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Eigenstates of a small Josephson junction coupled to a resonant cavity

W. A. Al-Saidi* and D. Stroud†

Department of Physics, The Ohio State University, Columbus, Ohio 43210
~Received 20 July 2001; published 4 December 2001!

We carry out a quantum-mechanical analysis of a small Josephson junction coupled to a single-mode
resonant cavity. We find that the eigenstates of the combined junction-cavity system are strongly entangled
only when the gate voltage applied at one of the superconducting islands is tuned to certain special values. One
such value corresponds to the resonant absorption of a single photon by Cooper pairs in the junction. Another
special value corresponds to atwo-photonabsorption process. Near the single-photon resonant absorption, the
system is accurately described by a simplified model in which only the lowest two levels of the Josephson
junction are retained in the Hamiltonian matrix. We noticed that this approximation does not work very well as
the number of photons in the resonator increases. Our system shows also the phenomenon of ‘‘collapse and
revival’’ under suitable initial conditions, and our full numerical solution agrees with the two level approxi-
mation result.
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I. INTRODUCTION

Circuits involving small Josephson junctions have the
tential to behave as macroscopic two-level systems wh
can be externally controlled. Indeed, several recent exp
ments have demonstrated that such a system can be plac
a coherent superposition of two macroscopic quantum sta
The experiments have involved small superconducting loo
and also so-called Cooper pair boxes. In the former cas
was shown experimentally1,2 that the loop could exist in a
coherent superposition of two macroscopic states of diffe
flux through the loop. In the case of the Cooper pair box,
system was placed into a superposition of two states ha
different numbers of Cooper pairs on one of the superc
ducting islands.3–6 Such a coherent superposition had be
proposed by several authors.7,8

One possible application of such two-state systems is
quantum bit~qubit! for use in quantum computing.9 At suf-
ficiently low temperatures, this Josephson qubit will ha
little dissipation, and hence may be coherent for a reason
length of time, as is required of a qubit. But in order for it
be potentially useful in computation, it must be possible
prepare entangled states of two such qubits—that is, stat
the two qubits which cannot be expressed simply as prod
states of the two individual qubits.

Such entangled states have now been created and ma
lated in systems involving atoms in a high-Q cavity.10 Only
recently has there been any theoretical study of entan
states involving Josephson junction circuits. Shnirm
et al.11 have considered low-capacitance Josephson junct
coupled to an inductor-capacitor~LC! circuit in the two level
approximation. Buisson and Hekking12 have studied the
states of a single Cooper pair box coupled to the pho
mode in an electromagnetic resonant cavity. Both Refs.
and 12 considered junctions such that the charging energ
much larger than the Josephson energy. Everittet al.13 have
carried out a similar investigation of the states of a sm
superconducting quantum interference device~a SQUID—
i.e., a small superconducting loop! coupled to a resonant cav
ity. In all of these studies, entangled states of the photon
0163-1829/2001/65~1!/014512~7!/$20.00 65 0145
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the Josephson junction emerged naturally from the quant
mechanical analysis.

In the present paper, we carry out a full quantu
mechanical investigation of a model for a Josephson junc
coupled to a single-mode resonant photonic cavity. O
model Hamiltonian is, as we demonstrate here, equivalen
that studied in Ref. 12, via a canonical transformation. Ho
ever, we consider a different parameter region where
charging and Josephson energy of the junction are com
rable in magnitude. Also we go beyond the analysis of t
paper by including a large number of eigenstates of both
Josephson and the photon Hamiltonian, in calculating
energy levels of the coupled system. When the system i
resonance, we find that the entangled states are indee
expected, well described by a basis of two states of the c
bined system. We also find a variety of entangled sta
depending on the value of the control parameter~an offset
voltage!, including, at certain values, an eigenstate which i
superposition of two states in which the number of photo
differs by 2. We have also verified that our system shows
phenomenon of ‘‘collapse and revival’’ similar to that seen
quantum optics.14 Our approach is similar to that applied b
Everitt et al.13 to a SQUID ring in a resonant cavity, thoug
our Hamiltonian is not equivalent.

