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Renormalized mean-field theory of neutron scattering in cuprate superconductors
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The magnetic excitation spectrum of thet-t8-J model is studied in mean-field theory and compared to
inelastic neutron-scattering~INS! experiments on YBa2Cu3O61y ~YBCO! and Bi2Sr2CaCu2O81d ~BSCCO!
superconductors. Within the slave-particle formulation the dynamical spin response is calculated from a renor-
malized Fermi liquid with an effective interaction;J in the magnetic particle-hole channel. We obtain the
so-called ‘‘41-meV resonance’’ at wave vector (p,p) as a collective spin-1 excitation in thed-wave super-
conducting state. It appears sharp~undamped!, if the underlying Fermi surface is holelike with a sufficient
next-nearest-neighbor hoppingt8,0. The double-layer structure of YBCO or BSCCO is not important for the
resonance to form. The resonance energyv res and spectral weight at optimal doping come out comparable to
experiment. The observed qualitative behavior ofv res with hole filling is reproduced in the underdoped as well
as overdoped regime. A second, much broader peak becomes visible in the magnetic excitation spectrum if the
2D wave vector is integrated over. It is caused by excitations across the maximum gap, and in contrast to the
resonance its energy is almost independent of doping. At energies above or belowv res the commensurate
resonance splits into incommensurate peaks, located off (p,p). Below v res the intensity pattern is of ‘‘paral-
lel’’ type and the dispersion relation of incommensurate peaks has a negative curvature. This is in accordance
with recent INS experiments on YBCO.

DOI: 10.1103/PhysRevB.65.014502 PACS number~s!: 74.25.Ha, 74.72.Bk, 75.20.Hr, 71.10.Fd
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I. INTRODUCTION

The study of magnetic excitations plays an important r
in the ongoing attempt to understand the physics of hi
temperature superconductors. A key observation is the
called ‘‘41-meV resonance’’ from inelastic neutron scatteri
~INS! experiments.1–4 In superconducting optimally dope
YBa2Cu3O61y (YBCO61y) a sharp peak occurs in the ma
netic structure factor at the antiferromagnetic~AF! wave vec-
tor q5(p,p) and energy 41 meV. It appears resolution lim
ited in energy and therefore is described as an~undamped! d
peak. This is not expected for ad-wave superconductor
since the density of states is finite and the resonance en
v res'40 meV is not small compared to 2D0, with the
maximum gap D0;30–40 meV.5 When temperature is
raised throughTc'93 K into the normal state, the reso
nance vanishes. The main effect of underdoping6–9 on the
resonance in the superconducting state is a continuous re
tion of its energy, as far asv res'24 meV for the most un-
derdoped samplesTc'50 K. The resonance also gains spe
tral weight with underdoping. In contrast to the optima
doped case it persists into the normal state aboveTc , where
the pseudogap regime is found. Recently a resonance
also been observed10–12 in Bi2Sr2CaCu2O81d (BSCCO81d).
Its energy, 43 meV in the optimally doped sample, is co
parable to the case of YBCO. If experiments on YBCO a
BSCCO are put together,v res seems to followTc , i.e., it is
maximal for optimal doping and is reduced in underdoped
well as overdoped compounds.9,11

In this paper we report theoretical calculations of t
magnetic excitation spectrum in YBCO and BSCCO. O
starting point is the doped Mott insulator, described by
t-J model. We follow the standard procedure of introduci
auxiliary ‘‘slave’’ particles and treating the problem in mea
0163-1829/2001/65~1!/014502~17!/$20.00 65 0145
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field theory. In the resulting effective theory thed-wave su-
perconducting phase and the pseudogap regime of un
doped systems are represented as spin-charge sepa
states. The dynamical magnetic susceptibility is obtain
from a Fermi liquid of strongly renormalized quasiparticl
that carry the spin. The ‘‘41-meV resonance’’ is interpret
as a collective spin-1 excitation; it arises from a particle-h
~p-h! bound state of these quasiparticles. We find results
good qualitative agreement with the neutron-scattering
periments. In particular, the behavior of the resonance ene
v res with hole filling is reproduced for underdoped as well
overdoped systems, and we obtain reasonable absolute
ues forv res and spectral weight of the resonance at optim
doping. Our findings are discussed in detail from the dop
dependent band structure of the quasiparticles.

The concept of the resonance coming from a p-h bou
state103 has been put forward in several studies us
‘‘slave’’-particle schemes fort-J and Hubbard models,13–17a
Hubbard-operator technique,18 approaches based on BC
theory,19–23 and self-consistent treatments of spin fluctu
tions in the Hubbard model~FLEX!,24–26 or spin-fermion
model.27,28 In the SO~5! approach,29,30on the other hand, the
resonance is a result of a bound state in the spin-tri
particle-particle~p-p! channel, which couples to the mag
netic p-h channel in the superconducting state. In Ref. 31
studied the contribution from the p-p channel within t
present slave-particle scheme and concluded that it ca
give rise to a resonance below 2D0 unless unreasonable pa
rameters are used. A similar conclusion has been given
Ref. 32.

The resonance is connected to incommensurate struc
in wave-vector space. Above and below the resonance
ergyv res a splitting of the single peak atq5(p,p) into four
peaks slightly displaced from (p,p) is observed.33–38When
©2001 The American Physical Society02-1
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energy is raised fromv res these follow a dispersionv(q)
similar to AF spin waves; however, the peaks are very bro
Below v res four well separated peaks are visible, whi
move away from (p,p) with decreasing energy and hen
are described by an ‘‘upside-down’’ dispersion. Interestin
these peaks are displaced from the AF wave vector in di
tion of the (p,0) or (0,p) points, rotated from the noda
directions by 45°. This is the same ‘‘parallel’’ type of incom
mensurability as is known from the La22xSrxCuO41y
~LSCO! family of compounds,39,40where it has been brough
into connection to the so-called ‘‘stripes.’’ In the prese
work we do not consider the possibility of a combined o
dering of spin and charge into quasi-one-dimensional~stripe-
like! structures. Nevertheless, below the resonance en
we obtain an incommensurate pattern of parallel type. Th
due to a ‘‘dynamic nesting’’ mechanism in the supercondu
ing state that enhances the intensity at these particular p
in wave-vector space. The dispersion relations of incomm
surate peaks are traced back to two particle-hole excita
thresholds that vary differently with wave vector.

Recently the magnetic response has also been studie
averaging the neutron-scattering data over the tw
dimensional ~2D! Brillouin zone.8,34,41 Besides the reso
nance, the resulting local magnetic excitation spectr
Im x2D(v) shows a second, broad feature at an energy ab
the resonance, which depends only weakly on the dop
level. Within our calculation this feature is naturally e
plained from particle-hole excitations across the maxim
d-wave gapD0. Their energyvhump&2D0 comes out almos
independent of doping.

The paper is organized as follows: In Secs. II–IV t
mean-field theory for thet-t8-J model is derived and som
basic implications are reviewed. The magnetic resonanc
the AF wave vector (p,p) is considered in Sec. V for a
single CuO2 plane. Section VI presents results for the ma
netic response in wave-vector space. We consider the cr
over from commensurate to incommensurate response
the dispersion of incommensurate neutron peaks. In Sec
we take into account that YBCO and BSCCO are actua
bilayer materials with two coupled CuO2 planes per unit cell.
The splitting of the susceptibility into two modes is calc
lated. The single-layer model considered in the previous s
tions serves as an effective model for the odd~acoustic!
mode, where the resonance is observed. In this section
also discuss the above-mentioned local susceptib
Im x2D(v). A summary is given in Sec. VIII.

Some of the results have been presented briefly in Ref
and 42. Work of other authors is further referenced in
respective sections.

II. MODEL AND MEAN-FIELD THEORY

We study thet-J model on a simple square lattice of C
3d orbitals for each of the two CuO2 layers in YBCO or
BSCCO:

H52 (
n,n8,s

tnn8c̃ns
† c̃n8s1

1

2 (
n,n8

Jnn8S
W

nSW n8 . ~1!
01450
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In the subspace with no doubly occupied orbitals, the el
tron operator on a Cu-lattice siten is denotedc̃ns with spin
index s561; SW n is the spin-density operator. A Cu site
specified throughn[@ i ,l #, where i 51•••NL indicates the
Cu position within one CuO2 plane andl 51,2 selects the
layer in the bilayer sandwich.tnn8 denotes the effective intra
and interlayer Cu-Cu hopping matrix elements, andJnn8 the
antiferromagnetic super exchange .

To deal with the constraint of no double occupancy, t
standard auxiliary-particle formulation is used,

c̃ns5bn
†f ns . ~2!

The fermionf ns
† creates a singly occupied site~with spins),

the ‘‘slave’’ bosonbn
† an empty one out of the~unphysical!

vacuum bnu0&5 f nsu0&50. The constraint now takes th
form

Qn5bn
†bn1(

s
f ns

† f ns51. ~3!

Using Eq.~3!, local operators can be written in fermions;
particular the particle and spin density read

nn5cn
†cn , SW n5

1

2
cn

†tWcn. ~4!

Here spinorscn5( f n↓
f n↑), cn

†5(
f
n↓
†

f n↑
†

) have been introduced

with Pauli matricestW and\[1.
In order to derive a mean-field theory the constraint~3! is

relaxed to its thermal averagêQn&51. Together with the
numberx of doped holes per Cu site, it fixes the fermion a
boson densities to

~12x!5^cn
†cn&, x5^bn

†bn&. ~5!

