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Inhomogeneous pairing in highly disordereds-wave superconductors
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We study a simple model of a two-dimensiosaliave superconductor in the presence of a random potential
as a function of disorder strength. We first use the Bogoliubov—de GéBd&) approach to show that, with
increasing disorder, the pairing amplitude becomes spatially inhomogeneous, and the system cannot be de-
scribed within conventional approaches for studying disordered superconductors that assume a uniform order
parameter. In the high-disorder regime, we find that the system breaks up into superconducting islands, with
large pairing amplitude, separated by an insulating sea. We show that this inhomogeneity has important
implications for the physical properties of this system, such as superfluid density and the density of states. We
find that a finite spectral gap persists in the density of states, even in the weak-coupling regime, for all values
of disorder, and we provide a detailed understanding of this remarkable result. We next generalize Anderson’s
idea of the pairing of exact eigenstates to include an inhomogeneous pairing amplitude, and show that it is able
to qualitatively capture many of the nontrivial features of the full BAG analysis. Finally, we study the transition
to a gapped insulating state driven by quantum phase fluctuations about the inhomogeneous superconducting
state.
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[. INTRODUCTION properties in the vicinity of the superconductor-insulator
transition (SIT). These authors have argued that fermionic
Studies of the interplay between localization and superdegrees of freedom should be unimportant at the transition,
conductivity in low dimensions have got a boost from ex-and the transition should be in the same universality class as
periments on superconducting filrhd,which show a dra- the dirty boson problem. As we shall see, our results on a
matic reduction inT, with increasing disorder and eventually simple fermionic model explicitly demonstrate how the elec-
a transition to an insulating state above a critical disordetrons remain gapped through the transition, which is then
strength beyond which resistivity increases with decreasingndeed in a bosonic universality class. The SIT will be shown
T. The data in the vicinity of the transition often seem toto be driven by quantum phase fluctuations about the inho-
exhibit scaling behavior, suggesting a continuous, disordermogeneous mean field stdfe.
driven superconductofSC) to insulator(l) quantum phase We now summarize our main results for a two-
transition atT=0. dimensional(2D) disordereds-wave SC described by the
The physics of these highly disordered films is outside themodel of Sec. II.
domain of validity of the early theories of dirty supercon- (1) With increasing disorder, the distributid®(A) of the
ductors, due to Andersdrand to Abrikosov and Gorkdb, local pairing amplitude\ (r)ec(c(r)c;(r)) obtained within
which are applicable only in the low-disorder regime wherean inhomogeneous BdG framework becomes very broad,
the mean free path is much longer than the inverse Ferngventually developing considerable weight nees0. In
wave vector. The effect of strong disorder on superconduceontrast, conventional mean-field approaches assume a spa-
tivity is a challenging theoretical problem, as it necessarilytially uniform A.
involves both interactions and disorder. (2) The spectral gap in the one-particle density of states
Several different theoretical approaches have been takgidOS) persists even at high disorder in spite of a growing
in the past. First, there are various mean-field approachasumber of sites withA(r)~0. A detailed understanding of
that either extend Anderson’s pairing of time-reversed exacthis surprising effect emerges from a study of the spatial
eigenstates or extend the diagrammatic method to high disrariation of A(r), which shows the formation of locally su-
order regimes; see, e.g., Refs. 5-13. In much of the preseperconducting “islands” separated by a nonsuperconducting
work we will also make use of mean-field theories, which,sea and a very special correlation betwaén) and the BdG
however, differ from all previous works in a crucial aspect: eigenfunctions.
we will not make any assumption about the spatial unifor- (3) Even though our model i€’ homogeneously’) disor-
mity of the local pairing amplitudeA. Using the dered on a microscopic scale, the combination of the pairing
Bogoliubov—de Genng®8dG) approach, as well as a simpler interaction and strong disorder leads to the formation of in-
variational treatment using exact eigenstates, we will shovhomogeneous structures reminiscent of granular systems: SC
that outside of the weak-disorder regime, the spatial inhomoislands separated by an insulating sea.
geneity of A becomes very important, and leads to new and (4) We have a clear prediction for scanning tunneling mi-
unanticipated observable effects, most importantly a nonvaeroscopy(STM) measurements that should show a small SC
nishing spectral gap at large disordér. gap with a pile-up in the local DOS when the tip is on a SC
The other point of view, primarily due to Fisher and island and a larger pseudogaplike feature in non-SC regions.
collaborators?® has been to focus on the universal critical ~ (5) Not only does the spectral gap in the total DOS persist
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coupling, in part, for numerical eagsmaller system sizes
are sufficient for shorter coherence lengthad, in part, to
make comparisons with quantum Monte Carl@QMC)
studies’ of the same model. The extension to the weak-
coupling region, where the zero-disorder energy gap is much
smaller than the superfluid stiffness, has been made possible
by technical improvements in solving the BdG equations
self-consistently on larger lattices, and by the semianalytical
treatment of the pairing of exact eigenstates.
The rest of this paper is organized as follows: In Sec. Il
T— we describe our model for the disordered SC. In Sec. Il we
briefly describe the inhomogeneous BAG mean-field method,
and discuss in detail the results of this analysis. We focus on
the disorder dependence of various physically interesting
quantities, such as pairing amplitude, density of states, en-
ergy gap, order parameter, and the superfluid density. In Sec.
) ) S IV we develop the pairing of exact eigenstates theory, taking
FIG. 1. Schematic behavior of superfluid stiffnd3s and en-  jnto account the inhomogeneity of the pairing amplitude.
ergy gapEga,, as a function of temperatufeand disorde for the  ppase fluctuations are discussed in Sec. V and the phase
Q%deelr:nigf(lzs':g;Vezgs’db%trgsvigiiﬁﬂVﬁ:lsgé‘t wgv\z'\t'ecf‘lfordiagram based on our calculations is described in Sec. VI. In
T=gthe beh;vior is?/ery unusual with vanFshigg at.a criticaV/ ’ Sec._ VIl we dl_sc_uss some implications for experiments, in-
S ¢ cluding a prediction for STM measurements and some com-

but E,,, remaining finite(and even increasing with disordeat B . 1
Iarge\g/ap ¢ ( 9 9 ments on “homogeneously” disordered versus granular SC
' films.

superfluid stiffness Ds

in the disordered insulator, but iihcreaseswith increasing
disorder. We have generalized the “pairing of exact eigen- Il. MODEL
states” formalism to allow for an inhomogeneous pairing
amplitude, and find that this unusual behavior of the gap is We describe a 2D s-wave SC in the presenceasfmag-
explained in terms of the localization properties of theneticimpurities by the Hamiltoniar=Hq+ Hj.,
single-particle wave functions.

