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Proximity effects at ferromagnet-superconductor interfaces
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We study proximity effects at ferromagnet-superconductor interfaces by self-consistent numerical solution of
the Bogoliubov—de Gennes equations for the continuum, without any approximations. Our procedures allow us
to study systems with long superconducting coherence lengths. We obtain results for the pair potential, the pair
amplitude, and the local density of states. We use these results to extract the relevant proximity lengths. We
find that the superconducting correlations in the ferromagnet exhibit a damped oscillatory behavior that is
reflected in both the pair amplitude and the local density of states. The characteristic length scale of these
oscillations is approximately inversely proportional to the exchange field, and is independent of the supercon-
ducting coherence length in the range studied. We find the superconducting coherence length to be nearly
independent of the ferromagnetic polarization.
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. INTRODUCTION neity in A(r) creates a potential well for quasiparticles, caus-
ing electon-hole scattering, and subsequent bound states be-
In recent years, technological advances in materialsow the maximum value oA(r).
growth and fabrication techniques have made it possible to There are several quantities that can be studied, theoreti-
create heterostructures including high quality ferromagneteally or experimentally, in the context of characterizing prox-
superconductorR/S) interfaces. These systems have greatmity effects. The traditional descriptiérof the supercon-
intrinsic scientific importance and potential device applica-ducting proximity effect is through a characteristic proximity
tions, including quantum computers, and magnetic informatength which can be associated with the behavior ofpihie
tion storagé > This has led to renewed interest in proximity amplitude Kr), the probability amplitude to find a Cooper
effects involving magnetic and superconducting compoundspair at pointr. This quantity does not vanish identically in-
Understanding how proximity effects modify electronic side the nonsuperconductor. This is in contrast to the pair
properties neaF/S interfaces is constantly becoming more potentialA(r), which is of limited use, since it is zero inside
important as the rapid growth of nanofabrication technologythe nonsuperconducting material unless it is arbitrarily as-
continues. sumed that a small nonvanishing pairing interaction exists
The juxtaposition of a ferromagnet and a superconductothere. An additional important quantity, which is now experi-
can resuft in a spatial variation of magnetic and supercon-mentally accessible thanks to improved STM technology
ducting correlations in both materials. The leakage of supemwhich allows local spectroscopy to be performed, is the local
conducting correlations into the nonsuperconducting materiadensity of states(DOS). This quantity reflects the one-
is an example of the superconducting proximity effect. Simi-particle energy spectrum, and therefore one aspect of the
larly, the spin polarization may extend into the supercon-proximity effect.
ductor and modify its properties, creating a magnetic prox- For a nonmagnetic normal metal in contact with a super-
imity effect. conductor, the proximity effect has been much studied and
In general, if one is interested in a microscopic solution ofwell understood for many yeafsFor clean systems, if the
the F/S proximity effect problem valid at all length scales, non-self-consistent step function for the pair potential is
one must solve the appropriate equations, e.g., the Gor’kovused, solutions to the microscopic equations are relatively
or Bogoliubov—de Genn€s(BdG) equations in a self- easy to obtairf:!® Other approaches involve eliminating
consistent manner and with as few approximations as poserms that vary rapidly on the atomic scale. These widely
sible. In practice, approximations are often made in the basiased quasiclassical methods have been applied to the BdG
equations. Further, in many cases a simple form for the paifRefs. 11,12 and Gor’ko#>'* equations. One can, for ex-
potential A(r) is assumed, usually a constant in the superample, integrate out the energy variable in the Gor’kov equa-
conductor region, and zero elsewhere is used. Such crud®ns. The resultantquasiclassicalEilenbergel® equations
non-self-consistent treatments have been widely applied bdwave the advantage of being first order, and therefore easier
cause of their simplicity. However, they are valid typically to solve. They can be extended to systems of arbitrary impu-
only for length scales much longer than the superconductingty concentratiort® Results that calculate the pair potential
coherence length, which characterizes the depletion of theelf-consistently are more sparse. The Eilenberger equations
pair potential in the superconductor near the interface, or imave been solved numericaliyand the DOS was calculated,
the case where the nonsuperconductor is verytfine su-  with comparisons made between self-consistent and non-
perconducting proximity effect is linked to the phenomenonself-consistent results. For systems in which the electron
of Andreev reflectiof. This is the process where at the inter- mean free path is much shorter than the superconducting
face, an electron is reflected as a hole, transmitting a Coopeoherence length, when the Eilenberger equations can be re-
pair into the superconductor and vice versa. The inhomogeduced to the simpler Usadel equatidfig calculation of the
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DOS (Ref. 19 has been performed. Similarily, the conduc- clean limit. We are able also to allow for different band-
tance variation as a function of temperature has been calcwvidths in the two material§~ermi wave vector mismatch.

lated for superconductor-normal metal structures in the qua¥Fhe full BAG equations that are our starting point provide a
siclassical regimé& Numerical approaches which do not rigorous, microscopic method for studying inhomogeneous
require simplifying the starting equations are possible, alsuperconductors and their interfacial properties, and have the
though rare. Numerical self-consistent solutions of the fullddvantage that their solution provides the quasiparticle am-
Gor’kov equations in heterogeneous systems have beé?{itudes and ex_citation energies. The resulting wave func-
obtainecd?>?2 and from these the density of states and paiions and energies are used to compute physically relevant

potential of normal metal-superconductor bilayers and mul quantities. We extract the relevant lengths from analysis of
tilayers were calculate® F(r) and investigate the local DOS as a function of position

