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Proximity effects at ferromagnet-superconductor interfaces
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We study proximity effects at ferromagnet-superconductor interfaces by self-consistent numerical solution of
the Bogoliubov–de Gennes equations for the continuum, without any approximations. Our procedures allow us
to study systems with long superconducting coherence lengths. We obtain results for the pair potential, the pair
amplitude, and the local density of states. We use these results to extract the relevant proximity lengths. We
find that the superconducting correlations in the ferromagnet exhibit a damped oscillatory behavior that is
reflected in both the pair amplitude and the local density of states. The characteristic length scale of these
oscillations is approximately inversely proportional to the exchange field, and is independent of the supercon-
ducting coherence length in the range studied. We find the superconducting coherence length to be nearly
independent of the ferromagnetic polarization.
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I. INTRODUCTION

In recent years, technological advances in mater
growth and fabrication techniques have made it possible
create heterostructures including high quality ferromagn
superconductor (F/S) interfaces. These systems have gr
intrinsic scientific importance and potential device applic
tions, including quantum computers, and magnetic inform
tion storage.1–3 This has led to renewed interest in proximi
effects involving magnetic and superconducting compoun
Understanding how proximity effects modify electron
properties nearF/S interfaces is constantly becoming mo
important as the rapid growth of nanofabrication technolo
continues.

The juxtaposition of a ferromagnet and a supercondu
can result4 in a spatial variation of magnetic and superco
ducting correlations in both materials. The leakage of sup
conducting correlations into the nonsuperconducting mate
is an example of the superconducting proximity effect. Sim
larly, the spin polarization may extend into the superco
ductor and modify its properties, creating a magnetic pr
imity effect.

In general, if one is interested in a microscopic solution
the F/S proximity effect problem valid at all length scale
one must solve the appropriate equations, e.g., the Gor’k5

or Bogoliubov–de Gennes6 ~BdG! equations in a self-
consistent manner and with as few approximations as p
sible. In practice, approximations are often made in the b
equations. Further, in many cases a simple form for the
potentialD(r ) is assumed, usually a constant in the sup
conductor region, and zero elsewhere is used. Such c
non-self-consistent treatments have been widely applied
cause of their simplicity. However, they are valid typica
only for length scales much longer than the superconduc
coherence length, which characterizes the depletion of
pair potential in the superconductor near the interface, o
the case where the nonsuperconductor is very thin.7 The su-
perconducting proximity effect is linked to the phenomen
of Andreev reflection.8 This is the process where at the inte
face, an electron is reflected as a hole, transmitting a Co
pair into the superconductor and vice versa. The inhomo
0163-1829/2001/65~1!/014509~12!/$20.00 65 0145
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neity in D(r ) creates a potential well for quasiparticles, cau
ing electon-hole scattering, and subsequent bound state
low the maximum value ofD(r ).

There are several quantities that can be studied, theo
cally or experimentally, in the context of characterizing pro
imity effects. The traditional description4 of the supercon-
ducting proximity effect is through a characteristic proximi
length which can be associated with the behavior of thepair
amplitude F(r ), the probability amplitude to find a Coope
pair at pointr . This quantity does not vanish identically in
side the nonsuperconductor. This is in contrast to the p
potentialD(r ), which is of limited use, since it is zero insid
the nonsuperconducting material unless it is arbitrarily
sumed that a small nonvanishing pairing interaction ex
there. An additional important quantity, which is now expe
mentally accessible thanks to improved STM technolog9

which allows local spectroscopy to be performed, is the lo
density of states~DOS!. This quantity reflects the one
particle energy spectrum, and therefore one aspect of
proximity effect.

For a nonmagnetic normal metal in contact with a sup
conductor, the proximity effect has been much studied a
well understood for many years.4 For clean systems, if the
non-self-consistent step function for the pair potential
used, solutions to the microscopic equations are relativ
easy to obtain.7,10 Other approaches involve eliminatin
terms that vary rapidly on the atomic scale. These wid
used quasiclassical methods have been applied to the
~Refs. 11,12! and Gor’kov13,14 equations. One can, for ex
ample, integrate out the energy variable in the Gor’kov eq
tions. The resultant~quasiclassical! Eilenberger15 equations
have the advantage of being first order, and therefore ea
to solve. They can be extended to systems of arbitrary im
rity concentration.16 Results that calculate the pair potenti
self-consistently are more sparse. The Eilenberger equat
have been solved numerically,17 and the DOS was calculated
with comparisons made between self-consistent and n
self-consistent results. For systems in which the elect
mean free path is much shorter than the superconduc
coherence length, when the Eilenberger equations can b
duced to the simpler Usadel equations,18 a calculation of the
©2001 The American Physical Society09-1
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DOS ~Ref. 19! has been performed. Similarily, the condu
tance variation as a function of temperature has been ca
lated for superconductor-normal metal structures in the q
siclassical regime.20 Numerical approaches which do n
require simplifying the starting equations are possible,
though rare. Numerical self-consistent solutions of the
Gor’kov equations in heterogeneous systems have b
obtained,21,22 and from these the density of states and p
potential of normal metal-superconductor bilayers and m
tilayers were calculated.22

When the normal metal is replaced by a ferromagnet,
theoretical situation is much less satisfactory. The prese
of the exchange field in the ferromagnet makes the ove
physical and mathematical picture of the proximity effect
F/S systems quite different from its nonmagnetic count
part. Since on the magnetic side Fermi surface quasipart
with different spins have different wave vectors, numeri
solution becomes much more difficult, as matrices in wa
vector space become more complicated, and approximat
agonalization methods such as those employed in R
21,22 cannot be used. Within the quasiclassical approxi
tion, however, the electrical conductance was calculated
merically from the BdG equations on a tight-bindin
lattice.23 The only existing microscopic numerical sel
consistent calculations24,25 addressing the proximity effect a
an F/S interface, are based on an extended Hubbard mo
in real space. These computations are feasible only when
coherence length is of the order of the lattice spacing. A
the material parameters used24 were unrealistic. Analytic
work is similarly hampered. The traditional4 way out is to
conjecture a dependence of the proximity length on the
change field, but the underlying assumption, while plausib
has never been proved and has been recently labeled26 as
being justad hoc. Physically, the spin imbalance inF results
in a modified Andreev process, since the electron and h
occupy opposite spin bands.27 The exchange field causes th
quasiparticles comprising a singlet Cooper pair to have
ferent wave vectors, so that the pair amplitude in the fer
magnet becomes spatially modulated.28 Such oscillations
were first investigated long ago by Fulde and Ferrell29 and
Larkin and Ovchinnikov.30 The resulting oscillations inF(r )
induce oscillations~about the normal state value! in the local
density of states~DOS! as a function of distance from th
interface. These oscillations have been studied theoretica31

