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The magnetic excitation spectrum of theé’-J model is studied in mean-field theory and compared to
inelastic neutron-scatterindNS) experiments on YB#u;0q,, (YBCO) and B,pSr,CaCyOg, s (BSCCO
superconductors. Within the slave-particle formulation the dynamical spin response is calculated from a renor-
malized Fermi liquid with an effective interactionJ in the magnetic particle-hole channel. We obtain the
so-called “41-meV resonance” at wave vector,¢r) as a collective spin-1 excitation in tltewave super-
conducting state. It appears shdagmdamped if the underlying Fermi surface is holelike with a sufficient
next-nearest-neighbor hopping<0. The double-layer structure of YBCO or BSCCO is not important for the
resonance to form. The resonance enevgy, and spectral weight at optimal doping come out comparable to
experiment. The observed qualitative behaviowgf; with hole filling is reproduced in the underdoped as well
as overdoped regime. A second, much broader peak becomes visible in the magnetic excitation spectrum if the
2D wave vector is integrated over. It is caused by excitations across the maximum gap, and in contrast to the
resonance its energy is almost independent of doping. At energies above or bglpthe commensurate
resonance splits into incommensurate peaks, locatedmoff). Below w,.s the intensity pattern is of “paral-
lel” type and the dispersion relation of incommensurate peaks has a negative curvature. This is in accordance
with recent INS experiments on YBCO.
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I. INTRODUCTION field theory. In the resulting effective theory thdewvave su-
perconducting phase and the pseudogap regime of under-
The study of magnetic excitations plays an important roledoped systems are represented as spin-charge separated
in the ongoing attempt to understand the physics of highstates. The dynamical magnetic susceptibility is obtained
temperature superconductors. A key observation is the sdrom a Fermi liquid of strongly renormalized quasiparticles
called “41-meV resonance” from inelastic neutron scatteringthat carry the spin. The “41-meV resonance” is interpreted
(INS) experiments:= In superconducting optimally doped as a collective spin-1 excitation; it arises from a particle-hole
YBa,Cu3Ogy (YBCOg () a sharp peak occurs in the mag- (p-h) bound state of these quasiparticles. We find results in
netic structure factor at the antiferromagnéfé&) wave vec- good qualitative agreement with the neutron-scattering ex-
tor q=(m,7) and energy 41 meV. It appears resolution lim- periments. In particular, the behavior of the resonance energy
ited in energy and therefore is described aguamampeyié o, with hole filling is reproduced for underdoped as well as
peak. This is not expected for @wave superconductor, overdoped systems, and we obtain reasonable absolute val-
since the density of states is finite and the resonance energies forw,.s and spectral weight of the resonance at optimal
wes~40 meV is not small compared toA?, with the  doping. Our findings are discussed in detail from the doping
maximum gap A°~30-40 me\® When temperature is dependent band structure of the quasiparticles.
raised throughT,~93 K into the normal state, the reso-  The concept of the resonance coming from a p-h bound
nance vanishes. The main effect of underdopifign the staté®® has been put forward in several studies using
resonance in the superconducting state is a continuous redutlave”-particle schemes fot-J and Hubbard modef$"a
tion of its energy, as far a®,.s~24 meV for the most un- Hubbard-operator techniqd&,approaches based on BCS
derdoped sampléB,~50 K. The resonance also gains spec-theory!®~2% and self-consistent treatments of spin fluctua-
tral weight with underdoping. In contrast to the optimally tions in the Hubbard modelFLEX),2*~2% or spin-fermion
doped case it persists into the normal state atigyewhere  model?”?In the SA5) approactt®*°on the other hand, the
the pseudogap regime is found. Recently a resonance hassonance is a result of a bound state in the spin-triplet
also been observ&¥*?in Bi,Sr,CaCyOg, s (BSCCQ, ;).  particle-particle(p-p) channel, which couples to the mag-
Its energy, 43 meV in the optimally doped sample, is com-netic p-h channel in the superconducting state. In Ref. 31 we
parable to the case of YBCO. If experiments on YBCO andstudied the contribution from the p-p channel within the
BSCCO are put togethes,.s seems to followT,, i.e., itis  present slave-particle scheme and concluded that it cannot
maximal for optimal doping and is reduced in underdoped agjive rise to a resonance belowA2 unless unreasonable pa-
well as overdoped compoungs! rameters are used. A similar conclusion has been given in
In this paper we report theoretical calculations of theRef. 32.
magnetic excitation spectrum in YBCO and BSCCO. Our The resonance is connected to incommensurate structures
starting point is the doped Mott insulator, described by then wave-vector space. Above and below the resonance en-
t-J model. We follow the standard procedure of introducingergy w,es a splitting of the single peak gt= (7, ) into four
auxiliary “slave” particles and treating the problem in mean- peaks slightly displaced fromm(, ) is observed>~3When
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energy is raised fromw,.s these follow a dispersiom(q) In the subspace with no doubly occupied grbitals, the elec-
similar to AF spin waves; however, the peaks are very broadron operator on a Cu-lattice siteis denotedc,,, with spin
Below s four well separated peaks are visible, whichindex o==+1; S, is the spin-density operator. A Cu site is
move away from ¢, 7) with decreasing energy and hence specified throughv=[i,|], wherei=1---N, indicates the
are described by an “upside-down” dispersion. InterestinglyCu position within one Cu@plane and =1,2 selects the
these peaks are displaced from the AF wave vector in direqayer in the bilayer sandwich,,, denotes the effective intra-
tion of the (m,0) or (Oar) points, rotated from the nodal and interlayer Cu-Cu hopping matrix elements, dpg the
directions by 45°. This is the same “parallel” type of incom- antiferromagnetic super exchange .

mensurability as is known from the La,SrCuQ,,, To deal with the constraint of no double occupancy, the
(LSCO) family of compounds?*°where it has been brought standard auxiliary-particle formulation is used,

into connection to the so-called “stripes.” In the present

work we do not consider the possibility of a combined or- szbszl 2
dering of spin and charge into quasi-one-dimensidsiaipe-

like) structures. Nevertheless, below the resonance energhhe fermionf!, creates a singly occupied sitwith spina),

we obtain an incommensurate pattern of parallel type. This ihe “slave” bosonb an empty one out of th&unphysical

due to a “dynamic nesting” mechanism in the superconductvacuum b, |0) = W|o> 0. The constraint now takes the
ing state that enhances the intensity at these particular poinferm

in wave-vector space. The dispersion relations of incommen-

surate peaks are traced back to two particle-hole excitation —b'p +Z
thresholds that vary differently with wave vector. Ve

Recently the magnetlc response has also been studied ?_}/
dimensional (2D) Brllloum zone®%**! Besides the reso- part|cular the particle and spin density read
nance, the resulting local magnetic excitation spectrum
Im x»p(w) shows a second, broad feature at an energy above n. = ¢T¢ S =£¢T;’¢ (4)
the resonance, which depends only weakly on the doping ! v 2 v
level. Within our calculation this feature is naturally ex-
plained from particle-hole excitations across the maximunHere spinorsy,= (f”T) z,bT—( ”T) have been introduced,
d-wave gapA®. Their energywnymp= 2A° comes out almost
|ndependent of dop|ng with Pauli matrlceST andz=1.

The paper is organized as follows: In Secs. II-IV the In order to derive a mean-field theory the constr&@tis
mean-field theory for thé-t’-J model is derived and some relaxed to its thermal averag®,)=1. Together with the
basic implications are reviewed. The magnetic resonance &umberx of doped holes per Cu site, it fixes the fermion and
the AF wave vector £, #) is considered in Sec. V for a boson densities to
single CuQ plane. Section VI presents results for the mag- + +
netic response in wave-vector space. We consider the cross- (1=x)=(, ), x=(b,b,). (5)
over from commensurate to incommensurate response arﬂdﬂ

1 f (3)

rvo VO'

ese are adjusted by chemical potentiafsu’. Using a
herent-state path integral the partition function is now rep-
sented by the action

the dispersion of incommensurate neutron peaks. In Sec. V

we take into account that YBCO and BSCCO are actuallyre

bilayer materials with two coupled Cy®lanes per unit cell.

The splitting of the susceptibility into two modes is calcu- S=04St+gl4+gh (6)

lated. The single-layer model considered in the previous sec-

tions serves as an effective model for the o@doustic  with

mode, where the resonance is observed. In this section we 5

also discuss the above-mentioned local susceptibility . — . b - .

