the canonical commutation relatidip,q]=—i#%, and " O_rde_r F’ﬂ‘_l*_l’z_’_z' T Theeigenvalues OHJ_J are
Hanoton CaN be expressed in a form which makes clear that iBeI’IOdIC inn with period unity, and are also symmetric about
represents the Hamiltonian of a harmonic oscillator n=1/2.
Finally, any eigenstat? (¢,q), of the Hamiltoniar{ can
1, 5, be expressed as a linear combination of product wave func-
Hphoton =5 (P“+ @°Q7). () tions consisting of eigenfunctions o, and Hphoton :
In terms of these new variables, the gauge-invariant phase _
difference is given byy= ¢—gw/#q. \P((ﬁ’q)_% Antid #)hn(a), ©
The HamiltoniarH can now be expressed conveniently as _
the sum of three parts: where () =exp(n@)Y(¢/2) and Ay, are the expansion
coefficients. The only term ifit which is not diagonal in this
H="Hj33F HphotonT Hint » (4) product basis is the interaction terts,,, . The eigenfunc-
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tions and eigenvalues of the Hamiltonian of E4) follow 16 @ g=0 (b) g=0.15 (© g=15
from the Schrdinger equatiorHW¥ (¢,q) =E¥(¢,q). < < = >
= =
I.I:\J 051 ™\ : < \A/ v
C. Canonical transformation - 00— | |
Before proceeding to the solutions of this Satirger 0
equation, we show that{ is equivalent, via a canonical Cn n Cn
transformation, to another Hamiltonian which has sometimes _ _
been discussed in the literatdfe"? A similar transformation FIG. 1. Lowest eigenvalues/U of the system described by the
has been demonstrated in Ref. 11 for the case of one and twdéamiltonian (6), calculated as a function of for the parameters
junctions. The required transformation is as follows: ho/U=0.3 andQ=0.7, and(a) g=0, (b) g=0.15, and(c) g
=1.5. All eigenvalues are shown up EBU=1. Note in particular
¢'=d—golhq, the breaking of the degeneracy of the second and third energy levels
n=n aroundn=0.26, seen clearly irfc). The separatioME between
, ’ (10 these levels at=0.258 isAE/U =0, 0.01, and 0.06 ifa), (b), and
p'=p+tgviown, (c), respectively.
q'=q.

) ) ) where the coupling constamt is much larger. The degen-
It is readily found that the new operators satisfy the COMMUyracy breaking is, of course, caused by the perturbatign.

tation relations[¢’,n"]=i, [q',p"]=i%, with all other  \i5regver, the magnitude of the energy splitting also tends to
commutators vanishing. The Hamiltonidt can readily be  jncrease with increasing. This behavior is a characteristic
expressed in terms of the new variables. The resultis  featyre of “level repulsion” predicted by standard degenerate
1 1 perturbation theory in quantum mechanics.
H'==U'(n"—n")2—Jcos¢’ +=(p'2+ w?q'?) Next, we discuss the time evolution of the system de-
2 2 scribed by Hamiltoniari4), given its state at time=0. The
— 5 expectation value of any operat6r at timet is
UAhwn“g
—gvhop'n’+———r, (11
2(U+hog”) (O()=Trp(H) 0], (12
wheren’ =Un/(U+#wg®) andU’=U+fwg”. wherep(t) is the density matrix of the system at time(t)

If we interpret the photonic mode as an LC resonator, theng given by p(t)=U(t)p(0)UT(t), where U(t)=exp
this Hamiltonian describes a junction which dapacitively (—iHt/#) is the evolution operator ang(0) is determined

coupled to that mode. Obviously, this transformed Hamil-py the injtial state of the system. The time average of the
tonian will have the same spectrum of eigenvalues as thSperator(’) is then given by

original one. Although it is not obvious from the form of Eq.
(11), we have numerically confirmed that the spectrum is