These are adjusted by chemical potentialsmb,m f . Using a
coherent-state path integral the partition function is now r
resented by the action

S5S01St1SJ1Sh ~6!

with

S05E
0

b

dt(
n

$b̄n~]t2mb!bn1c̄n~]t2m f !cn%,

St52E
0

b

dt(
n,n8

tnn8c̄ncn8b̄n8bn,

SJ5E
0

b

dt
1

2 (
n,n8

Jnn8S
W

nSW n8 , Sh52E
0

b

dt(
n

hW nSW n .

A magnetic source-fieldhW [hW n(t) has been added here,b
[1/kBT.

A mean-field decomposition of the interaction termsSt,SJ

is achieved via Feynman’s variational principle43 for the free
energyF,
2-2
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RENORMALIZED MEAN-FIELD THEORY OF NEUTRON . . . PHYSICAL REVIEW B65 014502
bF<C@S̃#, C@S̃#5^S2S̃&2 ln Z̃. ~7!

The effective actionS̃ determines

Z̃5*D@c,c̄,b,b̄#exp~2S̃!

and thermal averages

^Ô&5
1

Z̃
E D@c,c̄,b,b̄#exp~2S̃!Ô.

For S̃ we make the quadratic ansatz

S̃5S01E d1d2$c̄1T12
f c21b̄1T12

b b21~ c̄1A12c̄21H.c.!%

2E d1mW 1SW 1 ~8!

with a shorthand notation 1[(n1 ,t1), *d1[(n1
*0

bdt1 col-

lecting siten and timet indices.T12
f andA12 are matrices in

spin space, e.g.,A12[A12
s1s2[An1n2

s1s2(t1 ,t2). S̃ consists of

quadratic terms for fermions and bosons, which represen
possible mean-field decouplings of the interactionsSt andSJ.

The expectation valuêS2S̃& in Eq. ~7! is calculated us-
ing Wick’s theorem, and from the vanishing variatio
dC@S̃#50 we obtain equations for the self-consistent p
rameters,

T12
b 52t12^c̄2c1&, ~9a!

T12
f ss852t12^b̄2b1&dss82J12

1

4 (
m51

3

^~tm
T c̄2!s8~tmc1!s&,

~9b!

A12
ss852J12

1

8 (
m51

3

^~tmc1!s~tmc2!s8& ~9c!

mW 15hW 12E d2J12^SW 2&. ~9d!

tm denotes a Pauli matrix,tm
T its transpose. The effectiv

hoppingTb of bosons as well as the first contribution to t
hoppingTf of fermions stem from the decoupling of^St& in
Eq. ~7!. The Heisenberg term̂SJ& is factorized through
Wick’s theorem into contributions to the local magnetic fie
mW , the fermion’s hoppingTf and pairing amplitudeA. These
correspond to analyzingSJ in the direct particle-hole~p-h!
channel of fermions, the exchange p-h, and the parti
particle channel, respectively.44 Further below, when the
source fieldhW is set to zero, these will be restricted to
resonating valence-bond~RVB! amplitude Tnn8

f ;^ f̄ n↑ f n8↑&
and spin-singlet pairingAnn8;^ f n↑ f n8↓&.

The approximate free energy is the functionalC at its
stationary point,bFappr5C@S̃stat#, with the action S̃stat

given by Eqs.~8! and ~9!. The dynamical magnetic susce
tibility then follows with dC@S̃stat#/dhW 152^SW 1& as
01450
all

-

-

xJ1252
d2C@S̃stat#

dhW 1dhW 2

5
d

dhW 1

^SW 2&5E d3
d^SW 2&

dmW 3

dmW 3

dhW 1

.

Using Eq.~9d! we obtain the usual ‘‘RPA-like’’ expression
in matrix notation it reads

x5@11Jx irr #21x irr . ~10!

The irreducible part is identified as

xJ12
irr 5

d^SW 2&

dmW 1

5^SW 1SW 2&
conn1S d^SW 2&

dmW 1
D

impl

. ~11!

The first term on the right-hand side~r.h.s.! comes from the
mW which appears explicitly in̂SW 2& throughS̃, Eq. ~8!. For a
vanishing source fieldhW 50 it is given by the unrenormalized
fermion bubble contained in Fig. 1. Since the operatorSW
involves only fermions, no boson excitation occur inx irr .
The second term in Eq.~11! stands for all contributions from
the implicit mW dependence of̂SW 2& through the other mean
field parametersTb,Tf ,A. Using Eqs.~9a!–~9c!, it gives rise
to vertex corrections. These are shown in Fig. 1~bottom!.

In the following we sethW 50 and consider paramagnet
phasesmW 50, which are symmetric with respect to lattic
translations within a CuO2 layer and exchange of the layer
In going to wave-vector space, the site indexn[@ i ,l #, with
in-plane sitei 51•••NL and layer indexl 51,2 is replaced
by the wave vectorp[(k,pz). That is,

f i l s5
1

A2NL
(

k
ei (kxi x1kyi y) (

pz50,p
eipzl f ps

and similar for boson operators. Herek runs over the usua
2D Brillouin zone, andpz50,p corresponds to even, od
linear combination of layer orbitals.

The exchange interaction is decomposed as

Jnn8[Ji j
l l 85d l l 8Jd^ i , j &1~12d l l 8!J

'd i j . ~12!

It consists of an intralayer componentJ for nearest neighbors
^ i , j & and an interlayer couplingJ' for i 5 j . Thus the pairing
A of fermions, Eq.~9c!, involves an intralayer part, which w

FIG. 1. Top: Irreducible partx irr for vanishing source fieldhW

50. Full lines are fermion Green’s functions, boson excitations
not enterx irr at mean-field level. Bottom: Bethe-Salpeter equati
for the vertex function inx irr , dashed lines stand for the Heisenbe
interactionJ. The bare vertex~i.e., the unrenormalized bubble! rep-

resentŝ SW 1SW 2&
conn in Eq. ~11!.
2-3
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JAN BRINCKMANN AND PATRICK A. LEE PHYSICAL REVIEW B 65 014502
restrict to singlet pairing withd-wave symmetry and equa
amplitude and phase in both layers:̂f l i ↑ f l i 1 x̂↓&5
2^ f l i ↑ f l i 1 ŷ↓&, l 51,2. A contains as well an interlayer am

plitude ^ f 1i↑ f 2i↓&. In p space Eq.~9c! then becomesA12
ss8

→Ass8(p)5sd2s8sDp , with the gap function

Dp5
D0

2
@cos~kx!2cos~ky!#1D'0eipz ~13!

and the maximum in-plane and interplane gap

D05
3

2
JD̂, D'05

3

8
J'D̂',

D̂5^ f 1i↑ f 1i 1 x̂↓&2^ f 1i↓ f 1i 1 x̂↑&, ~14a!

D̂'5^ f 1i↑ f 2i↓&2^ f 1i↓ f 2i↑&. ~14b!

As will be explained at the end of this section, in th
interesting range of temperature and hole fillingx the bosons
may be treated as almost condensed. That is, the hopping

^b̄nbn8&'^b̄nbn&5x is independent ofn,n8 and given by the
hole densityx via Eq. ~5!. The first term in the fermion
hopping Eq.~9b! becomes2tnn8^b̄nbn8&→2xtnn8 . It de-
scribes the propagation of fermions with the small proba
ity x of finding an empty site. The second term in Eq.~9b!
involves induced hopping amplitudes on nearest-neigh
bonds, which we assume equal in amplitude and phase
each bond within a layer~uniform RVB!, ^ f̄ l i ↑ f l i 1 x̂↑&
5^ f̄ l i ↑ f l i 1 ŷ↑&, l 51,2. The fermion hopping Eq.~9b! now

turns intoT12
f ss8→Tf ss8(p)5dss8Tp

f ,

Tp
f 522 t̃ @cos~kx!1cos~ky!#24 t̃ 8 cos~kx!cos~ky!

2 t̃'~k!eipz ~15!

with

t̃ 5xt1
3

8
Jx̂, t̃ 85xt8,

t̃'~k!5xt'~k!1
3

8
J'x̂' ~16!

and

x̂5^ f̄ 1i↑ f 1i 1 x̂↑&1^ f̄ 1i↓ f 1i 1 x̂↓&, ~17a!

x̂'5^ f̄ 1i↑ f 2i↑&1^ f̄ 1i↓ f 2i↓&. ~17b!

For the bare hopping elements we assumed a nearest-
next-nearest-neighbor overlapt andt8 within a layer, and an
interlayer45,46 hopping t'(k)52t'@cos(kx)2cos(ky)#

21t0
' .

For bosons the effective hopping is derived similarly,T12
b

→Tp
b . The result is given at the end of this section.

The mean-field Hamiltonian Eq.~8! now reads
01450
ate

l-

or
on

nd

S̃5E
0

b

dt(
p

H b̄p~]t1Vp!bp1(
s

f̄ ps~]t1«p! f ps

1@Dp~ f̄ p↑ f̄ 2p↓2 f̄ p↓ f̄ 2p↑!1H.c.#J . ~18!

It consists of free bosons with dispersionVp5Tp
b2mb and

BCS-fermions with«p5Tp
f 2m f and gap function Eq.~13!.