~but non-self-consistently! by using the Eilenberger equa
tions, and good agreement was found with experiment.32 The
Usadel equations revealed similar behavior.33 Also in the dif-
fusive regime, a self-consistent calculation of the tunnel
DOS was performed.34 It is clearly of interest to investigate
physical quantities without taking recourse to the approxim
tions inherent to the quasiclassical and tight-binding
proaches.

In this paper, we attack this problem by obtaining nume
cal, fully self-consistent solutions for the continuum Bd
equations for a ferromagnet in contact with ans-wave super-
conductor. Our numerical iterative methods overcome
technical difficulties associated with the different Fer
wave vectors, alluded to above, and allow us to focus on
case of longer superconducting coherence lengths in
01450
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clean limit. We are able also to allow for different ban
widths in the two materials~Fermi wave vector mismatch35!.
The full BdG equations that are our starting point provide
rigorous, microscopic method for studying inhomogeneo
superconductors and their interfacial properties, and have
advantage that their solution provides the quasiparticle
plitudes and excitation energies. The resulting wave fu
tions and energies are used to compute physically rele
quantities. We extract the relevant lengths from analysis
F(r ) and investigate the local DOS as a function of positi
on both sides of theF/S interface. Our results put the entir
theory of theF/S proximity effect on firmer grounds, con
firm some of the features previously obtained approximat
and uncover new ones.

This paper is organized as follows. In Sec. II, we intr
duce the spin-dependent BdG equations, and the method
employ to extract the pair potential, the pair amplitude, a
the local DOS. In Sec. III we discuss the physical parame
we will use and present the results. Finally in Sec. IV, w
summarize the results and discuss future work.

II. METHOD

In this section we present the basic equations we use f
system containing a ferromagnet-superconductor (F/S) in-
terface and the methods we employ for their self-consis
solution. After self-consistency for the pair potential
achieved, we can then calculate other physically relev
quantities such as the pair condensation amplitude and
local DOS.

The system we consider is semi-infinite and uniform
the x,y directions and confined to the region 0,z,d, with
theF/S interface located atz5d8 and the superconductor i
the regionz.d8. We will take hered andd8 larger than the
other relevant lengths in the problem in order to study
interface between two bulk materials.

We begin with a brief review of the starting equations
order to clarify our notation and conventions, including sp
and choice of parameters. For a spatially inhomogene
system, a complete description of the quasiparticle excita
spectrum along with the quasiparticle amplitudes is given
the BdG equations.6 In the absence of an applied magne
field, the system is described, using the usual second q
tized form, by an effective mean field Hamiltonian

Heff5 (
s,s8

E d3r H ĉs
†~r !H0~r !ĉs~r !1ĉs

†~r !hss8~r !ĉs8~r !

1
1

2
hss8@D~r !ĉs

†~r !ĉs8
†

~r !1D* ~r !ĉs~r !ĉs8~r !#J ,

~1!

where D(r ) is the pair potential, to be calculated se
consistently, greek indices denote spin,ĥ5 i ŝy ~the ŝ ’s are
the usual Pauli matrices!, andĥ(r )52h0ŝzQ(d82z) is the
magnetic exchange matrix. The step function in this te
reflects the assumption that the exchange field arises f
the electronic structure in theF side. The single-particle
Hamiltonian is given by
9-2
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H0~r !52
1

2m
¹21U0~r !2m. ~2!

Herem is the chemical potential,U0 is the spin independen
mean field term, and we have set\5kB51.

The BdG equations are derived by setting up the dia
nalization of the effective Hamiltonian via a Bogoliubo
transformation, which in our notation is written as

ĉ↑~r !5(
n

@un↑~r !ĝn2vn↑* ~r !ĝn
†#, ~3a!

ĉ↓~r !5(
n

@un↓~r !ĝn1vn↓* ~r !ĝn
†#, ~3b!

where ĝ and ĝ† are Bogoliubov quasiparticle annihilatio
and creation operators, respectively, andn labels the relevan
quantum numbers. The quasiparticle amplitudesuna andvna
are to be determined by requiring that Eqs.~3! diagonalize
Eq. ~1!. The resulting6 BdG equations read

~H01hss!uns~r !1(
s8

rss8D~r !vns8~r !5enuns~r !,

~4a!

2~H01hss!vns~r !1(
s8

rss8D* ~r !uns8~r !5envns~r !,

~4b!

where r̂[ŝx and theen are the quasiparticle energy eige
values measured with respect to the chemical poten
Equations~4! must be supplemented by the self-consisten
condition for the pair potentialD(r )5g(r )^ĉ↑(r )ĉ↓(r )&,
which in terms of the quasiparticle amplitudes reads

D~r !5
g~r !

2 (
s,s8

rss8(
n

8uns~r !vns8
* ~r !tanh~en/2T!,

~5!

where g(r ) is the effective superconducting coupling. W
take this quantity to be a constant in the superconductor,
to vanish outside of it. This is analogous to the assump
made forĥ. Our method does not require that a small no
zero value ofg be assumed in the nonsuperconducting si
The prime on the sum in Eq.~5! reflects that the sum is onl
over eigenstates withuenu<vD , wherevD is the cutoff~De-
bye! energy. The normalization condition for the quasipa
cle amplitudes in our geometry is

(
s

E
0

d

d3r @ uuns~r !u21uvns~r !u2#51. ~6!