- 10T
symmetric with respect ta=1/2, as is implied by the origi- (0))=lim —f Tr p(t) O]dt, (13
nal Hamiltonian. TowlJ0
IIl. NUMERICAL RESULTS where the inner and outer set of triangular brackets denote,
' respectively, a quantum mechanical and a time average.
We have diagonalized( [Eq. (4)] numerically, using the As an illustration, we have calculate@(’+;;)) and

basis discussed in Sec. 11 B. We used a truncated basis whigkiH,40n)). For each operator, we carried out the calculation
is composed of the direct product of the lowest five energymaking the arbitrary assumption that the state of the system
levels of the junction K=0,+1,+2), and the lowest ten of at timet=0 is |a=i/2;k). Here |a=i2) is a coherent
the electromagnetic fieldh(=0,1, . . . ,9). Wehave also con- state of the electromagnetic field, i.e., an eigenstate of the
firmed numerically that increasing the number of states imannihilation operatora such thata|a)=a|a). (We have
this basis has little effect on the eigenvalues at least up t@onfirmed numerically that the time averages are unchanged
E=6U. if the initial state is an eigenstate of the number operator
Figure 1 shows the calculated eigenvalueg(oplotted as  a'a.) |k) is an eigenstate of{;; with quantum numbek,
a function ofﬁup to an energy ob), for coupling constants and we have considered two different initial states, corre-
g=0, g=0.15 andg=1.5. In all three cases, we have arbi- sponding tck=0 andk=1. The density matriy(0) at time
trarily chosenQ=0.7 and%w/U=0.3, corresponding to a t=0 is easily calculated once the initial state is specified; in
case where the charging energy, Josephson energy, and qualwious notation it isp(0)=|a=iy2;k)(a=iy2; k|. We
tum# w of radiation energy are all comparable in magnitude.have calculated the time evolution using the parame@ers
The degeneracy of some of the energy levels in Fig) b =0.7, hw/U=0.3, andg=0.15.
broken in Fig. 1b) (the numerical value of the second and The time-averaged energyH;;)) for these parameters is

third energy levels splitting at=0.258 is given in the cap- shown in Fig. 2a) for k=0 andk=1. Each curve shows a
tion); the degeneracy is more noticeably broken in Fig),1  strong structure near=0.26 (andn=0.74). At these values
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FIG. 2. Time and quantum-mechanical average of the operator G- 3. (@ Time-dependent value dff;;) (full CU.FVE) and of
Hyy (@), and of Hypgen (b), plotted as a function oh for two (_thoton> (_dashed curvefor n=0.258. The system is prepared at
different assumptions about the initial state of the systém: t'metio in state|_n:1;k:0>, The other parameters a@=0.7,
=iy2;k=0) (solid curves and |a=iy2;k=1) (dashed curvas fiw/U=0.3, andg=0.15.(b) Same aga) except that we show the

The states are defined explicitly in the text. In both cases, we uset&me-dependent probapility for finding the Jose.phsor? ju.notiurll
the parameter valugsw/U=0.3, Q=0.7, andg=0.15 curve) and the photonic resonatéashed curvein their first ex-
o o o cited states.

of n, according to Fig. 1, the difference in energy between

the ground state energy, and the first excited energy i#1to the first excited state, while in the second half, they lose

~0.3U=%w. The structure thus corresponds, we believe, teenergy to the electromagnetic field and fall back into the

a resonant absorptiorf a photon by a Cooper pair in the ground state. In the present model, this process continues

junction—that is, at this value af, Cooper pairs of electrons indefinitely. In-a more realistic model which includes dissi-
move from the ground staf&=0) of the junction to the first ~pation, these oscillations would gradually decay in time.
excited statdk=1). The corresponding structure fér=1 Note also that the existence of a periodic oscillation be-
(dotted ling arises from stimulated emission, in which a tween one state and another is not dependent on the choice of
Cooper pair falls from the excited state to the ground state othe initial state. For example, if the initial state is chosen as
the junction with the emission of a photon. The exchange ofn=0;k=1), the junction would interact with the vacuum
energy between the junction and the resonator can also Hrictuations of the electromagnetic field, and would periodi-
seen in Fig. th), where we show the time-averaged energycally visit the stateln=1;k=0). We have confirmed this
contained in the photon Mod&Hpnoton)) for the same two  behavior numerically in our model.

initial states.((Hpnoton)) fOr both states is close to the un-  In Fig. 4, we show(H,;) and(Hpneen) as a function of
perturbed value(n) + 1/2)fi o =5 w/2, which is the energy time for two different initial statesn=1;k=0) (full line)
contained in the photon field for the coherent staée  and |n=1;k=1) (dashed ling (The first of these is also
=i ﬁ), but one increases sharply, while the other decreaseshown in Fig. 3. Evidently both states oscillate periodically
near the resonance at0.26 (andn=0.74). in time, but with slightly different periods.