When the normal metal is replaced by a ferromagnet, th@" both sides of thE/S_ ir_lterface. Our _results put the entire
theoretical situation is much less satisfactory. The presend@€ory of theF/S proximity effect on firmer grounds, con-
of the exchange field in the ferromagnet makes the overafirm some of the features previously obtained approximately,
physical and mathematical picture of the proximity effect in@nd uncover new ones. _
F/S systems quite different from its nonmagnetic counter- TNiS paper is organized as follows. In Sec. II, we intro-
part. Since on the magnetic side Fermi surface quasiparticléd!ce the spin-dependent BdG equations, and the methods we
with different spins have different wave vectors, numerical€MPIloy to extract the pair potential, the pair amplitude, and
solution becomes much more difficult, as matrices in wavéhe local DOS. In Sec. Il we discuss the physical parameters
vector space become more complicated, and approximate d{€ will use and present the.results. Finally in Sec. IV, we
agonalization methods such as those employed in Ref§ummarize the results and discuss future work.
21,22 cannot be used. Within the quasiclassical approxima-
tion, however, the electrical conductance was calculated nu- Il. METHOD
merically from the BdG equations on a tight-binding

i n23 it ; ; ; 3
consistent caloulatofb2® addrossing the.proximiy effect at S/S(eM COMINng a ferromagnet.superconduckAsy in-
g P Y rface and the methods we employ for their self-consistent

- t
an F/S interface, are based on an extende_d Hubbard mOd%%lution. After self-consistency for the pair potential is
in real space. These computations are feasible only when thaechieved we can then calculate other physically relevant
coherence length is of the order of the lattice spacing. Alsoquantities' such as the pair condensation amplitude and the
the material parameters u$&dvere unrealistic. Analytic local DOS P P
work is similarly hampered. The traditioffabvay out is to The syétem we consider is semi-infinite and uniform in
conjecture a dependence of the proximity length on the e x y directions and confined to the regiorc@<d, with
change field, but the underlying assumption, while plausiblethe F’/S interface located at=d’ and the su erconductor in
has never been proved and has been recently |eSeted P

beina iustad hoc Phvsicallv. the spin imbalance Firesults the regionz>d’. We will take hered andd’ larger than the
peing jusia y Y P other relevant lengths in the problem in order to study the
in a modified Andreev process, since the electron and hole :
. . : terface between two bulk materials.
occupy opposite spin bandsThe exchange field causes the S : . . . .
' " . . ! - We begin with a brief review of the starting equations in
quasiparticles comprising a singlet Cooper pair to have dif-

ferent wave vectors, so that the pair amplitude in the ferro-Order to clarify our notation and conventions, including spin

. B and choice of parameters. For a spatially inhomogeneous
magnet becomes spatially modulatédSuch oscillations system, a complete description of the quasiparticle excitation
were first investigated long ago by Fulde and Feffehd /> b P quasip

Larkin and Ovchinnikov° The resulting oscillations if (r) spectrum along with the quasiparticle amplitudes is given by
) S . the BdG equation8.In the absence of an applied magnetic
induce oscillationgabout the normal state valum the local

density of stateDOS) as a function of distance from the field, the system is described, using the usual second quan-
) - . tized form, by an effective mean field Hamiltonian
interface. These oscillations have been studied theorefitally

(but non-self-consistentlyby using the Eilenberger equa-

tions, and good agreement was found with experimiéfihe  Heg= >, f d3r( PO H(D) Pro(D) + ()N (1) g (1)
Usadel equations revealed similar behavigklso in the dif- a0’

fusive regime, a self-consistent calculation of the tunneling

DOS was performed! It is clearly of interest to investigate + S e [AM PO B (DA (D) P P (D]
physical quantities without taking recourse to the approxima- 2

tions inherent to the quasiclassical and tight-binding ap- 1)
proaches. . . .

In this paper, we attack this problem by obtaining numeri—Wher_e A(r) is the .pa'|r potential, tOA. b(i calcula}ted self-
cal, fully self-consistent solutions for the continuum BdG consistently, greek indices denote spinsioy (the o’s are
equations for a ferromagnet in contact withswave super- the usual Pauli matricgsandh(r)= —hyo,0(d’' —2) is the
conductor. Our numerical iterative methods overcome theanagnetic exchange matrix. The step function in this term
technical difficulties associated with the different Fermireflects the assumption that the exchange field arises from
wave vectors, alluded to above, and allow us to focus on théhe electronic structure in thE side. The single-particle
case of longer superconducting coherence lengths in thdamiltonian is given by

In this section we present the basic equations we use for a
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1 vas(r)=v%(z)eke T, 7b

Ho(1) == 5=+ Uo(r) ~ u. b)) ne(H)=0p(2) (7o
where k; =(k,ky,0). Equations(4) then become one-
Here w is the chemical potential) is the spin independent dimensional BdG equations
mean field term, and we have getkg=1.

The BdG equations are derived by setting up the diago-
nalization of the effective Hamiltonian via a Bogoliubov
transformation, which in our notation is written as

2

T + —
2m (922 €1 ho’o’(z) M

U2+ 2 porA2)V1(2)

. . . = €nln(2), (8a)
P1(1)= 2 [y (1) ¥a=vh (N 0], (33
1 9 ) .
. A . . - _ﬁg—i_SL—’_ (TU'(Z)_M Un(Z)
P11 =2 [Uny (D) vt vh (0 0], (3b)
N | o . +2 Poo MDUT(2) = € (2), (8b)
where y and y' are Bogoliubov quasiparticle annihilation o’

and creation operators, respectively, andbels the relevant . o
quantum numbers. The quasiparticle amplitudgsanduv .., whereg | is the transverse kinetic energy, and we have ab-
are to be determined by requiring that E¢®). diagonalize sorbed the mean field term by a shift in the zero of the