After Bogoliubov transformation we obtain ‘‘quasifermion
energiesEp5A«p

21Dp
2, and the mean-field equations~14!

and ~17! become

S x̂

x̂'D 52
1

2NL
(

p
S g~k!/2

eipz
D «p

Ep
tanh~bEp /2!, ~19a!

S D̂

D̂'D 5
1

2NL
(

p
S w~k!/2

eipz
DDp

Ep
tanh~bEp /2!, ~19b!

x5
1

2NL
(

p

«p

Ep
tanh~bEp/2! ~19c!

with phase factorsg(k)5cos(kx)1cos(ky), w(k)5cos(kx)
2cos(ky). The last equation is the particle number constra
~5!.

The magnetic susceptibility Eq.~10! is isotropic in spin
space forhW 5mW 50, and takes the usual form,

xp~v!5
xp

irr ~v!

11Jpxp
irr ~v!

, ~20!

whereJp is obtained from Eq.~12! as

Jp52J@cos~qx!1cos~qy!#1eipzJ'. ~21!

In experiment the magnetic responsexmeas is measured as a
function of the wave vector (q,qz), which spans the 3D Bril-
louin zone of the bilayer material. It is given by47

xmeas~q,qz ,v!5~gmB!2Fxp~v!upz50 cos2S d

2
qzD

1xp~v!upz5p sin2S d

2
qzD G ~22!

with p5(q,pz). d denotes the spacing of layers in the doub
layer. The even (pz50) and odd (pz5p) mode susceptibili-
ties correspond to the in-phase and antiphase combinatio
spin fluctuations in the planes. For the irreducible part E
~11! we take the bare bubble xnn8

irr (t,t8)
5^Sn

z(t)Sn8
z (t8)&conn. The vertex corrections depicted in th

bottom of Fig. 1 can be safely ignored. As we have discus
in Ref. 31 they have no significant effect in the interesti
energy range 0<v<2D0. With the effective Hamiltonian
Eq. ~18! we get the expression known from BCS theory,
2-4
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xp
irr ~v!5

1

2NL
(

p̃
(

s,s8561

1

8 F11ss8
««81DD8

EE8
G

3
f ~s8E8!2 f ~sE!

v1sE2s8E81 i01

. ~23!

Here«[« p̃ , «8[« p̃1p , and similar forD, E. f denotes the
Fermi function.

We close this section with a remark on Bose conden
tion. From Eq. ~9a! the boson dispersion isVp5

22tx̂@cos(kx)1cos(ky)#2mb, where for simplicity t85t'

50. Near the band minimumk50 this becomesVp'V̄

1k2/2mb, with the mass 1/mb52tx̂. From the solution of
Eqs.~19! we get values aroundx̂'0.4, i.e.,mb'1/t. In two
dimensions free bosons do not condense at finite tempera
T.0, however, the correlation length of the propaga

^b̄nbn8& grows exponentially forT below TBE
0 52px/mb

'2pxt. In thex andT range we are interested in,T!TBE
0 ,

and the bosons can be considered almost condensed, i.V̄

→0 and^b̄nbn8&'^b̄nbn&5x for any n,n8.

III. PHASE DIAGRAM

The slave-boson mean-field theory has been put forw
in numerous papers,48–52 originating in the resonating
valence-bond~RVB! idea.53 In this section we review the
phase diagram and briefly discuss some experimental im
cations in the superconducting phase atT→0. For simplicity
a single CuO2 layer is considered, witht52J. Figure 2
shows the phase diagram, derived from the numerical s
tion of Eqs. ~19!. It resembles those given in th
literature,54,55 except at very small dopingx→0, where our

FIG. 2. Main figure: Mean-field phase diagram for a sing
CuO2 layer with t52J. Td andTBE denote transition temperature
to d-wave pairing of fermions and condensation of bosons, resp
tively. Tc5min$Td ,TBE% is the physicalTc for bulk d-wave super-
conductivity. The lines labeled AF indicate the magnetic instabi
of the bare~dotted line! and renormalized theory~continuous!, see
text, Sec. IV. Inset: Maximum gapD0 of fermions as function of
hole filling at T50.
01450
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assumption of almost condensed bosons becomes incor
We also ignored the staggered-flux phase reported56 for small
x. These simplifications do not affect our results for the ma
netic excitations.

Ignoring the lines labeled ‘‘AF’’ for the moment, the
phase diagram shows two transition temperaturesTd and
TBE . At temperaturesT.Td the fermions move in the CuO2
plane with an effective dispersion«(k)522 t̃ @cos(kx)

1cos(ky)#2mf, where x̂ in t̃ 5xt1 3
8 Jx̂ is finite ~uniform

RVB phase!. At T5Td they undergo a transition to
the d-wave paired state with order parameterD(k)
5(D0/2)@cos(kx)2cos(ky)#. This spin-gap phase is characte
ized by a gapD(k) for spin excitations, and is associate
with the spin-gap~or pseudogap! regime observed in the
normal state of underdoped cuprates. The bosons, on
other hand, show Bose condensation^bn&Þ0 at T5TBE .
Bulk superconductivity is present forT,Tc5min$Td ,TBE%,
where^cn↑cn8↓&5^bn

†&^bn8
† &^ f n↑ f n8↓&Þ0. In two dimensions

TBE is identified withTBE
0 52pxt, which yields a very large

slope of theTBE line in the phase diagram. Fluctuations
gauge fields around the mean-field solution are expecte
reduceTBE

0 to reasonable values.55 The TBE line sketched in
Fig. 2 corresponds to that situation, with a maximumTc at an
optimal doping valuexopt'0.15. The similarity of the spin-
gap and superconducting~SC! phase in mean-field theor
naturally explains the persistence of the magnetic resona
into the spin-gap regime, although line-shape~damping! ef-
fects are missing.

In the following we focus on the SC state atT→0, which
is reasonably reproduced by mean-field theory: In cupr
superconductors the underdoped regionx,xopt shows un-
usual behavior ofTc , the superfluid density, and the max
mum gap as function of hole filling. The superconductingTc

increases with doping,Tc5TBE;x. The superfluid density
rs5ns/m is given by the condensate densityrb5nb/mb;x
of bosons for small x, according to the Ioffe-Larkin
formula.57 Thus rs;x, and the well-known experimenta
observation58 rs;Tc follows naturally. Tunneling and pho
toemission spectra are described by the Green’s func

Gnn8(t,t8)5^Ttc̃n↑(t) c̃n8↑
† (t8)&, where c̃ is expressed by

Eq. ~2!. In the superconducting state, where bosons are c
densed ink50, G splits into a coherent and incoherent pa
G5xG f erm1Gincoh, whereG f erm is the propagator of fermi-
ons. Thus the superconducting gap is given by thed-wave
pairing gap of the fermions. Its doping dependence atT50
is shown in the inset of Fig. 2. Whenx is reduced fromxopt
the maximum gap actually increases~whereasTc decreases!,
as is seen in experiment.59–62At optimal doping mean-field
theory givesD0'0.3J'40 meV, which compares reason
ably with experimental values.5 On the overdoped sidex
.xopt , Tc5Td , and we get the BCS-like resultD0;Tc .

Recently an alternative slave-boson formulation has b
proposed,63,64which extends the SU~2! symmetry in particle-
hole space of the 1/2 filled model65 to the hole-doped case
Within mean-field theory the superconducting state atT→0
appears to be similar to the more conventional U~1! formu-

c-
2-5
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lation we are using here, in particular the magnetic sp
response is the same.

IV. EFFECTIVE INTERACTION

So far we have not considered the possibility of antif
romagnetic~AF! order. It is known that wide areas of th
mean-field phase diagram are unstable to AF order.66–69 We
determine the AF phase boundary from the diverging co
lation length jAF , which is extracted from the static (v
50) susceptibility. For a single CuO2 layer Eqs.~20!–~23!
reduce to

x~q,v!5
x irr ~q,v!

112J@cos~qx!1cos~qy!#x irr ~q,v!
~24!

with x in units47 of (gmB)2. The irreducible partx irr (q,v)
5xp

irr (v) is given by Eq.~23! with p5(q,pz), p̃5(k,pz)
and arbitrarypz . In Eq. ~23!, the internal summation is now
over the 2D Brillouin zone, (1/2NL)( p̃→(1/NL)(k
5*2p

p d2k/(2p)2, and dispersion and gap function becom

«[«~k!5Tp̃
f
2m f with t̃'50, «8[«~k1q!,

D[D~k!5D p̃ with D'050, D8[D~k1q!,

E[E~k!5A«~k!21D~k!2, E8[E~k1q!. ~25!

Dp , Tp
f have been given in Eqs.~13!, ~15!, and~16!. At the

Néel wave vectorQ5(p,p) the static susceptibility take
the valuexAF5x(Q,0), and for wave vectorsq close toQ
we getJx(q,0)51/@(q2Q)21jAF

22# with jAF
2 5JxAF . Com-

ing from high temperature or doping, an AF instability
indicated by (xAF)21→0. xAF has been calculated numer
cally, the resulting phase boundary is shown in Fig. 2 a
dotted line labeled ‘‘AF.’’ Our result is similar to the phas
diagram obtained in Ref. 69.