The remainder of this paper is organized as follows.
Sec. II, we give the model Hamiltonian, present several of
properties, and describe our method of solving it. The f
lowing section gives numerical results obtained from t
model. The last section contains a concluding discussion
estimate for some of the parameters used in our model, a
description of possible problems for future work.

II. MODEL

A. Model Hamiltonian

We consider an underdamped Josephson junction i
large-Q electromagnetic cavity which can support a sing
photon mode. The system is assumed to be described b
following model Hamiltonian:
©2001 The American Physical Society12-1
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H5Hphoton1HJ1HC . ~1!

HereHphoton is the Hamiltonian of the cavity mode, whic
we express in the formHphoton5\v(a†a11/2), wherea†

and a are the usual photon creation and annihilation ope
tors.HJ is the Josephson coupling energy, which we write
the formHJ52J cosg, whereJ is the Josephson energy o
the junction andg is the gauge-invariant phase across
junction ~defined more precisely below!. J is related toI c ,
the critical current of the junction, byJ5\I c /(2ueu). Finally,
HC is the capacitive energy of the junction, which we wr
as HC5 1

2 U(n2n̄)2, whereU54e2/C is the charging en-
ergy of the junction with capacitanceC, n is an operator
which represents the difference between the number of C
per pairs on the two superconducting islands which make
the junction, andn̄ is a tunable experimental parameter r
lated to the gate voltage which is applied at one of the
perconducting islands.

The gauge-invariant phase differenceg is the term which
couples the Josephson junction to the cavity. It may be w
ten as g5f2(2p/F0)*A•dl[f2A, where F0
5hc/(2e) is the flux quantum,f is the phase difference
across the junction in a particular gauge,A is the vector
potential, and the line integral is taken across the junct
We assume thatA arises from the electromagnetic field
the cavity normal mode. In Gaussian units, and assuming
Coulomb gauge (“•A50), this vector potential takes th
form A5Ahc2/vV(a1a†) ê, whereê is the unit polarization
vector of the cavity mode andV is the volume of the cavity.
Here we assumed that the junction dimensions are m
smaller than the wavelength of the resonant cavity mode
that the cavity electric field is approximately uniform with
the junction. Given this representation forA, the phase factor
A can be written asA5(g/A2)(a1a†), where

g5
4Apueu

A\vV
l i ~2!

andl i5 ê• lW is the effective length across the junction paral
to ê. The definition of the Hamiltonian is completed by wri
ing down the commutation relations for the various ope
tors. The only nonzero commutators are@a,a†#51, and
@n,f#52 i .

It is useful to make a change of variablesp
5 iA\v/2(a†2a);q5A\/(2v)(a†1a). Then p and q sat-
isfy the canonical commutation relation@p,q#52 i\, and
Hphoton can be expressed in a form which makes clear tha
represents the Hamiltonian of a harmonic oscillator

Hphoton5
1

2
~p21v2q2!. ~3!

In terms of these new variables, the gauge-invariant ph
difference is given byg5f2gAv/\q.

The HamiltonianH can now be expressed conveniently
the sum of three parts:

H5HJJ1Hphoton1Hint , ~4!
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HJJ5
1

2
U~n2n̄!22J cosf ~5!

and

Hint 52J~cosg2cosf!. ~6!

In the absence ofHint the Hamiltonian is the sum of two
independent parts, corresponding to the Josephson junc
and the resonant photon mode.Hint couples these two to
gether.

B. Method of solution

It is convenient to diagonalizeH in a complete basis con
sisting of the direct product of the eigenfunctions ofHJJ and
Hphoton . The eigenfunctions ofHphoton are, of course, har-
monic oscillator eigenstates; thenth eigenstate has wav
function

hn~q!5
1

AAp2nn!
exp~2y2/2!Hn~y!, ~7!

where Hn(y) is a Hermite polynomial of ordern, and y
5(v/\)1/2q. An eigenfunctionc(f) of HJJ with eigenvalue
EJ(n̄) can be written asc(f)5exp(in̄f)h(f), and satisfies
the Schro¨dinger equationHJJc(f)5EJc(f). This equation
can be written out explicitly using the representati
n52 i (d/df), which follows from the commutation relation
betweenn andf, as

d2Y~x!

dx2
1S 8EJ

U
12Q cos 2xDY~x!50, ~8!