Eq. (1). The resultin BdG equations read energies. One can assum€z) to be real without loss of
generality.
We can now solve E(8) by expanding the quasiparticle
0t Ngg)Ung Poo Ung' ()= €qlng(T), amplitudes in terms of a complete set of functi z),
(Ho+Nyo)Ung(N) + 2 pogr AN Ve (1) = €qliny(T) litudes i f | f functiahs(z)
(49) N
UR(2)= 2 Uindm(2), (93
= (Mot Noe)ong(1)+ 2 P A% (N Ung (1) = €qng (1),
’ (4b) N
A . _ ViD= 2 vFndm(2). (9b)
wherep=o, and thee, are the quasiparticle energy eigen- m=1

values measured with respect to the chemical potential, ) ) )
Equations(4) must be supplemented by the seIf—consistenC)A set of functions appropriate for our setup and geometry is

. . . _ - - that of the normalized free particle wave functions of a one-
condition for the pair potentiald(r)=g(r){y(r)¢ (r)),

which in terms of the quasiparticle amplitudes reads dimensional box

g(r) % _ \F ; _mm
A== D Poer X "Uno(N)vk (r)tank e,/2T), $m(2) ="\ gSintkm2),  km=—4" (10)

® If there was only one Fermi wave vector in the problem, the
where g(r) is the effective superconducting coupling. We upper limit in the suniN would be determined by that wave
take this quantity to be a constant in the superconductor, angector andwp, in the usual way! But since this is not the
to vanish outside of it. This is analogous to the assumptiortase some care is required. For the parabolic band structures
made forh. Our method does not require that a small non-assumed in this paper, the appropriate cutoff for this problem
zero value ofg be assumed in the nonsuperconducting sideis given by
The prime on the sum in E@5) reflects that the sum is only

over eigenstates withe,| < wp , Wherewp is the cutoff(De- N=[(kexd/m)V1+ wp/u], (12)
bye) energy. The normalization condition for the quasiparti-
cle amplitudes in our geometry is wherekgy is the largest Fermi wave vector in either tBer

F side(see belowand the brackets denote the integer value

d 5 ) ) of the expression they enclose. In a similar way, we can also
2 . Ar[[une (N[ +[vng(r)]“]=1. (®)  expand the pair potential

The Hamiltonian is translationally invariant in any plane N
parallel to the interface, therefore the component of the wave A(2) :qzl Aq9q(2)- (12
vector perpendicular to thedirectionk, is a good quantum
number. We can then write After inserting these expansions into Eq8) and making

" oy use of the orthogonality of the chosen basis, we obtain the
Uno(r) =up(z)e™ ™, (78 following equations for the the matrix elements:
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k2

2m nq 2[(EFM hao)qu'+EFS

o
+e, (U q,]unq,

+2

!
o

(133

ag
2 PoorApdpp qvnp €nlng,
p.p’

2
_[%+8L Unq+z [(Erm— hUU)qu'+EFSSqq ]vnq

+> 2 PooDpdppr qunp €nlng- (13b

’

o' p.p

In writing each term in Eq(13) we have taken care to mea-
sure the chemical potential from the same ori@nttom of
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; % [|ugm|2+|vgm|2]:1- 17

It is very difficult to solve Eqs(13) numerically as they
stand, for large sizes. The required effort can be considerably
reduced by solving founq,unq only, allowing for both posi-
tive and negative energies. The solutions tdp;] vnq are
then obtained via the transformatioru/ —>v,lq,v,ﬁq
—— uri, ,€n— — €,. This simplification follows from the
form of the exchange matrix, below E¢L). Formally, the
exchange field breaks the rotational invariance in spin
space’® however, there are no spin flip effects, so that the
four equations(13) split into two equivalent sets of equa-
tions.

the same bands the corresponding energies. Because of the For any fixede, we can now cast Eqg13) as a N
magnetic polarization and possible differences in carrier denx 2N matrix eigenvalue problem
sities between the ferromagnet and superconductor, there are

up to three different Fermi wave vectors involved in the
problem, the two corresponding to spin up and and spin

down on theF side, and one in the superconductor Onkhe
side we have introduceHr,, through kFT/2m Er1=Egm
+h0, kHIZm Er;=Egm—ho. On the S side, we have
k2 r/2m=Egg, whereEgg is the appropriate bandwidth. It
has been showt?, that Fermi wave vector mismatch B/S

tunneling junction spectroscopy leads to nontrivial differ-

H™ D

D H_\I}n

=e,V,, (18

where ¥, is the column vector corresponding t@'l

ences in the conductance spectrum. The matrix elements in

Eqg. (13) are given by
Cq’fq(d’)_cqurq(d’)y

Sqq/ - 5qq/ - F

F (149

(14b)

aq’ =~

aq’

1
Joprg=— E[Eqwbp(d)_Eq+p’fp(0)+Ep+p’fq(d)

—Epipq(0)+Epiqp(d)—Epiq pr(0)
_Ep+p’+q(d)+Ep+p’+q(0)]y

where we have definedC,(z)=sink,2)/(7m), En(2)
=cosk2)/(mm), for m#0, and Ey(z)=1. The self-
consistency condition now reads

(149

g ’ o a’
_E 2’ Kpp’qzr ; pznr’unpvnpf tanh(e,/2T),
p.p o0
(15)

where the quantum numbensncludee, and a longitudinal

indexm, the sum being limited by the restriction mentioned

below Eqg.(5), and we have

1
pp'a= E[Etﬁpbp(d)_Eq+p'fp(d')+ Epipr—q(d)

~Epipq(d)+Epsq p(d)—Epiqp(d)
_Ep+p’+q(d)+Ep+p’+q(dl)]- (16)

Finally, the normalization condition, E@6), in terms of the
expansion coefficients, is

=(uly, ... ulNvks, . by The matrix elements are
+ k2
qq’: 2m+8L 5qq/_EFTqu’_EFSSqq’ , (193)
k2
qur: om +8L 5qq’+EFLqu’+EFSSqq’ , (19b)
DW:% Apdpaq - (190