Apparently, at zero temperature, AF order occurs a
quite high hole concentrationxc

0'0.22, which is totally in-
consistent with experiment (xc'0.02). Furthermore, the
study of magnetic properties in the paramagnetic phas
bound tox.xc

0 , i.e., the overdoped region. The highxc
0 is an

artifact of the mean-field approximation. Within the gaug
field approach it has been shown70 that the AF ordered stat
at 1/2 filling x50 is quickly removed forx.0. Furthermore
it is known66,71,72 that the interaction of spin waves wit
doped holes destroys AF order at a smallxc . In order to treat
underdoped systems we include these physics in a phen
enological fashion. We assume a renormalization of the m
netic interactionJp in Eq. ~20!, such thatxc

0 is reduced to
somexc'0.03. The model is to replace

J→aJ, a50.35↔xc'0.03 ~26!

in Eq. ~21!, J' stays unchanged. The actual value ofa is
equivalent to choosing a specific critical dopingxc . As long
asxc is physically reasonable (<0.05), results do not depen
01450
-

-

-

a

a

is

-

m-
g-

significantly onxc . Using J→aJ in Eq. ~24! we get a new
AF phase boundary, which is shown in Fig. 2 as the conti
ous line AF.

To give another argument in favor of the simple intera
tion model, especially thea being independent of doping
we consider the correlation lengthjAF(x) as function of hole
filling. Figure 3 showsjAF , calculated withJ→aJ. It di-
verges at axc50.032 and decreases rapidly with addition
doping, following jAF(x)'0.2/Ax2xc. This behavior is
consistent with neutron-scattering measurements73 on LSCO
and results from high-temperature series for thet-J model.74

The function ;1/Ax represents the average distance
doped holes and has been used in Ref. 73 to interpret
data. Finally it is noted that the AF transition atxc occurs at
the Néel wave vectorQ5(p,p), i.e., is commensurate. Thi
is shown in the inset of Fig. 3.

V. MAGNETIC RESONANCE

This section presents results for the magnetic respons
the antiferromagnetic~AF! wave vectorQ5(p,p). We con-
sider a single CuO2 layer with a nearest- and next-neare
neighbor hoppingt52J andt8520.45t, appropriate75,46 for
YBCO. Effects specific to the bilayer structure of YBCO an
BSSCO, namely the splitting of the magnetic response i
acoustic and optical modes, will be discussed separatel
Sec. VII.

A. Results for the AF wave vector„p,p…

The dynamical susceptibility is obtained from Eq.~24!
with the effective interactionJ→aJ, a50.35 introduced in

FIG. 3. Main figure: Antiferromagnetic~AF! correlation length
jAF at T50 in units of the lattice spacing. Continuous line:jAF(x)
for an effective interactiona50.35 ~see text!. The vertical dotted
line indicates the AF instability atxc50.032. Dashed line: function
0.2/Ax2xc, fitted tojAF(x) for 0.033<x<0.1. Inset: Static suscep
tibility x(q,0) ~in arbitrary units! as a wave-vector scan over (p,p)
in the 2D Brillouin zone, forx50.033 slightly abovexc . Shown is
a scan in (p,0) direction, scans in other directions look simila
indicating a commensurate AF transition.a50.35 andT50 as
above.
2-6
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the preceding section. The integration in Eq.~23! is per-
formed numerically on a 500035000 lattice ink space, with
the infinitesimali01→ i2G replaced by a small finite damp
ing 2G50.001J.

Calculations for a fixed hole fillingx50.12 near optimal
doping, based on mean-field parameters from the s
consistent solution of Eqs.~19! are shown in Fig. 4. In the
superconducting~SC! state at T50 the imaginary part
Im x irr (Q,v) of the irreducible bubble is characterized by
gap up to a threshold energyV0'0.54J, with a steplike van
Hove singularity~v.H.s.! at the onset of spectral weight a
v5V0. A peak atv'2D050.72J is remnant of the density
of states of thed-wave superconductor. The correspondi
real part is shown in Fig. 4 as the inverse Ston
enhancement factorK(Q,v)5@12a4J Rex irr (Q,v)#. By
virtue of the Kramers-Kroenig transformation, the step at
thresholdV0 in Im x irr turns into a log singularity in Rex irr ,
and K(Q,v) crosses zero at an energyv res50.5J,V0
within the gap. This leads to an undampedd-like resonance
at v res in the magnetic response Imx(Q,v), as is shown in
the inset of Fig. 4. The positionv res50.5J'60 meV is not
too far off the '40 meV observed in optimally dope
YBCO and BSCCO. The situation changes drastically in
ing to the normal stateT.Tc'Td . As is seen from the
dashed line in Fig. 4~main figure!, Im x irr (Q,v) loses its
structure; in particular the gap vanishes. The correspond
K ~not shown in the figure! becomes equally structureles
without any zero crossing, leading to a vanishing of the re
nance in Imx in the normal state~inset of Fig. 4!.

The effect of underdoping is demonstrated in Fig. 5. F
comparison with experiment Imx in the inset has been
broadened to an experimental resolution@full width at half

FIG. 4. Magnetic response at the AF wave vector (p,p) for a
single CuO2 layer near optimal doping,x50.12. Parameters aret
52J, t8520.45t. Main figure: Imaginary part of the bubblex irr in
Eq. ~24!. Shown is the superconductor atT50 ~solid line! and the
normal stateT50.2J.Tc ~dashed line!. The dashed-dotted line i
the inverse Stoner-factorK ~see text! for T50, scaled3(25).
Inset: Imaginary part of the resulting susceptibilityx, Eq. ~24!, for
T50 ~solid line! and T.Tc ~dashed line!. The sharp peak visible
for T50 is actually ad function, broadened by a small dampin
used in the numerical calculation.
01450
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maximum ~FWHM!# of 4G'5 meV through a damping
i01→2G50.02J in Eq. ~23!. When x is reduced fromx
50.12 the gapV0 in Im x irr decreases monotonously, an
with it the resonance atv res&V0 moves to lower energies
v res reaches zero at the AF transition, which occurs atxc
50.023 for the parameters used here (xc depends slightly on
t8, sincea50.35 is held fixed!. Note thatv res moves oppo-
site to the maximum gapD0. The latter increases whenx
decreases~see Fig. 2! and is reflected in the peak in Imx irr

at higher energiesv52D050.72–0.80 in Fig. 5. The spec
tral weight W5*dvIm x increases76 when x is reduced,
since the system is shifted closer to the magnetic instabi
For a quantitative comparison ofW we follow a procedure
applied to experimental INS data in Refs. 76 and 8. Fox
50.12 the flat normal-state spectrum is subtracted as a b
ground from theT50 curve shown in Fig. 5, inset. Integra
ing only the positive part of the resulting difference spectru
gives the weightDW of the resonance compared to the no
mal state. We findDW51.55mB

2 , which agrees well with
optimally doped YBCO. With reducingx the resonance also
develops some intrinsic damping. The step height at
thresholdV0 in Im x irr , which is responsible for thed-like
resonance, decreases and eventually vanishes arounx
50.09.

The effect of overdoping is presented in Fig. 6. Whenx is
increased from 0.12 up to 0.3, the p-h thresholdV0 in
Im x irr and with it the position of the resonance first grow
but v res starts to decrease aroundx50.18. This trend is con-
sistent with recent INS experiments11 on overdoped BSCCO
where the resonance appeared at an energyv res reduced
from the optimally doped case.10

Figure 7~left! summarizes the doping dependence of
resonance.v res is always located slightly below the thresh
old V0 to the damping particle-hole continuum. Near t

FIG. 5. Magnetic response at wave vector (p,p) as in Fig. 4,
for optimal to underdoped hole filling in the superconducting st
T50. Main figure: Imaginary part ofx irr . Curves are identified by
the respective onset of spectral weight~threshold!, which is 0.54J
for x50.12 and decreases forx50.08,0.06,0.04,0.023 down to
0.09J. Inset: Imaginary part of the susceptibilityx. Here the peaks
are broadened to an experimental resolution~FWHM! of 4G
'5 meV.
2-7
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JAN BRINCKMANN AND PATRICK A. LEE PHYSICAL REVIEW B 65 014502
magnetic instability77 at x5xc50.023 and around optima
dopingx'0.1–0.2, the resonance is ad function, well sepa-
rated from the continuum. Thex-dependent threshold i
given by

V05H 2um f uAs~22s! for s,1

2um f u for s>1
~27!

with s5(D0)2/8xt8m f . Forx, x̄'0.09 it iss.1 and there-
fore V052um f u. That is, in the underdoped regime the res
nance energy follows the chemical potentialum f u52m f of
the fermions, and thus increases with hole filling. The g
D0, on the contrary, decreases. This is illustrated in the ri
panel of Fig. 7. Aroundx50.13, whereum f u5D0, a cross-
over into the overdoped regime occurs, whereV0'2D0 for
largex. The increase ofv res turns into a decrease. Compare
to experiment11 the latter is too weak; this is due toD0 ~and
Tc5Td) decreasing too slowly withx in the self-consisten
mean-field calculation.

FIG. 6. Magnetic response atq5(p,p) for optimal to overdop-
ing at T50. Parameters as in Fig. 5, except hole filling. Main fi
ure: Bubble spectrum Imx irr for x50.12 ~curve a!, 0.14 ~b!, 0.18
~c!, 0.24 ~d!, 0.30 ~e!. Inset: Corresponding Imx, broadened to
4G'5 meV.