(6) There is substantial reduction in the superfluid stiff-

ness and off-diagonal correlations with increasing disorder. Ho=—t 2 (c;racjg+ H.C.)+E (Vi—p)ni,
However, the spatial amplitude fluctuations, in response to (ij)o ho
the random potential, cannot by themselves destroy super-
conductivity.
(7) We include the effects of phase fluctuations about the Hini= —|U|Z nipNi, - 1)
I

inhomogeneous SC state, using a quan¥ivhmodel whose
parameters, compressibility, and phase stiffness, are obtained
from the BdG mean-field results. A simple analysis of thisHerec!, (ci,) is the electron creatio(destructio operator
effective model within a self-consistent harmonic approxi-With spino on a siter; of a square lattice with lattice spacing
mation leads to a transition from the superconductor to @&=1, t is the near-neighbor hoppin{lJ| is the pairing in-
gapped insulator. teraction,n;,=c/ c;,, andu is the chemical potential. The
Our results on the disorder dependence of the spectral gampurity potential is defined by an independent random vari-
and superfluid stiffness are shown schematically in Fig. lableV,; uniformly distributed ovef —V,V], at each site; . V
While the superfluid densitpp decreases with increasing thus controls the strength of the disorder.
disorder ultimately vanishing at a critical disorder strength, Before proceeding, we comment on the choice of the
the energy gap always remains finite, and shows an unusublamiltonian, Eqg.(1). The effects of Coulomb repulsion are
nonmonotonic behavior: it initially decreases with disorderneglected here in a spirit similar to the Anderson localization
but remains finite and even increases for large disorder. Noteroblem!® Despite this simplification, Anderson localization
the difference between the finite temperature transition in théas had a profound impact on disordered electron systems,
nondisordered case and the disorder-drifen0 transition. and a complete understanding of interactions in the presence
The V=0 transition afT is driven at weak coupling by the of disorder is still an open problem. Similarly the Hamil-
collapse of the gap. In contrast tfie=0 transition atV, is  tonian we study is a minimal model containing the interplay
driven by a vanishing superfluid stiffness even though thedf superconductivity and localization: for zero disordér
gap remains finite. =0 it describessswave superconductivity and folJ|=0 it
Some of the results described here were first reported in eeduces to thénoninteracting Anderson localization prob-
Letter'* The results reported here are at much weaker couem. We feel that it is very important to first understand the
pling, which is the case of experimental interest in disor-physics of this simple model before putting in the additional
dered SC films. The earlier work was limited to intermediatecomplication of Coulomb effects.
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We next comment on the choice of parameters. We have

studied the mode(1) for a range of parameters, G8U|/t

<8, 0.2<(n)=<0.875, and a wide range of disorder on lat-
tices of sizes up tdl=36x36. In Ref. 14 we reported results
mainly for |U|/t=4. Here we focus on weaker coupling
|U|/t=1.5 and(n)=0.875 on systems of typical size 24

X 24. We have taken care to work on systems with linear size

larger than the coherence lengi°

Ill. BOGOLIUBOV —-DE GENNES MEAN-FIELD THEORY

We begin with a very brief review of the BdG mean-field
theory?! mainly to introduce notation. The mean-field de-

composition of the interaction term gives expectation values

to the local pairing amplitude and local density,

A(r)=—|U[(c; Ciy), (Nigy={(cl,Ci,), )
and yields an effective quadratic Hamiltonian
He= _t<; (CiTaCj0'+ H-C-)+Ei (Vi— 1i)Nig
ij),o
+2i [A(r)clcl +A*(r)cici], 3

where ;= pu+|U|(n;)/2 incorporates the site-dependent
Hartree shift. Heren;)== (n; ,). Hey is diagonalized by
the transformation

szg [ YniUn(ri)— VELU:(H)],

c”:; [YayUn(ri)+ ¥30k (1], (4)

where y and y' are the quasiparticle operators,(r;) and
va(ri), which satisfy= |u,(r)|?+ |va(ri)|?=1 for eachr;,
are obtained from

o= i)

|

where the excitation eigenvalue€,=0. Run(ri)=
—t35Un(r+ 8) + (Vi— mi)un(r;), Where &==x,+y, and
Aun(r)=A(r))uy(r;), and similarly foruv,(r;). The self-
consistency conditions are given by

A
—K*

K
A*

un(ri)
vn(ri)

un(ri)
vn(ri)

©)

A(ri):u@ Un(r v (r),

<ni>=2§ lva(ri)]2. (6)

We solve the BdG equation®) on a finite lattice ofN
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FIG. 2. Distribution of the local pairing amplituda(r) for
various disorder strengths. At low disorder the distributR(a) is
sharply peaked around,~0.15, the pure BCS value fofU|
=1.5. P(A) becomes broad with increasiidgand finally at a very
large disorder gains significant weight nees=0.

of Eq. (5). We then comput€A(r;)} and{(n;)} from Eq.(6).

If these values differ from the initial ones, the whole process
is iterated with a new choice ¢fA(r;)} and{({n;)} in Eq.(5)
until self-consistency is achieved at each .sitee chemical
potential . is determined by (N)=;n;=(n), the given av-
erage density. Note thai(r;), u(r;), andv(r;) can be cho-
sen to be real in the absence of a magnetic field.

We have checked that the same solution is obtained for
different initial guesses. However, the number of iterations to
obtain self-consistency grows with disorder. All the results
are averaged over 12-15 different realizations of disorder for
a given disorder strengtii.

We emphasize that, while the BdG theory has been exten-
sively used recently for disordered d-wave
superconductorg?® in many cases full self-consistency at
each site is not attained, and in almost no case, except for
Refs. 14 and 23, has the inhomogeneous Hartree shift been
retained. The nontrivial results obtained in this paper depend
in a crucial way on fully self-consistent inhomogeneous so-
lutions, as will become clear.