The basic method of self consistent solution of EH4S)
and (15) works as follows: we first choose an initial trial
form for theA ;. We then find, by numerical diagonalization,
all the eigenvectors and eigenvalues of the matrix in Eq.
(18), for every value ofs, consistent with the energy cutoff
[see Eq.(11)]. The formally continuous variable, is dis-
cretized for numerical purposes. The calculated eigenvectors
and eigenvalues are then summed according td Es), and
a new pair potential is found. This new pair potential is then
substituted’ into the entire set of eigenvalue equations, and a
new set of eigenvalues and eigenvectors is obtained, from

which in turn a new pair potential is constructed. The whole

process is repeated until convergence is obtained, that is,
until the maximum relative change in the pair potential be-

tween successive iterations is sufficiently sniafle below
As an initial guess for the pair potential one can use, in the
first instance, a step function of the bulk valdg in the

superconductor. The initid , are then obtained by inverting

Eq. (12). After self-consistent results fak, for one set of
parameter values have been obtained, those results can be
used as the initial guess for a case involving a nearby set of
parameter values. This process reduces the number of re-
quired iterations considerably. The final self-consistent result
is insensitive to the initial choice. By using these methods, it
is then possible, as we shall see, to obtain results even when

the coherence length is long.
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This general procedure immediately yields the self-kpsd=1700, d’'/d=750/1700 forkgséq=200. These slab
consistent results for the pair potential. As mentioned in thevidths allow us to investigate fully the bulk proximity ef-
Introduction, this quantity gives valuable information regard-fects that occur on both sides of the interface.
ing superconducting correlations on t8eside only, since it The computational work required is chiefly determined by
vanishes on thé& side whereg(r)=0. Insight into the su- the system size. As outlined in the previous section, we must
perconducting correlations on tleside, and the extraction numerically diagonalize the Hamiltonian matrix and calcu-
of the proximity effect in the ferromagnet, is most easily late the eigenenergies and eigenvectors for each Each

obtained by considerifg® the pair amplitude value of ¢, requires diagonalizing a matrix of sizeN2
X 2N, whereN is defined in Eq(11). For the large values of
F(r)=A(r)/g(r), (20 d required by our assumed values &f this matrix size ex-

which has a finite value on both sides of the interface. On&eeds 1100. The number of discretized transverse energies
can also study proximity effects through another quantityN: Must be chosen large enough so that the results are not
which is directly related to observation. This is the local@ffected by it. The required value depends on the quantity
density of state$DOS), given by?® being studied. FoA(z) andF(2), a value ofN, =500 was
found to be sufficient even for the longer coherence length.
Vo ) For the local DOS, we usel, =1000 in both cases. These
N(z,e)=2 X' [U3,(2)8(e— €n) +v5,(2) (et €n)]. diagonalizations must be performed at each step in the itera-
70 1) tion process described below Ed.9). The basic diagonal-
ization process employed a procedure whereby the symmet-
In the next section we will first consider the relevant setfic matrix, Eq.(18), is transformed into tridiagonal form, and
of dimensionless parameters in the problem, and how wéhen the eigenvalues and eigenvectors are computed by the
implement the general procedures discussed above for a wideL (Ref. 40 algorithm. The iteration process was concluded
range of the values of these parameters. We then discuss ohen the maximum relative error between successive itera-
results, and investigate the length scales relevant to the variéions of the pair potential at any point was less than*1@\

tion of the pair potential, the pair amplitude and the DOS. smaller relative error would require more computation time,
but we verified that no appreciable difference in the results

IIl. RESULTS ensued. A number of checks were performed, including re-
producing the correct wave functions and energies for the
Before discussing our numerical techniques and resultBmiting case of a single semi-infinite superconductor, ferro-
for the model outlined in the previous section, we have tomagnet or normal metal, and also verifying that in the limit
introduce a convenient set of dimensionless parameters faf an entirely superconducting sample the correct finite size
the problem. First, there are two dimensionless ratios arisingscillation4'#2 of the pair potential were obtained, with the
from the three material parametefgs, Ery, andhg. We  correcté, dependencé:
choose the ratid=hy/Ery as the dimensionless exchange
field parameter we will vary to study different degrees of
polarization for theF side.l varies betweeth=0 when one
has a normalnonmagneticmetal and =1, the half-metallic We begin by presenting in Fig. 1 our self-consistent re-
limit. In this work we choose the second ratio so thatsults for the pair potential (z) (normalized to the bulk value
Eri /Egs=1 at the value of under consideration. Next, we Ag), which we plot as a function of the dimensionless vari-
have to consider the superconducting parameters. We hawbleZ'=kr5(z—d’). Thus a positive value aZ’ denotes a
chosen to present here results Tor 0, postponing the study location inside the superconductor. In the four panels of the
of temperature effects for future work. We then need toleft column we show results fdkzg&,=50 for four evenly
specify the dimensionless Debye frequensy wp /Epsand  spaced values df ranging from zero to unity. In the corre-
the dimensionless length scaleséy, where&, is the usual  sponding panels in the right column we have results for
zero-temperature coherence length related to other quantiti&s s£,=200 at the same values of the exchange field. The
by the BCS relationkgséo=(2/7)(Ers/Ap). Throughout, pair potential is finite at the interface, however, it always
we will keep the relatively unimportant parameteffixed at ~ vanishes on thé= side since we assumeg{r)=0 in that
0.1, and present results for two different valuekp§éy, 50  region. All of the panels show that on tiSsside, the normal-
and 200. Thus, our method can handle coherence lengths twzed pair potential rises near the interface and then eventually
orders of magnitude larger than what has been achievegaches its bulk value over a length scale determined by the
through the us# of tight binding methods. coherence lengtl§y. Comparing the top panels in each col-
We also have to consider the purely computational paramamn, wherel =0, with the others in the figure, where the
eters. These are determined by the overall size of the systeraxchange field can be large, we see that for all four values of
measured in terms okrsd, and the ratiod’/d. Our two | and a given value of,, the characteristic depletion near the
choices of¢; demand different system sizes, since the lengthinterface is nearly independent of It can be concluded
scale over which the pair potential reaches its bulk valug in therefore, that the magnitude of the exchange field has little
is determined(see below by &,. Thus, we needi> ¢, in effect onA(z) and that the effective coherence length in the
order to study an interface between bulk systems. Thus, weuperconducting side of thE/S interface is only an ex-
take kpsd=1000, d’/d=600/1000, for krsép=50, and tremely weak function of the strength of the ferromagnetic