FIG. 7. Left panel: Particle-hole excitation thresholdV0 and
resonance positionv res as function of hole filling in the SC state
V0 is given by Eq.~27!, andv res is the energy of the peak max
mum in Imx, extracted from plots like Figs. 5 and 6~insets!. Right
panel: Comparison ofV0, the chemical potentialm f52um f u of
fermions, and the maximum gapD0.
01450
-
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It has been pointed out above that the resonance dep
on thed-wave gap to be present, i.e., the superconducting
spin-gap state, and a sufficient next-nearest-neighbor h
ping t8,0. The influence oft8 becomes apparent, if th
bubblex irr and the resulting magnetic spectrum Imx at T
50 are recalculated fort850 ~not shown in the figures!. The
response Imx no longer contains a resonancelike peak,
though the spectral weight is conserved. Only for smalx
→xc at the magnetic instability Imx develops a Goldstone
~Bragg! peak. The bubble spectrum at the thresholdV0

52um f u now follows Imx irr (Q,v);Av2V0Q(v2V0)
for the whole range ofx, and a steplike v.H.s. never appea

B. Discussion

The results presented above compare well to neutr
scattering experiments:8,9 The variation of the resonance en
ergy v res with hole filling x is reproduced in the
underdoped6,7,76,12and the overdoped4,10,11 regime. At opti-
mal doping the resonance appears resolution limited~as a
delta function! in the SC state only,2,3 and its energy and
spectral weight are comparable to the values measure
experiment.8 In the underdoped regime it is obtained also
the spin-gap phase6,7,12 aboveTc ; the observed line shap
~damping! is not reproduced in mean-field theory. YBCO an
BSCCO are bilayer materials, i.e., consist of two coup
CuO2 planes per unit cell. However, for the resonance
emerge the bilayer structure is not important. Rather, in
timally and slightly underdoped systems it depends on
holelike Fermi surface~i.e., a sufficientt8,0) and a finite
d-wave ~spin! gap. As will become clear in Sec. VII thi
conclusion is not altered if the double-layer structure is tak
into account.

The slave-particle approach reproduces quite satisfa
rily the resonance energyv res in the underdoped regime
where v res is not connected to the maximum gapD0, see
Fig. 7. v res is given by the pole of Eq.~24!, i.e., the energy
of the bound state in the particle-hole channel of the fer
ons. In the underdoped regimev res&2um f u follows the
chemical potentialum f u52m f . m f refers to quasiparticles
~the fermions! which emerge from the mean-field descriptio
of the t-J model and are strongly renormalized. They prop
gate with hopping matrix elementst̃ 5xt1 3

8 Jx̂'xt

10.15J, t̃ 85xt8, and hence Fermi velocityṽF'xvF , that
are reduced from the bare parameters by the small Gutzw
factor x<0.15. The latter mimics the reduced phase sp
due to local correlations in the doped Mott insulator. Acco
ingly um f u comes out small enough, such that in the und
doped regimeum f u,D0, and v res&2um f u is determined by
um f u, which increases with hole fillingx. In contrast, if un-
renormalized quasiparticles~QP! are assumed with bar
t,t8,vF , the chemical potentialumu;(1/x)um f u@D0, and
v res&2D0 is connected to the gap for almost allx, which
decreases withx. To achieve a satisfactory result from un
renormalized QP the effective~residual! interaction78 has to
be made doping dependent. This is the case in theories b
on the spin-fermion model,27,28 where the coupling constan
is controlled by a magnetic correlation length, which can
chosenx dependent.
2-8



ta

tr
he

in

-
he

ur

e

,

e

e

n-

e

ance
ap-

by

de

lel
ies

sus-
e
n-
a

rate

rom
s

4.

to

RENORMALIZED MEAN-FIELD THEORY OF NEUTRON . . . PHYSICAL REVIEW B65 014502
C. Properties of the p-h thresholdV0

In the remainder of this section we study in some de
the origin and qualitative properties of the thresholdV0 in
the bubble spectrum Imx irr (q,v) at q5(p,p). The pres-
ence of this threshold and the steplike onset of spec
weight at v5V0 in the superconducting state lead to t
sharp resonance. We consider Imx irr at T50, which reads
from Eq. ~23! with Eq. ~25! for v.0

Im x irr ~q,v!;(
k

d@v2V~q,k!#. ~28!

BCS coherence factors have been ignored. It is determ
by the particle-hole ~p-h! excitation energiesV(q,k)
5E(k)1E(k1q) of fermions. The pair momentumq is set
to Q[(p,p) in the following. Figure 8 illustrates the situa
tion for x50.12 near optimal doping, corresponding to t
spectra shown in Fig. 4. In the normal stateT.Tc a p-h
excitation connects two points of the underlying Fermi s
face ~FS!, and the thresholdV05minkV(Q,k) is 0. In the
superconducting state a finiteV0 is at first sight surprising,
since thed-wave SC has a finite density of states. Howev
when the FS collapses to nodes, a minimum energyV0.0
has to be paid for p-h excitations with wave vectorQ. It
turns out that V(Q,k) is minimal, if E(k)5E(k1Q)
5V0/2, with the lines of constant energyE(k)5V0/2 touch-
ing the reduced~magnetic! Brillouin zone at eight points.
These points are connected byQ as indicated by the full
arrow in Fig. 8. ApparentlyE(k)5V0/2 is very flat near
these points, close to a~dynamic! nesting condition. This is
due to the band structure of the underlying normal state
particular thet8,0, and the presence of thed-wave gap
D(k). The resulting p-h dispersionV(Q,k) is shown in the
inset of Fig. 8. It displays two minima per 1/4 Brillouin zon
with energyV(Q,k0)5V0, which fall on the linekx

01ky
0

5p. The neighborhood of these minima is quite flat, andV
can be expanded asV(Q,k)'V01a1(k1)21a2(k2)2, with
k1,25(1/A2)@(kx2kx

0)6(ky2ky
0)# and relatively small

a1 ,a2.0. Equation~28! then shows a steplike van Hov
singularity ~v.H.s.! at V0 , Im x irr (Q,v);Q(v2V0)/
Aa1a2. The value ofV0 is given by Eq.~27! with s,1.

When the hole fillingx is reduced, the two minima in
V(Q,k) move closer, until they merge atkx

05ky
05p/2 for

x5 x̄'0.09, which corresponds tos51 in Eq.~27!. The step
v.H.s. vanishes on the course~see Fig. 5!, since V(Q,k)
becomes increasingly steep ink1 direction. For x, x̄ we
haves.1, and Imx irr may be approximated by settingt8
50, leading to79 Im x irr (Q,v);Av2V0Q(v2V0). I.e.,
the step at the thresholdV0 has changed into aAv behavior.

VI. INCOMMENSURATE RESPONSE

The resonance atv res540 meV, as well as its relative in
underdoped samples with reducedv res,40 meV is charac-
terized as a single~commensurate! peak atq5(p,p) in
wave-vector space.2–4,7 Above the resonance energy an i
commensurate structure has been observed,34,36,37with broad
maxima following a dispersion similar to spin waves. R
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cently, inelastic neutron-scattering~INS! experiments on
underdoped9,35,36,80 and optimally9,37,81 doped YBCO re-
vealed that also the magnetic response below the reson
position shows incommensuration: Four distinct peaks
pear at q5(p6d,p) and (p,p6d), which move away
from (p,p) with decreasing energy, i.e., are described
some ‘‘upside-down’’ dispersion.36,37 The incommensurabil-
ity is of ‘‘parallel’’ type; peaks are displaced in (p,0) and
(0,p) direction from (p,p), similar to those observed39,40 in
LSCO. This is not expected in ad-wave BCS picture,14,82

since at low energies the particle-hole excitations from no
to node should dominate, leading to four peaks atq5(p
6d8,p6d8). In this section we demonstrate that a paral
incommensurability actually occurs in a range of energ
below the resonance.

A. Structure of the magnetic response in wave-vector space

Figure 9 presents wave-vector scans of the magnetic
ceptibility Imx(q,v) for YBCO in the superconducting stat
at T50. For comparison with INS data an experimental e
ergy resolution 4G'5 meV has been simulated through
quasiparticle dampingG50.01J. For v5v res scans in par-
allel (p,0) as well as diagonal (p,p) direction show a com-
mensurate sharp peak. When energy is increased~top panel!,
the resonance first evolves into a broad incommensu
structure with maxima dispersing like spin waves.8,36 At
higher energies around 2D0'1.5v res this turns into some
featureless background. When the energy is reduced f
v res ~middle panel!, the peak also splits in parallel as well a
diagonal direction, suggesting a circular structure inq space.