Im x-p(w). A summary is given in Sec. VIII. So_f dTE {by(9 W0, 49— 1) i)
Some of the results have been presented briefly in Refs.31

and 42. Work of other authors is further referenced in the B -

respective sections. S'=- JO dTE, tbyb,,

Il. MODEL AND MEAN-FIELD THEORY B 1 - o B .
_ _ sl=f dr= >, J,,5,S, . sh=—J dr> h,S
We study the-J model on a simple square lattice of Cu- o 2.7 0 v

3d orbitals for each of the two CuQlayers in YBCO or i ..
BSCCO: A magnetic source-fieldh=h,(7) has been added herg,

A mean-field decomposition of the interaction tergisS’
Ly CoeCuro 5 E 3,,'S,S, (1)  is achieved via Feynman’s variational princitiéor the free
v o energyF,
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BF<V[S], WY[S]=(S-5-InZ. 7)

The effective actiors determines
Z=JD[y.y,b,blexg~)
and thermal averages
.1 - — ~ A
<O>=§f D[ ¢,,b,blexp(—9S)0O.
For'S we make the quadratic ansatz

~S:SO+J dle{EJflz'ﬂz"‘ElT?zbz"'(E1A12Z2+ H.c)}

- f dim,S; (8)
with a shorthand notation=(v,,74), fdlEEVlfgdrl col-
lecting siterv and timer indices.Tf12 andA;, are matrices in

spin space, e.gAlZEAi'Zl‘TZEAjll‘VT;(Tl,7-2). S consists of

quadratic terms for fermions and bosons, which represent all

possible mean-field decouplings of the interactiBhandS’.
The expectation valug¢S—S) in Eq. (7) is calculated us-

ing Wick's theorem, and from the vanishing variation
5¥[S]=0 we obtain equations for the self-consistent pa-

rameters,

T2,= —ty o Yathn), (9a)

, _ 13 _
T157 =~ t12(02D1) 0,0 127 2, (702" (7,u2)°),
(9b)

1 3
75 ==diog 2 (7)) (ru)”) (99
w=1

rﬁlzﬁl_J d2312<§2>- (9d)

7, denotes a Pauli matrixr; its transpose. The effective

hoppingT® of bosons as well as the first contribution to the

hopping T of fermions stem from the decoupling ¢8') in
Eq. (7). The Heisenberg terndS’) is factorized through

Wick’s theorem into contributions to the local magnetic field

m, the fermion’s hopping " and pairing amplitudé. These
correspond to analyzin§’ in the direct particle-holdp-h)
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FIG. 1. Top: Irreducible parg'™ for vanishing source field
=0. Full lines are fermion Green'’s functions, boson excitations do
not entery'™" at mean-field level. Bottom: Bethe-Salpeter equation
for the vertex function in/"", dashed lines stand for the Heisenberg
interactionJ. The bare vertexi.e., the unrenormalized bubbleep-

resentg$,S,)°°" in Eq. (11).

wrr

52\1,['éstat] B S

sh,h,  shy
Using Eq.(9d) we obtain the usual “RPA-like” expression;
in matrix notation it reads

XS;) oms
smy Shy

X12= —

(89 a3

X:[1+JXi”]_1Xi”- (10)
The irreducible part is identified as
&S L &(S
=2 (5,5 00, <§2>) an
5m1 1 impl

The first term on the right-hand sideh.s) comes from the
m which appears explicitly ifS,) through$S, Eq. (8). For a
vanishing source field=0 it is given by the unrenormalized

fermion bubble contained in Fig. 1. Since the operaéor
involves only fermions, no boson excitation occur .
The second term in E@11) stands for all contributions from
the implicit m dependence ofS,) through the other mean-
field parameter3®, Tf, A. Using Eqs.(9a—(90), it gives rise
to vertex corrections. These are shown in Figbattom).

In the following we seth=0 and consider paramagnetic

phasesm=0, which are symmetric with respect to lattice
translations within a CuPlayer and exchange of the layers.
In going to wave-vector space, the site index[i,l ], with
in-plane sitei=1---N_ and layer indeX=1,2 is replaced
by the wave vectop=(k,p,). That is,

E ei(kxix+kyiy) 2 eipzlfpa_
p,=0,7

1
fiip=
il ’_2N|_ o

channel of fermions, the exchange p-h, and the particleand similar for boson operators. Hekeruns over the usual

particle channel, respectivel§. Further below, when the

2D Brillouin zone, andp,=0,7 corresponds to even, odd

source fieldh is set to zero, these will be restricted to a linear combination of layer orbitals.

resonating valence-bonRVB) amplitudeTme(f_VTfV,T)
and spin-singlet pairing\,,,, ~(f,f,/|).

The approximate free energy is the functional at its
stationary point, BF2PP'=W[S2Y with the actionSStat

given by Egs(8) and(9). The dynamical magnetic suscep-

tibility then follows with S¥[S%12)/sh, = —(S;) as

The exchange interaction is decomposed as

JVV'E‘]:},:5”’J5<i,j>+(1_5||/)‘1l5ij' (12)

It consists of an intralayer componehtor nearest neighbors
(i,j) and an interlayer coupling- for i =j. Thus the pairing
A of fermions, Eq(9c), involves an intralayer part, which we
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restrict to singlet pairing withd-wave symmetry and equal - B _ _

amplitude and phase in both layersifyfji x,)= S= jo dr> [bp(aT+Qp)bp+E fpo(d:+ep)fps
—(fi1fii+y,), 1=1,2. A contains as well an interlayer am- P 7
plitude (f4;,f5 ). In p space Eq(9¢) then becomesA‘l’g'

, F[A(For o —fo f_p)+H.CI}. 18
— A (p)=08_,,A,, with the gap function [Ap(TprTpr = TorTpr) ] (18
A° Loip It consists of free bosons with dispersiﬁk‘szB—ub and
Ap=—[codk,) —cogky) ]+ A-TeP (13 Bcs-fermions withe ,=T,— " and gap function Eq(13).

_ _ _ After Bogoliubov transformation we obtain “quasifermion”
and the maximum in-plane and interplane gap energiesE,=\e3+A2, and the mean-field equatiori$4)

3 3 and(17) become
A°=ZJA, AO=_JHAY,

2 8 :
X 1 y(k)/2
("L :_NZ ( eiPz %tanhﬂEp/Z)r (193
A=z —(Fai fricx)s (148 X -P P
Al:<f1i¢f2i¢>_<f1iﬁ2w>- (14b A o1 e(K)/2\ A,
N % ee |, BNNAE,/2), (19D
As will be explained at the end of this section, in the
interesting range of temperature and hole fillinthe bosons
may be treated as almost condensed. That is, the hopping rate X:i itanr{BEp/Z) (199
(b,b,)~(b,b,y=xis independent of,»" and given by the 2N 5 Ep

hole densityx via Eq. (5). The first term in the fermion
hopping Eq.(9b) becomes—-t,,(b,b,)——xt,, . It de-
scribes the propagation of fermions with the small probabil ®)
ity x of finding an empty site. The second term in Egb) : . - - I .
involves induced hopping amplitudes on nearest-neighbor The m‘i‘gn?“c susceptibility Eq10) is isotropic in spin
bonds, which we assume equal in amplitude and phase otPace fom=m=0, and takes the usual form,

each bond within a layer(uniform RVB), (fj;;fji x;) -

=(f}i1fii+y1), 1=1,2. The fermion hopping Eq9b) now Yo(®)= Xp (@) (20)
turns intoT!g7 —Tf77"(p) = oo Th, P 1+J3pxp (@) ’

with phase factorsy(k)=cosk,)+cosk,), ¢(k)=cosk,)
_—cosk,). The last equation is the particle number constraint

TL: — 2t[cogk,) +cogk,)]— 41’ cogk,)cogk,) whereJ,, is obtained from Eq(12) as
—tt(k)e'Pz (15) Jp=2J[cogay) +cogqgy)]+e'P2I". (21)
with In experiment the magnetic respong®&©?sis measured as a

function of the wave vectorq,q,), which spans the 3D Bril-

~ 3 . - : : : < i
T=xt+ §‘JX* T =xt’, louin zone of the bilayer material. It is given By

d
x™®%%q,0,,w)=(gug)? Xp(w)|PZ:0 COSZ(EqZ)

~ 3 .
tH(k)=xt"(k)+ g.li)(l (16)
o .(d
and +Xp(w)|p2:773m2 qu (22
x=Frirfriez)+{(Fu faiv), (178 with p=(q,p,). d denotes the spacing of layers in the double
layer. The evenig,=0) and odd p,= 7) mode susceptibili-
)A(L:<fmf2”>+<fmf2u>. (17b) ties correspond to the in-phase and antiphase combination of

spin fluctuations in the planes. For the irreducible part Eq.
For the bare hopping elements we assumed a nearest- aftl) we take the bare bubble X'Vr;,(r, 7')
next-nearest-neighbor overlaandt’ within a layer, and an :(si(q-)szv,(q-'»conﬁ The vertex corrections depicted in the
interlayef*>*® hopping t* (k) =2t"[cosk)—cosk)F+t;.  bottom of Fig. 1 can be safely ignored. As we have discussed
For bosons the effective hopping is derived similafr)?g in Ref. 31 they have no significant effect in the interesting
—>TB. The result is given at the end of this section. energy range & w<2A% With the effective Hamiltonian
The mean-field Hamiltonian Eq8) now reads Eqg. (18) we get the expression known from BCS theory,
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0.5

. . . . assumption of almost condensed bosons becomes incorrect.
We also ignored the staggered-flux phase repodtfed small
X. These simplifications do not affect our results for the mag-

- 0.4} 1 . -~

= 0.6 —— “ netic excitations.