A. Local pairing amplitudes and off-diagonal long-range order

The ground state energy of the inhomogeneous BdG so-
lution is always lower than that obtained by forcing a uni-
form pairing amplitude, with the difference between them
increasing withV. In Fig. 2 we plot the distributioP(A) of
the self-consistent local pairing amplitudgr;) for several
values of the disordey. For V=0 the BdG solution has a

sites with periodic boundary conditions, as follows. Startinguniform pairing amplitudeA ,=0.153, the BCS value. For

with an initial guess for the pairing amplitudé\(r;)} and
the chemical potentiglz;} at each site, we numerically de-
termine the eigenvalues, and eigenvectoréu,(r;),v,(ri))

low disorderV=0.1t, the distributionP(A) has a sharp peak
aboutA,, which justifies the use of a homogeneous mean-
field theory(MFT) for small disorderas, e.g., in the deriva-
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FIG. 3. The distribution of the local density(r) for various
disorder strengths. At low disorder the distribution is sharply
peaked around the average densfty)=0.875. P(n) becomes
broad with increasing/ and for large disorder evolves towards a
bimodal distribution with empty and doubly occupied sites.

FIG. 4. Density of statedl(w) for three disorder strengthé.
With increasing disorder the singular pile-up at the gap edge smears
out pushing states towards higher energies. Surprisingly, the spec-

tion of Anderson’s theorejm With increasing disordel/  tral gap remains finite even at larye

~1t, the distributionP(A) becomes broad and the assump-
tion of a uniformA breaks down. With further increase of 1
disorderV~2t, P(A) becomes highly skewed with weight N(w)=+
building up nearA~0.

Similar P(A) were obtained for different values of the zyeraged over disorder. With increasing disorder the DOS

attraction|U|. We have found that, for the same disorer pjle_up at the gap edge is progressively smeared out and
the fluctuations inA(r;) are larger for higher values of the

attraction|U|. _ B _
The distribution of the local pairing amplitud®(A) — N|—24|1x2|4 .<n>._o.'87,5 U=-15t
should be contrasted with the distribution of local density g 15
P(n), which is also inhomogeneous with increasing disorder i ‘ﬁ.\\__n
but very distinct, as shown in Fig. 3. As a function of disor- %
der it evolves from being sharply peaked about the average
(n) at lowV towards an almost bimodal distribution for large
V, with sites being either emptycorresponding to high .
mountains in the random potential topograplyy doubly 0.1
occupied(in the deep valleys of the random potentidlater, -
we will also contrast the spatial correlations between the lo- :
cal pairing amplitudes and the local densities. L
The off-diagonal long-range ordéDDLRO) is defined by \\%k

N 2 LUA(r) 8w —Ep) +ui(r) dw+Ey] (7)

-------- A B/t -

the long-distance behavior of thdisorder averagedctorre-
lation function(c],c] c; cj;)—AZH|U|? for [rj—rj|—. In

the SC state the order paramefes, is finite whereas in the
non-SC state the off-diagonal correlations decay to zero a

0.05 -

large distances saA\op=0. It can be shown that\gp i - - A/t 1
=[dAAP(A), i.e., it is the average value of the local pair- r T
ing amplitude. Our calculations show thatye, which is obtl—m—r— L L L
identical toA, in the limit V=0, is substantially reduced by 0 1 Vit & 3

disorder as seen in Fig. 5.

FIG. 5. The spectral gafg,, and order parameteliqop as a
function of the disorder. For smaW they are the saméas ex-

In Fig. 4 we show the behavior of the single-particle den-pected, but quite different, both in value and functional form, at
sity of stategDOS) given by large disorder.

B. Density of states and energy gap
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FIG. 6. Gray-scale plot for the spatial variation of the local LL ° ° |rl‘°7r_| e
pairing amplitudeA(r) for a particular realization of the random A1) Y
potential (same in all the panelsbut with increasing disorder ) ) _
strength. Note that at largé the system generates “SC islands” ~ FIG. 7. () Gray-scale plot of density; for a given disorder
(dark regiong with large pairing amplitude separated by an insulat- realization, forv=3t, with darker regions indicating higher densi-
ing “sea” (white regions with negligible pairing amplitude. ties. (b) Plot of disorder-averaged correlation functiom; as a

function of the distance=|r;—r;|. Note that density correlations
states are pushed to higher energies. However, the gap in tdecay within a lattice constant. The axis is scaled byn? (a
spectrum remains finite. V-dependent number, which is 1.27 fé= 3) so that the function is
The energy gafE,, is obtained directly as the lowest normalized to unity at=0. (c) Gray-scale plot of of pairing am-
eigenvalue of the BdG matrix in E@5). We plot the evolu- plitude A(r;) on the lattice for the samé and same realization as in
tion of Eg,p, With disorder in Fig. 5, and see that it not only (@. (d) The disorder-averaged correlation functib(r;) A(r;) (nor-
remains finite, it even increases at high disorder. malized to be unity at zero separati@howing that the correlations
These results are counterintuitive. Given the broad distriPersist to distances of order several lattice spacings, which is the
bution P(A) (Fig. 2 at high disorder, witlA~0 at many  Size of the SC islands.
sites, one might have expected the spectral gap to also col-
lapse. However, this expectation is based on(ianorrec)  density profile in the presence of disorder. In Fig&) and
identification of the average pairing amplitude, or order pa-7(c) we show density(r;) andA(r;) in a gray-scale plot for
rameterAop, With the spectral gafg,p. While the two co- 3 particular realization of the random potential at a disorder
incide at smallldis.order ;trengths, we see fror_n Fig_. 5 that thgtrengthv=3t. As expected, the density varies rapidip
two show qualitatively different behavior at high disorder. It {he scale of the lattice constaitt response to the random
turns out that important insight into these puzzling results,sential. This is emphasized by the density-density correla-
can be obtained by looking at the inhomogeneitied{m)  ions heing extremely short ranged in FigblZ In contrast,
in real space, as discussed below. the pairing amplitude shows structure, i.e., the formation of
SC islands on the scale of the coherence leggtwhich is
C. Formation of superconducting islands several lattice spacingéThe coherence lengthof the cor-
In Fig. 6 we see the evolution of the spatial distribution of responding nondisordered systemgjs=10).
the local pairing amplitude for a particular realization of the ~ We next ask: wherdin spac¢ are these “SC islands”
random potential with increasing disorder strength ~ formed? This will be very important in our understanding of
Though the random potentiaf; is completely uncorrelated the origin of the finite energy gap at large disorder. By cor-
from site to site, the system generates, with increasing disof€lating the locations of the islands with the underlying ran-
der, spatially correlated clusters of sites with lay@;), or ~ dom potential for many different realizations, we find that
“SC islands,” which are separated from one another by redarge A(r) occurs in regions whergV/;— ;| is small and
gions with very smallA(r;). The size of the SC islands is the allows for considerable particle-hole mixing. On the other
coherence length, which is controlled by the attractioh  hand, deep valleys and high mountains in the potential en-
and the disordeY. ergy landscape contain a fixed number of particles per site:
We would like to emphasize that formation of the “SC two on a valley site or zero on a mountain site. As a result
islands” is not simply related to the inhomogeneous electrorthe local pairing amplitude vanishes in such regions.
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V=3t energy cost to extract an electron from such sites. Similarly,

it is energetically unfavorable to create an electron on top of

= a high mountain in the random potential, and there are no

b [ . electrons available to extract from such sites. Thus in the
2 “non-SC” regions, the random potential does not permit

. 0 low-energy excitations.

