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Vortex charging effect in a chiral p,=ip,-wave superconductor
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Quasiparticle states around a single vortex jm, & ip,-wave superconductor are studied on the basis of the
Bogoliubov—de Genneg®dG) theory, where both charge and current screenings are taken into account. Due to
the violation of time-reversal symmetry, there are two types of vortices which are distinguished by their
winding orientations relative to the angular momentum of the chiral Cooper pair. The BdG solution shows that
the charges of the two types of vortices are quite different, reflecting the rotating Cooper pair @f the
*ipy-wave paring state.
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[. INTRODUCTION time-reversal symmetry, we have two types of vortices, one
of which is in the same direction to the angular momentum

The discovery of many types of superconductors fromof the rotating Cooper pair, and the other is in the opposite
heavy fermion compounds to high- cuprates has driven us direction. The rotating pair shows up in quasiparticle states
to study a large variety of new physics beyond the standar@round a vortex core.
BCS theory for conventionat-wave superconductors, The [N this paper we present an interesting physics related to a
study of the unconventional superconductivity was stimuvortex. We focus on a vortex charging efféttlt was
lated by the discovery of superfluidHe in which a spin pomted_out that _for ars-wave superconductor_ the vortex
triplet p-wave state is realized. Unlike the conventional Narge is proportional to the slope of the density of states at

swave state, th@-wave state has both spin and orbital de_the Fermi level* Hayashiet al. proposed that the vortex

grees of freedom. This is the most pronounced feature of th(éharge IS d5eterm|ned by the quasiparticle strpcture in the
) . . vortex coré® rather than the slope of the density of states.
unconventional superconductors, observed in their therm

dynamics and impurity effects or detected by tunneling Speé\_/ery recently, it was reported that Chern-Simons terms lead

) | i R ) fo a fractional vortex charge for the,*ip,-wave state®
roscopy, nuciear magnetic resonari®iR), muon spin re- Thus the origin of the vortex charge is still controversial. To
laxation (uSR) measurements, and so on.

X ) ) make this point clearer, we investigate the vortex charging
SLRUG, is the first layered perovskite compound ShOW-effect in a chiralp,~ip,-wave state, concentrating our at-

ing superconductivity without CuQplanes: Recent experi- tention on the microscopic origin of the vortex charge. This
mental and theoretical studies indicated that the supercofis demonstrated by solving the Bogoliubov-de GenBeis)
ducting pairing symmetry of SRuQ, is not a simple equation self-consistently, including both charge and current
swave. The absence of a Hebel-Slichter peak in nucleagcreenings. To our knowledge, this is the first fully self-
quadrupole resonand®QR),> and the sensitivity off. on  consistent BdG study of a single vortex. We would like to
nonmagnetic impuritied pointed toward an unconventional show how the rotating Cooper pair shows up in the vortex
pairing. The indication of broken time reversal symmétry, charging effect.
observed inuSR measurements, gives a strong argument for This paper is organized as follows. In Sec. I, we present
the unconventional paring state. A Knight shift experimentour formulation for calculating quasiparticle states near the
showed that spin susceptibility is not affected by the supervortex core based on the BdG equation. In Sec. Ill, we show
conducting staté which is strong evidence of a spin-triplet numerical results. We give a summary and discussions in
pairing. Sigristet al. suggested that a,*ip,-wave state, Sec. IV.
which breaks the time-reversal symmetry in a tetragonal
crystal field, is the most likely pairing state for,8u0,.°
The line node behavior reported in the latest experinfehts Il. FORMULATION
is related to low-temperature thermodynamical measure- | gt ys begin with the following BdG and gap equations
ments, such as specific heat and NMR*. An orbital- oy the p, +ip,-wave state”~°
dependent superconductivityand gap anisotropy'? were Y
suggested to understand the line node behavior. Here we fo- | 1
cus on thep,+ip,-wave pairing state, since this representa- _ = _
tion is the simplést and essential form. We will see a rich Rotin Ke Z [A+D++ 2(D+A+)}U” Enlln, (18
physics of this chiral state.