The Hamiltonian is translationally invariant in any plan
parallel to the interface, therefore the component of the w
vector perpendicular to thez directionk' is a good quantum
number. We can then write

uns~r !5un
s~z!eik'•r, ~7a!
01450
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vns~r !5vn
s~z!eik'•r, ~7b!

where k'5(kx ,ky,0). Equations ~4! then become one
dimensional BdG equations

F2
1

2m

]2

]z2
1«'1hss~z!2mGun

s~z!1(
s8

rss8D~z!vn
s~z!

5enun
s~z!, ~8a!

2F2
1

2m

]2

]z2
1«'1hss~z!2mGvn

s~z!

1(
s8

rss8D~z!un
s~z!5envn

s~z!, ~8b!

where«' is the transverse kinetic energy, and we have
sorbed the mean field term by a shift in the zero of t
energies. One can assumeD(z) to be real without loss of
generality.

We can now solve Eq.~8! by expanding the quasiparticl
amplitudes in terms of a complete set of functionsfm(z),

un
s~z!5 (

m51

N

unm
s fm~z!, ~9a!

vn
s~z!5 (

m51

N

vnm
s fm~z!. ~9b!

A set of functions appropriate for our setup and geometry
that of the normalized free particle wave functions of a on
dimensional box

fm~z!5A2

d
sin~kmz!, km5

mp

d
. ~10!

If there was only one Fermi wave vector in the problem, t
upper limit in the sumN would be determined by that wav
vector andvD in the usual way.21 But since this is not the
case some care is required. For the parabolic band struc
assumed in this paper, the appropriate cutoff for this prob
is given by

N5@~kFXd/p!A11vD /m#, ~11!

wherekFX is the largest Fermi wave vector in either theSor
F side~see below! and the brackets denote the integer va
of the expression they enclose. In a similar way, we can a
expand the pair potential

D~z!5 (
q51

N

Dqfq~z!. ~12!

After inserting these expansions into Eqs.~8! and making
use of the orthogonality of the chosen basis, we obtain
following equations for the the matrix elements:
9-3
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F kq
2

2m
1«'Gunq

s 2(
q8

@~EFM2hss!Fqq81EFSSqq8#unq8
s

1(
s8

(
p,p8

rss8DpJpp8qvnp8
s

5enunq
s , ~13a!

2F kq
2

2m
1«'Gvnq

s 1(
q8

@~EFM2hss!Fqq81EFSSqq8#vnq8
s

1(
s8

(
p,p8

rss8DpJpp8qunp8
s

5envnq
s . ~13b!

In writing each term in Eq.~13! we have taken care to mea
sure the chemical potential from the same origin~bottom of
the same band! as the corresponding energies. Because of
magnetic polarization and possible differences in carrier d
sities between the ferromagnet and superconductor, ther
up to three different Fermi wave vectors involved in t
problem, the two corresponding to spin up and and s
down on theF side, and one in the superconductor. On theF
side we have introducedEFM throughkF↑

2 /2m[EF↑[EFM

1h0 , kF↓
2 /2m[EF↓[EFM2h0. On the S side, we have

kFS
2 /2m5EFS , whereEFS is the appropriate bandwidth. I

has been shown,35 that Fermi wave vector mismatch inF/S
tunneling junction spectroscopy leads to nontrivial diffe
ences in the conductance spectrum. The matrix elemen
Eq. ~13! are given by

Fqq85Cq82q~d8!2Cq81q~d8!, ~14a!

Sqq85dqq82Fqq8 , ~14b!

Jpp8q52
1

A2d
@Eq1p82p~d!2Eq1p82p~0!1Ep1p82q~d!

2Ep1p82q~0!1Ep1q2p8~d!2Ep1q2p8~0!

2Ep1p81q~d!1Ep1p81q~0!#, ~14c!

where we have definedCm(z)[sin(kmz)/(pm), Em(z)
[cos(kmz)/(pm), for mÞ0, and E0(z)[1. The self-
consistency condition now reads

Dq5
g

2 (
p,p8

Kpp8q (
s,s8

(
n

8 rss8unp
s vnp8

s8 tanh~en/2T!,

~15!

where the quantum numbersn include«' and a longitudinal
index m, the sum being limited by the restriction mention
below Eq.~5!, and we have

Kpp8q52
1

A2d
@Eq1p82p~d!2Eq1p82p~d8!1Ep1p82q~d!

2Ep1p82q~d8!1Ep1q2p8~d!2Ep1q2p8~d8!

2Ep1p81q~d!1Ep1p81q~d8!#. ~16!

Finally, the normalization condition, Eq.~6!, in terms of the
expansion coefficients, is
01450
e
n-
are

in

in

(
s

(
m

@ uunm
s u21uvnm

s u2#51. ~17!

It is very difficult to solve Eqs.~13! numerically as they
stand, for large sizes. The required effort can be consider
reduced by solving forunq

↑ ,vnq
↓ only, allowing for both posi-

tive and negative energies. The solutions forunq
↓ ,vnq

↑ are
then obtained via the transformationunq

↑ →vnq
↑ ,vnq

↓

→2unq
↓ ,en→2en . This simplification follows from the

form of the exchange matrix, below Eq.~1!. Formally, the
exchange field breaks the rotational invariance in s
space,36 however, there are no spin flip effects, so that t
four equations~13! split into two equivalent sets of equa
tions.

For any fixed«' we can now cast Eqs.~13! as a 2N
32N matrix eigenvalue problem

FH1 D

D H2GCn5enCn , ~18!

where Cn is the column vector corresponding toCn
T

5(un1
↑ , . . . ,unN

↑ ,vn1
↓ , . . . ,vnN

↓ ). The matrix elements are

Hqq8
1

5F kq
2

2m
1«'Gdqq82EF↑Fqq82EFSSqq8 , ~19a!

Hqq8
2

52F kq
2

2m
1«'Gdqq81EF↓Fqq81EFSSqq8 , ~19b!

Dqq85(
p

DpJpqq8 . ~19c!