&) . The lowest excitations then correspond to either injecting

- or extracting an electron from regions wheé, — x| is
e small, which are precisely regions with largér;). Thus we
n see why these excitations have a finite pairing d&m. un-
A(r) derstanding of the nonmonotonic behavior Bf,, and its
eventual increase at largéwill come from the analysis of
[ " Sec. V)
‘ An immediate consequence of these ideas is that, while
f the islands may be thought of as locally superconducting, the
._! sea separating them can be thought of as “insulating” with a

large gap determined primarily by the random potential. This

can be tested by the local density of states at different re-

i “ gions in the highly disordered regime as shown in Fig. 16.

oD =gy . (b2)

E(1) = 0.10533t E(2) = 0.11925¢ E. Superfluid stiffness

It is important to understand how disorder, and in particu-

4& T o lar the formation of the inhomogeneous ground state, affects
i -._f.| the phase rigidity. We calculate the superfluid stiffn@ss

&, given by the usual Kubo formuia

D
?S:<_kx>_Axx(qx:any_’Oaiw:0)- (8)

(b3) (b4) The first term{ —k,) is the kinetic energy along thedirec-
E(3) = 0.13041t E(4) = 0.13305t tion and represents the diamagnetic response to an external
magnetic field. The second term is the paramagnetic re-
FIG. 8. (a) Gray-scale plot of the local pairing amplituder;) sponse given by théisorder-averagedransverse current-

for a particular realization of the random potentiaMat 3t. (b1)— current correlation:

(b4) are gray-scale plots diiy(r)|?+|va(r)|? for the lowest four

excitations 6=1,...,4) with corresponding eigenvalues . _ 1w i b b

E(1), ... E(4). We sedhat a particle added t@r extracted from Axd Qi wn) = NJo drer(j3(a,7ik(-a,0) (9

the system has a high probability of being found in regions where
A(ry) is large. This leads to a nonzero energy gap for high disordewith jP(q) the paramagnetic current aag,=2m7nT.
(see texxt The stiffness calculated within the BdG approximation
_ S will be denoted byd? (D will be used for the renormalized
D. Persistence ofE ga, With disorder stiffness defined latgr Using Eq. (4) we find (—ky)

To get a better understanding of the finite spectral gap= (4t/N)<Er,nUn(r)vn(r+)A()>i and atT=0
Egap, it is useful to study the eigenfunctions for the low
energy excitations. In Fig. 8 we show in gray-scale plots the . ) 1 ) N
local pairing amplitude\ (r;) and|u,(r)|?+|v,(r)|? for the Ax(1.2i0,=0)=2t2 > ———[v(2+x)u(2)

. . . ni.np (E+E")

lowest four excited state wave functions, for a particular re-
alization of disorder at a high value &= 3t. We immedi-
ately notice the remarkable fagthich we have checked for
many different realizationghat all the low-lying excitations , 2 , 2
live on the SC islands. Therefore it is no surprise that one Fo(MU (L0 ~u(Dv’ (1+x)
ends up with a fin_ite pairing gap. — (140U (1)]+[uev,0 Ul

The next question is: Why cannot one make a low-energy (10)
excitation that lives in the large “sea,” in between the SC R
islands, where there is no pairing gap? We argued earlier thaterex is the unit vector along, and to simplify notation we
the “non-SC” regions correspond, roughly speaking, to theuse unprimed(primed symbols to denote quantities with
high mountains and deep valleys in the random potential. Isubscriptl (n2), andr;=1;;=2. After disorder averaging
is not possible to inject an electron into a deep valley since iwve recover translational invariance, so th&,(r;,r;,0)
is already doubly occupied, and there is a latgetentia) =A(r;i—r;,0) One can then Fourier transform goto ob-

+o(2+X)U’(2)] X[u(1+x)v'(1)
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(b) Response to imposed twist

1 FIG. 10. (a) Schematic of a disordered SC in which the nonuni-
| form amplitude results in the formation of SC islands. The length of
the arrow denotes the amplitude and its direction the phase. Within
mean-field theory the phase in the ground state is spatially uniform
even though the amplitude is ndb) Schematic illustration of the
response to an externally applied phase ta$t/2) indicated by

the fat arrows. The system has a nonuniform response, with larger
phase twists in regions where the amplitude is small. This results in
V/t a smaller stiﬁnes§)§~d2E(0)/d 6% compared to the case of a uni-
formly distributed phase twist.

0.2 -

FIG. 9. The superfluid stiffnes8Y/ 7 calculated within the BdG
theory as a function of disorder. The energy gap is also plotted for F. Charge stiffness
comparison. Note that, &=0, D2> Egap @ characteristic of weak- ) 0 : )
coupling superconductors. However, at large disorder one finds 1he charge stifines®™ is the strength of6(w) o, the
DI<E,,, suggesting a phase fluctuation dominated regime. Insetoptical conductivityo(w) and is closely related tB. It is
Disorder dependence of the diamagnetic and paramagnetic pieces@gfined, after analytically continuing,, to real frequencsf

the response functiofsee text
D% 7r=(—K,)— A (q=0,w—0). (11

tain szx(qXZO*qy /iwy=0), which can be shown to vary as nte the different order of limits compared with the defini-
A+Baqy for smallq,. We verify thisq, dependence in our ion of D.. However, for a system with a spectral gap, on
numerical results and use it to take the required limit in queneral grounds one expects tRft= Dg, as shown in Ref.
(8. , , ) 24. We have numerically checked this equality for all values
oln Fig. 9 we show the behavior of the BAG phase stiffnessy gisorder. In fact, having established this, we chose to cal-
D¢/m as a function of disorder. The very large reduction OfculateDO, rather tharDS, since on finite systems it is nu-
DS, by almost two orders of magnitude, can be intuitively merically easier to take the—0 limit of A, (0;w)=A
understood by the following argumetwhich is also sche- | gr,2 "rather than calculatd, (q,— 0).