© 0.4+ . Ignoring the lines labeled “AF” for the moment, the
S 03f AF - hase di h it Fgsand
2038 02l 0 1) phase diagram shows two transition temperatuFgsan

g 0 A/ Tge. At temperature3 >T, the fermions move in the CyO
§ 0.2} _ 0 01 02 ThE L] plane with an effective dispersion: (k)= —2t[cosk,)

i Tt oy +cosk,)]—u', where y in T=xt+Jy is finite (uniform
3 RVB phase. At T=Ty they undergo a transition to

0.1 spin gap T 7] ; ;
AF ¢ : the d-wave paired state with order parameter(k)
d-wave SC = (A°/2)[coskx)—cos(<y)]. This spin-gap phase is character-
0g 005 o 015 03025 iz_ed by a ggpA(k) for spin excitatio_ns, and is asspciated
Hole filling x with the spin-gap(or pseudogapregime observed in the

normal state of underdoped cuprates. The bosons, on the

FIG. 2. Main figure: Mean-field phase diagram for a single other hand, show Bose condensatidn)#0 at T=Tge.
Su(;)z layer W.it.ht:ﬁ' Td.andTBE den(()jte tra?sitio? ;emperatures Bulk superconductivity is present faf<T.=min{Ty, Tgeh
o d-wave pairing of fermions and condensation of bosons, respec- t ; ;
tively. TC:[:nin{ng Tee is the physicalT, for bulk d-wave super-IO Where<_CVTC1_z’_l>:<?I><?w><fwfw>%o- |r_‘ two dimensions
conductivity. The lines labeled AF indicate the magnetic instability T se 1S identified withTge=2axt, which yields a very large
of the bare(dotted ling and renormalized theorfcontinuouy, see  slope of theTgg line in the phase diagram. Fluctuations of
text, Sec. IV. Inset: Maximum gap® of fermions as function of gauge fields around the mean-field solution are expected to
hole filling atT=0. reduceT3 to reasonable valués.The T line sketched in
Fig. 2 corresponds to that situation, with a maximtigat an
optimal doping valu&,~0.15. The similarity of the spin-
gap and superconductingC) phase in mean-field theory
naturally explains the persistence of the magnetic resonance
f(s'E")—f(SE) into the spip—g_ap regime, although line-shggdamping ef-
(23 fects are missing.

In the following we focus on the SC statet-0, which
is reasonably reproduced by mean-field theory: In cuprate

w+SE—-S'E’+i0,

Heree=e¢j, 8’555+p, and similar forA, E. f denotes the duct th derd d ; h
Ferr furfion. superconductors the underdoped regionx,,; shows un-

We close this section with a remark on Bose condensauSual behavior off;, the superfluid density, and the maxi-
ton. From Eq. (93 the boson dispersion isQ,= mum gap as function of hole filling. The superconducting
—2ty[ cosk,)+cosk)]—u°, where for simplicity t’ =t* increases with dopingT.=Tge~x. The superfluiéj dgnsity
=0. Near the band minimunk=0 this becomes) ~Q pe=n°/m is given by the condensate density—n"/m"~x

- p

b b - ) of bosons for smallx, according to the loffe-Larkin
+k2m®, with the mass Ih°=2ty. From the solution of = formyla5” Thus pS~x, and the well-known experimental

Egs.(19) we get values aroung~0.4, i.e,m°~1/t. Intwo  observatioff ps~T, follows naturally. Tunneling and pho-
dimensions free bosons do not condense at finite temperatufgemission spectra are described by the Green’s function
T>0, however, the correlation length of the prOpagatorGw,(r,r’)=<7}'c“:w(r)~cl,1(7")>, where?t is expressed by

(b,b,) grows exponentially forT below TgE:,ZWX/Omb Eq. (2). In the superconducting state, where bosons are con-
~2mxt. InthexandT range we are interested i<Tge,  gensed irk=0, G splits into a coherent and incoherent part,
and the bosons can be considered almost condensed)i.e.,G=xg "™+ G"°°" whereg ®"™is the propagator of fermi-
—0 and(b,b, )~(b,b,)=x for any v,v’. ons. Thus the superconducting gap is given by dheave
pairing gap of the fermions. Its doping dependencé& a0
is shown in the inset of Fig. 2. Whenis reduced fromx,
the maximum gap actually increasgehereasTl . decreasgs

The slave-boson mean-field theory has been put forwards is seen in experimertit. ° At optimal doping mean-field
in numerous papef$>? originating in the resonating theory givesA®~0.3J~40 meV, which compares reason-
valence-bond[RVB) idea® In this section we review the ably with experimental valuesOn the overdoped side
phase diagram and briefly discuss some experimental impl>x,,, Tc=Ty, and we get the BCS-like result®~T,.
cations in the superconducting phasdat0. For simplicity Recently an alternative slave-boson formulation has been
a single Cu@ layer is considered, withi=2J. Figure 2  proposed>®*which extends the S(@) symmetry in particle-
shows the phase diagram, derived from the numerical solurole space of the 1/2 filled modglto the hole-doped case.
tion of Egs. (19. It resembles those given in the Within mean-field theory the superconducting stat& at0

literature>*>° except at very small doping— 0, where our appears to be similar to the more conventionél)dormu-

Ill. PHASE DIAGRAM
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lation we are using here, in particular the magnetic spin- 51— L B L e e e e
response is the same. | | | |
IV. EFFECTIVE INTERACTION - ar i

So far we have not considered the possibility of antifer- ? |
romagnetic(AF) order. It is known that wide areas of the = 3 [
mean-field phase diagram are unstable to AF d¥ié° We 2 |
determine the AF phase boundary from the diverging corre- @
lation length é5, which is extracted from the staticw( § 2r
=0) susceptibility. For a single CyQayer Eqgs.(20)—(23) v 5
reduce to ,

. =0.032
Xlrr(q’w) - XC 003
X(q'w):1+2J coga,) +cogq,) X" (q,») 24 0 — 1 1 .
Lcod gy ay) Ix" (g 0 0.05 0.1 0.15 0.2

with x in units*’ of (gug)2. The irreducible pary'" (g, ») Hole filling x
=X, (w) is given by Eq.(23) with p=(q,p,), p=(k,p,) FIG. 3. Main figure: Antiferromagneti¢AF) correlation length

and arbitraryp,. In Eq. (23), the internal summation is now ¢, at T=0 in units of the lattice spacing. Continuous liggx(x)
over the 2D Brillouin zone, (1/2N)X3—(1/N )Xy  for an effective interactionv=0.35 (see text The vertical dotted
=f7_77rd2k/(27r)2, and dispersion and gap function become line indicates the AF instability at;=0.032. Dashed line: function
0.2/\x—Xe, fitted to&x(X) for 0.033<x=<0.1. Inset: Static suscep-
— _1f sk T ' tibility x(q,0) (in arbitrary unit$ as a wave-vector scan ovet ()
e=e(k)=Ty—p with t°=0, #'=e(k+q), in the 2D Brillouin zone, fox=0.033 slightly above,. Shown is
a scan in {r,0) direction, scans in other directions look similar,
A=A(k)=Ay with A*9=0, A’'=A(k+q), indicating a commensurate AF transition=0.35 andT=0 as
above.

E=E(k)=Ve(k)*+A(k)%, E'=E(k+q). (29  gjgnificantly onx,. UsingJ— aJ in Eq. (24) we get a new
AF phase boundary, which is shown in Fig. 2 as the continu-
Ay, T,f) have been given in Eg$13), (15), and(16). At the ouspline AF. y g
Neel wave vectorQ=(m,) the static susceptibility takes 14 give another argument in favor of the simple interac-
the valuexar=x(Q.0), ang for_\zlvavg vezctorq close 0Q  tjon model, especially ther being independent of doping,
we getdx(q,0)=11(q— Q)"+ &ar] with £ae=Jxar- COM- e consider the correlation leng#ac(x) as function of hole
ing from high temperature or doping, an AF instability is fjjling. Figure 3 showséar, calculated withd— aJ. It di-
indicated by far) “—0. xar has been calculated numeri- yerges at a,=0.032 and decreases rapidly with additional
cally, the resulting phase boundary is shown in Fig. 2 as Yoping, following £xr(x)~0.2AX—x.. This behavior is
dotted line labeled “AF.” Our result is similar to the phase gnsistent with neutron-scattering measurenfémts LSCO
diagram obtained in Ref. 69. and results from high-temperature series forttdemodel’*
Appgrently, at zero temp%rature, AFlord.er occurg at 8he function ~1/\/§ represents the average distance of
quite high hole concentratior;~0.22, which is totally in- 45564 holes and has been used in Ref. 73 to interpret the
consistent with experimentx(~0.02). Furthermore, the q5i5 Finally it is noted that the AF transition»at occurs at
study of magnetic properties in the paramagnetic phase i$e Neel wave vectoQ= (, ), i.e., is commensurate. This
bound tox>x{, i.e., the overdoped region. The higlis an  is shown in the inset of Fig. 3.