The basic method of self consistent solution of Eqs.~18!
and ~15! works as follows: we first choose an initial tria
form for theDp . We then find, by numerical diagonalization
all the eigenvectors and eigenvalues of the matrix in E
~18!, for every value of«' consistent with the energy cutof
@see Eq.~11!#. The formally continuous variable«' is dis-
cretized for numerical purposes. The calculated eigenvec
and eigenvalues are then summed according to Eq.~15!, and
a new pair potential is found. This new pair potential is th
substituted37 into the entire set of eigenvalue equations, an
new set of eigenvalues and eigenvectors is obtained, f
which in turn a new pair potential is constructed. The who
process is repeated until convergence is obtained, tha
until the maximum relative change in the pair potential b
tween successive iterations is sufficiently small~see below!.
As an initial guess for the pair potential one can use, in
first instance, a step function of the bulk valueD0 in the
superconductor. The initialDp are then obtained by inverting
Eq. ~12!. After self-consistent results forDp for one set of
parameter values have been obtained, those results ca
used as the initial guess for a case involving a nearby se
parameter values. This process reduces the number o
quired iterations considerably. The final self-consistent re
is insensitive to the initial choice. By using these methods
is then possible, as we shall see, to obtain results even w
the coherence length is long.
9-4
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This general procedure immediately yields the se
consistent results for the pair potential. As mentioned in
Introduction, this quantity gives valuable information rega
ing superconducting correlations on theS sideonly, since it
vanishes on theF side whereg(r )50. Insight into the su-
perconducting correlations on theF side, and the extraction
of the proximity effect in the ferromagnet, is most eas
obtained by considering4,38 the pair amplitude

F~r !5D~r !/g~r !, ~20!

which has a finite value on both sides of the interface. O
can also study proximity effects through another quan
which is directly related to observation. This is the loc
density of states~DOS!, given by39

N~z,e!5(
s

(
n

8 @uns
2 ~z!d~e2en!1vns

2 ~z!d~e1en!#.

~21!

In the next section we will first consider the relevant s
of dimensionless parameters in the problem, and how
implement the general procedures discussed above for a
range of the values of these parameters. We then discus
results, and investigate the length scales relevant to the v
tion of the pair potential, the pair amplitude and the DOS

III. RESULTS

Before discussing our numerical techniques and res
for the model outlined in the previous section, we have
introduce a convenient set of dimensionless parameters
the problem. First, there are two dimensionless ratios aris
from the three material parametersEFS , EFM , andh0. We
choose the ratioI[h0 /EFM as the dimensionless exchan
field parameter we will vary to study different degrees
polarization for theF side. I varies betweenI 50 when one
has a normal~nonmagnetic! metal andI 51, the half-metallic
limit. In this work we choose the second ratio so th
EF↑ /EFS51 at the value ofI under consideration. Next, w
have to consider the superconducting parameters. We
chosen to present here results forT50, postponing the study
of temperature effects for future work. We then need
specify the dimensionless Debye frequencyv[vD /EFS and
the dimensionless length scalekFSj0, wherej0 is the usual
zero-temperature coherence length related to other quan
by the BCS relationkFSj05(2/p)(EFS /D0). Throughout,
we will keep the relatively unimportant parameterv fixed at
0.1, and present results for two different values ofkFSj0, 50
and 200. Thus, our method can handle coherence lengths
orders of magnitude larger than what has been achie
through the use24 of tight binding methods.

We also have to consider the purely computational par
eters. These are determined by the overall size of the sys
measured in terms ofkFSd, and the ratiod8/d. Our two
choices ofj0 demand different system sizes, since the len
scale over which the pair potential reaches its bulk valueS
is determined~see below! by j0. Thus, we needd@j0 in
order to study an interface between bulk systems. Thus,
take kFSd51000, d8/d5600/1000, for kFSj0550, and
01450
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kFSd51700, d8/d5750/1700 forkFSj05200. These slab
widths allow us to investigate fully the bulk proximity ef
fects that occur on both sides of the interface.

The computational work required is chiefly determined
the system size. As outlined in the previous section, we m
numerically diagonalize the Hamiltonian matrix and calc
late the eigenenergies and eigenvectors for each«' . Each
value of «' requires diagonalizing a matrix of size 2N
32N, whereN is defined in Eq.~11!. For the large values o
d required by our assumed values ofj0 this matrix size ex-
ceeds 1100. The number of discretized transverse ene
N' must be chosen large enough so that the results are
affected by it. The required value depends on the quan
being studied. ForD(z) andF(z), a value ofN'5500 was
found to be sufficient even for the longer coherence leng
For the local DOS, we usedN'51000 in both cases. Thes
diagonalizations must be performed at each step in the it
tion process described below Eq.~19!. The basic diagonal-
ization process employed a procedure whereby the symm
ric matrix, Eq.~18!, is transformed into tridiagonal form, an
then the eigenvalues and eigenvectors are computed by
QL ~Ref. 40! algorithm. The iteration process was conclud
when the maximum relative error between successive it
tions of the pair potential at any point was less than 1023. A
smaller relative error would require more computation tim
but we verified that no appreciable difference in the resu
ensued. A number of checks were performed, including
producing the correct wave functions and energies for
limiting case of a single semi-infinite superconductor, fer
magnet or normal metal, and also verifying that in the lim
of an entirely superconducting sample the correct finite s
oscillations41,42 of the pair potential were obtained, with th
correctj0 dependence.21

A. Pair potential

We begin by presenting in Fig. 1 our self-consistent
sults for the pair potentialD(z) ~normalized to the bulk value
D0), which we plot as a function of the dimensionless va
ableZ8[kFS(z2d8). Thus a positive value ofZ8 denotes a
location inside the superconductor. In the four panels of
left column we show results forkFSj0550 for four evenly
spaced values ofI ranging from zero to unity. In the corre
sponding panels in the right column we have results
kFSj05200 at the same values of the exchange field. T
pair potential is finite at the interface, however, it alwa
vanishes on theF side since we assumedg(r )50 in that
region. All of the panels show that on theSside, the normal-
ized pair potential rises near the interface and then eventu
reaches its bulk value over a length scale determined by
coherence lengthj0. Comparing the top panels in each co
umn, whereI 50, with the others in the figure, where th
exchange field can be large, we see that for all four value
I and a given value ofj0, the characteristic depletion near th
interface is nearly independent ofI. It can be concluded
therefore, that the magnitude of the exchange field has l
effect onD(z) and that the effective coherence length in t
superconducting side of theF/S interface is only an ex-
tremely weak function of the strength of the ferromagne
9-5
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exchange field. Similar findings were obtained in Ref. 24
the shortj0 limit. The general shape of the curves is t
same for both values ofj0, indicating that the effect of this
quantity is merely a rescaling of the relevant length wh
governs the interface depletion. Near the surface-vacu
boundary inS, the pair potential exhibits atomic scale~a
distance of order 1/kFS) oscillations as seen in previou
work,21 as a result of pair-breaking by the surface.