matically illustrated in Fig. 10 Within mean-field theory the Y
phases of the order parameter at different sites are com-
pletely aligned in the ground state. When externalphase

twist ¢ is imposed the energy of the SC increases, leading to  Although the BdG analysis described above led to various
a nonzero superfluid stiffnes®I~d?E(#)/d6?. In a uni-  striking results and considerable physical insight, some is-
form system the external twist is uniformly distributed sues could not be address€d) We could not study the
throughout the system. However, in an disordered systerweak-coupling limit|U|/t<1, since the exponentially large
where the amplitude is highly inhomogeneous the systemgoherence lengtl§ leads to severe finite size effects in the
will distribute the phase twists nonuniformly in order to numerical calculationg2) Although the existence of the gap
minimize energy with most of the twist accommodated inat large disorder could be understood, we did not get any
regions where the amplitude is small. Thus an inhomogeinsight into its nonmonotonic dependence on disorder.
neous system will be able to greatly reduce its superfluid In order to address these issues, and to gain a deeper
stiffnessD.>® understanding of the BdG results, we now generalize Ander-
We emphasize that despite this dramatic reductiol'r)gn son’s original idea of pairing the time-reversed exact eigen-
the superfluid stiffness continues to remain nonzero withirstates of the disorderedpninteractingsystent in a manner
the BdG approximation. In other words, the spatial variationghat allows the local pairing amplitude to become spatially
in the pairing amplitude alone are unable to drive the systenmnhomogeneous. We will show that this generalization per-
into an insulator. In order to describe the SIT it is thereforemits us to recover most, but not all, of the qualitative features
essential to take into account phase fluctuations as discussetithe BdG results. This analysis also has the virtue of lead-
in Sec. V below. ing to simpler equations from which one can gain qualitative

IV. PAIRING OF EXACT EIGENSTATES
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N = 24x24, (n)=0.875, U=-1.5t
T T T | T T T | T T T I T T T
- - ‘Pairing of Exact Eigenstate’ with
0.2 [ homogeneous Hartree shift
- r —&— ‘Uniform’ approximation b
) L —o— ‘Diagonal’ approximation ]
. - L ]
LA T3 0.15 . .
” &b r L .
e = - $/ 4
01 g -
- ---@-- BdG with homogeneous Hartree Shift
i 1 1 1 | 1 1 1 | 1 1 1 I 1 1 1 | ]
(a) 0 2 4 6 8
N T T T T | T T T T | T T T T | T T T T | T T T T | I_
c --@-- BdG with homogeneous Hartree Shift 1
0.15 Bgg. 37
- N ]
ot \% L o T M gL @ b
. ;'.'1'3 Lﬂm 0.1 - -
P C ]
T 0.05 —&— BdG with site—dependent Hartree Shift -
’ C 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | I_
0 1 2 3 4 5
. (b) v/t
FIG. 11. Gray-scale plot of the matrix elements\f, ; at large
disorderV==6t for a 30x 30 noninteracting system. Theandy FIG. 12. Upper panela): Comparison of the energy géfy.,as
axes are thexr and B indices, respectively. Note that diagonal ma- a function of disorder obtained by the generalized exact eigenstates
trix elements are the largest. method (©O) and the BdG approacti{), both implemented with an
average Hartree shift. Also shown are two asymptotic solutions for
insights in the weak- and strong-disorder limits. the gap at low ) and high(pentagonsdisorder. The decrease of

The noninteracting disordered Hamiltoniafy of Eq. (1) Egapat smallV is a DOS effect, described by the “uniform approxi-
is quadratic and leads to an eigenvalue problem, which is, imation” (see text The increase oEgy,, at largeV due to strong
principle, solubleH| ¢,)=¢,|®.), wherea labels the ex- localization effects on the single-particle wave functions is de-
act eigenstates of{,. Following Anderson let us imagine scribed by the “diagonal approximation(see text Lower panel

pairing electrons in time-reversed eigenstaies andz,i. (b): Comparison oE g, as a function of disorder calculated within

u . . T . . _the BdG approach with an average and a site-dependent Hartree
_The anal_og of the “reduced BCS” Hamiltonian in this basis shift. While the two results are qualitatively similar, there are quan-
is then given by

titative differences.

H'=E faCIwCaa—|U|E Ma,BCLTcacﬁicﬁT' (12) Lhat wi!l permit us to access the large disorder regime with
a0 @B ighly inhomogeneous pairing.
where the matrixM., 5 is defined by A. Nonmonotonic behavior of the energy gap
We now present a qualitative analysis of the large and
small disorder limits of the above equations, together with
5 their full numerical solution. Finally, these will be compared
Here ¢,=(e,— ) is measured relative to the average with the BdG results of the previous section.
Hartree-shiftedu, which fixes the electronic densityWe Let us begin with the low disorder regime. For a finite
will return to the question of average versus site-dependeritystem in two dimensions, or an infinite system in three di-
Hartree shifts later in this sectionA BCS-like analysis of ~Mensions, the eigenstateg(r;)’s are extended on the scale
Eq. (12) leads to theT=0 gap equation of system. We thus fin , s~ 1/N, independent o& andg,
which we call the “uniform approximation” foM. The gap
equation takes the simple BCS form, is (spatially uni-

Mas= 2 [ba(ri)|? dp(ri) (13

B
Aa:|U|§ M“’B_ZE ' (14 form, and Anderson’s theorem applies in this limit.
b The behavior ofEy,, within “uniform approximation” is
whereE,=\/£2+ A2, andu is determined by shown in Fig. 12a) for low V. The decrease Oy, with

increasingV in this regime can be traced primarily to a
1 I simple density-of-states effect in the BCS result for the gap.
(n)= N > (1— E_) (159  For the nearest-neighbor 2D dispersion and the filling cho-
¢ “ sen, one finds that the average DOS at the chemical poten-
Our formulation generalizes Anderson’s original analysis bytial, N(£=0), decreases with increasing in the weak-
retaining the fullM, 5, and it is the structure of this matrix disorder limit.
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In the high-disorder regime, on the other hand, the eigen- B. SC islands and low-lying excitations
states of the noninteracting problem are strongly localized

