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Inhomogeneous pairing in highly disordereds-wave superconductors

Amit Ghosal, Mohit Randeria, and Nandini Trivedi
Department of Theoretical Physics, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, I

~Received 13 March 2001; published 29 November 2001!

We study a simple model of a two-dimensionals-wave superconductor in the presence of a random potential
as a function of disorder strength. We first use the Bogoliubov–de Gennes~BdG! approach to show that, with
increasing disorder, the pairing amplitude becomes spatially inhomogeneous, and the system cannot be de-
scribed within conventional approaches for studying disordered superconductors that assume a uniform order
parameter. In the high-disorder regime, we find that the system breaks up into superconducting islands, with
large pairing amplitude, separated by an insulating sea. We show that this inhomogeneity has important
implications for the physical properties of this system, such as superfluid density and the density of states. We
find that a finite spectral gap persists in the density of states, even in the weak-coupling regime, for all values
of disorder, and we provide a detailed understanding of this remarkable result. We next generalize Anderson’s
idea of the pairing of exact eigenstates to include an inhomogeneous pairing amplitude, and show that it is able
to qualitatively capture many of the nontrivial features of the full BdG analysis. Finally, we study the transition
to a gapped insulating state driven by quantum phase fluctuations about the inhomogeneous superconducting
state.

DOI: 10.1103/PhysRevB.65.014501 PACS number~s!: 74.20.Mn, 74.20.2z, 71.55.Jv
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I. INTRODUCTION

Studies of the interplay between localization and sup
conductivity in low dimensions have got a boost from e
periments on superconducting films,1,2 which show a dra-
matic reduction inTc with increasing disorder and eventual
a transition to an insulating state above a critical disor
strength beyond which resistivity increases with decreas
T. The data in the vicinity of the transition often seem
exhibit scaling behavior, suggesting a continuous, disord
driven superconductor~SC! to insulator~I! quantum phase
transition atT50.

The physics of these highly disordered films is outside
domain of validity of the early theories of dirty superco
ductors, due to Anderson3 and to Abrikosov and Gorkov,4

which are applicable only in the low-disorder regime whe
the mean free path is much longer than the inverse Fe
wave vector. The effect of strong disorder on supercond
tivity is a challenging theoretical problem, as it necessa
involves both interactions and disorder.5

Several different theoretical approaches have been ta
in the past. First, there are various mean-field approac
that either extend Anderson’s pairing of time-reversed ex
eigenstates or extend the diagrammatic method to high
order regimes; see, e.g., Refs. 5–13. In much of the pre
work we will also make use of mean-field theories, whic
however, differ from all previous works in a crucial aspe
we will not make any assumption about the spatial unif
mity of the local pairing amplitudeD. Using the
Bogoliubov–de Gennes~BdG! approach, as well as a simple
variational treatment using exact eigenstates, we will sh
that outside of the weak-disorder regime, the spatial inhom
geneity ofD becomes very important, and leads to new a
unanticipated observable effects, most importantly a non
nishing spectral gap at large disorder.14

The other point of view, primarily due to Fisher an
collaborators,15 has been to focus on the universal critic
0163-1829/2001/65~1!/014501~13!/$20.00 65 0145
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properties in the vicinity of the superconductor-insula
transition ~SIT!. These authors have argued that fermion
degrees of freedom should be unimportant at the transit
and the transition should be in the same universality clas
the dirty boson problem. As we shall see, our results o
simple fermionic model explicitly demonstrate how the ele
trons remain gapped through the transition, which is th
indeed in a bosonic universality class. The SIT will be sho
to be driven by quantum phase fluctuations about the in
mogeneous mean field state.16

We now summarize our main results for a tw
dimensional~2D! disordereds-wave SC described by th
model of Sec. II.

~1! With increasing disorder, the distributionP(D) of the
local pairing amplitudeD(r )}^c↓(r )c↑(r )& obtained within
an inhomogeneous BdG framework becomes very bro
eventually developing considerable weight nearD'0. In
contrast, conventional mean-field approaches assume a
tially uniform D.

~2! The spectral gap in the one-particle density of sta
~DOS! persists even at high disorder in spite of a growi
number of sites withD(r )'0. A detailed understanding o
this surprising effect emerges from a study of the spa
variation ofD(r ), which shows the formation of locally su
perconducting ‘‘islands’’ separated by a nonsuperconduc
sea and a very special correlation betweenD(r ) and the BdG
eigenfunctions.

~3! Even though our model is~‘‘homogeneously’’! disor-
dered on a microscopic scale, the combination of the pair
interaction and strong disorder leads to the formation of
homogeneous structures reminiscent of granular systems
islands separated by an insulating sea.