artifact of the mean-field approximation. Within the gauge-

field approach it has been shoffithat the AF ordered state V. MAGNETIC RESONANCE

at 1/2 filling x= 0 is quickly removed fox>0. Furthermore _ _ i

it is knowrP®"172that the interaction of spin waves with This section presents results for the magnetic response at
doped holes destroys AF order at a snxall In order to treat  the antiferromagnetiéAF) wave vectoiQ=(, ). We con-
underdoped systems we include these physics in a phenorilder a single Cu@layer with a nearest- and next-nearest-

enological fashion. We assume a renormalization of the magP€ighbor hopping=2J andt’ = —0.48, appropriaté***for
netic interactiond,, in Eq. (20), such thatx? is reduced to YBCO. Effects specific to the bilayer structure of YBCO and
somex.~0.03. The model is to replace BSSCO, namely the splitting of the magnetic response into
: acoustic and optical modes, will be discussed separately in
J—ald, a=0.35-x.~0.03 (26) Sec. VII.

in Eq. (21), J* stays unchanged. The actual valuewofis A. Results for the AF wave vector(ar,#7)

equivalent to choosing a specific critical dopixg As long The dynamical susceptibility is obtained from E@4)
asx. is physically reasonable<{0.05), results do not depend with the effective interactiod— aJ, a=0.35 introduced in

014502-6
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FIG. 4. Magnetic response at the AF wave vectat %) for a
single CuQ layer near optimal dopings=0.12. Parameters ate
=2J, t'=—0.4%. Main figure: Imaginary part of the bubbjé™ in
Eq. (24). Shown is the superconductor B0 (solid line) and the
normal stateT=0.2)>T_ (dashed ling The dashed-dotted line is
the inverse Stoner-factdk (see text for T=0, scaledX(—5).
Inset: Imaginary part of the resulting susceptibility Eq. (24), for
T=0 (solid line and T>T, (dashed ling The sharp peak visible
for T=0 is actually aé function, broadened by a small damping
used in the numerical calculation.

the preceding section. The integration in E83) is per-
formed numerically on a 50005000 lattice ink space, with
the infinitesimali0, —i2I" replaced by a small finite damp-
ing 2I"'=0.001].

Calculations for a fixed hole filling=0.12 near optimal
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FIG. 5. Magnetic response at wave vectar, ) as in Fig. 4,
for optimal to underdoped hole filling in the superconducting state
T=0. Main figure: Imaginary part of'"". Curves are identified by
the respective onset of spectral weigtitreshold, which is 0.54
for x=0.12 and decreases for=0.08,0.06,0.04,0.023 down to
0.09). Inset: Imaginary part of the susceptibiligy Here the peaks
are broadened to an experimental resoluti®®wHM) of 4I'
~5 meV.

maximum (FWHM)] of 4I'~5 meV through a damping
i0,—2I'=0.02] in Eq. (23). Whenx is reduced fromx
=0.12 the gap), in Im x'"" decreases monotonously, and
with it the resonance ab,.s=(); moves to lower energies.
w;es reaches zero at the AF transition, which occurscat
=0.023 for the parameters used hexg depends slightly on
t’, sincea=0.35 is held fixedl Note thatw,.s moves oppo-

doping, based on mean-field parameters from the selfsite to the maximum gap®. The latter increases when

consistent solution of Eq$19) are shown in Fig. 4. In the
superconducting(SC) state atT=0 the imaginary part

decreasegsee Fig. 2 and is reflected in the peak in g’
at higher energies»=2A%=0.72-0.80 in Fig. 5. The spec-

Im ¥ (Q,w) of the irreducible bubble is characterized by atral weight W= [dwlm y increase€ when x is reduced,

gap up to a threshold ener@y,~0.54], with a steplike van
Hove singularity(v.H.s) at the onset of spectral weight at
w=0Q,. A peak ato~2A°=0.72] is remnant of the density

since the system is shifted closer to the magnetic instability.
For a quantitative comparison &Y we follow a procedure
applied to experimental INS data in Refs. 76 and 8. ¥or

of states of thed-wave superconductor. The corresponding=0.12 the flat normal-state spectrum is subtracted as a back-
real part is shown in Fig. 4 as the inverse Stoner-ground from thelT =0 curve shown in Fig. 5, inset. Integrat-

enhancement factok(Q,w)=[1— a4JRey'" (Q,w)]. By

ing only the positive part of the resulting difference spectrum

virtue of the Kramers-Kroenig transformation, the step at thegives the weight\ W of the resonance compared to the nor-

threshold()q in Im x''" turns into a log singularity in Rg'™,
and K(Q,w) crosses zero at an energy,es=0.51<(),
within the gap. This leads to an undampé&dike resonance
at w,es in the magnetic response IpfQ,w), as is shown in
the inset of Fig. 4. The positioa,.s=0.5J~60 meV is not
too far off the ~40 meV observed in optimally doped

YBCO and BSCCO. The situation changes drastically in go-

ing to the normal statdf>T.~Ty. As is seen from the
dashed line in Fig. 4main figure, Im x'"" (Q, ) loses its

mal state. We findAW=1.55u§, which agrees well with
optimally doped YBCO. With reducing the resonance also
develops some intrinsic damping. The step height at the
thresholdQ in Im x''", which is responsible for thé-like
resonance, decreases and eventually vanishes argund
=0.09.

The effect of overdoping is presented in Fig. 6. Wixds
increased from 0.12 up to 0.3, the p-h threshélq in

Im x'"" and with it the position of the resonance first grows,

structure; in particular the gap vanishes. The correspondinbut w,e Starts to decrease arourer 0.18. This trend is con-
K (not shown in the figurebecomes equally structureless sistent with recent INS experimefht®n overdoped BSCCO,
without any zero crossing, leading to a vanishing of the resowhere the resonance appeared at an energy reduced

nance in Imy in the normal statéinset of Fig. 4.

The effect of underdoping is demonstrated in Fig. 5. For

comparison with experiment Imp in the inset has been
broadened to an experimental resolut{dull width at half

from the optimally doped cas8.

Figure 7(left) summarizes the doping dependence of the
resonancew,es is always located slightly below the thresh-

old Q, to the damping particle-hole continuum. Near the
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FIG. 6. Magnetic response qt= (7, 7) for optimal to overdop-
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It has been pointed out above that the resonance depends

on thed-wave gap to be present, i.e., the superconducting or
spin-gap state, and a sufficient next-nearest-neighbor hop-
ping t'<0. The influence oft’ becomes apparent, if the
bubble """ and the resulting magnetic spectrum ynat T

=0 are recalculated fdr =0 (not shown in the figurgsThe
response Iny no longer contains a resonancelike peak, al-
though the spectral weight is conserved. Only for small

— X, at the magnetic instability Ing develops a Goldstone
(Bragg peak. The bubble spectrum at the thresh6lg
=2|uf| now follows Imy'"(Q,w)~ Jo—Qy0(w— Q)

for the whole range of, and a steplike v.H.s. never appears.

B. Discussion

The results presented above compare well to neutron-
scattering experimenfs® The variation of the resonance en-

ing at T=0. Parameters as in Fig. 5, except hole filling. Main fig- ergy w,es with hole filling x is reproduced in the

ure: Bubble spectrum Ing'™ for x=0.12 (curve 4, 0.14(b), 0.18
(c), 0.24 (d), 0.30 (e). Inset: Corresponding Img, broadened to
4I'~5 meV.

underdopedi”"®*?and the overdopéd®!! regime. At opti-
mal doping the resonance appears resolution lim{tel a
delta function in the SC state onl§ and its energy and

spectral weight are comparable to the values measured in

magnetic instability’ at x=x.=0.023 and around optimal
dopingx=0.1-0.2, the resonance issaunction, well sepa-
rated from the continuum. The&-dependent threshold is
given by

experiment In the underdoped regime it is obtained also in
the spin-gap pha&é'?aboveT,; the observed line shape

(damping is not reproduced in mean-field theory. YBCO and
BSCCO are bilayer materials, i.e., consist of two coupled

CuG, planes per unit cell. However, for the resonance to

2|uf|No(2—0) for o<1

= 2
0 2| uf| for o=1 @)

emerge the bilayer structure is not important. Rather, in op-
timally and slightly underdoped systems it depends on a
holelike Fermi surfacdi.e., a sufficientt’<0) and a finite

d-wave (spin) gap. As will become clear in Sec. VIl this

with o= (A%)%/8xt’ uf. Forx<x~0.09 it iso>1 and there-

conclusion is not altered if the double-layer structure is taken

fore Qo=2|uf|. That is, in the underdoped regime the reso-into account.