. . The exact eigenstates formulation also gives analytical in-
and different states have a very small spatial overlap. We ¢ g g y

agi K . . .
s A ght into the large spatial overlap of the low-lying excited
therefore make a "diagonal approximation” for for trd states with the SC islands in the large disorder regime, which

iX: ~ 4 i
matrix: Mg 5‘*'@2”' Sa(r)[. We ha\(e numerically < observed and discussed at length in the previous section.
checked that the diagonal elements\bfire indeed the larg- - 5 can show quite generally that the pairing amplitude in
est elements as shown in Fig. 11. Moreover, the off-d|agonallea| space A(r) is related to A, through A

elements are not_lmportant in the gap equafibd), as _states :Er-A(ri)|¢a(ri)|2- The gap equatioL4) can then be re-
that are nearby in space are far in energy and vice versa. i
Next we identify =, |#,(r;)|* as the participation ratio for written as

the (normalized state ¢,(r;), which in turn is given by

{ol(a@), where {o(@) is the localization length for that

state: ar= S 2 g P (17

Thus for large disorder we solve the gap equatib4) : 2 < ,/§?a+ A?a avbe

with the kerneM , g~ 3, 502 (). We find that for states

with energies far from the chemical potential, the solution is

A,=0, i.e., these states are unaffected by pairing. On th&Ve now specialize to the large-disorder regime and use the

other hand, for states with smalf, we find E, solution of the gap equation within the “diagonal approxi-

:|U|/[2§ﬁ)c(a)]. One thus obtains a gap mation” in the preceding subsection to note that the anly

that contribute to the sum are those wii=~0, since other-

wise A,=0. The above equation then simplifies Aqr;)
Egap_z 18 - |U|= | p(r;)|?/2 with the sum restricted to states near the

chemical potential. This immediately shows the strong cor-
in the high-disorder limit, wherefo. is the localization relation between the spatial structures of the regions of
length of the state at the chemical potential. A(r;), the SC islands, and that of the eigenstategr;) of

The diagonal approximation becomes exact in the exthe noninteracting problem, which are the low-lying excita-
treme site localized limit V—). In this case, the exact tjgns.

eigenstate labet is the siter; at which the state is localized.
It is easy to show that all states for whie_i,’@i<|U|/2 have

Ul

finite pairing amplitude and a spectral gap| 0/2, which is C. Importance of site-dependent Hartree shifts
a well-known resulf. (For another approach to the large- Having seen the great success of the exact eigenstates
disorder limit, see Ref. 2. method in reproducing the BdG results, we finally turn to the

In Fig. 12a) we ;ompare“the_ Sm%”' a”‘ff I_arge-diforderone important feature of the BdG analysis thanhit cap-
asymptotic results, i.e., the “uniform” and “diagonal” ap- red by this method. We saw in E®) that the BdG equa-
proximations, with the spectral gap obtained from a full nu-(ions incorporate site-dependent Hartree shifts, while the
merical solution of Eqs(14) and(15) of the method of exact method of exact eigenstates did not. We now discuss the
eigenstateswhere we self-consistently determinéd/s for  effects of inhomogeneous Hartree terms and why such terms
all @’s and u). Finally we also show in Fig. 13) the BAG  are not easy to deal with in the exact eigenstates formalism.
solution for Eg,,, with a uniform Hartree shift, which is in  We are not aware of any previous work that has looked at the

excellent agreement with the exact eigenstates rgSithi- effects of such inhomogeneous Hartree shifts.
lar agreement is also found for all the other quantities such as First, inclusion of site-dependent Hartree terms leads to
P(A),App,N(w), and D(S) as a function oiV.] quantitative differences with the uniforfaverage Hartree

To summarize: we now have a complete understanding aipproximation forEy,, as a function oV as seen from the
the nonmonotonic dependence of the spectral gap on disolewer panel of Fig. 12.
der. The weak disorder asymptote shows that the initial drop Second, a much more dramatic qualitative effect can be
is a simple density-of-states effect. On the other hand, theeen in the DOS plotted in Fig. 13. The calculation with an
increase of the gap in the strong-disorder limit comes fromaverage Hartree shift has a BCS-like pile-up in the DOS at
the decrease in the localization lendth. as seen from Eq. the gap edge, while the result with the site-dependent shifts
(16). shows that this pile-up is completely smeared out with states

It is important to emphasize that while the numerical pushed out to the band tails. The occurrence of the DOS peak
comparisons in Fig. 12 are for a moderate value ¢U| within the theory of exact eigenstatéwith homogeneous
=1.%, the method of pairing of exact eigenstates shouldHartree shift has the same origin as that in BCS theory. The
work best in the weak-coupling limit, whe[®| is the small-  inhomogeneity in the Hartree shift acts like a random pertur-
est energy scale in the problem, and hence the noninteractirigtion that breaks the degeneracy of states near the gap edge.
problem is diagonalized first. The analytical approximations It would have been nice to incorporate a site-dependent
in the small- and large-disorder limits given above are thudartree shift in the exact eigenstates approach. However, in
valid even for|U|/t<1 where we cannot do reliable numeri- this case the “normal state” Hamiltonian whose exact eigen-
cal calculations. states one would have to solve for would be
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N=24x24, (n)=0.875, U=-2t, V=2t 2 2 po
0.3 xR {n): ).875, U="2t, V=Rl So:ﬁfﬁ Tz(aﬂ(r,r))JrE £
L ] 8 Jo T or 4 Jo
[ DOS with site—dependent Hartree shift ]
= " ] x 2 {1-cofo(r, -0 +87]). (19
= L ]
o1 § We can motivate the use of axY model in both the
C ] weak- and strong-disorder limits, and therefore use it for all
o G ] disorder strengths. At weak disorder, one can follow the deri-
vation of Ref. 11 to derive an effective action for the phase
S N variables in a disordered system, and then coarse grain to the
i DOS with | | homogeneous ] scale of¢ using the method of Ref. 28 to obtain the above
02 Hartree shift ] action. This coarse graining shows that the coefficient of the
3 r ] time derivative term isé?x in two dimensions wherec
= r 1 =dn/du is the static, long-wavelength compressibility cal-
0.1 — culated at the mean-field level, and the coefficient of the
L ] cosine term is the mean-field phase stiffnBs
o L . ] In the opposite high-disorder limit one can view E9)