A. Pair potential
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FIG. 1. The self consistent pair potentialz), normalized to FIG. 2. The pair amplitud€&(z) [defined in Eq(20)], normal-

the bulk valueA, is plotted as a function of dimensionless distanceized to its bulk value in the superconductor, plotted as a function of
Z'=kgg(z—d"). The left column is forkg&,=50, while the right  dimensionless distancg’ from the interface. Results are for the
column is forkg&,=200. The dashed vertical line at the interface same coherence lengths and exchange fields as in Fig. 1, and with
Z'=0 serves as a guide. In both cases results for the same fodline same panel arrangements.

exchange fieldgindicated by the labelsare shown.

Turning our attention to thé& side of the interface 4’
exchange field. Similar findings were obtained in Ref. 24, in<0) in Fig. 2, we first look at the normal metal limit (
the short&, limit. The general shape of the curves is the =0) in the top panels. We see that as expettedr(z)
same for both values af,, indicating that the effect of this decays only extremely slowly in the normal regiorTat 0.
quantity is merely a rescaling of the relevant length whichin effect, there is no mechanism to disrupt the Cooper pairs
governs the interface depletion. Near the surface-vacuuriiom drifting across the interfacg, therefore the decay is
boundary inS the pair potential exhibits atomic scale  Vvery slow and occurs over a length scale that is much larger
distance of order kfg) oscillations as seen in previous than &, The most rapid change occurs near the interface,
work 2! as a result of pair-breaking by the surface. whereF(z) decays very quickly before flattening out.

In the remaining panels of Fig. 2 the effects of a finite
exchange field are seen. The situation is now very different
andF(z) decays to zero rather quickly close to the interface,

The above study oA (z) illustrates the detail, and quality with a slope that increases with largetWe will see below
of the results. However, sinc®(z) vanishes in thé= side, that the length that characterizes this fast decay varies ap-
this quantity cannot be used to study superconducting proxproximately as 1/. This 1/ behavior was suggested long
imity effects in the magnet. For this purpose we now turn ouragd® on the intuitive grounds that the exchange potentials
attention to the pair amplitudeé(z), a quantity that directly seen by up and down spin quasiparticles differ 4y, but
reflecté the superconducting correlations in bdthand S this argument has been criticiZ8cs being merely aad hoc
The main panels in Fig. 2, which repeat the arrangement aiissumption. Our results show that the intuitive assumption
Fig. 1, show eight sets of results f61(z), four for each of gives the correct result. However, this fast decay is far from
our two values okgé, for the same values dfas in Fig. 1. the whole story, as slightly away from the interface a much
We have normalize® (z) to its bulk value in the supercon- slower oscillatory behavior can be seérote in particular
ductor. In theS region the curves are the same as those fothe | =1/3 panel. This is not a finite size effect. We have
the corresponding\(z), seen above in Fig. 1. replotted this behavior in an expanded horizontal scale in

B. Pair amplitude
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-30 —20 -10 -30 -20 -10 FIG. 4. Example of a fit of the results for the normalizetlz)
(solid curve to the expression in Eq22) (dashed ling The data
7’ displayed are fokgsé,=50 andl = 1/3 (as shown in Figs. 2 and 3

FIG. 3. Detail of the behavior of the normalized pair amplitude "n_ . )
F(z) near the interface, on the magnetic side. The six panels show%he magnet wheré(Z;)=0. The other important phenom

. o . . ,
correspond to the lower six panels of Fig. 2, but the horizontal scalgno,n 'S, the damped O_SCIH,atlons 6(2) in t,he regionZ
is expanded so that the oscillatory behavior can be seen. <Z; (Fig. 3. These oscillations cannot be fit to an exponen-

tially damped form. Instead, we find that in all cases a much

Fig. 3. The wavelength of these oscillations clearly decrease%etter fit to our results is afforded by the following

with increased. Furthermore, the magnitude &%(z) also expression:

attenuates with increasirig This is in qualitative agreement

with past works employing tight-bindifior quasiclassicat SIMZ'/(Keséy)]

methods. F(Z’):a¢, (22
Before we consider this behavior in more detail let us Z'I(kesé?)

examine the&, dependence of these results fe(z), by
comparing the right and left column of Fig. 2. The spatialwhere is a constant, and the characteristic lengthwhich
extent in which the changes I(z) take place is greater in in principle must be distinguished froy, can be extracted
the right column, since we are dealing now with a lengthfrom the results. Since the previously defined lengthis
scale given by a longef,. Apart from that, the differences small, the expressiof22) is valid for most of the ferromag-
are hardly discernible, the only exception being the verynet region. To illustrate the range of its validity, in Fig. 4 we
slow decay forl =0, where the difference can be attributed give one example of a fit of the form E¢22) to the pair
to the smaller value ofl'/§,~4 compared withd'/§,~12  amplitude. We see that Eq422) is an adequate fit for the
for the case okggéo=50. Thus we conclude that the role of oscillatory region, however, within a distanée of the inter-
& is, in this range, that of setting an overall scale. Thisface, Eq.(22) breaks down. At this poinf (z) rises upwards
should hold only wherg, is much larger than the micro- monotonically to match its value at the interface. In the spa-
scopic lengths in the problem and smaller than the geometrtial region where Eq(22) is valid, the quality of the fits
cal dimensions. It should break down in any other case. Theeteriorates somewhat for larger exchange fields <£0.4
exchange field tends to disrupt superconducting correlations 1) because the spatial modulationfi(iz) slightly deviates
over a length scale that is typically much smaller tdgnso  from the simple periodic sine curve given by Eg2). This
that the oscillations and characteristic decayF¢) in the  small discrepancy can be glimpsed in the lower panels of
magnetic region are nearly independent of §geonsidered  Fig. 3. The spatial structure becomes slightly nonperiodic,
here. but overall the functional form given by Eq22) is still