B. Pair amplitude

The above study ofD(z) illustrates the detail, and qualit
of the results. However, sinceD(z) vanishes in theF side,
this quantity cannot be used to study superconducting p
imity effects in the magnet. For this purpose we now turn o
attention to the pair amplitudeF(z), a quantity that directly
reflects4 the superconducting correlations in bothF and S.
The main panels in Fig. 2, which repeat the arrangemen
Fig. 1, show eight sets of results forF(z), four for each of
our two values ofkFSj0, for the same values ofI as in Fig. 1.
We have normalizedF(z) to its bulk value in the supercon
ductor. In theS region the curves are the same as those
the correspondingD(z), seen above in Fig. 1.

FIG. 1. The self consistent pair potentialD(z), normalized to
the bulk valueD0, is plotted as a function of dimensionless distan
Z8[kFS(z2d8). The left column is forkFj0550, while the right
column is forkFj05200. The dashed vertical line at the interfa
Z850 serves as a guide. In both cases results for the same
exchange fields~indicated by the labels! are shown.
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Turning our attention to theF side of the interface (Z8
,0) in Fig. 2, we first look at the normal metal limit (I
50) in the top panels. We see that as expected4,42 F(z)
decays only extremely slowly in the normal region atT50.
In effect, there is no mechanism to disrupt the Cooper p
from drifting across the interface,42 therefore the decay is
very slow and occurs over a length scale that is much lar
than j0. The most rapid change occurs near the interfa
whereF(z) decays very quickly before flattening out.

In the remaining panels of Fig. 2 the effects of a fin
exchange field are seen. The situation is now very differ
andF(z) decays to zero rather quickly close to the interfa
with a slope that increases with largerI. We will see below
that the length that characterizes this fast decay varies
proximately as 1/I . This 1/I behavior was suggested lon
ago4 on the intuitive grounds that the exchange potenti
seen by up and down spin quasiparticles differ by6I , but
this argument has been criticized26 as being merely anad hoc
assumption. Our results show that the intuitive assump
gives the correct result. However, this fast decay is far fr
the whole story, as slightly away from the interface a mu
slower oscillatory behavior can be seen~note in particular
the I 51/3 panel!. This is not a finite size effect. We have
replotted this behavior in an expanded horizontal scale

ur

FIG. 2. The pair amplitudeF(z) @defined in Eq.~20!#, normal-
ized to its bulk value in the superconductor, plotted as a function
dimensionless distanceZ8 from the interface. Results are for th
same coherence lengths and exchange fields as in Fig. 1, and
the same panel arrangements.
9-6
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PROXIMITY EFFECTS AT FERROMAGNETIC- . . . PHYSICAL REVIEW B 65 014509
Fig. 3. The wavelength of these oscillations clearly decrea
with increasedI. Furthermore, the magnitude ofF(z) also
attenuates with increasingI. This is in qualitative agreemen
with past works employing tight-binding24 or quasiclassical28

methods.
Before we consider this behavior in more detail let

examine thej0 dependence of these results forF(z), by
comparing the right and left column of Fig. 2. The spat
extent in which the changes inF(z) take place is greater in
the right column, since we are dealing now with a leng
scale given by a longerj0. Apart from that, the difference
are hardly discernible, the only exception being the v
slow decay forI 50, where the difference can be attribute
to the smaller value ofd8/j0'4 compared withd8/j0'12
for the case ofkFSj0550. Thus we conclude that the role o
j0 is, in this range, that of setting an overall scale. T
should hold only whenj0 is much larger than the micro
scopic lengths in the problem and smaller than the geom
cal dimensions. It should break down in any other case.
exchange field tends to disrupt superconducting correlat
over a length scale that is typically much smaller thanj0, so
that the oscillations and characteristic decay ofF(z) in the
magnetic region are nearly independent of thej0 considered
here.

We are then led to conclude that when there is an
change field present, there aretwo phenomena to consider i
describing the spatial variations ofF(z) in the ferromagnet.
The first is the short distance decay at the interface, to
point at which the pair amplitude first goes to zero. This
the region whereF(z) changes most rapidly. This decay ca
be characterized by a length scale which we will denote
j1, defined bykFSj1[Z18 , whereZ18 is the first point inside

FIG. 3. Detail of the behavior of the normalized pair amplitu
F(z) near the interface, on the magnetic side. The six panels sh
correspond to the lower six panels of Fig. 2, but the horizontal s
is expanded so that the oscillatory behavior can be seen.
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the magnet whereF(Z18)50. The other important phenom
enon is the damped oscillations ofF(z) in the regionZ8
,Z18 ~Fig. 3!. These oscillations cannot be fit to an expone
tially damped form. Instead, we find that in all cases a mu
better fit to our results is afforded by the followin
expression:

F~Z8!5a
sin@Z8/~kFSj2!#

Z8/~kFSj2!
, ~22!

wherea is a constant, and the characteristic lengthj2, which
in principle must be distinguished fromj1, can be extracted
from the results. Since the previously defined lengthj1 is
small, the expression~22! is valid for most of the ferromag-
net region. To illustrate the range of its validity, in Fig. 4 w
give one example of a fit of the form Eq.~22! to the pair
amplitude. We see that Eq.~22! is an adequate fit for the
oscillatory region, however, within a distancej1 of the inter-
face, Eq.~22! breaks down. At this point,F(z) rises upwards
monotonically to match its value at the interface. In the s
tial region where Eq.~22! is valid, the quality of the fits
deteriorates somewhat for larger exchange fields (0.4&I
,1) because the spatial modulation ofF(z) slightly deviates
from the simple periodic sine curve given by Eq.~22!. This
small discrepancy can be glimpsed in the lower panels
Fig. 3. The spatial structure becomes slightly nonperiod
but overall the functional form given by Eq.~22! is still
satisfactory.