~4! We have a clear prediction for scanning tunneling m
croscopy~STM! measurements that should show a small
gap with a pile-up in the local DOS when the tip is on a S
island and a larger pseudogaplike feature in non-SC regi

~5! Not only does the spectral gap in the total DOS pers
©2001 The American Physical Society01-1
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in the disordered insulator, but itincreaseswith increasing
disorder. We have generalized the ‘‘pairing of exact eig
states’’ formalism to allow for an inhomogeneous pairi
amplitude, and find that this unusual behavior of the gap
explained in terms of the localization properties of t
single-particle wave functions.

~6! There is substantial reduction in the superfluid st
ness and off-diagonal correlations with increasing disord
However, the spatial amplitude fluctuations, in response
the random potential, cannot by themselves destroy su
conductivity.

~7! We include the effects of phase fluctuations about
inhomogeneous SC state, using a quantumXY model whose
parameters, compressibility, and phase stiffness, are obta
from the BdG mean-field results. A simple analysis of th
effective model within a self-consistent harmonic appro
mation leads to a transition from the superconductor t
gapped insulator.

Our results on the disorder dependence of the spectral
and superfluid stiffness are shown schematically in Fig
While the superfluid densityDs decreases with increasin
disorder ultimately vanishing at a critical disorder streng
the energy gap always remains finite, and shows an unu
nonmonotonic behavior: it initially decreases with disord
but remains finite and even increases for large disorder. N
the difference between the finite temperature transition in
nondisordered case and the disorder-drivenT50 transition.
The V50 transition atTc is driven at weak coupling by the
collapse of the gap. In contrast theT50 transition atVc is
driven by a vanishing superfluid stiffness even though
gap remains finite.

Some of the results described here were first reported
Letter.14 The results reported here are at much weaker c
pling, which is the case of experimental interest in dis
dered SC films. The earlier work was limited to intermedia

FIG. 1. Schematic behavior of superfluid stiffnessDs and en-
ergy gapEgap as a function of temperatureT and disorderV for the
model in Eq.~1!. For V50, bothDs andEgap vanish at the critical
temperatureTc as expected for a weak-coupling SC. However,
T50 the behavior is very unusual withDs vanishing at a criticalVc

but Egap remaining finite~and even increasing with disorder! at
largeV.
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coupling, in part, for numerical ease~smaller system sizes
are sufficient for shorter coherence lengths! and, in part, to
make comparisons with quantum Monte Carlo~QMC!
studies17 of the same model. The extension to the wea
coupling region, where the zero-disorder energy gap is m
smaller than the superfluid stiffness, has been made pos
by technical improvements in solving the BdG equatio
self-consistently on larger lattices, and by the semianalyt
treatment of the pairing of exact eigenstates.

The rest of this paper is organized as follows: In Sec
we describe our model for the disordered SC. In Sec. III
briefly describe the inhomogeneous BdG mean-field meth
and discuss in detail the results of this analysis. We focus
the disorder dependence of various physically interes
quantities, such as pairing amplitude, density of states,
ergy gap, order parameter, and the superfluid density. In
IV we develop the pairing of exact eigenstates theory, tak
into account the inhomogeneity of the pairing amplitud
Phase fluctuations are discussed in Sec. V and the p
diagram based on our calculations is described in Sec. V
Sec. VII we discuss some implications for experiments,
cluding a prediction for STM measurements and some co
ments on ‘‘homogeneously’’ disordered versus granular
films.

II. MODEL

We describe a 2D s-wave SC in the presence ofnonmag-
netic impurities by the HamiltonianH5H01Hint ,

H052t (
^ i j &,s

~cis
† cj s1H.c.!1(

i ,s
~Vi2m!nis

Hint52uUu(
i

ni↑ni↓ . ~1!

Herecis
† (cis) is the electron creation~destruction! operator

with spins on a siter i of a square lattice with lattice spacin
a51, t is the near-neighbor hopping,uUu is the pairing in-
teraction,nis5cis

† cis , andm is the chemical potential. The
impurity potential is defined by an independent random va
ableVi uniformly distributed over@2V,V#, at each siter i . V
thus controls the strength of the disorder.