We are then led to conclude that when there is an exsatisfactory.
change field present, there dveo phenomena to consider in  The oscillatory behavior of the pair amplitude as given by
describing the spatial variations B{z) in the ferromagnet. Eq. (22) is physically the resulf of the exchange field,
The first is the short distance decay at the interface, to thavhich creates electron and hole excitations in opposite spin
point at which the pair amplitude first goes to zero. This isbands. The pair amplitude involves products of these particle
the region wheré-(z) changes most rapidly. This decay can and hole quasiparticle amplitudesee Eq(5)]. The superpo-
be characterized by a length scale which we will denote bysition of these wave functions then creates oscillations on a
¢,, defined bykesé,=277, whereZ; is the first point inside length scale set by the difference between the spin up and
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FIG. 5. Exchange field dependence of the lengtlis,i=1,2, E 21
defined in the text. The circles a&g, and the squares represent o
The curve is the expression in E@3). The results plotted are for 2 1|
keséo=50 but these quantities are nearly independer,of
spin down wave vectors in the ferromagnet. One then 3t 1
expecté® a decay of the form22) with &~ (kg;—kg) ™% Z'=-100
We can then write 2|
£,~[\2M(Egy +ho) — V2M(Egy—ho) ] * o
=k 1 Vitl (23) 0 1 2 0 1 2
NN
/Ao
where in the last step we have used, as previously men-
tioned,Eg, /Egs=1. For smalll, Eq. (23) can be simplified FIG. 6. Normalized local DO$see Eq(21)], plotted versus the

to kesé,=~ 1/, showing that, is then inversely proportional dimensionless energy/Aq atl =0 for keséo= 50 (left column) and
to the exchange field. At larger values lofhere are devia- Krséo=200(right column). Each position displayed is a multiple of
tions, but these are small since in thel limit both Eq.(23) the coherence length: from top to bottom the rows correspond to
and the approximate expression coincide. These oscillatiord =£o: Z' =2, Z' =4, andZ’ = —2§,.
are also related to those responsible for oscillatory coupling
in structures involving magnetic layers and superconducting
spaceré? and the nonmonotonic behavior in the critical tem-  To further investigate thE/S proximity effects, we focus
peratureT, versus the=-layer thickness in S/F/S junctiol®. now on another experimentally accessible quantity, the local
In particular, the sign change in the pair amplitude has thé0S. Advances in STM technologjave made it possible
same physical origin as the so called phase” that existsin to perform localized spectroscopic measurements with
F/S multilayers?*~*®and the nonmonotonic variation of the atomic scale resolution. We therefore present now the local
Josephson current with exchange fi#ld. DOS as a function of energy and position, as calculated from
Having introduced the two length scalés and ¢, char-  Eq. (21) and the self-consistent spectra. All results below are
acterizing the superconducting proximity effect in the mag-normalized to the normal-state DOS in tBeside and con-
netic region, it is useful to compare their magnitude andvolved with a Gaussian of width 0.0%, to eliminate the
behavior as functions df The result of doing this is shown spectrum discretization resulting from the finite size of the
in Fig. 5. Data at additional values of not displayed in computational sample. We focus only on results for positive
previous figures, is included. For comparison, E2@) is  energies, since those for negative ones can be obtained by
shown as the solid curve. We find thd follows very  symmetry. We plot the results in terms of the normalized
closely the expected theoretical expression, and that the othenergy variable:/A,. The locations chosen are given by the
length &,(1)~&5(1). This is because, as mentioned above,dimensionless positiod’ defined earlier.
the expressich kpsé;=1/1 nearly coincides numerically We consider first the limit where the exchange fieli$
with the more complicated result f@p as given above. Thus zero. In Fig. 6, we show the DOS for four different positions
it turns out that the fast decay and the spatial period of thet each of the two value&rsé,=50 (left column and
oscillations are characterized by lengths that are virtualljkgséo=200 (right column. The three top rows in Fig. 6
identical. show the DOS on theS side. For the shorter coherence

C. Local density of states
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051 105} . FIG. 8. Local DOS at three positions inside the superconductor,

for 1=1/3 andkgséo=50. The curves shown correspond(foom

top to bottom at small energyZ’ =50, Z' =100, andZ’=200.
These are the same values as in the top three panels of the left
column of Fig. 6.

Normalized DOS

timately vanish asl andd’ tend to infinity. We have chosen
to display only one position in thE side forl =0 since the
overall behavior is nearly identical for all points in the nor-
mal metal. This is in agreement with our observation in con-
nection with thd =0 panels in Fig. 2, that the pair amplitude
has a very slow rate of change.