The most intriguing character of thig+ip-wave state is i 1
thqt the Cooper pair hgs al z_ingular momentum, i.e., the —hXo,— — 2 [A+D++ Z(MO.AL)
pair electrons are rotating. This property is similar to that of ke 2
the A phase of the superfluitHe. Due to the violation of the (1b)

*

Up=Enun,
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V2 E, Herer and ¢ are the two-dimensional polar coordinates. A
Ac(N=—i5— <2< tan)'(ﬁ)[u:(r)thun(r) single vortex produces an additional phase winding-df.
FO0=En=Fe Therefore, there are two kind of vortices: the vortex winding
—uy(NO50¥(N)]. (1d)  direction is parallel or antiparallel relative to the Cooper pair

winding. As we will see later, the former vortex is charged
A detailed derivation is given in the Appendix. Throughout yp while the latter is not. We call the former and the latter a
this paper, we usk#=1 andkg=1 units.e>0 is the electron ¢ (chargedl vortex and aJ (unchargepvortex, respectively.
charge E,, is the energy eigenvalue for the superconductingrhe C vortex has an effective twofold winding of 2. On
quasiparticle, and.=d,*idy is used.A; andA are the  the other hand, the phase winding is zero for theortex,
scalar and vector potentials, respectivély>0 and{) are  since the winding of the Cooper pair cancels the vortex pair.
the p-wave attractive interaction and the volume of the two-Duye to the rotational symmetry of the system, the angu|ar
dimensional system, respectively, is a cutoff energy, and momentum is a good quantum number. The BdG solutions
w is a chemical potential . is the order parameter for the are then classified by the angular momentum. To keep the

«Eipy-wave. For simplicity, we assume that the superconrotational symmetry, there is only the following combination
ductor is basically two dimensional, and has a cylindricalof the order parameters for ti@andU vortices:
Fermi surface. We note that the BdG solution has the follow-

ing time-reversal relation: A (r,d)=A (r)e?, A _(r,¢)=A_(r)e'3?,
{u_gv_g t={vE UE | 2) (C vortex), (6a)

The solution of the BdG equation determines the two- . .

dimensional electron and current densities: A(r,p)=A (e ' A_(r,¢)=A_(r)e'?,
n(n=23 |uy(n)(Ey), (3a (U vort=x, (6D

whereA, and A_ are the dominant and admixed compo-
nents, respectively. Hence the wave functigrcouples with

ie
J(r)=— = E [Ur (NVu,(r)—up(nNVur(n]f(E,) v, in the following angular momentum spacés:
En
o2 ul—vl"2  (C vortex), (7)
— m—cn(r)A(r). (3b) | |
u,<—v, (U vortex, (8

By using relation(2), both densities have been expressed in

terms of theu, amplitude.f(E,) is the Fermi distribution where the superscripts represent the angular momerig of
function, and theée,, summation in Eq(3) runs both negative andv,. The Ginzburg-Landa(GL) calculation showed that
and positive regions. The scalar and vector potentials obethe U vortex is energetically favorett. However, in a real

the Maxwell equations sample we can expect two typep,(ip,) of domains, so
that there are botlC and U vortices in the presence of an
V2A (r)=—@[n —n(n] (4a) external magnetic field. We solve the two-dimensional
0 dto° ' single-vortex problem on a disk of radi&s Since we treat a

cylindrical system, it is convenient to expand wave functions

) 4 by the following base functions:
VAA(r)=— a\](r). (4b)
i ; Un(r) ulnjell¢€0lj(r)

We have introduced a layer spacidgto convert the area _ " (9a)
densities into volume densities. To satisfy charge neutrality vn(r) i Vi€ ¢‘Pl’j(r) '
we introduce a uniforrmg as the density of positive back-
ground charge. We have taken the origin of the coordinate at
the vortex center. (A ob

In the bulk regionp,+ip, and p,—ip,-wave states are i (1= JmR R (9b)

degenerate. In this paper we will choose one of the two de-
generate states, thi+ipy-wave state, as a dominant com- HereJ, is thelth Bessel functionZ,; is the jth zero ofJ,,
ponent. However, the other componep§{ip,) is admixed andR is the radius of the systeni! in Eq. (9a) takesl

with the bulk state §,+ip,) close to the vortex cor®  —2 (I) for the C vortex (U vorteX.