The oscillatory behavior of the pair amplitude as given
Eq. ~22! is physically the result28 of the exchange field,
which creates electron and hole excitations in opposite s
bands. The pair amplitude involves products of these part
and hole quasiparticle amplitudes@see Eq.~5!#. The superpo-
sition of these wave functions then creates oscillations o
length scale set by the difference between the spin up

n
le

FIG. 4. Example of a fit of the results for the normalizedF(z)
~solid curve! to the expression in Eq.~22! ~dashed line!. The data
displayed are forkFSj0550 andI 51/3 ~as shown in Figs. 2 and 3!.
9-7



e

e

l

io
lin
tin

-

th

e

g
n

th
ve

th
all

cal

ith
cal
om
are

he
ive
d by
ed
e

ns

e

r

f
to

KLAUS HALTERMAN AND ORIOL T. VALLS PHYSICAL REVIEW B 65 014509
spin down wave vectors in the ferromagnet. One th
expects28 a decay of the form~22! with j2'(kF↑2kF↓)21.
We can then write

j2'@A2m~EFM1h0!2A2m~EFM2h0!#21

5kFS
21

A11I

A11I 2A12I
, ~23!

where in the last step we have used, as previously m
tioned,EF↑ /EFS51. For smallI, Eq. ~23! can be simplified
to kFSj2'1/I , showing thatj2 is then inversely proportiona
to the exchange field. At larger values ofI there are devia-
tions, but these are small since in theI 51 limit both Eq.~23!
and the approximate expression coincide. These oscillat
are also related to those responsible for oscillatory coup
in structures involving magnetic layers and superconduc
spacers,43 and the nonmonotonic behavior in the critical tem
peratureTc versus theF-layer thickness in S/F/S junctions.36

In particular, the sign change in the pair amplitude has
same physical origin as the so called ‘‘p phase’’ that exists in
F/S multilayers,44–46 and the nonmonotonic variation of th
Josephson current with exchange field.47

Having introduced the two length scalesj1 and j2 char-
acterizing the superconducting proximity effect in the ma
netic region, it is useful to compare their magnitude a
behavior as functions ofI. The result of doing this is shown
in Fig. 5. Data at additional values ofI, not displayed in
previous figures, is included. For comparison, Eq.~23! is
shown as the solid curve. We find thatj2 follows very
closely the expected theoretical expression, and that the o
length j1(I )'j2(I ). This is because, as mentioned abo
the expression4 kFSj151/I nearly coincides numerically
with the more complicated result forj2 as given above. Thus
it turns out that the fast decay and the spatial period of
oscillations are characterized by lengths that are virtu
identical.

FIG. 5. Exchange fieldI dependence of the lengthsj i ,i 51,2,
defined in the text. The circles arej1, and the squares representj2.
The curve is the expression in Eq.~23!. The results plotted are fo
kFSj0550 but these quantities are nearly independent ofj0.
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C. Local density of states

To further investigate theF/S proximity effects, we focus
now on another experimentally accessible quantity, the lo
DOS. Advances in STM technology9 have made it possible
to perform localized spectroscopic measurements w
atomic scale resolution. We therefore present now the lo
DOS as a function of energy and position, as calculated fr
Eq. ~21! and the self-consistent spectra. All results below
normalized to the normal-state DOS in theS side and con-
volved with a Gaussian of width 0.01D0, to eliminate the
spectrum discretization resulting from the finite size of t
computational sample. We focus only on results for posit
energies, since those for negative ones can be obtaine
symmetry. We plot the results in terms of the normaliz
energy variable«/D0. The locations chosen are given by th
dimensionless positionZ8 defined earlier.

We consider first the limit where the exchange fieldI is
zero. In Fig. 6, we show the DOS for four different positio
at each of the two valueskFSj0550 ~left column! and
kFSj05200 ~right column!. The three top rows in Fig. 6
show the DOS on theS side. For the shorter coherenc

FIG. 6. Normalized local DOS@see Eq.~21!#, plotted versus the
dimensionless energy«/D0 at I 50 for kFSj0550 ~left column! and
kFSj05200 ~right column!. Each position displayed is a multiple o
the coherence length: from top to bottom the rows correspond
Z85j0 , Z852j0 , Z854j0, andZ8522j0.
9-8
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PROXIMITY EFFECTS AT FERROMAGNETIC- . . . PHYSICAL REVIEW B 65 014509
length results for the locationsZ8550, 100, and 200 are
shown. These are multiples of the coherence length, and
same multiples are shown in the right column. Several p
nounced peaks are visible inside the gap, due to a finite n
ber of bound states existing for«/D0,1. These states wer
predicted long ago in a non-self-consistent treatment by
Gennes and Saint-James.12 These peaks diminish at great
distances inside the superconductor. On the correspon
panels in the right column, we see that the number of
Gennes–Saint-James peaks have been reduced. This
cause the number of bound states depends upon the c
ence lengthj0, as well as on the superconductor and norm
metal widths.11 In general, the number of such peaks d
creases asj0 /d8 increases. The patterns seen at«/D0.1 are
discussed below.

On the normal metal side, we see on the bottom panel
Fig. 6, that there is no evidence of a gap, but a pattern
jagged peaks appears in the DOS for«/D0&1. At larger
energies, interference patterns are seen, similar to thos
the S side. At longer coherence lengths this pattern is m
coarse. This coarseness~which is also seen in subseque
figures! arises from the finite value ofN' . If this quantity is
increased, the pattern becomes smoother and more reg
as in the left column. The remaining regular oscillations

FIG. 7. Normalized local DOS forI 51/3 at four positions in the
ferromagnetic side, near the interface. The left column correspo
to kFSj0550 and the right one tokFSj05200.
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timately vanish asd andd8 tend to infinity. We have chosen
to display only one position in theF side for I 50 since the
overall behavior is nearly identical for all points in the no
mal metal. This is in agreement with our observation in co
nection with theI 50 panels in Fig. 2, that the pair amplitud
has a very slow rate of change.