8/AO We now turn to the case of a finite exchange field. Figure

FIG. 7. Normalized local DOS fdr= 1/3 at four positions in the 7 shows the DOS fokeso=50 (left column), and Kesto

o . =200 (right column at | =1/3 for four positions very near
ferromagnetic side, near the interface. The left column correspondt?]e interface. within the madanetic material. This is done to
to kesép=50 and the right one tgg&,=200. ’ 9 )

illustrate how changes in the local DOS with distance are
length results for the location&’ =50, 100, and 200 are correlated with the rapid change i(z) near the interface.
shown. These are multiples of the coherence length, and tHeonsider first the distancg’= —5 (top panelg This corre-
same multiples are shown in the right column. Several prosponds to the location wheifé(z) has its more prominent
nounced peaks are visible inside the gap, due to a finite nunfninimum (see Fig. 3 There is a weak minimum for the
ber of bound states existing fefA,<1. These states were DOS ate/A,=0, which is more prominent at the small&y,
predicted long ago in a non-self-consistent treatment by dénd with increasing energy the DOS rises, until aboid,
Gennes and Saint-Jam&sThese peaks diminish at greater ~1 at which point a peak occurs. For energies larger than
distances inside the superconductor. On the correspondirfge DOS quickly settles down to its normal state value, unity
panels in the right column, we see that the number of dén our normalization. AZ' = —4, asF(z) begins to rise, we
Gennes—Saint-James peaks have been reduced. This is Is€e, focusing on the range of energies less tharthat the
cause the number of bound states depends upon the cohepnimum of the DOS has begun to shift away from zero. At
ence lengtht,, as well as on the superconductor and normalZ’=—3, in the next row of panels, the DOS has now a
metal widths'! In general, the number of such peaks de-marked minimum at finite energies within the gap.céh,
creases ag,/d’ increases. The patterns seemhi,>1 are  ~0.6. The next positiorflast row in Fig. 7 shows a clear
discussed below. minimum of the DOS at energies just below the gap. By
On the normal metal side, we see on the bottom panels gfomparing the top and bottom rows of Fig. 7, we see that
Fig. 6, that there is no evidence of a gap, but a pattern offor e/Ap=<1) what were once dips and peaks in the DOS
jagged peaks appears in the DOS fo\,<1. At larger  have now reversed roles. Figure 5 shows that the length char-
energies, interference patterns are seen, similar to those écterizing the fast rise d¥(z) is kgsé;~3.5 atl=1/3. The
the S side. At longer coherence lengths this pattern is mord>OS starts the reversal process, as the interface is ap-
coarse. This coarseneéshich is also seen in subsequent proached, at around’~ — 3.5, as seen in Fig. 7. The simi-
figures arises from the finite value df, . If this quantity is  larity between right and left columns in this figure reflects
increased, the pattern becomes smoother and more reguléiat the length scalé;, defining the inversion point, is the
as in the left column. The remaining regular oscillations ul-same in both cases. The behavior of the DOS at larger values
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of |Z'| is qualitatively similar, but as the oscillations die
down it becomes much less discernible.

We show alsdsee Fig. 8 the local DOS for three differ-
ent positions in the superconductor side for the sdme
=1/3 and the shortef,. The de Gennes—Saint-James peaks
are now gone, with just a hint of small structure fafA
<1 remaining atZ'=50. This structure starts to become
washed out at a distance of aboug,2from the interface.
Finally, atZ' =200, the DOS is of the familiar BCS form,
with a well defined gap and pronounced peak/aty=1. In
what follows, we focus only on the ferromagnetic region,
since the overall behavior of the DOS %t larger values of
| is quite similar to that seen in Fig. 8.

In Fig. 9, we show the DOS fdr=2/3. As in Fig. 7, we
consider four spatial positions for each valuetgf however,
the range is now closer to the interface, since the larger ex
change field reduces the spatial extent of the superconduci
ing correlations and the lengt§,. Beginning atZ’'=—4,

Fig. 9 (top) illustrates the formation of a small dip at low
energies, and a continual rise upsth o~ 1, after which we
recover the bulk DOS limit for a ferromagnet with this po-
larization. With our normalization, this value is smaller than
unity. This is due to the decrease in the number of spin down
states with increasing exchange field. In Figs8cond row,

the minimum in the DOS has moved, while the peak still

lized DOS

Norma
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FIG. 9. Normalized local DOS for=2/3. The panel arrange-

ment is the same as in Fig. 7.

2 0

8/A0

8/A0

FIG. 10. Normalized local DOS for a fully polarized ferromag-
net (=1.0). Again, results fokgsé,=50 are in the left column,
and those folkggé,=200 in the right column, and positions with
respect to the interface are indicated.

remains ate/Ag~1. At Z'=—2, (third row) the DOS is
already rising upwards at low energies. The previous dip in
the DOS has shifted to a higher energy, while a peak forms
around zero energy. We again find consistency with &¢he
values given in Fig. 5, where fdr=2/3, kpsé1~2.2. Thus,
as in the previous case, a reversal of the DOS behavior oc-
curs in the¢; range. The bottom panel of Fig. 9 shows the
DOS atZ’'=—1. We see that the zero energy maximum has
increased slightly from the previous row and the minimum
has shifted to energy,. Again, this qualitative behavior is
independent o, reflecting the independence &f from &,.
Thus, we see here the same behavior we foundl-fat/3 the
only change being the different value &f.

We finally consider in Fig. 10 the DOS for a fully polar-
ized (half metallig ferromagnet (=1.0). The location&Z’
are the same as in Fig. 9. The structure of the DOS at ener-
gies below the gap for all positions has become smoother.
Because of the large exchange field, the reversal of the oc-
cupation of states occurs over a length séalevhich is now
small(see Fig. 3 Based on the previous fit in Fig. 5, we find
this point to bez’ ~1.7. Again, we find consistency between
the pair amplitude and the DOS. Note that as one moves
away from the interface, the DOS tends to 1/2 at higher

014509-10



PROXIMITY EFFECTS AT FERROMAGNETIE. .. PHYSICAL REVIEW B 65 014509

netic proximity effects in a bulk system containing BhS
interface, even when the superconducting coherence length