FIG. 8. Origin of the threshold for particle-hole~p-h! excitations
with wave vector (p,p), corresponding to the spectra in Fig.
Main figure: 2D Brillouin zone~BZ! with the underlying normal-
state Fermi surface~FS! for t52J,t8520.45t as dashed lines. The
dashed arrow indicates a p-h excitation withq5(p,p) at a minimal
energy V050. In the superconducting state the FS collapses
nodes~indicated as dots!, andV0.0. The full arrow connects two
constant-energy lines of quasiparticlesE(k)5V0/2. Inset: p-h ex-
citation energiesV(q,k) of the superconductor forq5(p,p) in the
upper right BZ/4. Shown are the minimaV0 as dots and the first
five higher energies as lines. Line distance is 0.05J.
2-9
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JAN BRINCKMANN AND PATRICK A. LEE PHYSICAL REVIEW B 65 014502
However, the maximum intensity is higher in (p,0) direc-
tion, reproducing the experimental observation. The c
v/v res'0.7 can be compared to a study35 on underdoped
YBa2Cu3O6.6: The ratio of maximum intensitiesI par /I diag
'1.7 from Fig. 9 is consistent to the&2.0 we read off the
INS data in Ref. 35. The ranged5dx50.052–0.065 of the
displacement of peaks in (p,0) direction is comparable to
experimental values83 reported35,37 for the same range of en
ergiesv/v res50.8–0.7. In the bottom panel, where the e
ergy is reduced even further,I par starts to weaken relative t
I diag . For v/v res,0.35 the peaks in the diagonal (p,p)
direction eventually dominate, as is expected from ad-wave
superconductor in mean-field theory atv→0. However,
such a crossover from parallel to diagonal incommensura
ity at low v is not observed in experiment. At low energi
the INS data indicate a strong isotropic suppression,9,37 simi-
lar to what is seen40,84 in LSCO.

In the normal state, INS on the optimally doped co
pound shows a broad commensurate peak, its width dep

FIG. 9. Wave-vectorq scans of Imx(q,v) at fixed energyv,
for t52J,t8520.45t,x50.12 in the superconducting state atT
50. A quasiparticle dampingG50.01J, corresponding to an ex
perimental energy resolution~FWHM! of 4G'5 meV has been
used.q is measured from (p,p): dx,y5qx,y2p, d56Adx

21dy
2.

Left column: Scans in (p,0) direction, i.e.,dy50. Right column:
(p,p) direction, dy5dx . Top row: Sequence of energiesv/v res

51.0–1.4 at and above the resonance energyv res50.5J. Middle
row: v/v res51.0–0.7 at and belowv res . Bottom row: Energies far
below v res , showing a crossover from parallel to diagonal inco
mensurability. Note the different vertical scale.
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ing weakly on energy.37 From the calculation atT.Tc'Td
we get indeed a response almost independent of wave ve
and energy, as is expected from the absence of nesting p
erties of the underlying Fermi surface~see Fig. 8!. Note that
both the commensurate~at v res) and incommensurate inten
sity vanish in the normal state, as is observed37 in INS. The
situation is different in underdoped YBCO, where the sp
gap regime is entered asT.Tc . In mean-field theory the
spin-gap phase is similar to the SC, with the SC gap bec
ing the spin gap~see Sec. III!. Therefore the pattern in the
magnetic response atv<v res persists atT.Tc , which has
also been observed in underdoped systems.36,80Experimental
line shapes atT.Tc are not reproduced in mean field; how
ever, we expect significant damping in the spin-gap phas
fluctuations are included.

B. Dynamic nesting effect

An explanation of the incommensurate pattern belowv res
in the superconducting state can be found in the disper
E(k) of the Gutzwiller-renormalized fermions.42 At vanish-
ing energyv→0 only particle-hole~p-h! excitationsV(q,k)
with q connecting twod-wave nodes,E(k)*0, E(k1q)
*0, are possible. At finite hole doping the nodes are shif
from (6p/2,6p/2) towards theG point (0,0); thus the
bubble spectrum Imx irr features peaks82 at q5(p6d8,p
6d8), diagonally displaced from (p,p). The curves for low
v/v res50.2,0.3 in Fig. 9 are still dominated by this type
p-h excitation. With increasing energy a different proce
gains importance, whereq connects two contoursE(k)
5v/2 in the Brillouin zone. Eachd-wave node is surrounde
by such a ‘‘banana-shaped’’ contour, and in an energy ra
aroundv inc'0.7v res , where the parallel incommensura
pattern in Imx(q,v inc) is most pronounced, theseE(k)
show almost flat pieces parallel to the magnetic zone bou
ary. This gives rise to a dynamic nesting contribution,85,86

which favors peaks atq5(p6d,p),(p,p6d). In particu-
lar, atv5v inc a ratio of intensitiesI par /I diag&2 is expected
from the nesting argument, which is close to the value dra
from the numerical calculation~Fig. 9! as well as experi-
ment. An illustration of this effect has been given in Ref.
in Fig. 5.

In the preceding section it became apparent that the c
mensurate resonance at (p,p) depends on a sufficiently
large next-nearest-neighbor hoppingt8,0. With respect to
the ~parallel! incommensurate pattern this is not the ca
The underlying dynamic nesting effect is a general feature
the d-wave superconductor. This is confirmed in a calcu
tion of q scans fort850: The parallel incommensurability
dominates for energies above the crossover from the dia
nal one and below'2um f u, where Imx becomes broad and
commensurate.

C. Dispersion of the resonance

Returning to the caset8520.45t, for energies increasing
towards the resonance energyv res the incommensurate pat
tern eventually merges into the commensurate resonanc
is seen in Fig. 9, middle row. This is due to the final-sta
2-10
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interaction Eq.~24!, which develops a pole at the comme
surate position (p,p) for v5v res . In Fig. 10 scans similar
to Fig. 9 are made in (p,0) direction, with the ‘‘experimenta
damping’’ omitted. Forv/v res50.5 the bubble spectrum
Im x irr (q,v) features two humps in (p,0) direction, and is
zero outside these regions~left panel!. This is due to a
q-dependent thresholdV0(q)5minkV(q,k). With the inter-
actionaJ switched on,x irr →x, the humps are merely am
plified in intensity ~right panel!, and the nesting argumen
can be applied as above. Whenv is increased, the two
humps move closer. Additionally, sharp peaks appear
Im x, which eventually merge in a singled-like resonance a
(p,p) for v→v res . The incommensurate structure st
present in the bubble spectrum forv/v res51.0 is completely
superseded by the pole of Eq.~24!. The latter is driven by the
bubble’s real part Rex irr , which at v5v res is strongly
peaked at (p,p) in q space, assisted by the interactio
J(q)5J@cos(qx)1cos(qy)#, which also favors the wave vec
tor (p,p).

It is instructive to look at the commensurat
incommensurate crossover also in energy space, using tv
scans in Fig. 11 for several fixed wave vectorsdx5qx2p,
qy5p. At q5(p,p) the bubble spectrum Imx irr (q,v) fea-
tures a single steplike onset of spectral weight at the parti
hole ~p-h! excitation thresholdV0; its consequences for th
formation of the neutron resonance have been discusse
Sec. V above. In Fig. 11~bottom! it is demonstrated how this
threshold splits into two structures as we move away fr
(p,p): the p-h thresholdV0(q) itself, shifting to lower en-
ergies, and a second steplike onset of additional spe
weight at someV2(q)>V0(q), which shifts up withdx .
The denominator~real part! of Eq. ~24!, K(q,v)5$1
1a2J@cos(qx)1cos(qy)#Rex irr (q,v)% thus shows a splitting
of the corresponding log singularity into two~middle panel
in Fig. 11!, which in turn produces two peaks in the magne
response Imx(q,v) ~top panel!. One of these peaks dis
perses to lower energies and is identified as theq-dependent
resonance, since it is located below the thresholdV0(q) and
is therefore sharp. With increasingdx its spectral weight is
continuously reduced, since the height of the step atV0(q)
in Im x irr decreases. The other peak nearV2(q) disperses to

FIG. 10. Wave-vector scans in (p,0) direction as in Fig. 9, left
column, but with 4G50.002J. Shown arev/v res51.0,0.9,0.5.
Left: Bubble spectrum Imx irr . Right: Magnetic response Imx. The
curves for 1.0 and 0.9 are scaled30.01; the one for 1.0 features
d-type peak, see text.
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higher energies. It appears merely as a broad peak or sh
der within the damping continuum. It is responsible for t
spin-wave-like dispersion of broad maxima abovev res in
Fig. 9 ~top!. The resonance, on the other hand, follows
upside-down dispersion and produces the incommensu
peaks belowv res in Fig. 9 ~middle row!.

Results for the (p,0) direction and doping levelx50.12
are summarized in Fig. 12~top!. It displays the p-h threshold
V0(q), the second onset of spectral weightV2(q), and the
resonance positionv res(q) where it exists. For compariso
the p-h thresholdVdiag(q) in (p,p) direction is also shown.
In contrary to V0(q) it has zeroes atdx56(A2kF2p),
whereq connects twod-wave nodes. In addition the energie
of the van Hove singularities~v.H.s.! associated with 2D0

are given in the figure. Atq5(p,p) the bubble spectrum
Im x irr ~Fig. 4! shows a single v.H.s. atv52D0'0.72J.
From Fig. 11~bottom! it can be seen that this v.H.s. spli
into three peaks with quite flat dispersion.

The effect of strong underdoping is demonstrated in
bottom panel of Fig. 12 forx50.06: The p-h thresholdV0 at
q5(p,p) and with it the resonance position shift dow
~compare also Fig. 7!. Theq range, where a sharp resonan
exists, shrinks,87 and the upside-down dispersion narrow
On the other hand, the v.H.s. around 2D0 as well as the
maximum of V2 vary only weakly with doping (D0 in-
creases slightly with underdoping!. This will become impor-
tant in the calculation of wave-vector integrated susceptib
ties in Sec. VII below.