as describing a Josephson junction array of the SC islands
embedded in an insulating sésee Fig. 6. In this case, the
first term represents the charging energy of the islands and
FIG. 13. Comparison of the density of states obtained from thahe second term the Josephson coupling between islands.
BdG analysis that includes the local self-consistent Hartree shiff-yrther we make the crude approximation of ignoring the
(top pane) with the result of the exact eigenstates method with anrgndom variations of the charging and coupling energies in
average Hartree shifbottom panel The latter leads to a spurious  this random system, and simply using the mean-field values
pile-up in the DOS at the gap edge. obtained from the BdG analysis. We also ignore the disorder
dependence of the coherence lengtland for simplicity use
_ 2 t its V=0 valueé,.
Hnormar= _t<ij> , (CiyCjo+H.C) The nonlinearities in the cosine term lead to a renormal-
' ization of the stiffness. Within the self-consistent harmonic
approximatio® (SCHA), this is determined by choosing the

[e>]

+§, (Vi=u=[UKm)/2)n;, optimal Gaussian action
2 2
One then loses much of the simplicity of the exact eigenstate Sozﬁf’gd Tz (5‘9(“’))
formalism sinceH,oma IS itself an interacting problem, 8 Jo T ar
which needs to be solved self-consistently. Further, there are D. (5
problems(which we will not discuss hejeassociated with n _Sf d o(r -7 — 0(r+ 8.7)12 19
treating U at the Hartree level alone, before incorporating 8 Jo Trz,,; Lo, 7) = 6( i (19

pairing, in the large-disorder reginié.
In conclusion, while the generalized pairing of exactWhich minimizes the free energy. The renormalized stiffness
eigenstates is able to give much insight into the behavior oPs is given by
the spectral gap and pairing amplitudes, and gives qualitative
information about the weak-coupling limit, the BdG method Ds=D2 exp(—(65)0/2). (20

with site-dependent Hartree shifts is the best scheme for oy .
quantitative results. Here (6jj)o is the mean square fluctuation of the near-

neighbor phase difference

1/2

V. QUANTUM PHASE FLUCTUATIONS (21)

€Q
Dgk

2
. <9i2j>o:—
In Sec. IllE, we found that the BdG analysis leads to a N¢ “Q
large suppression of the superfluid stiffness, but the disorder-

induced amplitude inhomogeneity is not sufficient to drivewith £q=2[2~c0sQJ—CcosQy)], and the momentum sum

D, to zero. In order to understand the transition to an insu'® rest_rlc;ted toQ; <. o 0
lating state, we must focus on the phase degrees of freedom P€fining the renormalization factot=Ds/Dy, and
which are ignoredor frozen in the mean-field description

used thus far. We use the 2D quantX action in imagi- Ja= 1 /1 12

nary time to describe the dynamics of the phase variables - g\/m N G £Q |

6(r,7) defined on a coarse-grained square lattice of lattice °

spacingé: one can write Eq(20) as

(22
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N=24x24 (n)=0.875 U=—-1.5t . ' ' ' '
0.6 llllllllllllllllllllllO.Ba‘lllllllllllllllllll 2-4—‘_ N

- 1 [® | . (b)
I K/‘ i \ - _
1 R -e-DY/7mt ]

0.6 | .
—D_/mt |

0.5

4 04— — _
0.4 — - 1
i L 4 ’1
1 r 1 1 1 1 1
102 . 0 1 2 3 4 5
s 1 f : Ul
r 1 | m%\ | FIG. 15. Schematic phase diagramTat 0 of the disordered,
TR R FURTE FEVRU T RPN N PR PN SO attractive Hubbard model in the disorder-attractiaft|U]) plane.
0 05 1 15 2 0 05 1 15 2 The entirey axis (U|/t=0) corresponds to an Anderson insulator
@) v/t ®) v/t with gapless excitations. At finitgJ|/t there are two phases: a SC

phase at low disorder and a gapped insulating phase at high disor-
FIG. 14. (@) Left panel: The compressibilitk=dn/dy as a der. ThusU is a singular perturbation in that the smallgst in-
function of disorderV. (b) Right panel: Evolution of superfluid duces a gap. The symbols denote the critical disowdeu), sepa-
stiffnessD/# upon including the quantum phase fluctuations. The'@ting the SC and the insulating phases, estimated from the
bare BdG stif'fnesng is plotted as symbols with a dashed line calculations described in the text. We argue against p_os_S|b|dll)es
through them, while the renormalized stiffneBg/ is shown by ~ and(c) for the form of the phase boundary in ti¢|—0 limit, and

the full line. D, vanishes aV,=1.73 beyond which the system is Suggest thav/(U—0) approaches a finite value of order unity, as
insulating. shown schematically by curv@). We find no evidence for a gap-

less Fermi insulator phase at nonzgdg/t.

X=exp(— ValX). (23)  hand, as we have seen above, these fluctuations have a pro-
found effect on suppressing the cohereetweenSC is-
lands. Thus the nonsuperconducting state continues to have a
finite spectral gap for one-electron excitations even after the
L A , effects of phase fluctuations are included, and is an insulator.
pressibility is plotted in Fig. 14). We do not have a simple Finally the absence of low-lying electronic excitations near

physical picture for the small maximum inat low disorder,  he transition implies that the quantum phase transition in
which is a parameter-dependent feature absent for larger valgis electronic model is in the superfluid-Bose insulator uni-
ues of|U|. However, our results for the renormalization of versality clas<®

Dy are insensitive to the presence or absence of this non-
monotonicity. _ _ VI. PHASE DIAGRAM

The renormalized obtained from the SCHA is plotted
in Fig. 14b) as the full line. Quantum phase fluctuations In this section we discuss tiie=0 phase diagram for the
lower the stiffness and beyond a certain critical disordedisordered, attractive Hubbard model in thgJ|/t,V/t)
drive it to zero, unlike the baréBdG) stiffness, which is plane. It is knowr€ that, on thgU| =0 axis, for all values of
always nonzero. Thus the SCHA gives a transition to a noneisorderV+ 0, one has an Anderson insulator with gapless
superconducting state, even though it is unreliable in the viexcitations in two dimensions. On thé=0 axis one simply
cinity of the transition. In particular, E423) predicts a tran-  has a crossover as a function|of|/t from a BCS supercon-
sition at a.i=4 exp(—2) with a jump discontinuity of ductor to a condensate of interactiffiard coré bosons>
exp(—2) in the value ofX. We believe that this discontinuity The four symbols marked in Fig. 15 are the result of a
is an artifact of the approximation, although the critical dis-BdG analysis supplemented by the simple phase fluctuation
order obtained from such a calculation is in reasonablenalysis described above. Despite the simplifying approxi-
agreement with quantum Monte Carlo restfifsr parameter mations involved, and the lack of a detailed study of finite
values (U|/t=4) for which a comparison can be made.  size effects, we nevertheless believe that our results do give