nance energy follows the chemical potentiall|=—u' of

The slave-particle approach reproduces quite satisfacto-

the fermions, and thus increases with hole filling. The gagily the resonance energy,.s in the underdoped regime,
A°, on the contrary, decreases. This is illustrated in the righthere o, is not connected to the maximum gay®, see

panel of Fig. 7. Arounck=0.13, where|u/|=A°, a cross-
over into the overdoped regime occurs, wherg~2A° for

Fig. 7. wes IS given by the pole of Eq24), i.e., the energy
of the bound state in the particle-hole channel of the fermi-

largex. The increase o, turns into a decrease. Compared ons. In the underdoped regime,.s<2|u'| follows the

to experimenit the latter is too weak; this is due %° (and
T.=Ty) decreasing too slowly witk in the self-consistent
mean-field calculation.

chemical potentialuf|=—u'. u' refers to quasiparticles
(the fermion$ which emerge from the mean-field description
of thet-J model and are strongly renormalized. They propa-

gate with hopping matrix element§=xt+§J5(~xt

06 ' ' 4 F AR R F-
y 1
£
- 22’ 2] ]!
; 04 - i Sl l'. ] 0.8
g - ST J 06
G o2k f — {4 F Q 4 04
Ores - 402
0 P ’ L 1g
0 0.1 0.2 03 0 0.1 0.2 0.3
hole filling x hole filling x

+0.15), t'=xt’, and hence Fermi velocityr~xvg, that

are reduced from the bare parameters by the small Gutzwiller
factor x<0.15. The latter mimics the reduced phase space
due to local correlations in the doped Mott insulator. Accord-
ingly || comes out small enough, such that in the under-
doped regimduf|<A°, and w,es=2|uf| is determined by

| '], which increases with hole filling. In contrast, if un-
renormalized quasiparticle@QP) are assumed with bare
t,t’,vg, the chemical potentia|u|~(1/x)|uf|>A°, and
wres=2A° is connected to the gap for almost all which

FIG. 7. Left panel: Particle-hole excitation threshdlj, and
resonance positiom,s as function of hole filling in the SC state.
Qg is given by EQ.(27), and w,s is the energy of the peak maxi-
mum in Imy, extracted from plots like Figs. 5 and(isets. Right
panel: Comparison of),, the chemical potentiak'=—|uf| of
fermions, and the maximum gap".

be
on
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decreases witkx. To achieve a satisfactory result from un-
renormalized QP the effectiveesidual interactiorf® has to

made doping dependent. This is the case in theories based
the spin-fermion modéf;?® where the coupling constant

is controlled by a magnetic correlation length, which can be
chosenx dependent.
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C. Properties of the p-h thresholdQ

In the remainder of this section we study in some detai
the origin and qualitative properties of the threshflg in
the bubble spectrum I (q,w) at q=(m, 7). The pres-

ence of this threshold and the steplike onset of spectral

weight at w={) in the superconducting state lead to the
sharp resonance. We consider yfi at T=0, which reads
from Eq. (23) with Eq. (25) for ®>0

Imx"f<q,w>~§ Ho—0(q,k)]. (28)

BCS coherence factors have been ignored. It is determined

by the particle-hole (p-h) excitation energiesQ(q,k)
=E(k)+E(k+q) of fermions. The pair momentui is set

to Q=(, ) in the following. Figure 8 illustrates the situa-
tion for x=0.12 near optimal doping, corresponding to the
spectra shown in Fig. 4. In the normal state-T. a p-h

excitation connects two points of the underlying Fermi sur-

face (FS), and the threshold),=minQ(Q,k) is 0. In the
superconducting state a finif@, is at first sight surprising,

since thed-wave SC has a finite density of states. However,

when the FS collapses to nodes, a minimum endélgy-0
has to be paid for p-h excitations with wave vec@r It
turns out thatQ(Q,k) is minimal, if E(k)=E(k+Q)
=0 /2, with the lines of constant ener@(k) = /2 touch-
ing the reducedmagneti¢ Brillouin zone at eight points.
These points are connected Ky as indicated by the full
arrow in Fig. 8. ApparentlyE(k)=Qy/2 is very flat near
these points, close to @ynamig nesting condition. This is
due to the band structure of the underlying normal state, i
particular thet’<0, and the presence of tletwave gap
A(K). The resulting p-h dispersiof (Q,k) is shown in the
inset of Fig. 8. It displays two minima per 1/4 Brillouin zone
with energy Q(Q,k% =0, which fall on the linek?+k)
= 1. The neighborhood of these minima is quite flat, &hd
can be expanded d3(Q,k)~Qq+a;(k;)?+ay(ky)?, with
ko= (1/V2)[ (ke k) = (k,—k))] and relatively small
a;,a,>0. Equation(28) then shows a steplike van Hove
singularity (v.H.s) at Qq, Imyx"(Q,w)~0(w—Q)/
Vaja,. The value of(), is given by Eq.(27) with o<1.
When the hole fillingx is reduced, the two minima in
Q(Q.k) move closer, until they merge &f=k)= /2 for

x=x=~0.09, which corresponds =1 in Eq.(27). The step
v.H.s. vanishes on the courgsee Fig. 5 since Q(Q,k)

becomes increasingly steep kq direction. Forx<x we
haveo>1, and Imy'"™™ may be approximated by settirg
=0, leading t&° Im y'""(Q,w)~ Jo— Q@ (w—Qy). l.e.,
the step at the threshold, has changed into dw behavior.

VI. INCOMMENSURATE RESPONSE

The resonance a#,.s=40 meV, as well as its relative in
underdoped samples with reduceg.s<40 meV is charac-
terized as a singldcommensurajepeak atq=(m,7) in
wave-vector space.*’ Above the resonance energy an in-
commensurate structure has been obset/&d’with broad
maxima following a dispersion similar to spin waves. Re-
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FIG. 8. Origin of the threshold for particle-holp-h) excitations
with wave vector ¢, ), corresponding to the spectra in Fig. 4.
Main figure: 2D Brillouin zong(BZ) with the underlying normal-
state Fermi surfac@S) for t=2J,t’ = —0.4% as dashed lines. The
dashed arrow indicates a p-h excitation wgth (7, 7) at a minimal
energy (),=0. In the superconducting state the FS collapses to
nodes(indicated as dojs andQ,>0. The full arrow connects two
constant-energy lines of quasiparticlegk) = /2. Inset: p-h ex-
citation energie$)(q,k) of the superconductor fay= (7, ) in the
upper right BZ/4. Shown are the mininfd, as dots and the first
five higher energies as lines. Line distance is 0.05

cently, inelastic neutron-scatterinfNS) experiments on
underdoped®**58° and optimally*"8! doped YBCO re-

P(ealed that also the magnetic response below the resonance

position shows incommensuration: Four distinct peaks ap-
pear atq=(w=*4,7) and (w,7*35), which move away
from (7r,7) with decreasing energy, i.e., are described by
some “upside-down” dispersiotf*” The incommensurabil-
ity is of “parallel” type; peaks are displaced inm(,0) and
(0,7r) direction from @r, ), similar to those observéd*in
LSCO. This is not expected in d&wave BCS picturé?82
since at low energies the particle-hole excitations from node
to node should dominate, leading to four peaksqat(w
+6,w£6"). In this section we demonstrate that a parallel
incommensurability actually occurs in a range of energies
below the resonance.

A. Structure of the magnetic response in wave-vector space

Figure 9 presents wave-vector scans of the magnetic sus-
ceptibility Im x(g, ) for YBCO in the superconducting state
at T=0. For comparison with INS data an experimental en-
ergy resolution £~5 meV has been simulated through a
quasiparticle damping’=0.01]. For = w,es SCans in par-
allel (7,0) as well as diagonaklA, ) direction show a com-
mensurate sharp peak. When energy is increé@sgdpanel,
the resonance first evolves into a broad incommensurate
structure with maxima dispersing like spin wa$é§. At
higher energies aroundA2~1.5w,. this turns into some
featureless background. When the energy is reduced from
wyes (Middle pane), the peak also splits in parallel as well as
diagonal direction, suggesting a circular structure space.
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(r,0)-direction (r, 7)-direction ing weakly on energy’ From the calculation af >T ~Ty
30 - g - g y g - we get indeed a response almost independent of wave vector
= and energy, as is expected from the absence of nesting prop-
N} 20 erties of the underlying Fermi surfa¢eee Fig. 8 Note that
g both the commensuratat w,.s) and incommensurate inten-
§ sity vanish in the normal state, as is obsefVed INS. The
= 10 situation is different in underdoped YBCO, where the spin-
5 gap regime is entered &>T.. In mean-field theory the
o L= : s . : s spin-gap phase is similar to the SC, with the SC gap becom-
-0.2 -0. - 20 - : . ing the spin gagsee Sec. l). Therefore the pattern in the
E L T ] '0 ' ' ' ' magnetic response ai< w,s persists ail >T., which has
<) s 0.95 ] also been observed in underdoped syst&ASExperimental
“220 | ---- 0.9 T line shapes at>T_ are not reproduced in mean field; how-
}; -=-08 ever, we expect significant damping in the spin-gap phase if
Sl —= 07 ] fluctuations are included.
Qo
g ///‘\ //\~§ . .
0 BEECTL Yna=y Y [ope F g B. Dynamic nesting effect
1.5'0'2,'?'1 ? , 0;1 : 0.2- 0'2,'?'1 ? , 0;1 : 02 An explanation of the incommensurate pattern bedas
in the superconducting state can be found in the dispersion
) E(k) of the Gutzwiller-renormalized fermioff8.At vanish-
2 1 ing energyw— 0 only particle-holgp-h) excitations()(q,k)
§ with g connecting twod-wave nodesE(k)=0, E(k+Qq)
205 =0, are possible. At finite hole doping the nodes are shifted
g from (*@/2,=xw/2) towards thel’ point (0,0); thus the
< 0 bubble spectrum Iy’ features peaké at q=(7+ 4", 7
_0,2 _0,1 0 +¢§'), diagonally displaced fromst, 7). The curves for low