The curves in Fig. 2 also show weaker structure mear ~ F19uré 5 shows the analogous time evolution of a system
~0.06( and near 0.94 This structure corresponds to a pro- pPrepared in a fixed initial state at=0.061, where we expect
cess in whichtwo photonsare absorbed by the junction Coo- to see a signature of a two-photon absorption. In this case,
per pairs. Specifically, the junction is excited from its groundwe prepared the system in the initial state=2;k=0). The
state to its second excited state at this valuampfvith a  SyStém oscillates between the=0 (ground statg and
consequent loss of two photons from the electromagneti€= —1 (second excited stateof the Josephson junction,
field. This is discussed further below. which is separated from the ground state by an enerfgy 2

We have also studied the time evolution of this systemat this value of. The number of photons in the system also

under conditions such thatis fixed at a value of 0.258, near OSC'”ate_S perl_od|ca||y in time, bet\_/veen _the_valuesz and
the principal resonance mentioned above. To see the tim@= 0, with periodT,~7500:/U. This period is about eleven
evolution, we prepared the system at tim¥e0 in the state times longer than the period at=0.258 (single-photon ab-
[n=1;k=0), for which the photon resonator is in state

=1 and the junction in statk=0. We then allowed the @ (b
system to evolve in time according to the evolution operator 031 o
U(t)=exp(iHt/A). In Fig. 3 we show the resulting time- 025
dependent expectation value(@{;;), and of{ Hyhoton) - Also o % 05} &
shown in the same figure are the time-dependent probabili- ¥~ | 0.4 \/\
ties for finding the junction in state=1 at timet and the 0.05 0.3

resonator in statem=1 at timet, given this initial state. 0 02

Clearly, the system is oscillating between the §tal1les. 0 200890 ; ;0/0” )8°° 1000 0 2°°Ti:1‘;°( ff% )8°° 1000
=1;k=0) and|n=0;k=1). This energy exchange is peri-

odic in time: both(7;;) and(Hpnoton) Vary periodically in FIG. 4. (a) Time-dependent value ofH,;) for two different
time, with a periodT,;~6754/U for our particular choice of initial states|n=1;k=0) (full curve) and |[n=1;k=1) (dashed
Q/U andfw/U. In the first half of this period, Cooper pairs curve. In both casesn=0.258, Q=0.7, Aw/U=0.3, andg
absorb energy from the electromagnetic field and are driver-0.15. (b). Same aga) except we plo{ Hpnoton) -

707
0.6
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FIG. 5. Same as Fig. 3, except thats fixed at 0.061, and the oo 200.?ime3?0f(l)/ U4)000 0 o
system is prepared initially in the stdte=2;k=0) at timet=0.
Other parameters are the same as in Fig. 3. FIG. 6. Time dependent probability that the junction is in the

first excited state given that initially the resonator is in the coherent
sorption, because the matrix element connecting the twestate|a=i+/3) and the junction in the ground state. Also shown
states ah=0.06 is much smaller. (dotted ling is the probabilityP(t) [Eq. (16)] calculated using the

two level approximation. Here we uset=0.258, Q=0.7, and

hw/U=0.3.
IV. DISCUSSION

The problem studied here closely resembles that of a tworameters and wave functions corresponding to our calcula-
level atom interacting quantum-mechanically with a mono-tion of Fig. 3, we obtainl;~6674/U, which is in excellent
chromatic e|ectr0magnetic field. Speciﬁca”y, WhEIB such agreement with the value found from the full numerical so-
that the field is approximately in resonance with a transitiorjution (675:/U), based on the complete basis and shown in
between the lowest and first excited state of the Josephsdrig- 3. We conclude that indeed the reduced Hamiltonian,
junction, then it is a good approximation to consider onlydefined in Eq(14), is an excellent description of the system,
four states in the basis. We now show that this approximatioit least when the two lowest levels are close to resonance.
gives results in good agreement with those obtained using The two-photon process discussed in Fig. 6 can also be

the full direct product basis. understood using the reduced Hamiltonian:
We consider a basis constructed out of the two lowest
energy states of the junction, i.e., fee=0, 1 and of the H=€,02;0(2;0|+ €5 _1|0;—1)(0;— 1| + &,|2;0)
electromagnetic field, fan=0, 1. Using a four-dimensional ' ’
basis formed from the direct product of these staftes X(0;= 1|+ £]0;—1)(2;0]. (15

=0,1k=0,1), we can express the total Hamiltonian of Eq.