We next argue that quantum phase fluctuationsndb a reasonable qualitative idea about the critical disorder
have a significant effect on the electronic excitation specV (U) separating the SC phase from an insulator with a gap
trum. This is because the spectral gap at large disorder aris@s its single-particle excitation spectrum. Further, our esti-
from low-energy excitations that liven a SC island, which mated V. at |U|/t=4 is in reasonable agreem&hwith
is relatively unaffected by phase fluctuations. On the otheguantum Monte Carlo resulté.

We solve Eq.(23) to determine the renormalizeDy(V),
using as input forr the BdG results for the bare stiﬁne§§
and compressibilityx for each value oV. The BdG com-
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In principle, there are three possibilities for the continua- N=30x30, (n)=0.875, U=-2t, V=2.5t
tion of theV.(U) phase boundary asl|/t— 0, a limit which 05 L e
we cannot address numerically. As shown in Fig. 15 these art ' LDOS at sites with A > 0.25t
(@ V.(U—D0) is a finite number of order unityp) V.(U 0.4
—0) diverges to infinity; ofc) V.(U—0) vanishes. We will

now argue againg) and (c), suggesting thata) is in fact @ 0.3

the correct result. Z
First we examine possibilityh) by looking at the case of 0.2
a fixed small|U|/t with V—c. From the large-disorder as- 0.1

ymptotics of the preceding sectidwithin the “diagonal ap-
proximation” for the matrixM) we found that one obtains () 0
SC islands whose size is the localization length. Thus the
effective coherence length is determined &y., i.e., the
disorder and not by the weak coupling. Since this length
scale becomes very small for larlye we expect phase fluc-
tuations to destroy the long-range phase coherence betwee __
the small SC islands. Thus we find it very hard for SC to 3
persist out to very large disorder as required by possibility < 0.1
(b).

Next consider possibilityc) by studying the case of a 0.05
fixed, smallV taking the limit|U|/t<1. Here one can just

0.2 LDOS at sites with A < 0.0075t

0.15

use the standard theory of dirty superconductors. The pure 0

(V=0) coherence lengtl, is exponentially large inU|/t, (b) 0 2 o 4 6
and even if the coherence length in the disordered problem is

given by £~ V&I, & nevertheless grows 46|/t is reduced. FIG. 16. (a) Upper panel: The local density of stat¢90S) at

With a growing coherence length, both amplitude and phaseites where the pairing amplitude is large. These regions corre-
fluctuations are suppressed, and we cannot see how SC c&ppnd to the “SC islands” which have a small local superconduct-

be destroyed as required by possibility. ing gap and a coherence peak at the gap eflpeLower panel:
There have been suggestidhsom QMC studies otwo ~ LDOS at sites withA~0. These regions correspond to the “insu-
insulating phases: a gapless “Fermi” insulator at snjll lating sea” showing a larger spectral gap, without any coherence

and a gapped “Bose” insulator at Iargﬁlel| for the model in peak features at the gap edge, reminiscent of pseudogap behavior.

Eqg. (1). It is possible that a vanishing gap may have been
observed because of the finite temperature in the simulationpane) show, as expected, a large pile-up in the DOS at the
We see absolutely no evidence for a “Fermi” insulator, awaygap edge, while the non-SC regiofiswer panel have no
from the|U|=0 line, and we have presented strong numeri-such pile-up and instead the states are spread out over a large
cal evidence and arguments for a finite gap in the non-S@nergy range, features often associated with pseudogaps in
state for anyjU|>0. other contexts. It should be possible to measure the LDOS
In the |U|/t>1 our Hamiltonian maps on to the problem using an STM probe, as has already been demonstrated in
of hard core interacting bosons, with an effective hoppingother systemgmagnetic impurities irswave SC(Ref. 33
tgose~t2/|U[, in a random potential. For this problem one and impurities in the higf-, d-wave SC(Refs. 34 and 38.
expectsV (|U|—o)~1t%/|U]|, which gives us an understand-
ing of the decrease N, with |U|. Further, in this limit the . o
insulating phase is precisely the Bose glass pﬁ%se. B. “Homogeneously” disordered versus granular systems
Depending on the material, the substrate, and growth con-
ditions it is experimentally possible to grow two types of
films: (a) “homogeneously” disordered filniS that are dis-
In this section we discuss some implications of our result®rdered on an atomic scale afig) granular films>"* It is
for experiments? often argued that the nature of the SC-insulator transition
(SIT) in these two types of films is quite distinct. The SIT in
“homogeneous” films is thought to be driven by the collapse
of the SC amplitude as a function of disorder, whereas that in
In Sec. lll C we showed that, at large disorder, the systenthe granular film categorgb) is driven by the loss of phase
consists of “SC islands” with significant pairing amplitude coherence.
that are separated from each other by an insulating sea. We Our work shows that this distinction is not valid, at least
also discussed in detail that the spectral gap in the insulatinfpr the model studied. Even though our model is “homoge-
regions (determined mainly by the random potentias neously” disordered on a microscopic scale, with increasing
larger than the pairing gap on the SC islands. This is mostlisorder the system self-organizes into a nanoscale granular
clearly seen in our results for the local density of statesstructure in terms of the local pairing amplitude. In the high-
(LDOS) plotted in Fig. 16. Further, the SC regiofigpper  disorder regime, the inhomogeneous state consists of SC is-

VII. EXPERIMENTAL IMPLICATIONS

A. Prediction for STM measurement
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lands whose phases are Josephson coupled through the ingloe temperature is lowered the Josephson coupling between
lating regions between the islands. As described in detail ithe SC islands leads to global phase coherendg at

Sec. V it is the competition between the charging energy of

the islands and the Josephson coupling that leads to the SIT ACKNOWLEDGMENTS
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