wlwes=0.2,0.3 in Fig. 9 are still dominated by this type of

_ p-h excitation. With increasing energy a different process
FIG. 9. Wave-vector scans of Imx(q,) at fixed energy>,  gains importance, where connects two contour€ (k)

for t=2J,t'=—0.4%,x=0.12 in the superconducting state Bt  _ /> iy the Brillouin zone. Eack-wave node is surrounded

=0. A quasiparticle damping’=0.01], corresponding to an ex- b “ » :
; . such a “banana-shaped” contour, and in an energy range
perimental energy resolutioFWHM) of 4I'~5 meV has been y P gy g

) ) _ B around wi,.~0.7w,.5, Where the parallel incommensurate
used.q is measured from £, m): Oy =Gy =7 8= V&T . jayern in Imy(q,wc) is most pronounced, thesg(k)
Left column: Scans in4,0) direction, i.e.,5,=0. Right column: . .

S " i Y . show almost flat pieces parallel to the magnetic zone bound-
(7r,7r) direction, 6,=J,. Top row: Sequence of energies wqs S : . . DUEaRS
=1.0-1.4 at and above the resonance enesgy=0.5]. Middle ary. This gives rise to a dynamic nesting contribu .
fOW: @/ w;es=1.0-0.7 at and below, ... Bottom row: Energies far Which favors peaks afj=(m = 6, m),(m, 7+ ). In particu-

below w,e., showing a crossover from parallel to diagonal incom- &7, atw= win a ratio of intensities , /1 4jag=2 is expected
mensurability. Note the different vertical scale. from the nesting argument, which is close to the value drawn

from the numerical calculatiofFig. 9 as well as experi-

However, the maximum intensity is higher inr(0) direc- ment. An illustration of this effect has been given in Ref. 42
tion, reproducing the experimental observation. The casé Fig. 5.
wlw,eg~0.7 can be compared to a stddyn underdoped In the preceding section it became apparent that the com-
YBa,CuzOg 6: The ratio of maximum intensitiek, /1 giag mensurate resonance atr,r) depends on a sufficiently
~1.7 from Fig. 9 is consistent to the 2.0 we read off the large next-nearest-neighbor hoppitig<0. With respect to
INS data in Ref. 35. The rangé= 6,=0.052—-0.065 of the the (paralle) incommensurate pattern this is not the case:
displacement of peaks inm(,0) direction is comparable to The underlying dynamic nesting effect is a general feature of
experimental valués reported®*’ for the same range of en- the d-wave superconductor. This is confirmed in a calcula-
ergiesw/ w,.s=0.8-0.7. In the bottom panel, where the en-tion of q scans fort’=0: The parallel incommensurability
ergy is reduced even furthdr,,, starts to weaken relative to dominates for energies above the crossover from the diago-
lgiag- FOr w/w;¢s<0.35 the peaks in the diagonatr(m) nal one and below=2|u'|, where Imy becomes broad and
direction eventually dominate, as is expected froohwave  commensurate.
superconductor in mean-field theory at—0. However,
such a crossover from parallel to diagonal incommensurabil-
ity at low w is not observed in experiment. At low energies
the INS data indicate a strong isotropic suppresSirsimi- Returning to the casé = —0.4%, for energies increasing
lar to what is seef?®*in LSCO. towards the resonance ener@y,s the incommensurate pat-

In the normal state, INS on the optimally doped com-tern eventually merges into the commensurate resonance, as
pound shows a broad commensurate peak, its width depent seen in Fig. 9, middle row. This is due to the final-state

d/2n

C. Dispersion of the resonance
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FIG. 10. Wave-vector scans inr(0) direction as in Fig. 9, left
column, but with 4'=0.002). Shown arew/w;¢s=1.0,0.9,0.5.
Left: Bubble spectrum Iny'™". Right: Magnetic response Ij The
curves for 1.0 and 0.9 are scaled).01; the one for 1.0 features a
S-type peak, see text.

o
S

interaction Eq.(24), which develops a pole at the commen-
surate position f,7) for o= w;es. IN Fig. 10 scans similar
to Fig. 9 are made in+t,0) direction, with the “experimental
damping” omitted. Forw/wes=0.5 the bubble spectrum
Im x'"""(q,w) features two humps in#,0) direction, and is
zero outside these regior(#eft pane). This is due to a
g-dependent thresholf o(q) =min,Q(q,k). With the inter- FIG. 11. Dispersion in 4,0) direction forx=0.12. Parameters
action aJ switched onx'"" — y, the humps are merely am- as in Fig. 4. Shown is a sequence of wave vectds
plified in intensity (right pane), and the nesting argument =(0-0.12)2r, 5,=0. Bottom panel: Bubble spectrum " In-
can be applied as above. When is increased, the two set: Zoom of the threshold region. Middle: Inverse Stoner factor
humps move closer. Additionally, sharp peaks appear ifKX(—1). Top: Resulting response Ignfrom RPA.

Im x, which eventually merge in a singtlike resonance at

(m,m) for o—ws. The incommensurate structure still pigher energies. It appears merely as a broad peak or shoul-
present in the bubble spectrum ®fw,es=1.0 is completely  ger within the damping continuum. It is responsible for the
superseded by the pole of E@4). The latter is driven by the spin-wave-like dispersion of broad maxima abavg., in

bUbEIGd’S rteal part Re", which 3ttwd:“t’)festki]s ;trtonglyi_ Fig. 9 (top). The resonance, on the other hand, follows an
g(ea)EJ[SOS%;)WJ)FCIQSS)]Spviﬁ?éhazjzs favorz theeV\Ilr;\/e;a\/Celco-n upside-down dispersion and produces the incommensurate
torq(n- ) e peaks beloww, in Fig. 9 (middle row).

It is instructive to look at the commensurate- <esSults for the ¢,0) direction and doping level=0.12
incommensurate crossover also in energy space, using the & summarized in Fig. 1@op). It displays the p-h threshold
I ) . | o sp using 0o(q), the second onset of spectral weidhs(q), and the

scans in Fig. 11 for several fixed wave vectéts=q,— , o . . .
q,= 7. At q=(,7) the bubble spectrum Ind" (q, ) fea-  esonance positiom,.5(q) where it exists. For comparison
y ' ! !

tures a single steplike onset of spectral weight at the particlgh® P-h thresholdi;4(q) in (7, ) direction is also shown.
hole (p-h) excitation threshold),; its consequences for the IN contrary to Qo(q) it has zeroes aw,= +(y2ke—),
formation of the neutron resonance have been discussed Whereq connects twal-wave nodes. In addition the energies
Sec. V above. In Fig. 1(bottom it is demonstrated how this of the van Hove singularitie$v.H.s) associated with &,
threshold splits into two structures as we move away fromare given in the figure. A= (m, ) the bubble spectrum
(wr,7): the p-h threshold)y(q) itself, shifting to lower en- Im x'" (Fig. 4 shows a single v.H.s. ab=2A%~0.72.
ergies, and a second steplike onset of additional spectr&drom Fig. 11(bottom it can be seen that this v.H.s. splits
weight at someQ),(q)=Q4(q), which shifts up withd,. into three peaks with quite flat dispersion.

The denominator(real pari of Eq. (24), K(g,w)={1 The effect of strong underdoping is demonstrated in the
+a2J[ cos@y) +cos@l,) JRex'" (q,w)} thus shows a splitting  bottom panel of Fig. 12 fox=0.06: The p-h thresholf}, at

of the corresponding log singularity into twianiddle panel gq=(m,7) and with it the resonance position shift down
in Fig. 11), which in turn produces two peaks in the magnetic(compare also Fig.)7 Theq range, where a sharp resonance
response Iny(q,») (top panel. One of these peaks dis- exists, shrink§! and the upside-down dispersion narrows.
perses to lower energies and is identified asgfiependent On the other hand, the v.H.s. around R as well as the
resonance, since it is located below the threslidddg) and  maximum of Q, vary only weakly with doping 4, in-

is therefore sharp. With increasingy its spectral weight is creases slightly with underdopingrhis will become impor-
continuously reduced, since the height of the stef gtq) tant in the calculation of wave-vector integrated susceptibili-
in Im x'"" decreases. The other peak nBsxq) disperses to ties in Sec. VII below.