where x5f/2, Y(x)5h(f/2), and Q54J/U. This is a
Mathieu equation with characteristic valuea58EJ /U, and
potential of strengthQ. The eigenvaluesEJ are determined
by the requirement that the wave function,c(f), should be
single valued, i.e., thatc(f)5c(f12p), or equivalently
Y(x1p)5exp(22in̄p)Y(x). We therefore defineYk(x) as a
Floquet solution of the Mathieu equation~8!, with Floquet
exponentn52k22n̄, wherek50,61,62, . . . . Wedenote
the corresponding eigenvalue ofHJJ by EJ,k(n̄). For 0,n̄
,0.5, the lowest eigenvalue corresponds tok50, followed
in order byk51,21,2,22, . . . . Theeigenvalues ofHJJ are
periodic inn̄ with period unity, and are also symmetric abo
n̄51/2.

Finally, any eigenstateC(f,q), of the HamiltonianH can
be expressed as a linear combination of product wave fu
tions consisting of eigenfunctions ofHJJ andHphoton :

C~f,q!5(
k,n

Aknck~f!hn~q!, ~9!

where ck(f)5exp(in̄f)Yk(f/2) and Akn are the expansion
coefficients. The only term inH which is not diagonal in this
product basis is the interaction termHint . The eigenfunc-
2-2
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EIGENSTATES OF A SMALL JOSEPHSON JUNCTION . . . PHYSICAL REVIEW B65 014512
tions and eigenvalues of the Hamiltonian of Eq.~4! follow
from the Schro¨dinger equationHC(f,q)5EC(f,q).

C. Canonical transformation

Before proceeding to the solutions of this Schro¨dinger
equation, we show thatH is equivalent, via a canonica
transformation, to another Hamiltonian which has sometim
been discussed in the literature.11,12A similar transformation
has been demonstrated in Ref. 11 for the case of one and
junctions. The required transformation is as follows:

5
f85f2gAv/\q,

n85n,

p85p1gA\vn,

q85q.

~10!

It is readily found that the new operators satisfy the comm
tation relations @f8,n8#5 i , @q8,p8#5 i\, with all other
commutators vanishing. The HamiltonianH can readily be
expressed in terms of the new variables. The result is

H85
1

2
U8~n82n̄8!22J cosf81

1

2
~p821v2q82!

2gA\vp8n81
U\vn̄2g2

2~U1\vg2!
, ~11!

wheren̄85Un̄/(U1\vg2) andU85U1\vg2.
If we interpret the photonic mode as an LC resonator, th

this Hamiltonian describes a junction which iscapacitively
coupled to that mode. Obviously, this transformed Ham
tonian will have the same spectrum of eigenvalues as
original one. Although it is not obvious from the form of E
~11!, we have numerically confirmed that the spectrum
symmetric with respect ton̄51/2, as is implied by the origi-
nal Hamiltonian.

III. NUMERICAL RESULTS

We have diagonalizedH @Eq. ~4!# numerically, using the
basis discussed in Sec. II B. We used a truncated basis w
is composed of the direct product of the lowest five ene
levels of the junction (k50,61,62), and the lowest ten o
the electromagnetic field (n50,1, . . . ,9). Wehave also con-
firmed numerically that increasing the number of states
this basis has little effect on the eigenvalues at least u
E56U.

Figure 1 shows the calculated eigenvalues ofH, plotted as
a function ofn̄ up to an energy ofU, for coupling constants
g50, g50.15 andg51.5. In all three cases, we have arb
trarily chosenQ50.7 and\v/U50.3, corresponding to a
case where the charging energy, Josephson energy, and
tum \v of radiation energy are all comparable in magnitud
The degeneracy of some of the energy levels in Fig. 1~a! is
broken in Fig. 1~b! ~the numerical value of the second an
third energy levels splitting atn̄50.258 is given in the cap
tion!; the degeneracy is more noticeably broken in Fig. 1~c!,
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where the coupling constantg is much larger. The degen
eracy breaking is, of course, caused by the perturbationHint .
Moreover, the magnitude of the energy splitting also tends
increase with increasingg. This behavior is a characteristi
feature of ‘‘level repulsion’’ predicted by standard degener
perturbation theory in quantum mechanics.