8'; Z=0 g‘; I Z= is orders of magnitude larger than the interparticle distance.
) WW - \ In this work, we have used these techniques to investigate

the proximity effects for a cleaRk/S system. We have ex-

021 021 tracted the relevant characteristic lengths through a careful
analysis of the pair potential and the pair amplitude, and we
ol S s | have shown how, near the interface, the behavior of the pair

amplitude correlates with that of the local DOS. Our work

O‘Z I MANW\N\N\M_ 0‘(2) I MMI\/\MAI\M\M\- extends well beyond previous numerical computations in the
I’ Y \J

v Y tight-binding case, valid only for very short values&f and

Normalized N;—N,

-02} 1-02t ; T : ; .
beyond theoretical work limited by quasiclassical approxi-
mations or restricted to regimes where the mean free path or

ol 2o | o4l ss | &o are very short. _
0‘2 I | 0‘2 I | . On theSside we have fqund, near the !nterfaqe, a depl_e—
'0 N ‘0 A e nathen A tion of both the pair potential and the pair amplitude. This
r~ 7 Y AN depletion extends over a length scale determined essentially
02r 17927 ] by &5, and hence nearly independent of the exchange field
0 1 2 0 1 2 For the bulk heterostructures we considered, the effect of
varying &, in the range studiedkgséo=50 to kpsép=200)
3/A0 was an effective rescaling of the characteristic length that

determines this depletion. In tferegion, for finite values of
FIG. 11. Leakage of magnetism into the superconductor: thehe exchange field, the pair amplitude exhibited a sharp
quantity plotted difference between spin up and spin down values ofmonotonic decline near the interface, followed by damped
the local DOS,6N=N;—N,, normalized as in previous figures. oscillations. The fast decay was found to take place over a
This quantity is displayed at several positions just inside the supeltength scale&, approximately inversely proportional tq
conductor. All results shown in this figure are flofs§o=50. The  jndependent of th&,, according the the expressfbh,:sgl
values ofZ" are indicated in the panels. ~1/I. The oscillatory part of the spatial variation of the pair
amplitude could be fit to a simple sine function with an am-
energies. This is due to the total absence of the down band ilitude decaying as the inverse of distance from the interface.
this half metallic limit. These remarks apply to both valueswe found that the spatial period of the oscillations is deter-
of &o. mined by the length differenceé,= (kg; —kg,) "t (the in-
The above pertains to the proximity effect in tReside.  verse of the difference between spin up and spin down Fermi
We now investigate further whether the presence of the ferwave vectors provided thatl is not too large. This is in
romagnet has any effect on the superconducting correlationgeasonable  agreement  with  previous  theoretical
That any effect is small is shown already by Fig. 2. Theexpectationg® We have presented extensive results for the
influence of the magnet o8 will be reflected in a nonzero |ocal DOS, as a function of position and energy, as obtained
value of the difference in the density of states for spin-up andjia the self-consistent quasiparticle amplitudes and energies.
spin-down electronsgN=N;—N,, whereN; and N, are  The periodic sign change in the pair amplitude is found to be
the spin up and spin down terms in E@1), respectively. correlated with oscillations in the local DOS relative to its
One might view this as a self-consistent determination of amormal state values. Finally, we verified also from the local
effective parametef(z) which may extend into the super- DOS that the effect of the exchange field on superconducting
conductor. We focus here only on the case of a half metalli¢orrelations inS is minimal (although nonzerpo the differ-
ferromagnet(=1), and for illustration také&gsé,="50. Fig-  ence in the local DOS of spin up and spin down quasiparti-
ure 11 shows that there is in fact a small proximity effect intocles vanishes except very close to the interface, at least for
the superconductor, since very close to the interface the ef=1/3.
fective polarization is nonzero. This effect is, however, short The use of the Stoner model with parabolic bands in char-
ranged, and we see that it nearly dies out befdree5. At acterizing the ferromagnet might be questioned since actual
very small exchange field®f order of the superconducting ferromagnets have complicated band structures. However,
gap, we have found also a longer range proximity effect inprevious calculatior’$ relying on the same model have
the superconductor, similar to that found for dirty systéfns. found good agreement with experiméhtMoreover, other
results based on general arguméhes a tight-binding band
V. CONCLUSIONS structuré* reveal behavior in the pair amplitude similar to
ours. We conclude that this simple model should account for
We have introduced in this paper numerical techniques tohe underlying physics of these systems. We have also as-
accurately and self-consistently solve the continuum BdGumed a clean ballistiE/S heterostructure with a transpar-
equations. We have shown how one can use these methodsant interface. Such heterostructffe¥ tend to have a very
perform a detailed study d¥/S interfacial properties. Our small lateral area. However, epitaxial heterostructures with
procedures allow us to consider superconducting and madrighly transparant interfaces and relatively large sample size

014509-11



KLAUS HALTERMAN AND ORIOL T. VALLS PHYSICAL REVIEW B 65 014509

can bé' created. Thus our calculations are not unrealistichoundary conditions, self-consistent solutions of the tunnel-

Furthermore, as explained in the next paragraph, our numering spectroscopy problem in the lordg regime will be ob-

cal procedure will allow these questions to be addressed itainable. Our numerical methods are particularly suitable to

future work. the study of mesoscopic structures involvings multilayers
Clearly, the powerful methods and techniques for the selfof differing thickness, where size effects may come into play.

consistent solution of the BAG equations presented here opgme study of tunneling phenomena in non-equilibrium situa-

new vistas and possibilities for use in the study of manyions is also feasible by extension of our method to the time-
other aspects of th&/S interface and similar problems. A dependent BdG equations.

thorough investigation of the physical quantities and charac-
teristic lengths studied in this paper, incorporating other pa-
rameter regimes and the effects of finite temperature is
needed, and it can be straightforwardly carried out. Interface
scattering, and superconductors with nodes in the pair poten- We thank P. Kraus, A.M. Goldman, and L. I. Glazman for

tial (unconventional pair potentiglscan be also easily con- many conversations concerning this problem. This work was
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