Amplitude / (i1,/J)

0.2 0.3 04 0.5 0.6 0.7
Energy / J
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T y T y T ' VII. EFFECT OF THE COUPLING IN THE DOUBLE
LAYER

So far we have considered a single Gulayer as the
most important structural element of cuprate superconduct-
ors. However, YBCO and BSCCO contain two coupled
CuG, planes per unit cell. The observed susceptibility actu-
ally follows®3441:95

Energy / J

d
x(q,qz,w)=x*<q,w)cosz<§qz

d
+X(q,w)sin2(§qz>.

This form reminds us of the odd~) and even ¢) linear

el combination of spin waves in the undoped parent
,,,,, 24, T compound®®’ q is the in-plane wave vector as beforkis
- 06 the distance of the planes within a bilayer sandwich. We used
- the single-layer model as an effective model for the odd
% 0.4 (“acoustic”) susceptibilityy ~ (g, ). The experimentally ob-
S served neutron spectra in the odd mode, in particular the

resonance afj= (7, ) and its doping dependence are well
reproduced by the single-layer model. Our description of the
AV ] resonance in Iny” ((7,7),w) does not rely on the bilayer
0_02 : _(;1 A4 (') - 0'1 — structure of the material. The important ingredient is the to-
' ' 5. /on ' ' pology of the underlying .Ferml surfac;e in combmapon with '
X the d-wave superconducting state. This has been discussed in
FIG. 12. Dispersion of features of the bubble spectrumyiin detaﬂ in Sec. V above. The evefoptical” ) mode spectrum
and the spin-1 bound stateesonancgin Imy. 8,=(q,—m), q, IMx ((7,7),») appears different in experiment. It shows
= . Shown is the p-h threshold,, the second onset of weight,, ~ Merely a broad peak with dim intensftyn this section the
and the three v.H.s. associated with 2 The positionw,s of the  calculation is extended to the bilayer system. It is shown that
resonance is indicated by squares. The p-h threshgds also  the suppression of the resonance in the even mode is mainly
given in (7, ) direction as) ;g - a consequence of the interplane exchange couglingrhe
odd-mode susceptibility, on the other hand, resembles the
one obtained from the single-layer model.
The bilayer modes have also been explored by averaging
The parallel type of incommensurability, i.e., @ maximumthe experimentally measured magnetic response over the in-

0.2

D. Discussion

intensity at the pointg)=(m, 7+ 8),(7w+ §,7) in the Bril-  plane Brillouin zon&:3441.%

louin zone is a generic feature of tdewave SC state. In an

energy range below £° the intensity is enhanced at these . = d?q .

points due to the dynamic nesting mechanfémt very low Im Xz‘o(w):f f W(zw)z”n x (q,0). (29)

energies, on the other hand, excitations from node to node in
(7,r) direction dominat® and lead to a crossover to the After the q integration has been performed the odd mode
diagonal type as»—0. It should be noted that the parallel spectrum Imy,(w) is still dominated by a sharp resonance;
incommensurability is not related to “stripe§?**'%*i.e., it occurs at the same energy,..<40 meV as in
we do not consider the possibility of a combined ordering ofim y~((#,7),w), but with significantly diminished
charge and spin into quasi-one-dimensional structures. Ingmplitude® In the even ) mode a second energy scale
commensurate pattern in Ig(g,») and their dispersion pecomes apparent. Igg, shows no resonance, but a rather
have bsegelrgz obtained Zz‘gvgg‘ similar  slave-particle proad peak®! or soft onset of spectral weigft The location
methodsl, S192BCS theory!” o 2F the FLEX approxima- whymp—80 meV of this humplike structure is almost inde-
tion for the Hubbard modéﬁ_' The present slave-particle pendent of doping, in contrast to the strongly doping depen-
a_pproach predlcts hOW the dispersion c_)f the res_onm' dentw,.s. The hump also appears mbter les$ clearly in
ciated withQo(q) in Fig. 12 and the spin-wave-like disper- e o4q () mode. 3, will be studied later in this section.
sion of broad peaks above [ifollowing ~€5(q)] change 4 yms out that particle-holép-h) excitations across the
with underdoping. Wher is reduced, the peaks connected 10 maximum gapA° lead to a humplike peak in both modes in

Q,(q) should be observable in a wider energy range abov + 0 ; i
the resonance. Furthermore, near the bottom(ef at q ?me- atan energy=24" almost independent of doping.

= (7, 7) the density of states and thus the damping is re-

duced, leading to sharper peaks in the underdoped case. A. Results for the bilayer system

Experiment®®* actually indicate that dispersing “spin- Theoretical expressions for the susceptibility of two
wave” peaks abovew,.s are better resolved in the more un- coupled planes have been derived in Sec. Il. From E§5.
derdoped sample. and (20) the mode susceptibilities are given by
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40 — 1T 71 - r T
Nsmso [ — odd | R [ x=0.06 odd mode
Es [ ---- even =22r IMitzn ]
o 20 - Eal ]
© ~
2 B 4]
510 = 3
£ - e
0! . g
0 02 04 086 0 02 04 06
Energy /J Energy / J 0 r
FIG. 13. Odd- and even-mode susceptibilitpaginary part of . ' ' t
a bilayer system, for fixed in-plane wave vectpt (7, ). Param- 1 My oirt N even mode 1
eters are t=2J, t'=-04%, «=0.35 T=0, 4I'=0.04 S5 [ [ — odd ] m ]
~5 meV as in the preceding sections, ahd=0.2], t; =0.1t. N;T L[ --- even Xeo 7]
irr B L1 1 |_
N Xp (@) g |0
Y (qw)= ~+p - (30) E 0 02040608 1
1+35 (X" () 5
) < + S S emmTTme——
in units of (Qug)?. x,' is obtained from Eq(23) vv+ith_p
=(q,p,) andp,={0,7} for the modeq+,—}. The y~ dif- oL =
fer in their respective irreducible particle-hole bubhig’ 0 01 02 03 04 05 06 07 08
and the effective interaction E¢26), Energy /J
I =ad(q) =I5,  I(q)=2J[co +co ] FIG. 14. Wave-vectoq integrated odd- and even-mode suscep-
(@ (@ (@ [costay) a1 tibilities Im y,p from Eg. (31) for hole filling x=0.06-0.18. Pa-
For the in-plane parameters we take=0.35{=2J,t'= rameters as in Fig. 13. Inseg:integrated bubble spectrum Igjf

—0.4% as before, and for the coupling of the two CuQ for x=0.08. The maximum is located close 4 %=0.78.
planes within a bilayer we chose an antiferromagnetic ex-

changeJ' =0.2J and an interplane hoppifitf*® Similar to the case of fixed=(, ), a resonance appears
only in the odd mode. It appears at the same position as in
t'(q)=2t"[cogqy) —cogq,)]*+ 15 Im x~ (wr,7) with the same strong doping dependence. Ad-

. ditionally, both modes Iny,5(w) show a broad peathump

1 1 _ 2D

with t°=0.1t andto.—O. . at an energy somewhat belowA2, almost independent of
We assume an in-plane superconducting order paramet%pmg (2A9~0.78) for x=0.08). For an explanation of this

A® with equal amplitude and phase in both layers. The Selfhump we first go back to the single-layer case: The spectrum
consistent solgtlo-n of the mean-fleléj equatiol®) then Im ¥ (q, @) of the irreducible p-h bubble shown in Fig. 11
leads to a vanishing interplane ga‘izo [Egs. (13) and (bottom is dominated by peaks aroundA2 These van
(14)] and a very small RVB amplitudg* ~0.03, which has  Hove singularitiesv.H.s) follow the quite flatg-space dis-
been defined in E(17). Therefore the influence of ,.J-on  persion shown in Fig. 12. When the wave vector is integrated
the fermions that con§t|tu'[,ep is _merely a smgll spl!ttlng of over in Imxas(w)=/1"_[d?q/(27)2]Im " (q,®), the
the band structure into bonding and antibonding bandg H.s. contribute a large density of states, leading to a broad
through the effective interplane hopping(k)~xt-(k). peak with maximum ato=2A°. This argument extends to
Results for fixed in-plane wave vectqe= (7, 7) are pre-  the bilayer system: The hump appears almost identically in
sented in Fig. 13, with “experimental” energy resolution both modes of the bubble Iyby " (), which is shown in
4T'=5 meV. A resonance appears in the odd mode suscephe inset of Fig. 14. Its position follows A to slightly
tibility, which varies with doping as in the single-layer case. higher energies for reduced doping lewel
The even mode, on the other hand, shows a broad peak with When the final-state interaction E@Q) is switched on in
much reduced intensity. This is mainly due to the modethe odd () mode, the resonance appeé&se Fig. 14 top
dependent interactiofd * (7, 7)|<[J” (s, #)| in Eq. (30),  Since spectral weight is shifted to lower energies, the hump
which shifts the pole in the eveny) mode into the damping is relocated to arx-independent position belowA?. The
continuum. The damping effect is supported by the aboveeven (+) mode (Fig. 14 bottom experiences a weaker
mentioned splitting of fermion bands. It should be empha+enormalization through Eq30), no resonance is formed,
sized that the resonance in the even mode is not totally sugnd its hump is relocated less strongly. Recent FLEX calcu-
pressed, but shifted and strongly damped. In experifrent lations for a three-band single-layer Hubbard model in the