Next, we discuss the time evolution of the system d
scribed by Hamiltonian~4!, given its state at timet50. The
expectation value of any operatorO at time t is

^O~ t !&5Tr@r~ t !O#, ~12!

wherer(t) is the density matrix of the system at timet. r(t)
is given by r(t)5U(t)r(0)U†(t), where U(t)5exp
(2iHt/\) is the evolution operator andr(0) is determined
by the initial state of the system. The time average of
operatorO is then given by

^^O&&5 lim
T→`

1

TE0

T

Tr@r~ t !O#dt, ~13!

where the inner and outer set of triangular brackets den
respectively, a quantum mechanical and a time average.

As an illustration, we have calculated̂̂ HJJ&& and
^^Hphoton&&. For each operator, we carried out the calculat
making the arbitrary assumption that the state of the sys
at time t50 is ua5 iA2;k&. Here ua5 iA2& is a coherent
state of the electromagnetic field, i.e., an eigenstate of
annihilation operator,a such thataua&5aua&. ~We have
confirmed numerically that the time averages are unchan
if the initial state is an eigenstate of the number opera
a†a.! uk& is an eigenstate ofHJJ with quantum numberk,
and we have considered two different initial states, cor
sponding tok50 andk51. The density matrixr(0) at time
t50 is easily calculated once the initial state is specified
obvious notation it isr(0)5ua5 iA2;k&^a5 iA2; ku. We
have calculated the time evolution using the parameterQ
50.7, \v/U50.3, andg50.15.

The time-averaged energy^^HJJ&& for these parameters i
shown in Fig. 2~a! for k50 andk51. Each curve shows a
strong structure nearn̄50.26 ~andn̄50.74). At these values

FIG. 1. Lowest eigenvaluesE/U of the system described by th

Hamiltonian ~6!, calculated as a function ofn̄ for the parameters
\v/U50.3 and Q50.7, and ~a! g50, ~b! g50.15, and~c! g
51.5. All eigenvalues are shown up toE/U51. Note in particular
the breaking of the degeneracy of the second and third energy le

around n̄50.26, seen clearly in~c!. The separationDE between

these levels atn̄50.258 isDE/U50, 0.01, and 0.06 in~a!, ~b!, and
~c!, respectively.
2-3
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W. A. AL-SAIDI AND D. STROUD PHYSICAL REVIEW B 65 014512
of n̄, according to Fig. 1, the difference in energy betwe
the ground state energy, and the first excited energy
;0.3U5\v. The structure thus corresponds, we believe
a resonant absorptionof a photon by a Cooper pair in th
junction—that is, at this value ofn̄, Cooper pairs of electron
move from the ground stateuk50& of the junction to the first
excited stateuk51&. The corresponding structure fork51
~dotted line! arises from stimulated emission, in which
Cooper pair falls from the excited state to the ground stat
the junction with the emission of a photon. The exchange
energy between the junction and the resonator can als
seen in Fig. 2~b!, where we show the time-averaged ener
contained in the photon mode^^Hphoton&& for the same two
initial states.^^Hphoton&& for both states is close to the un
perturbed value (̂n&11/2)\v55\v/2, which is the energy
contained in the photon field for the coherent stateua
5 iA2&, but one increases sharply, while the other decrea
near the resonance atn̄50.26 ~and n̄50.74).

The curves in Fig. 2 also show weaker structure nean̄
'0.06 ~ and near 0.94!. This structure corresponds to a pr
cess in whichtwo photonsare absorbed by the junction Coo
per pairs. Specifically, the junction is excited from its grou
state to its second excited state at this value ofn̄, with a
consequent loss of two photons from the electromagn
field. This is discussed further below.