Therefore, our formulation includes both*ip, compo- In a practical numerical calculation, we use no-
nents. Thep,+ipy-wave state has a 1 Cooper pair phase dimensional quantities. We express them with bars as fol-
winding, since1, in Eq. (1) is expressed as lows:
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Here A, (unit of energy is the magnitude of the order pa-
rameter all=0. &y=v /A (unit of length is the supercon-
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2
V= - 2] 23w (on

L no

Here\tg and\ | are the Thomas-Fermi screening length and
London penetration depth, respectively. They are given by

A2 = ! _d (113
T 47eN(0)  4e’m’
A= ¢ md 11b

whereN(0) is the density of states at Fermi energy. For a
two-dimensional layer system, it is given byf0)=m/=d. g

in Eg. (100 is a nondimensional coupling for thewave
defined asg=VpQ/(AO§§). We have three no-dimensional
parameterske &g, Nt/ &g, andh /.

In our numerical calculation, we obtain. (r), ag(r), and
a(r) by solving Eq.(10) iteratively within a Gygi-Schlter
method?? In the self-consistent calculation we fix the total
number of electrons to the normal state value by adjusgiing

IIl. NUMERICAL RESULTS

Let us discuss our BdG self-consistent solutions. First we

ducting coherence length. Using these nondimensional qua’how the order parameters in Figall The admixed compo-

tities, we obtain the following set of equations:

N i - — 1 — _ = ——
hOun_Ez [AiDi+§(DtAt) Un=EpUy,
(109
— i — 1 — [
- OUn_@Z[ ,Di"'z(DiAi) up=Equn,
(10b)

I P
ho 2k|:§o( iV+a)*—apg—u,

gy 3| 2|0

P
g Zkao Og_ngEc

—u(NOzvE(n], (100

n(n=22 [uy(r|f(Ey), (108
En

I =—i2 [UX(N)Vun(r)—uy(r)Vu (n1f(Ey)
En

—n(nA(n), (10f)

53

= |
Keéo |\ M e

2
| -, oo

nentA _ is induced around the vortex core as expected. It
shows the asymptotic behavidr_ocr (A _«r3) for the U
vortex (C vortexX), which is consistent with the GL rest.
|A_| for the U vortex is larger than for th€ vortex. This
indicates that th& vortex gains much condensation energy.
In Fig. 1(b) we show several energy eigenvalues of the BdG
equation. We note that both vortices have zero-energy bound
states’® The appearance of the zero-energy states is a conse-
quence of the symmetric property of the BdG equafig.

(2)]. As we discuss below, the bound state ffjg=0 is very
important to the vortex charging effe?* wherel, is the
angular momentum of the wave functiop. B¢ andBy in

Fig. 1(b) represent the bound state. Next we show the charge
density around the vortex core. As in Figag a large charge
density appears in the vortex cdfeThe induced electric
field is screened as we go far from the vortex center. Figure
2(b) is the spatial dependence of the electron density at vari-
ous temperatures. AL=0 the electron density is suddenly
decreased in the core region, which results in a vortex
charge. With an increase of temperature, the electron density
becomes uniform and the charge density is reduced accord-
ingly. Contrary to theC vortex, the electron density is almost
uniform at all temperatures for th® vortex, so that the
vortex charge is very small in this case.