Before proceeding, we comment on the choice of
Hamiltonian, Eq.~1!. The effects of Coulomb repulsion ar
neglected here in a spirit similar to the Anderson localizat
problem.18 Despite this simplification, Anderson localizatio
has had a profound impact on disordered electron syste
and a complete understanding of interactions in the prese
of disorder is still an open problem. Similarly the Ham
tonian we study is a minimal model containing the interpl
of superconductivity and localization: for zero disorderV
50 it describess-wave superconductivity and foruUu50 it
reduces to the~noninteracting! Anderson localization prob-
lem. We feel that it is very important to first understand t
physics of this simple model before putting in the addition
complication of Coulomb effects.19

r
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INHOMOGENEOUS PAIRING IN HIGHLY DISORDERED . . . PHYSICAL REVIEW B65 014501
We next comment on the choice of parameters. We h
studied the model~1! for a range of parameters, 0.8<uUu/t
<8, 0.2<^n&<0.875, and a wide range of disorder on la
tices of sizes up toN536336. In Ref. 14 we reported result
mainly for uUu/t54. Here we focus on weaker couplin
uUu/t51.5 and ^n&50.875 on systems of typical size 2
324. We have taken care to work on systems with linear s
larger than the coherence lengthj.20

III. BOGOLIUBOV –DE GENNES MEAN-FIELD THEORY

We begin with a very brief review of the BdG mean-fie
theory,21 mainly to introduce notation. The mean-field d
composition of the interaction term gives expectation val
to the local pairing amplitude and local density,

D~r i !52uUu^ci↓ci↑&, ^nis&5^cis
† cis&, ~2!

and yields an effective quadratic Hamiltonian

Heff52t (
^ i j &,s

~cis
† cj s1H.c.!1(

i
~Vi2m̃ i !nis

1(
i

@D~r i !ci↑
† ci↓

† 1D* ~r i !ci↑ci↓#, ~3!

where m̃ i5m1uUu^ni&/2 incorporates the site-depende
Hartree shift. Herê ni&5(s^ni ,s&. Heff is diagonalized by
the transformation

ci↑5(
n

@gn↑un~r i !2gn↓
† vn* ~r i !#,

ci↓5(
n

@gn↓un~r i !1gn↑
† vn* ~r i !#, ~4!

whereg and g† are the quasiparticle operators.un(r i) and
vn(r i), which satisfy(nuun(r i)u21uvn(r i)u251 for eachr i ,
are obtained from

S K̂ D̂

D̂* 2K̂*
D S un~r i !

vn~r i !
D 5EnS un~r i !

vn~r i !
D , ~5!

where the excitation eigenvaluesEn>0. K̂un(r i)5

2t( d̂un(r i1 d̂)1(Vi2m̃ i)un(r i), where d̂56 x̂,6 ŷ, and
D̂un(r i)5D(r i)un(r i), and similarly for vn(r i). The self-
consistency conditions are given by

D~r i !5uUu(
n

un~r i !vn* ~r i !,

^ni&52(
n

uvn~r i !u2. ~6!

We solve the BdG equations~5! on a finite lattice ofN
sites with periodic boundary conditions, as follows. Start
with an initial guess for the pairing amplitude$D(r i)% and
the chemical potential$m̃ i% at each site, we numerically de
termine the eigenvaluesEn and eigenvectors„un(r i),vn(r i)…
01450
e

e

s

of Eq. ~5!. We then compute$D(r i)% and$^ni&% from Eq.~6!.
If these values differ from the initial ones, the whole proce
is iterated with a new choice of$D(r i)% and$^ni&% in Eq. ~5!
until self-consistency is achieved at each site. The chemical
potentialm is determined by (1/N)( ini5^n&, the given av-
erage density. Note thatD(r i), u(r i), andv(r i) can be cho-
sen to be real in the absence of a magnetic field.

We have checked that the same solution is obtained
different initial guesses. However, the number of iterations
obtain self-consistency grows with disorder. All the resu
are averaged over 12–15 different realizations of disorder
a given disorder strengthV.

We emphasize that, while the BdG theory has been ex
sively used recently for disordered d-wave
superconductors,22,23 in many cases full self-consistency
each site is not attained, and in almost no case, excep
Refs. 14 and 23, has the inhomogeneous Hartree shift b
retained. The nontrivial results obtained in this paper dep
in a crucial way on fully self-consistent inhomogeneous
lutions, as will become clear.

A. Local pairing amplitudes and off-diagonal long-range order

The ground state energy of the inhomogeneous BdG
lution is always lower than that obtained by forcing a un
form pairing amplitude, with the difference between the
increasing withV. In Fig. 2 we plot the distributionP(D) of
the self-consistent local pairing amplitudeD(r i) for several
values of the disorderV. For V50 the BdG solution has a
uniform pairing amplitudeD0.0.153t, the BCS value. For
low disorderV50.1t, the distributionP(D) has a sharp peak
aboutD0, which justifies the use of a homogeneous me
field theory~MFT! for small disorder~as, e.g., in the deriva

FIG. 2. Distribution of the local pairing amplitudeD(r ) for
various disorder strengths. At low disorder the distributionP(D) is
sharply peaked aroundD0'0.15, the pure BCS value foruUu
51.5t. P(D) becomes broad with increasingV and finally at a very
large disorder gains significant weight nearD'0.
1-3
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AMIT GHOSAL, MOHIT RANDERIA, AND NANDINI TRIVEDI PHYSICAL REVIEW B 65 014501
tion of Anderson’s theorem!. With increasing disorderV
;1t, the distributionP(D) becomes broad and the assum
tion of a uniformD breaks down. With further increase o
disorderV;2t, P(D) becomes highly skewed with weigh
building up nearD'0.