We have also studied the time evolution of this syst
under conditions such thatn̄ is fixed at a value of 0.258, nea
the principal resonance mentioned above. To see the
evolution, we prepared the system at timet50 in the state
un51;k50&, for which the photon resonator is in staten
51 and the junction in statek50. We then allowed the
system to evolve in time according to the evolution opera
U(t)5exp(2iHt/\). In Fig. 3 we show the resulting time
dependent expectation value of^HJJ&, and of^Hphoton&. Also
shown in the same figure are the time-dependent proba
ties for finding the junction in statek51 at time t and the
resonator in staten51 at time t, given this initial state.
Clearly, the system is oscillating between the statesun
51;k50& and un50;k51&. This energy exchange is per
odic in time: both^HJJ& and ^Hphoton& vary periodically in
time, with a periodT1'675\/U for our particular choice of
Q/U and\v/U. In the first half of this period, Cooper pair
absorb energy from the electromagnetic field and are dri

FIG. 2. Time and quantum-mechanical average of the oper

HJJ ~a!, and of Hphoton ~b!, plotted as a function ofn̄ for two
different assumptions about the initial state of the system:ua
5 iA2;k50& ~solid curves! and ua5 iA2;k51& ~dashed curves!.
The states are defined explicitly in the text. In both cases, we u
the parameter values\v/U50.3, Q50.7, andg50.15.
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into the first excited state, while in the second half, they lo
energy to the electromagnetic field and fall back into t
ground state. In the present model, this process contin
indefinitely. In a more realistic model which includes diss
pation, these oscillations would gradually decay in time.

Note also that the existence of a periodic oscillation b
tween one state and another is not dependent on the choi
the initial state. For example, if the initial state is chosen
un50;k51&, the junction would interact with the vacuum
fluctuations of the electromagnetic field, and would perio
cally visit the stateun51;k50&. We have confirmed this
behavior numerically in our model.

In Fig. 4, we shoŵ HJJ& and ^Hphoton& as a function of
time for two different initial statesun51;k50& ~full line!
and un51;k51& ~dashed line!. ~The first of these is also
shown in Fig. 3.! Evidently both states oscillate periodical
in time, but with slightly different periods.

Figure 5 shows the analogous time evolution of a syst
prepared in a fixed initial state atn̄50.061, where we expec
to see a signature of a two-photon absorption. In this ca
we prepared the system in the initial stateun52;k50&. The
system oscillates between thek50 ~ground state! and
k521 ~second excited state! of the Josephson junction
which is separated from the ground state by an energy 2\v

at this value ofn̄. The number of photons in the system al
oscillates periodically in time, between the valuesn52 and
n50, with periodT2'7500\/U. This period is about eleven
times longer than the period atn̄50.258~single-photon ab-

or

ed

FIG. 3. ~a! Time-dependent value of^HJJ& ~full curve! and of

^Hphoton& ~dashed curve! for n̄50.258. The system is prepared
time t50 in stateun51;k50&. The other parameters areQ50.7,
\v/U50.3, andg50.15.~b! Same as~a! except that we show the
time-dependent probability for finding the Josephson junction~full
curve! and the photonic resonator~dashed curve! in their first ex-
cited states.

FIG. 4. ~a! Time-dependent value of̂HJJ& for two different
initial states un51;k50& ~full curve! and un51;k51& ~dashed

curve!. In both cases,n̄50.258, Q50.7, \v/U50.3, and g
50.15. ~b!. Same as~a! except we plot̂ Hphoton&.
2-4
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EIGENSTATES OF A SMALL JOSEPHSON JUNCTION . . . PHYSICAL REVIEW B65 014512
sorption!, because the matrix element connecting the t
states atn̄50.06 is much smaller.

IV. DISCUSSION

The problem studied here closely resembles that of a t
level atom interacting quantum-mechanically with a mon
chromatic electromagnetic field. Specifically, whenn̄ is such
that the field is approximately in resonance with a transit
between the lowest and first excited state of the Joseph
junction, then it is a good approximation to consider on
four states in the basis. We now show that this approxima
gives results in good agreement with those obtained u
the full direct product basis.

We consider a basis constructed out of the two low
energy states of the junction, i.e., fork50, 1 and of the
electromagnetic field, forn50, 1. Using a four-dimensiona
basis formed from the direct product of these statesun
50,1;k50,1&, we can express the total Hamiltonian of E
~4! as a four times four-dimensional matrix. If we retain
the basis only the two statesu0;1& and u1;0& which are ap-
proximately degenerate, the Hamiltonian can be further
duced to the 232 matrix

H5e0,1u0;1&^0;1u1e1,0u1;0&^1;0u1j1u0;1&

3^1;0u1j1* u1;0&^0;1u. ~14!