Let us explain the microscopic origin of the vortex charg-
ing effect. First we discuss the vortex case. There are two
contributions to the electron density One is from bound
states, and the other is from extended states. We call the
former ng, and the latteng (n=ng+ng). In general only
I,=0 states contribute to the local electron density at the
vortex center. In a microscopic study we find the important
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FIG. 1. Self-consistent results @&t=0. (a) Order parameters scaled By, which is the order parameter @a=0 in the bulk region.
&=ve /Ay is the coherence length. The set of parameters is tak®¥a&8%,, keég=16, A\ =&y, Ae=1/kg, andE.= u. Hereh| andA ¢
are the London and Thomas-Fermi screening lengths, respectilbglBound-state energy spectrum for tlevortex (circle) and theU
vortex (X). |, is the angular momentum of the wave function. The bound states representedBy and B are important in the vortex
charging effec(see the tejt Extended states lie continuously inB,|=A, region’

role of the bound state with zero angular momentum ( vortex is almost uniform. In th&) vortex case we find a very
=0).1524 At zero temperature only thE,<0 states are ef- small temperature dependence in the electron density, since
fective in Eq.(3). Therefore, the bound staBe- in Fig. 1(b) the B, state is located at zero energy and participates in
cannot contribute to the electron density, since this state ignergy excitations with the same rate at all temperatures. We
unoccupiedFig. 3@)]. ng is then suddenly decreased in the note that the electron density for thevortex is very similar
core region as in Fig.(®), and the total electron density is to that for theC vortex atT=0.3A,, where theB state is
decreased close to the vortex center, resulting in a finite voroccupied. We conclude that the appearance of the vortex
tex charge. At finite temperatures the contribution from thecharge depends on the position of the=0 bound state rela-
Bc state comes oUfig. 3@)] due to the finite Fermi distri- tive to the temperature. In the conventiosakave case, the
bution function in Eq.(3) for E,>0. Correspondinglyng ~ vortex charge always appears at sufficiently low
increases in the core region as shown in Fig)3At T  temperature$} which is similar to theC vortex result.
=0.3A,, which is larger than the energy Bf., the electron Let us mention the effect of charge screening. We show
density is almost uniform due to the contribution from thethe total electron density and the contribution from ex-
Bc state. The vortex charge is then reduced strongly at higkended statesig for two cases, where charge screening is
temperatures, as shown in Figh® taken into account or notsee Fig. 4. In the no-charge-
Next we discuss th&) vortex. Contrary to theC vortex, ~ Screening case, the contribution from extended states
the By, bound state in Fig. (b) can contribute to the electron small at the vortex core. The total electron densitis then
density at all temperatures, since this state is located at zefigcreased, resulting in a larger vortex charge. Note that the
energy. As a consequence, the electron density forlthe scalar potential in Eq(10g is zero @,=0) for no charge

41 T T
1.50
1.25 40
1.00 39 !
0.75
0.50 38
0.25 , 37
0.00 > -3——1
— Il 3 36 A g
0'250,0 0.2 0.4 06 0.0 0.2 0.4 0.6
r/g, r/&,

FIG. 2. (a) Dimensionless scalar potented=eAy /A, electric fielde, = — £yd,a4, and charge density= &,(1/r + d,) e, for the C vortex
at T=0. (b) Spatial dependence of the electron densitin 1/5(2) units at various temperatures. The charge density is givep(by

=e[n(®)—n(r)].
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FIG. 3. Local electron density for thHe vortex in 15(2) units. (@) Contribution from the bound stat&. [Fig. 1(b)]. It is zero atT=0. (b)
Bound-state contributiong .

screening X tr— ). Therefore, the scalar potential does notmainly determined by the microscopic quasiparticle struc-
work to screen the vortex charge. On the other hand, wheftire, which reflects the phase winding of the chiral pairing.
the charge screening turns on, quasiparticles respond to tfdgure 5 shows a schematic picture of the energy spectrum of
vortex charge via the scalar potentaj in the BdG equa- vortex bound states for various winding pairings. The
tions (108—(100). ng is then increased to cancel the vortex [0West-lying state appears at symmetric positionk,andl,
charge. In contrast to the extended state, the electron densifj€ {0 refation2), wherel, andl, are the angular momenta
of the bound statesg does not exhibit a difference between Of Un andv,, respectively. For th€ vortex the bound-state
the charge screening and no screening cases. Since the bo fi}fray is positive fot, =0, while it is negative or zero for
states are localized around the vortex core, their wave fundh€U vortex. Therefore, th€ vortex is always charged up at
tions hardly modulate, while the extended states do easilyoW temperatures, while the vortex is not. Thus the vortex
Hence the extended states quickly respond to the electrigh@rge can be discussed in terms of the vortex bound
field, and they screen the vortex charge. However, there stifitates for all types of chiral pairings. Similarly, we can un-