FIG. 11. Dispersion in (p,0) direction forx50.12. Parameters
as in Fig. 4. Shown is a sequence of wave vectorsdx

5(0 –0.12)2p, dy50. Bottom panel: Bubble spectrum Imx irr ; In-
set: Zoom of the threshold region. Middle: Inverse Stoner fac
K3(21). Top: Resulting response Imx from RPA.
2-11
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D. Discussion

The parallel type of incommensurability, i.e., a maximu
intensity at the pointsq5(p,p6d),(p6d,p) in the Bril-
louin zone is a generic feature of thed-wave SC state. In an
energy range below 2D0 the intensity is enhanced at the
points due to the dynamic nesting mechanism.42 At very low
energies, on the other hand, excitations from node to nod
(p,p) direction dominate82 and lead to a crossover to th
diagonal type asv→0. It should be noted that the parall
incommensurability is not related to ‘‘stripes,’’88–90,104 i.e.,
we do not consider the possibility of a combined ordering
charge and spin into quasi-one-dimensional structures.
commensurate pattern in Imx(q,v) and their dispersion
have been obtained with similar slave-partic
methods,15,91,92BCS theory,22,23,93or the FLEX approxima-
tion for the Hubbard model.26,94 The present slave-particl
approach predicts how the dispersion of the resonance@asso-
ciated withV0(q) in Fig. 12# and the spin-wave-like disper
sion of broad peaks above it@following 'V2(q)# change
with underdoping. Whenx is reduced, the peaks connected
V2(q) should be observable in a wider energy range ab
the resonance. Furthermore, near the bottom ofV2 at q
5(p,p) the density of states and thus the damping is
duced, leading to sharper peaks in the underdoped c
Experiments8,34 actually indicate that dispersing ‘‘spin
wave’’ peaks abovev res are better resolved in the more u
derdoped sample.

FIG. 12. Dispersion of features of the bubble spectrum Imx irr

and the spin-1 bound state~resonance! in Im x. dx5(qx2p), qy

5p. Shown is the p-h thresholdV0, the second onset of weightV2,
and the three v.H.s. associated with 2D0. The positionv res of the
resonance is indicated by squares. The p-h thresholdV0 is also
given in (p,p) direction asVdiag .
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VII. EFFECT OF THE COUPLING IN THE DOUBLE
LAYER

So far we have considered a single CuO2 layer as the
most important structural element of cuprate supercond
ors. However, YBCO and BSCCO contain two coupl
CuO2 planes per unit cell. The observed susceptibility ac
ally follows8,34,41,95

x~q,qz ,v!5x1~q,v!cos2S d

2
qzD1x2~q,v!sin2S d

2
qzD .

This form reminds us of the odd (2) and even (1) linear
combination of spin waves in the undoped pare
compound.96,97 q is the in-plane wave vector as before,d is
the distance of the planes within a bilayer sandwich. We u
the single-layer model as an effective model for the o
~‘‘acoustic’’! susceptibilityx2(q,v). The experimentally ob-
served neutron spectra in the odd mode, in particular
resonance atq5(p,p) and its doping dependence are we
reproduced by the single-layer model. Our description of
resonance in Imx2

„(p,p),v… does not rely on the bilaye
structure of the material. The important ingredient is the
pology of the underlying Fermi surface in combination wi
thed-wave superconducting state. This has been discusse
detail in Sec. V above. The even~‘‘optical’’ ! mode spectrum
Im x1((p,p),v) appears different in experiment. It show
merely a broad peak with dim intensity.8 In this section the
calculation is extended to the bilayer system. It is shown t
the suppression of the resonance in the even mode is ma
a consequence of the interplane exchange couplingJ'. The
odd-mode susceptibility, on the other hand, resembles
one obtained from the single-layer model.

The bilayer modes have also been explored by averag
the experimentally measured magnetic response over th
plane Brillouin zone,8,34,41,95

Im x2D
6 ~v!5E E

2p

p d2q

~2p!2
Im x6~q,v!. ~29!

After the q integration has been performed the odd mo
spectrum Imx2D

2 (v) is still dominated by a sharp resonanc
it occurs at the same energyv res<40 meV as in
Im x2

„(p,p),v…, but with significantly diminished
amplitude.8 In the even (1) mode a second energy sca
becomes apparent. Imx2D

1 shows no resonance, but a rath
broad peak8,41 or soft onset of spectral weight.34 The location
vhump;80 meV of this humplike structure is almost ind
pendent of doping, in contrast to the strongly doping dep
dentv res . The hump also appears more41 or less8 clearly in
the odd (2) mode.x2D

6 will be studied later in this section
It turns out that particle-hole~p-h! excitations across the
maximum gapD0 lead to a humplike peak in both modes
Im x2D

6 , at an energy&2D0 almost independent of doping

A. Results for the bilayer system

Theoretical expressions for the susceptibility of tw
coupled planes have been derived in Sec. II. From Eqs.~22!
and ~20! the mode susceptibilities are given by
2-12
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x6~q,v!5
xp

irr ~v!

11 J̃6~q!xp
irr ~v!

~30!

in units of (gmB)2. xp
irr is obtained from Eq.~23! with p

[(q,pz) andpz5$0,p% for the modes$1,2%. Thex6 dif-
fer in their respective irreducible particle-hole bubblexp

irr

and the effective interaction Eq.~26!,

J̃6~q!5aJ~q!6J', J~q!52J@cos~qx!1cos~qy!#.

For the in-plane parameters we takea50.35,t52J,t85
20.45t as before, and for the coupling of the two CuO2
planes within a bilayer we chose an antiferromagnetic
changeJ'50.2J and an interplane hopping45,46

t'~q!52t'@cos~qx!2cos~qy!#21t0
'

with t'50.1t and t0
'50.

We assume an in-plane superconducting order param
D0 with equal amplitude and phase in both layers. The s
consistent solution of the mean-field equations~19! then
leads to a vanishing interplane gapD'050 @Eqs. ~13! and
~14!# and a very small RVB amplitudex̂''0.03, which has
been defined in Eq.~17!. Therefore the influence oft',J' on
the fermions that constitutexp

irr is merely a small splitting of
the band structure into bonding and antibonding ba
through the effective interplane hoppingt̃'(k)'xt'(k).

Results for fixed in-plane wave vectorq5(p,p) are pre-
sented in Fig. 13, with ‘‘experimental’’ energy resolutio
4G55 meV. A resonance appears in the odd mode sus
tibility, which varies with doping as in the single-layer cas
The even mode, on the other hand, shows a broad peak
much reduced intensity. This is mainly due to the mod
dependent interactionuJ̃1(p,p)u,uJ̃2(p,p)u in Eq. ~30!,
which shifts the pole in the even (1) mode into the damping
continuum. The damping effect is supported by the abo
mentioned splitting of fermion bands. It should be emph
sized that the resonance in the even mode is not totally
pressed, but shifted and strongly damped. In experimen8 a
similar observation has been made.

A different feature appears if we look at the wave-vec
integrated susceptibility Eq.~29!, which is shown in Fig. 14.

FIG. 13. Odd- and even-mode susceptibility~imaginary part! of
a bilayer system, for fixed in-plane wave vectorq5(p,p). Param-
eters are t52J, t8520.45t, a50.35, T50, 4G50.04J
'5 meV as in the preceding sections, andJ'50.2J, t'50.1t.
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Similar to the case of fixedq5(p,p), a resonance appear
only in the odd mode. It appears at the same position a
Im x2(p,p) with the same strong doping dependence. A
ditionally, both modes Imx2D

6 (v) show a broad peak~hump!
at an energy somewhat below 2D0, almost independent o
doping (2D0'0.78J for x50.08). For an explanation of thi
hump we first go back to the single-layer case: The spect
Im x irr (q,v) of the irreducible p-h bubble shown in Fig. 1
~bottom! is dominated by peaks around 2D0. These van
Hove singularities~v.H.s.! follow the quite flatq-space dis-
persion shown in Fig. 12. When the wave vector is integra
over in Imx2D

irr (v)5**2p
p @d2q/(2p)2#Im x irr (q,v), the

v.H.s. contribute a large density of states, leading to a br
peak with maximum atv52D0. This argument extends to
the bilayer system: The hump appears almost identically
both modes of the bubble Imx2D

6 irr (v), which is shown in
the inset of Fig. 14. Its position follows 2D0 to slightly
higher energies for reduced doping levelx.

When the final-state interaction Eq.~30! is switched on in
the odd (2) mode, the resonance appears~see Fig. 14 top!.
Since spectral weight is shifted to lower energies, the hu
is relocated to anx-independent position below 2D0. The
even (1) mode ~Fig. 14 bottom! experiences a weake
renormalization through Eq.~30!, no resonance is formed
and its hump is relocated less strongly. Recent FLEX cal
lations for a three-band single-layer Hubbard model in
overdoped regime26 give results for Imx2D(v) comparable
to our odd mode susceptibility.