The diagonal matrix elements take the valuese0,1
5EJ,1(0.258)1\v/2; e1,05EJ,0(0.258)13\v/2, where
EJ,k(n̄) is the kth eigenenergy ofHJJ at n̄. j1 is given by

j15^0,1u 1
2 Hint u1,0&, whereHint is given by Eq.~6!. To first

order in the coupling strengthg, Hint '2JgA(v/\)q sinf,
and hence, to the same order ing, j1'2(Jg/A8)^k
50usinfuk51&. A similar two-level approximation can b
carried out for coupling between the statesun;1& and un
21;0&; in this case, the coupling energy is found to
j1An. However, as expected, we have found that the tw
level approximation becomes progressively more inaccu
asn is increased.

To illustrate this approximation, we consider the ca
where the energy levelse0,1 ande1,0 are degenerate. Diago
nalizing the reduced Hamiltonian matrix, Eq.~14!, gives us
the two energy levelsE65e06uj1u. These levels correspon
to two entangled photon-Josephson states. The Rabi pe
of oscillation between them isT15p\/uj1u. Using the pa-

FIG. 5. Same as Fig. 3, except thatn̄ is fixed at 0.061, and the
system is prepared initially in the stateun52;k50& at time t50.
Other parameters are the same as in Fig. 3.
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rameters and wave functions corresponding to our calc
tion of Fig. 3, we obtainT1'667\/U, which is in excellent
agreement with the value found from the full numerical s
lution (675\/U), based on the complete basis and shown
Fig. 3. We conclude that indeed the reduced Hamiltoni
defined in Eq.~14!, is an excellent description of the system
at least when the two lowest levels are close to resonan

The two-photon process discussed in Fig. 6 can also
understood using the reduced Hamiltonian:

H5e2,0u2;0&^2;0u1e0,21u0;21&^0;21u1j2u2;0&

3^0;21u1j2* u0;21&^2;0u. ~15!

Here we consider only the two degenerate levels with ene
e2,05EJ,0(0.061)15\v/2; e0,215EJ,21(0.061)1\v/2.

The coupling strengthj2 is given byj25^2,0u 1
2 Hintu0,21&,

whereHint is given by Eq.~6!. To second order in the cou
pling strength g, Hint '2(1/2)Jg2(v/\)q2 cosf, and
hence, to the same order ing, j2'2(Jg2A2/8)^k5
21ucosfuk50&. Using the same parameters as before,
find that the Rabi oscillation period isT25p\/uj2u
'5800\/U, compared to the value 7500\/U obtained from
the exact numerical solution. Thus the two-level approxim
tion is not quite as good as in the one-photon case, at l
for these parameters.

As mentioned in the Introduction, our Hamiltonian mod
shows the phenomenon of ‘‘collapse and revival,’’ provid
that the resonator is prepared initially in a coherent stat14

This behavior arises from the interference between the
ferent Rabi oscillations which exist when the initial state is
superposition of different photon number states. In Fig. 6.
show the time dependent probability that the junction is
the excited statek51 when the initial state of the system
ua5 iA3;k50&. Also on the same figure we show~dotted
line! the same probability calculated using the reduc
Hamiltonian of Eq.~14!:14

P~ t !5
1

2
2

1

2
e2uau2(

s50

` uau2s

s!
cos~2j1Ast!. ~16!

FIG. 6. Time dependent probability that the junction is in t
first excited state given that initially the resonator is in the coher
state ua5 iA3& and the junction in the ground state. Also show
~dotted line! is the probabilityP(t) @Eq. ~16!# calculated using the

two level approximation. Here we usedn̄50.258, Q50.7, and
\v/U50.3.
2-5
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The agreement between the two results is very good, e
cially for short times. For longer times or for largera, the
agreement between the two level approximation and the
numerical solution is less good, primarily because the nu
ber of photons in the cavity becomes large.