similar observation has been made. overdoped reginf& give results for Imy,p(w) comparable
A different feature appears if we look at the wave-vectorto our odd mode susceptibility.
integrated susceptibility Eq29), which is shown in Fig. 14. The intensity of the resonance in gy(w) is much re-
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duced from its value in Iy~ ((7r,7),w) measured at fixed C. Discussion

wave vector. Therefore in Inyp the resonance ab,.s and The wave-vector integrated magnetic response in under-
the excitations across the maximum gapogtm;<2A° are  doped systems is characterized by two energy scales with
of comparable intensity and can both be observed experppposite dependence on the doping level. The first is the
mentally. This is due to the fact that the latter OCCupy a |al’g%osition Wres of the “41-meV resonance,” which appears in
part of the in-plane Brillouin zon€BZ), while the resonance  the odd (-) mode for fixed wave vectoy=(,7) as well
is just a narrow peak ig space. Despite its large amplitude, as in theg-integrated susceptibility. It moves down in energy
the resonance Contribut+es Only little to qu) For the ac- when d0p|ngx is reduced and becomes a Bragg peak at the
tual computation of Iny;, we used wave-vector scéfisn  transition to the AF ordered state &tXx.. The second is
(7,0) direction like those shown in Fig. @xtended to the essentially the maximum gap®, which increases with re-
whole B2) and assumed a susceptibility isotropic around ducedx. It determines the positiown,mp, of the additional
(m,m), i.e, broad peakhump. The latter appears in both bilayer modes,
but only if the in-plane wave vector is integrated over. The
1 (= hump is caused by particle-hole excitations acro&$,znd
XZID(Q,): 2—[ k dky=(q,w), q=(7+Kk,m). (31 is pulled down somewhat by the final-state interaction Eq.
o (30). It should be noted that it is very robust against a varia-
tion of the next-nearest-neighbor hoppitig i.e., the topol-
The resonance is actually so shargjispace(see Fig. 9that  ogy of the fermion’s band structure and Fermi surface.
it does not become visible in the resulting #3h(w). FOr ~ Whereas the resonance vanishestfer0 the hump remains
eachw the respectivel scan has therefore been convolutedalmost unaffected. The mechanism is very much different
with a Gaussian of FWHM 0.25 r.l.u=0.57, in order to  from the optical spin waves that appear in the undoped
simulate a finite instrumental wave-vector resolution. Appli-=0 bilayer system if a finite N order parameter is taken
cation of Eq.(31) then leads to the curves shown in Fig. 14.into account. Therefore the appealing similarity of the
humplike (or thresholdlike feature in the superconducting
YBCO samples and the optical spin-wave gap seen in the

undoped parent compoutids accidental.
Two experimental groups studied the wave-vector inte-

grated magnetic response §¥, in underdoped YBCO. Ref-

B. Comparison to experiment

erences 41 and 95 reported a line shape for YBg®hich VIIl. SUMMARY AND OUTLOOK
agrees quite well with the theoretical result Fig. 14 for _ ) o
<0.08. A hump in ImyJy (even appears at~100 meV This paper presented a theory for the magnetic excitation

spectrum of YBaCu;Og, (YBCO) and BLSr,CaCyOg, 5

Im x5p (0dd) shows a similar structure at a somewhat lower ;
energy~90 meV. The well-known resonance appears OnIy(BSCCQ superconductors. We considered the so-called 41-

in Imv=  at 34 meV. In Refs. 8 and 34 two underdo edmeV resonance at fixed in-plane wave veder(, ), the
sam I)é?ng(BC@ and .YBCQ 'have been studied. In tEe magnetic response iq space, the pecularities due to the
evenp(o tical mgde of YBG 'Sa hUMD ADD6ArS aré)und 70 bilayer structure of YBCO and BSCCO, and the local
mev. vf/)hereas the od c(acguzs,ti 3 mo%e pghows a weak (g-integratedl susceptibility. Most of the results are in good

" agreement with the neutron-scattering experiments. The
humplike structure at=55 meV, separated from the reso-

resonance is obtained as a collective spin-1 excitation in the
nance at 33 meV. In the more l_mderdoped s_,ample YBLO superconducting and spin-gap stafe latter corresponding
these features tend to move up in energy, while the resonan

) - . % the pseudogap regime of cupratelés energy scale and
in Im xp shifts down_to 25 me\_/. . spectral weight as function of the doping lexet low tem-
Although the detailed experimental line shapes are NoLq ayre are satisfactorily reproduced. The absence of damp-
unique, "~ the qualitative features of our calculation are ing in optimally doped systems is caused by therave su-
fo_und in the neutron-scattering spectra. In particular we Obberconducting gap in connection with the hole-type topology
tain the different dependence on doping level of the resog¢ e ynderlying Fermi surface. The bilayer structure is not
nance aiwyes in the odd mode and the humplike feature atpgcessary for the resonance to form in the odd-niadeus-
@pymp iN both modes. Also iy, Of the odd mode lower i) susceptibility. The mere effect of the finite interlayer
than thewg,m, of the even mode. Theory and experimentscouplingJd* is an almost suppression of the resonance in the
can also partly be compared quantitatively. The measuregyen (optica) mode. The observed pattern of incommensu-
neutron-scattering intensitfe¥' are of the same order as the rate peaks ing space has been traced back to a dynamic
theoretical ones in Fig. 14usingJ=120 meV, i.e., k3/J  nesting effect of thel-wave superconductor, and the peak’s
=8.3u3/eV). The maximum of the hump in the even, odd dispersion has been derived for optimally and underdoped
mode in Fig. 14 occurs ab™*~~0.6],0.53=72 meV, 64 systems. Besides the resonance a second, humplike feature
meV, in good agreement with the measurenfent®  appears in the wave-vector integrated magnetic spectrum. It
YBCOg; at low temperature. Note that the maximum gapis caused by particle-hole excitations across the maximum
A°=30-45 meV(Ref. 5 is consistent to the value from the gap A° that occupy a large area in the 2D Brillouin zone.
mean-field calculatiorisee Sec. )| 2A° is the upper limit  Their energywhumHSZAO is almost independent of hole fill-
for the hump position in Fig. 14. ing, in strong contrast to the resonance positigg. Also is
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this hump insensitive to the Fermi-surface topology. consistent results for neutron-scattering spectra and magnetic

A salient property of the resonance at,¢r) is the varia-  correlation lengthé,e(X) in the relevant range of doping,
tion of its energyw, s with hole filling x. Thet-J model, i.e., energy, and wave vector. With respect to the doping depen-
the doped Mott insulator naturally provides the energy scaledence ofw,.s and &5 this is due to the above-mentioned
for the resonance in the underdoped and overdoped regimenormalization of the QP. In the half filled case 0, which
The mean-field theory describes magnetic excitations imwe did not consider here, the mean-field theory delivers a
terms of quasiparticle@QP) (the fermion$ with a Fermi ve-  Neel state with the correct spin-wave velocity onlyJfis
locity v~ (x+0.15)/t)vr reduced from the bare parameter. kept unrenormalized, i.eq(x=0)=1. With doping the AF
Hence in underdoped systems the QP's chemical potential §fate is destroyed by the propagation of holes in the spin
smaller than the gapu!|<A°, and determines the scale for background®’*"?We expect that a refined theory, where
the resonance energy as.s<2|u'| (see Fig. 7. Thusw,.s  these processes are included as corrections to mean field,
is found to increase with hole filling, in accordance with Yields ana(x) which decreases quickly in the AF regien
experiment. In the overdoped regime, on the other hand, weX. and then levels off in the paramagnetsuperconduct-
have|uf|>A°, and the resonanae,..<2A° is connected to  ing) phasex>X.. This is subject to future work.
the gap which decreases with

The mean-field theory in its present form overestimates
the antiferromagneti¢AF) state in the phase diagram. There-
fore we had to introduce the phenomenological parameter We thank P. Wtle for useful comments on the manu-
which reduces the interactiah— aJ in the spin-flip particle- script. This work has been supported by the NSF under
hole channel Eq24) of the quasiparticles. The present study MRSEC Program No. DMR 98-08941 and the Deutsche For-
shows that already the simplest mod€h, w,x) =« leadsto  schungsgemeinschaft through SFB 195.
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