remains a substantial vortex charge derstand that the-wave (zero winding vortex is charged
: 15
We discuss the effect of a magnetic field. The ChernYP-_ ) . .
Simons physic€ and the Bernoulli effeé? take place in the Finally let us discuss nonchiral pairings, suchpgs py,

presence of a magnetic field. To see this effect we compar@Nd di2—y2-waves. These states are all gapless, and it was
the two results, whera is present or ignore¢no magnetic

. . i A X C-vortex U-vortex
field). The scalar potentiad, is taken into account in both
cases. Our result shows that the effect of the magnetic field is
too small to be seen. Thus we find that the vortex charge is
¢
winding
-1 0 1 2 3 -2 -1 o] 1 2 lu 1
-3 -2 -1 0 1 -2 -1 0 1 2 1v
0 1 2 3 4 1 Q 1 2 3 lu +3
-4 -3 -2 -1 0 -3 2 -1 0 1 iv
’ .\\\.\\\.\» /.///.///.
0
34 : 1 \\, /
0.0 0.2 0.4 0.6 2 a1 0 1 2 2 -1 0 1 2 L
r/& -3 -2 -1 0 1 -1 0 1 2 3 1v
0 -1 0 1 2 3 -1 o 1 2 3 o
-4 -3 -2 1 o -2 -1 0 1 2 v

FIG. 4. Total electron density and contribution from the ex-
tended statesg at T=0. Solid lines represent the result with charge  FIG. 5. Schematic picture of bound-state energy spectrum for
screening Xtg=1/kg), while dashed lines are the result without various winding pairings. Numbers represent the angular momenta
charge screening\Gg— ). of u, andv, (I, andl,).
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reported that there is no bound states for de_,.-wave? APPENDIX A: DERIVATION OF BOGOLIUBOV —
Since the system is anisotropic in this case, the energy eigen- ~ DE GENNES EQUATION AND GAP EQUATION

states are not classified by the angular momentum. Therefore In this appendix we derive the Bogoliubov—de Gennes
the above argument for the vortex charging is difficult toequation and gap equation for tpg+ip,-wave supercon-

apply to this case. However, our result implies that the dector, which we use in the text. Let us start from the fol-
tailed quasiparticle structure in the vortex core is importamiowing Bogoliubov—de Gennes equations:

for the vortex charging effect even in the gapless pairing

cases.
ho(r)un(r)+fdr’A(r,r’)vn(r’):Enun(r), (Ala)

IV. SUMMARY AND DISCUSSIONS

_hg(r)vn(r)_f dr’ A*(r,r" )up(r’)=Eqvn(r).
In conclusion, we have solved the problem of a single

e 5 ) e (Alb)

«fipy,-wave vortex self-consistently  within  the
Bogoliubov—de Gennes theory. The full self-consistent cal-Coordinates andr’ can be transformed into center-of-mass
culation, including both charge and current screenings, waand relative coordinates:
performed to investigate vortex problems. Due to the time-
reversal symmetry breaking, there are two types of vortices. o+ r' B ,
We found a substantial vortex charge in tBevortex case, R=—— X=r=r. (A2)
while the vortex charge is suppressed bwvortex case. We ) o
conclude that the vortex charging effects are mainly deterThe py+ipy-wave pairing is expressed as
mined by the local quasiparticle structure around the vortex
core, reflecting the chirabxiipy—wavg pairing. Especially A(R,k)zAX(R)ngiA (R)&, (A3a)
the lowest vortex bound state is very important for the charg- Ke ke
ing effect at low temperatures.