(4) as a four times four-dimensional matrix. If we retain in Here we consider only the two degenerate levels with energy,
the basis only the two stat¢8;1) and|1;0) which are ap- €, ,=E;(0.061)+5%hw/2;  €,_1=E; 1(0.061)+% /2.
proximately degenerat-e, the Hamiltonian can be further retpe coupling strengtlg, is given by&,=(2,03H;,/0,— 1),
duced to the X2 matrix whereH;,; is given by Eq.(6). To second order in the cou-
pling strength g, My~ —(1/2)Jg*(w/h)q? cos¢, and

H= €0,0:1)(0; 1]+ €1,d1;0)(1;0/+ £,]0:1) hence, to the same order ig, &~—(Jg?\2/8)(k=

X (1;0]+ £F]1;0)(0;1]. (14) —1|cos¢|k=0). Using the same parameters as before, we
find that the Rabi oscillation period iST,=wh/|&)
The diagonal matrix elements take the valueg, ~5800:/U, compared to the value 7500J obtained from

=E;4(0.258)+ fiwl2; €;0=E;((0.258)+3fiw/2, where the exact numerical solution. Thus the two-level approxima-
E,(n) is thekth eigenenergy offs, atn. &, is given by tion is not quite as good as in the one-photon case, at least

: ) T i for these parameters.
£1=(0,25Hine|1,0), whereH,y is given by Eq.(6). To first As mentioned in the Introduction, our Hamiltonian model
order in the coupling strengtl, Hy~—JgV(w/f)qsing,  shows the phenomenon of “collapse and revival,” provided
and hence, to the same order @ &;~—(Jg/V8)(k  that the resonator is prepared initially in a coherent state.
=0|singlk=1). A similar two-level approximation can be This behavior arises from the interference between the dif-
carried out for coupling between the statesl) and |n ferent Rabi oscillations which exist when the initial state is a
—1,0); in this case, the coupling energy is found to besuperposition of different photon number states. In Fig. 6. we
£,\n. However, as expected, we have found that the twoshow the time dependent probability that the junction is in
level approximation becomes progressively more inaccuratthe excited statk=1 when the initial state of the system is
asn is increased. |a=i \/§;k=0). Also on the same figure we shofdotted

To illustrate this approximation, we consider the caseline) the same probability calculated using the reduced
where the energy levels, ; and e; o are degenerate. Diago- Hamiltonian of Eq.(14):**
nalizing the reduced Hamiltonian matrix, Ed.4), gives us
the two energy levelg. = ey * | £;|. These levels correspond o
to two entangled photon-Josephson states. The Rabi period P(t)= E_ Ee—\a\zz
of oscillation between them i$,=n#/|&,|. Using the pa- 2 2 0

|a|25

sl

cog2&,st).  (16)
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The agreement between the two results is very good, espe- It is of interest to compare the present quantum problem
cially for short times. For longer times or for larget the  to another system which bears some similarities, namely an
agreement between the two level approximation and the fulhrray of Josephson junctions placed in a resonant cavity.
numerical solution is less good, primarily because the numThis system involves large numbers of junctions, each
ber of photons in the cavity becomes large. coupled to a single-mode cavity such as is considered here.
Before concluding, we make some order-of-magnitude esyyhile the appropriate Hamiltonian for treating such an array
timates for some of the parameters entering our model, angbsembles that of the present problem, there are important
compare them with those in plausible junctions and cavitiesgifferences. First, the observed array behavior involves large

First, the parametey may be estimated using E®). Ifwe  ympers of photons in the microcavity, whereas the present
arbitrarily assume a cylindrical cavity of radiusand length - J4a| is suitable to the case of one or a few photons. Sec-

d '([jhe fre%uen'tt:%/ of tf_]reEIow_(?;tl moge iz apprgximate%l}rz i ondly, thelV characteristics of the array involve junctions
37 r;a;t/) ti ?.' efat‘ Eor2 mo bet7 .EpET '%9/] (;nge "8U%hich are biased onto either the resistive or the supercon-
r. Substituting into Eq(2), we obtaing~1v8/( ) ducting branch, whereas the present model considers only