We now turn to the case of a finite exchange field. Figu
7 shows the DOS forkFSj0550 ~left column!, and kFSj0
5200 ~right column! at I 51/3 for four positions very nea
the interface, within the magnetic material. This is done
illustrate how changes in the local DOS with distance
correlated with the rapid change inF(z) near the interface.
Consider first the distanceZ8525 ~top panels!. This corre-
sponds to the location whereF(z) has its more prominen
minimum ~see Fig. 3!. There is a weak minimum for the
DOS at«/D050, which is more prominent at the smallerj0,
and with increasing energy the DOS rises, until about«/D0
'1 at which point a peak occurs. For energies larger thanD0
the DOS quickly settles down to its normal state value, un
in our normalization. AtZ8524, asF(z) begins to rise, we
see, focusing on the range of energies less thanD0, that the
minimum of the DOS has begun to shift away from zero.
Z8523, in the next row of panels, the DOS has now
marked minimum at finite energies within the gap, at«/D0
'0.6. The next position~last row! in Fig. 7 shows a clear
minimum of the DOS at energies just below the gap.
comparing the top and bottom rows of Fig. 7, we see t
~for «/D0&1) what were once dips and peaks in the DO
have now reversed roles. Figure 5 shows that the length c
acterizing the fast rise ofF(z) is kFSj1'3.5 at I 51/3. The
DOS starts the reversal process, as the interface is
proached, at aroundZ8'23.5, as seen in Fig. 7. The sim
larity between right and left columns in this figure reflec
that the length scalej1, defining the inversion point, is the
same in both cases. The behavior of the DOS at larger va

ds

FIG. 8. Local DOS at three positions inside the superconduc
for I 51/3 andkFSj0550. The curves shown correspond to~from
top to bottom at small energy! Z8550, Z85100, andZ85200.
These are the same values as in the top three panels of the
column of Fig. 6.
9-9
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KLAUS HALTERMAN AND ORIOL T. VALLS PHYSICAL REVIEW B 65 014509
of uZ8u is qualitatively similar, but as the oscillations d
down it becomes much less discernible.

We show also~see Fig. 8! the local DOS for three differ-
ent positions in the superconductor side for the samI
51/3 and the shorterj0. The de Gennes–Saint-James pea
are now gone, with just a hint of small structure for«/D0
,1 remaining atZ8550. This structure starts to becom
washed out at a distance of about 2j0 from the interface.
Finally, at Z85200, the DOS is of the familiar BCS form
with a well defined gap and pronounced peak at«/D051. In
what follows, we focus only on the ferromagnetic regio
since the overall behavior of the DOS inSat larger values of
I is quite similar to that seen in Fig. 8.

In Fig. 9, we show the DOS forI 52/3. As in Fig. 7, we
consider four spatial positions for each value ofj0, however,
the range is now closer to the interface, since the larger
change field reduces the spatial extent of the supercond
ing correlations and the lengthj1. Beginning atZ8524,
Fig. 9 ~top! illustrates the formation of a small dip at low
energies, and a continual rise up to«/D0'1, after which we
recover the bulk DOS limit for a ferromagnet with this p
larization. With our normalization, this value is smaller th
unity. This is due to the decrease in the number of spin do
states with increasing exchange field. In Fig. 9~second row!,
the minimum in the DOS has moved, while the peak s

FIG. 9. Normalized local DOS forI 52/3. The panel arrange
ment is the same as in Fig. 7.
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remains at«/D0'1. At Z8522, ~third row! the DOS is
already rising upwards at low energies. The previous dip
the DOS has shifted to a higher energy, while a peak for
around zero energy. We again find consistency with thej1
values given in Fig. 5, where forI 52/3, kFSj1'2.2. Thus,
as in the previous case, a reversal of the DOS behavior
curs in thej1 range. The bottom panel of Fig. 9 shows t
DOS atZ8521. We see that the zero energy maximum h
increased slightly from the previous row and the minimu
has shifted to energyD0. Again, this qualitative behavior is
independent ofj0 reflecting the independence ofj1 from j0.
Thus, we see here the same behavior we found forI 51/3 the
only change being the different value ofj1.

We finally consider in Fig. 10 the DOS for a fully pola
ized ~half metallic! ferromagnet (I 51.0). The locationsZ8
are the same as in Fig. 9. The structure of the DOS at e
gies below the gap for all positions has become smoot
Because of the large exchange field, the reversal of the
cupation of states occurs over a length scalej1 which is now
small~see Fig. 3!. Based on the previous fit in Fig. 5, we fin
this point to beZ8'1.7. Again, we find consistency betwee
the pair amplitude and the DOS. Note that as one mo
away from the interface, the DOS tends to 1/2 at high

FIG. 10. Normalized local DOS for a fully polarized ferroma
net (I 51.0). Again, results forkFSj0550 are in the left column,
and those forkFSj05200 in the right column, and positions wit
respect to the interface are indicated.
9-10
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PROXIMITY EFFECTS AT FERROMAGNETIC- . . . PHYSICAL REVIEW B 65 014509
energies. This is due to the total absence of the down ban
this half metallic limit. These remarks apply to both valu
of j0.