In a real sample we can expect two typgg£ip,) of 1 )
domains. Therefore, we expect baffandU vortices in the ~ A(RX)= WJ dke'“*A(Rk)
presence of an external magnetic field. In domains, where the
C vortex is realized, an electronic field is induced due to the 1 1 _ k(=)
vortex charge. Therefore, the charge of eortex can be =1 Wf dkE[Ax(R)ﬁX’“Ay(R)‘?y’]e
detected. If we use a field-cooled sample, a single domain
forming aU vortex is realized all over the sample, since the
U vortex is energetically favorabfé.In this case it is diffi-
cult to find a signal from th&) vortex, since the charge of the
U vortex is much smaller than that of ti&vortex. Thus we HereA, andA, are thep, andp, components of the order
can distinguish betwee@ and U vortices. parameter. Substituting E¢A3b) into Eq. (A1), we obtain

How can we detect the vortex charge? The vortex charge . .
can induce a lattice distortion, and it scatters neutrons. It was | :
reported that a polarized neutron scattering can be used to ho(r)Un(r) k?(AX(r)axﬂAV(r)&ﬁ E[axAX(r)
detect the vortex chargé.The NQR is also one of the pos-
sible experiments which can detect the vortex charging ef- ; _
fect, since the NQR detects the local electric field induced by +|§yAy(r)]]vn(r) Entin(r), (Ada)
the vortex charge. Very recently, Kumagaial. reported that
a vortex charge is observed by the NQR in a high- . [ ) 1
materia® Thus a detection of the vortex charge is in  ~ Mo (NVa(N= {7} AN a1y dyF F[AAN)
progress now. It is very exciting if the vortex charge of the
chiral superconductor is detected, since it can provide a very
strong evidence of etating Cooper pair.

=k'—F[Ax(R)ax,+iAy(R)ay,]5(r—r'). (A3b)

—iayAy(r)]]un(r)=Envn(r). (Adb)

Next we derive the gap equation. The order parameter is
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pft j dke'k xk—.
k2

V(rr')=— 2m)2
F

(AB)

HereV,>0 and() are thep-wave attractive interaction and
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oo En
CanZT

ax’) E

o<Ey=

i
Ay(r)= _Vka_F((yx_

Xup(rop (

rl)|r’—>rv

the two-dimensional volume of the system, respectively. The

order parameter is then expressed as

) er
A(R,k)=fdXe"k'XA(r,r’)=—Vprdk’ 7 @
. X X\ .,
xf dXe 'k Xp| R+ 5 R-35 elk’ X (A7)
We expand[ R+ (X/2),R—(X/2)] as
D|R X R X
T2R72
dD(R,R") JD(R,R) X
=R(R,R)+ - , S
aR R’'—R
(A8)
and obtain
ARk VQk2 u,(Rv* (R
( l )__ P k_'2:0$EnSEC tan 2T un( )Un( )
v 0 k [0 0 E,
Vo2 IR R o=, BN\ 2T
Xun(R)U:(R’HR/HR. (Ag)

The first term in Eq(A9) is zero due to th@-wave pairing.
SinceA(R,k) can be divided into two parts as in E@3a),
the gap equation takes the following form:

Ay(r)=—V _ay/)

0=

Q 1
ke

E,<E

(A109)
i
tan
Xun(r)U:(r,”r’ﬂr- (A10Db)

2T
For a cylindrical system, it is convenient to introduce the
following form for order parameters:

AL(N=3[A(N)*Ay(N)]. (A11)

Here A . is the order parameter for thg,*=ip,-wave pair-
ing. By using theA . representation, the Bogoliubov—de
Gennes equation and the gap equations are expressed as

ho<r)un<r>—kiF[A+(r>D++A(r)D+%[D+A+<r)

i

—hg (Nva(r) - [A+(f)D tA_(NO_+3 [D+A r

+O_A_(D]{va(r)=Equn(r), (A123)

*
+0-A_ (f)]} Un(r) =Enva(r), (A12b)
! En
Ai(r)=—Vme(D;—DI)O<E Lo tan E
Xup(Nvp (r)|er (Al12¢)
O.=dc=idy. (A12d)
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