Before concluding, we make some order-of-magnitude
timates for some of the parameters entering our model,
compare them with those in plausible junctions and cavit
First, the parameterg may be estimated using Eq.~2!. If we
arbitrarily assume a cylindrical cavity of radiusr and length
d, the frequency of the lowest mode is approximately 2c/r ,
and may be either a TE or TM mode, depending on the r
d/r . Substituting into Eq.~2!, we obtaing; l iA8/(137rd)
;0.24l i /Ard, where e2/(\c)'1/137 is the fine structure
constant. To estimate\v/U, we use the same expression f
v'2c/r and U54e2/C, where C is the junction capaci-
tance. TakingC5x, wherex is a characteristic length, w
obtain\v/U;137x/r . Thus, a value of 0.3 for this param
eter implies x/r;0.002 or less. For a capacitance
10216 F, readily achievable within current technology,11 we
havex;1023 cm, orU;1310215 erg ;8 K, and hence
r;0.5 cm. The associated frequency would bev
;100 GHz, which is in the range used in some rec
experiments.15 Of course the quantum of radiation is limite
by the superconducting gapD of the superconductor used
We also note that our choiceQ50.7 corresponds toJ
;3 K for the above parameters, or equivalently, a criti
currentI c of about 0.1 mA. The value ofJ should be of the
same order as a quantum of radiation\v.

Using the above estimates, and assuming a realistic ju
tion with an insulating layer of thicknessl;100 nm, the
coupling strengthg will be g;1025 if r;d;0.5 cm. If we
maked!r , as in a disklike microcavity, we can presumab
increaseg substantially, but it will still remain much below
the value of 0.15 used in our calculations. Such a value
g50.15, or even larger, is preferable because this wo
make the Rabi period of the same order or less than
coherence time in Josephson junctions. In a high-Q cavity,
the dissipation-induced decoherence time may be as larg
2 ns,5 much smaller than would be produced byg;1025. A
larger g would decrease the Rabi time, and technologi
improvements will no doubt increase the junction cohere
time, making these times more comparable. Another wa
increase the effective coupling, and hence decrease the
period, would be to use many identical junctions located i
region small compared to a wavelength. The effective c
pling is then found to increase as the square root of
number of junctions in the cavity.16 On the basis of all these
estimates, we conclude that the two-level approximat
tested in this paper should be excellent for the range of
rameters likely to be achievable experimentally. Of cour
the precise relevant parameters for a given experiment
pend on the details of the geometry, which have only b
very crudely estimated in the above discussion.
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It is of interest to compare the present quantum probl
to another system which bears some similarities, namely
array of Josephson junctions placed in a resonant cavit15

This system involves large numbers of junctions, ea
coupled to a single-mode cavity such as is considered h
While the appropriate Hamiltonian for treating such an ar
resembles that of the present problem, there are impor
differences. First, the observed array behavior involves la
numbers of photons in the microcavity, whereas the pres
model is suitable to the case of one or a few photons. S
ondly, the IV characteristics of the array involve junction
which are biased onto either the resistive or the superc
ducting branch, whereas the present model considers
the latter branch. Finally, on the basis of the above estima
the junctions to which the present calculation applies
probably substantially smaller, with smaller critical curren
than those studied in Ref. 15. Thus, a rather different
proach, such as those described in Refs. 17–21 is called

To summarize, we have considered the interaction
tween a small Josephson junction and the photon field
resonant cavity, in the limit when dissipation can be n
glected. We find that there is a strong interaction between
junction and the resonant photon mode at special value

the gate voltage, as defined by the variablen̄. At such values

of n̄, the lowest two eigenstates of the system correspon
entangled statesinvolving states of both the photon field an
the Josephson junction. The Rabi period of oscillation
tween these states is inversely proportional to a certain c
pling strengthg. We also found evidence for a two-photo
absorption process at another resonant value of the vari
n̄. Finally, we found that the lowest entangled eigenstates
accurately described by a simple two-level model which i
truncation of the full model Hamiltonian, Eq.~4!.

We conclude with a brief discussion of possible improv
ments in the present calculations. First, of course, the eff
of dissipation need to be included. In principle such dissi
tion can be included by coupling the Hamiltonian degrees
freedom to a bath of harmonic oscillators. If the density
states of this bath has the right frequency dependence,
coupling leads to Ohmic damping.22–24Secondly, it would be
of great interest to extend this work to more than one ju
tion coupled to the same resonant cavity.16 If the two-level
approximation continues to be accurate in this case, the s
of such a group of Josephson junctions would be gre
simplified.
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