The intensity of the resonance in Imx2D
2 (v) is much re-

FIG. 14. Wave-vectorq integrated odd- and even-mode susce
tibilities Im x2D from Eq. ~31! for hole filling x50.06–0.18. Pa-
rameters as in Fig. 13. Inset:q-integrated bubble spectrum Imx2D

irr

for x50.08. The maximum is located close to 2D050.78J.
2-13
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JAN BRINCKMANN AND PATRICK A. LEE PHYSICAL REVIEW B 65 014502
duced from its value in Imx2
„(p,p),v… measured at fixed

wave vector. Therefore in Imx2D the resonance atv res and
the excitations across the maximum gap atvhump&2D0 are
of comparable intensity and can both be observed exp
mentally. This is due to the fact that the latter occupy a la
part of the in-plane Brillouin zone~BZ!, while the resonance
is just a narrow peak inq space. Despite its large amplitud
the resonance contributes only little to Eq.~29!. For the ac-
tual computation of Imx2D

6 we used wave-vector scans98 in
(p,0) direction like those shown in Fig. 9~extended to the
whole BZ! and assumed99 a susceptibility isotropic around
(p,p), i.e.,

x2D
6 ~v!5

1

2pE0

p

k dkx6~q,v!, q5~p1k,p!. ~31!

The resonance is actually so sharp inq space~see Fig. 9! that
it does not become visible in the resulting Imx2D

2 (v). For
eachv the respectiveq scan has therefore been convolut
with a Gaussian of FWHM50.25 r.l.u.50.5p, in order to
simulate a finite instrumental wave-vector resolution. App
cation of Eq.~31! then leads to the curves shown in Fig. 1

B. Comparison to experiment

Two experimental groups studied the wave-vector in
grated magnetic response Imx2D

6 in underdoped YBCO. Ref-
erences 41 and 95 reported a line shape for YBCO6.6 which
agrees quite well with the theoretical result Fig. 14 forx
<0.08. A hump in Imx2D

1 ~even! appears at'100 meV,
Im x2D

2 ~odd! shows a similar structure at a somewhat low
energy'90 meV. The well-known resonance appears o
in Im x2D

2 , at 34 meV. In Refs. 8 and 34 two underdop
samples YBCO6.7 and YBCO6.5 have been studied. In th
even~optical! mode of YBCO6.7 a hump appears around 7
meV, whereas the odd~acoustic! mode shows a weak
humplike structure at'55 meV, separated from the res
nance at 33 meV. In the more underdoped sample YBC6.5
these features tend to move up in energy, while the reson
in Im x2D

2 shifts down to 25 meV.
Although the detailed experimental line shapes are

unique,100 the qualitative features of our calculation a
found in the neutron-scattering spectra. In particular we
tain the different dependence on doping level of the re
nance atv res in the odd mode and the humplike feature
vhump

6 in both modes. Also isvhump
2 of the odd mode lower

than thevhump
1 of the even mode. Theory and experimen

can also partly be compared quantitatively. The measu
neutron-scattering intensities8,41 are of the same order as th
theoretical ones in Fig. 14~usingJ5120 meV, i.e., 1mB

2/J
58.3mB

2/eV). The maximum of the hump in the even, od
mode in Fig. 14 occurs atv1,2'0.6J,0.53J572 meV, 64
meV, in good agreement with the measurements8 on
YBCO6.7 at low temperature. Note that the maximum g
D0530–45 meV~Ref. 5! is consistent to the value from th
mean-field calculation~see Sec. II!, 2D0 is the upper limit
for the hump position in Fig. 14.
01450
ri-
e

-
.

-

r
y

ce

t

-
-

t

d

C. Discussion

The wave-vector integrated magnetic response in un
doped systems is characterized by two energy scales
opposite dependence on the doping level. The first is
positionv res of the ‘‘41-meV resonance,’’ which appears i
the odd (2) mode for fixed wave vectorq5(p,p) as well
as in theq-integrated susceptibility. It moves down in energ
when dopingx is reduced and becomes a Bragg peak at
transition to the AF ordered state atx5xc . The second is
essentially the maximum gapD0, which increases with re-
ducedx. It determines the positionvhump of the additional
broad peak~hump!. The latter appears in both bilayer mode
but only if the in-plane wave vector is integrated over. T
hump is caused by particle-hole excitations across 2D0, and
is pulled down somewhat by the final-state interaction E
~30!. It should be noted that it is very robust against a var
tion of the next-nearest-neighbor hoppingt8, i.e., the topol-
ogy of the fermion’s band structure and Fermi surfa
Whereas the resonance vanishes fort850 the hump remains
almost unaffected. The mechanism is very much differ
from the optical spin waves that appear in the undopex
50 bilayer system if a finite Ne´el order parameter is take
into account. Therefore the appealing similarity of t
humplike ~or thresholdlike! feature in the superconductin
YBCO samples and the optical spin-wave gap seen in
undoped parent compound97 is accidental.

VIII. SUMMARY AND OUTLOOK

This paper presented a theory for the magnetic excita
spectrum of YBa2Cu3O61y ~YBCO! and Bi2Sr2CaCu2O81d
~BSCCO! superconductors. We considered the so-called
meV resonance at fixed in-plane wave vectorq5(p,p), the
magnetic response inq space, the pecularities due to th
bilayer structure of YBCO and BSCCO, and the loc
(q-integrated! susceptibility. Most of the results are in goo
agreement with the neutron-scattering experiments.
resonance is obtained as a collective spin-1 excitation in
superconducting and spin-gap states~the latter corresponding
to the pseudogap regime of cuprates!. Its energy scale and
spectral weight as function of the doping levelx at low tem-
perature are satisfactorily reproduced. The absence of da
ing in optimally doped systems is caused by thed-wave su-
perconducting gap in connection with the hole-type topolo
of the underlying Fermi surface. The bilayer structure is n
necessary for the resonance to form in the odd-mode~acous-
tic! susceptibility. The mere effect of the finite interlay
couplingJ' is an almost suppression of the resonance in
even~optical! mode. The observed pattern of incommens
rate peaks inq space has been traced back to a dynam
nesting effect of thed-wave superconductor, and the peak
dispersion has been derived for optimally and underdo
systems. Besides the resonance a second, humplike fe
appears in the wave-vector integrated magnetic spectrum
is caused by particle-hole excitations across the maxim
gap D0 that occupy a large area in the 2D Brillouin zon
Their energyvhump&2D0 is almost independent of hole fill
ing, in strong contrast to the resonance positionv res . Also is
2-14
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this hump insensitive to the Fermi-surface topology.
A salient property of the resonance at (p,p) is the varia-

tion of its energyv res with hole filling x. Thet-J model, i.e.,
the doped Mott insulator naturally provides the energy sca
for the resonance in the underdoped and overdoped regi
The mean-field theory describes magnetic excitations
terms of quasiparticles~QP! ~the fermions! with a Fermi ve-
locity ṽF'(x10.15J/t)vF reduced from the bare paramete
Hence in underdoped systems the QP’s chemical potenti
smaller than the gap,um f u,D0, and determines the scale fo
the resonance energy asv res&2um f u ~see Fig. 7!. Thusv res
is found to increase with hole fillingx, in accordance with
experiment. In the overdoped regime, on the other hand
haveum f u@D0, and the resonancev res&2D0 is connected to
the gap which decreases withx.

The mean-field theory in its present form overestima
the antiferromagnetic~AF! state in the phase diagram. Ther
fore we had to introduce the phenomenological parametea,
which reduces the interactionJ→aJ in the spin-flip particle-
hole channel Eq.~24! of the quasiparticles. The present stu
shows that already the simplest modela(q,v,x)5a leads to
Y

-

n

.

n,

v.

A
B

D

a,
B

A.
m

.
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consistent results for neutron-scattering spectra and mag
correlation lengthjAF(x) in the relevant range of doping
energy, and wave vector. With respect to the doping dep
dence ofv res and jAF this is due to the above-mentione
renormalization of the QP. In the half filled casex50, which
we did not consider here, the mean-field theory deliver
Néel state with the correct spin-wave velocity only ifJ is
kept unrenormalized, i.e.,a(x50)51. With doping the AF
state is destroyed by the propagation of holes in the s
background.66,71,72 We expect that a refined theory, whe
these processes are included as corrections to mean
yields ana(x) which decreases quickly in the AF regionx
,xc and then levels off in the paramagnetic~superconduct-
ing! phasex.xc . This is subject to future work.
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Doǧan, Phys. Rev. B54, R6905~1996!.

98This procedure is similar to the one used in the experime
study Ref. 8. Use of wave-vector scans in directions other t
(p,0) causes only minor changes in our results.

99The resonance is in fact isotropic around (p,p); for the excita-
tions around 2D0 this is an acceptable model.

100We suggest that this is~at least partly! due to different proce-
dures used for subtracting an energy dependent backgroun
01450
.

al
n

In

the theoretical calculation a subtraction of a background fr
the wave-vector scans leads to a reduction of intensity
change in shape of the hump, while the resonance is not
fected. The background is assumed constant throughout the
louin zone and is determined for each energy as the minimum
the wave-vector scan in (p,0) direction. Figure 14 is compute
from the unsubtracted~bare! scans as decribed in the text.

101D. H. Lu, D. L. Feng, N. P. Armitage, K. M. Shen, A. Dama
celli, C. Kim, F. Ronning, Z.-X. Shen, D. A. Bonn, R. Liang, W
N. Hardy, A. I. Rykov, and S. Tajima, Phys. Rev. Lett.86, 4370
~2001!.

102H.-Y. Kee and Y. B. Kim, Phys. Rev. B59, 4470~1999!.
103The resonance has also been considered a soft mode dir

related to the nearby AF ordered state: M. Vojta, C. Buragoh
and S. Sachdev, Phys. Rev. B61, 15 152~2000!.

104K. Machida, J. Phys. C18, 192 ~1989!.
2-17