_ [ 2 - : i . i .
0-2t4H{[ _{_d’ V\;_heret:ke i(jc) 1/l3t7h is the fine strupturfe the latter branch. Finally, on the basis of the above estimates,
constant. 10 estimatew/U, We use th€ same expression 1or y, junctions to which the present calculation applies are

N Ty . . ; .
g;CZeC/ rrai?r?gg;:e V\// Ee,révr‘iasreaccﬁa:t;it (Jatrjirs]:itclolgncgiﬁa(\:/\l/-e probably substantially smaller, with smaller critical currents,
obtair;ﬁw/U~l37x’/r. Thus, a value of 0.3 for this pa’ram- than those studied in Ref. ;5' Thus, a rather d!ﬁerent ap-
eter implies x/r~0.002 or less. For a capacitance of proach, such as those described In Refs. 17-21is cglled for.
10716 F, readily achievable within current technologyye To summarize, we have considered the interaction be-
tween a small Josephson junction and the photon field in a

havex~10"2 cm, orU~1x10" % erg ~8 K, and hence ) LA o
r~0.5 cm. The associated frequency would be resonant cavity, in the limit when dissipation can be ne-

~100 GHz, which is in the range used in some recenglected. We find that there is a strong interaction between the
experiment£® Of course the quantum of radiation is limited Junction and the resonant photon mode at special values of

by the superconducting gap of the superconductor used. the gate voltage, as defined by the variablét such values

We also note that our choic®=0.7 corresponds td  of n, the lowest two eigenstates of the system correspond to
~3 K for the above parameters, or equivalently, a criticalentangled statemvolving states of both the photon field and
currentl . of about 0.1 uA. The value ofJ should be of the  the Josephson junction. The Rabi period of oscillation be-
same order as a quantum of radiatiom. tween these states is inversely proportional to a certain cou-
Using the above estimates, and assuming a realistic jungling strengthg. We also found evidence for a two-photon
tion with an insulating layer of thickneds~100 nm, the absorption process at another resonant value of the variable

coupling strengttg will be g~10"°if r~d~0.5 cm.Ifwe " Finally, we found that the lowest entangled eigenstates are
maked<r, as in a disklike microcavity, we can presumably accyrately described by a simple two-level model which is a
increaseg substantially, but it will still remain much below trncation of the full model Hamiltonian, E).

the value of 0.15 used in our calculations. Such a_value of We conclude with a brief discussion of possible improve-
g=0.15, or even larger, is preferable because this woulgnents in the present calculations. First, of course, the effects
make the Rabi period of the same order or less than thgf gissipation need to be included. In principle such dissipa-
coherence time in Josephson junctions. In a lkavity,  tjon can be included by coupling the Hamiltonian degrees of
the dissipation-induced decoherence time may be as large ggedom to a bath of harmonic oscillators. If the density of
2 ns? much smaller than would be produced ¢y 10°. A states of this bath has the right frequency dependence, this
larger g would decrease the Rabi time, and technologicaboup”ng leads to Ohmic dampirf§-2*Secondly, it would be
improvements will no doubt increase the jUnCtion COherenC%f great interest to extend this work to more than one junc-
time, making these times more comparable. Another way t@jgn coupled to the same resonant cavftyf the two-level
increase the effective coupling, and hence decrease the Rakhproximation continues to be accurate in this case, the study

period, would be to use many identical junctions located in &f such a group of Josephson junctions would be greatly
region small compared to a wavelength. The effective cousimplified.

pling is then found to increase as the square root of the
number of junctions in the cavify.On the basis of all these
estimates, we conclude that the two-level approximation
tested in this paper should be excellent for the range of pa-
rameters likely to be achievable experimentally. Of course, We are grateful for useful discussions with E. Almaas.
the precise relevant parameters for a given experiment déhis work has been supported by the National Science Foun-
pend on the details of the geometry, which have only beewlation, through Grants Nos. DMR97-31511 and DMRO1-
very crudely estimated in the above discussion. 04987.
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