The above pertains to the proximity effect in theF side.
We now investigate further whether the presence of the
romagnet has any effect on the superconducting correlati
That any effect is small is shown already by Fig. 2. T
influence of the magnet onS will be reflected in a nonzero
value of the difference in the density of states for spin-up a
spin-down electrons,dN[N↑2N↓ , where N↑ and N↓ are
the spin up and spin down terms in Eq.~21!, respectively.
One might view this as a self-consistent determination of
effective parameterI (z) which may extend into the supe
conductor. We focus here only on the case of a half meta
ferromagnet (I 51), and for illustration takekFSj0550. Fig-
ure 11 shows that there is in fact a small proximity effect in
the superconductor, since very close to the interface the
fective polarization is nonzero. This effect is, however, sh
ranged, and we see that it nearly dies out beforeZ855. At
very small exchange fields~of order of the superconductin
gap!, we have found also a longer range proximity effect
the superconductor, similar to that found for dirty systems48

IV. CONCLUSIONS

We have introduced in this paper numerical technique
accurately and self-consistently solve the continuum B
equations. We have shown how one can use these metho
perform a detailed study ofF/S interfacial properties. Our
procedures allow us to consider superconducting and m

FIG. 11. Leakage of magnetism into the superconductor:
quantity plotted difference between spin up and spin down value
the local DOS,dN[N↑2N↓ , normalized as in previous figures
This quantity is displayed at several positions just inside the su
conductor. All results shown in this figure are forkFSj0550. The
values ofZ8 are indicated in the panels.
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netic proximity effects in a bulk system containing anF/S
interface, even when the superconducting coherence le
is orders of magnitude larger than the interparticle distan
In this work, we have used these techniques to investig
the proximity effects for a cleanF/S system. We have ex
tracted the relevant characteristic lengths through a car
analysis of the pair potential and the pair amplitude, and
have shown how, near the interface, the behavior of the
amplitude correlates with that of the local DOS. Our wo
extends well beyond previous numerical computations in
tight-binding case, valid only for very short values ofj0, and
beyond theoretical work limited by quasiclassical appro
mations or restricted to regimes where the mean free pat
j0 are very short.

On theS side we have found, near the interface, a dep
tion of both the pair potential and the pair amplitude. Th
depletion extends over a length scale determined essen
by j0, and hence nearly independent of the exchange fieI.
For the bulk heterostructures we considered, the effec
varying j0 in the range studied (kFSj0550 to kFSj05200)
was an effective rescaling of the characteristic length t
determines this depletion. In theF region, for finite values of
the exchange field, the pair amplitude exhibited a sh
monotonic decline near the interface, followed by damp
oscillations. The fast decay was found to take place ove
length scalej1 approximately inversely proportional toI,
independent of thej0, according the the expression4 kFSj1
'1/I . The oscillatory part of the spatial variation of the pa
amplitude could be fit to a simple sine function with an a
plitude decaying as the inverse of distance from the interfa
We found that the spatial period of the oscillations is det
mined by the length differencej25(kF↑2kF↓)21 ~the in-
verse of the difference between spin up and spin down Fe
wave vectors! provided thatI is not too large. This is in
reasonable agreement with previous theoreti
expectations.28 We have presented extensive results for
local DOS, as a function of position and energy, as obtai
via the self-consistent quasiparticle amplitudes and energ
The periodic sign change in the pair amplitude is found to
correlated with oscillations in the local DOS relative to
normal state values. Finally, we verified also from the lo
DOS that the effect of the exchange field on superconduc
correlations inS is minimal ~although nonzero!: the differ-
ence in the local DOS of spin up and spin down quasipa
cles vanishes except very close to the interface, at leas
I>1/3.

The use of the Stoner model with parabolic bands in ch
acterizing the ferromagnet might be questioned since ac
ferromagnets have complicated band structures. Howe
previous calculations31 relying on the same model hav
found good agreement with experiment.32 Moreover, other
results based on general arguments33 or a tight-binding band
structure24 reveal behavior in the pair amplitude similar
ours. We conclude that this simple model should account
the underlying physics of these systems. We have also
sumed a clean ballisticF/S heterostructure with a transpa
ant interface. Such heterostructures49,50 tend to have a very
small lateral area. However, epitaxial heterostructures w
highly transparant interfaces and relatively large sample
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KLAUS HALTERMAN AND ORIOL T. VALLS PHYSICAL REVIEW B 65 014509
can be51 created. Thus our calculations are not unrealis
Furthermore, as explained in the next paragraph, our num
cal procedure will allow these questions to be addresse
future work.

Clearly, the powerful methods and techniques for the s
consistent solution of the BdG equations presented here o
new vistas and possibilities for use in the study of ma
other aspects of theF/S interface and similar problems. A
thorough investigation of the physical quantities and char
teristic lengths studied in this paper, incorporating other
rameter regimes and the effects of finite temperature
needed, and it can be straightforwardly carried out. Interf
scattering, and superconductors with nodes in the pair po
tial ~unconventional pair potentials!, can be also easily con
sidered. Spin-flip effects, and disorder in bothF and S ma-
terials can also be incorporated. By suitably changing
s

A
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boundary conditions, self-consistent solutions of the tunn
ing spectroscopy problem in the longj0 regime will be ob-
tainable. Our numerical methods are particularly suitable
the study of mesoscopic structures involvingF/S multilayers
of differing thickness, where size effects may come into pl
The study of tunneling phenomena in non-equilibrium situ
tions is also feasible by extension of our method to the tim
dependent BdG equations.
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10O. Šipr and B. L. Györffy, J. Phys.: Condens. Matter8, 169

~1996!.
11M. P. Zaitlin, Phys. Rev. B25, 5729~1982!.
12P. G. de Gennes and D. St.-James, Phys. Lett.4, 151 ~1963!.
13W. L. McMillan, Phys. Rev. B175, 559 ~1968!.
14O. Entin-Wohlman and J. Bar-Sagi, Phys. Rev. B18, 3174

~1978!.
15G. Eilenberger, Z. Phys.214, 195 ~1968!.
16S. Pilgram, W. Belzig, and C. Bruder, Phys. Rev. B62, 12 462

~2000!.
17G. Kieselmann, Phys. Rev. B35, 6762~1987!.
18K. D. Usadel, Phys. Rev. Lett.25, 507 ~1970!.
19W. Belzig, C. Bruder, and G. Scho¨n, Phys. Rev. B54, 9443

~1996!.
20R. Seviour, C. J. Lambert, and A. F. Volkov, Phys. Rev. B59,

6031 ~1999!.
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