Similar P(D) were obtained for different values of th
attractionuUu. We have found that, for the same disorderV,
the fluctuations inD(r i) are larger for higher values of th
attractionuUu.

The distribution of the local pairing amplitudeP(D)
should be contrasted with the distribution of local dens
P(n), which is also inhomogeneous with increasing disor
but very distinct, as shown in Fig. 3. As a function of diso
der it evolves from being sharply peaked about the aver
^n& at low V towards an almost bimodal distribution for larg
V, with sites being either empty~corresponding to high
mountains in the random potential topography! or doubly
occupied~in the deep valleys of the random potential!. Later,
we will also contrast the spatial correlations between the
cal pairing amplitudes and the local densities.

The off-diagonal long-range order~ODLRO! is defined by
the long-distance behavior of the~disorder averaged! corre-
lation function^ci↑

† ci↓
† cj↓cj↑&→DOP

2 /uUu2 for ur i2r j u→`. In
the SC state the order parameterDOP is finite whereas in the
non-SC state the off-diagonal correlations decay to zero
large distances soDOP50. It can be shown thatDOP
.*dDDP(D), i.e., it is the average value of the local pa
ing amplitude. Our calculations show thatDOP, which is
identical toD0 in the limit V50, is substantially reduced b
disorder as seen in Fig. 5.

B. Density of states and energy gap

In Fig. 4 we show the behavior of the single-particle de
sity of states~DOS! given by

FIG. 3. The distribution of the local densityn(r ) for various
disorder strengths. At low disorder the distribution is shar
peaked around the average density^n&50.875. P(n) becomes
broad with increasingV and for large disorder evolves towards
bimodal distribution with empty and doubly occupied sites.
01450
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N~v!5
1

N (
n,r i

@un
2~r i !d~v2En!1vn

2~r i !d~v1En!# ~7!

averaged over disorder. With increasing disorder the D
pile-up at the gap edge is progressively smeared out

FIG. 4. Density of statesN(v) for three disorder strengthsV.
With increasing disorder the singular pile-up at the gap edge sm
out pushing states towards higher energies. Surprisingly, the s
tral gap remains finite even at largeV.

FIG. 5. The spectral gapEgap and order parameterDOP as a
function of the disorder. For smallV they are the same~as ex-
pected!, but quite different, both in value and functional form,
large disorder.
1-4
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INHOMOGENEOUS PAIRING IN HIGHLY DISORDERED . . . PHYSICAL REVIEW B65 014501
states are pushed to higher energies. However, the gap i
spectrum remains finite.

The energy gapEgap is obtained directly as the lowes
eigenvalue of the BdG matrix in Eq.~5!. We plot the evolu-
tion of Egap with disorder in Fig. 5, and see that it not on
remains finite, it even increases at high disorder.

These results are counterintuitive. Given the broad dis
bution P(D) ~Fig. 2! at high disorder, withD'0 at many
sites, one might have expected the spectral gap to also
lapse. However, this expectation is based on an~incorrect!
identification of the average pairing amplitude, or order p
rameterDOP, with the spectral gapEgap. While the two co-
incide at small disorder strengths, we see from Fig. 5 that
two show qualitatively different behavior at high disorder.
turns out that important insight into these puzzling resu
can be obtained by looking at the inhomogeneities inD(r i)
in real space, as discussed below.

C. Formation of superconducting islands

In Fig. 6 we see the evolution of the spatial distribution
the local pairing amplitude for a particular realization of t
random potential with increasing disorder strengthV.
Though the random potentialVi is completely uncorrelated
from site to site, the system generates, with increasing di
der, spatially correlated clusters of sites with largeD(r i), or
‘‘SC islands,’’ which are separated from one another by
gions with very smallD(r i). The size of the SC islands is th
coherence length, which is controlled by the attractionuUu
and the disorderV.

We would like to emphasize that formation of the ‘‘S
islands’’ is not simply related to the inhomogeneous elect

FIG. 6. Gray-scale plot for the spatial variation of the loc
pairing amplitudeD(r ) for a particular realization of the random
potential ~same in all the panels! but with increasing disorde
strength. Note that at largeV the system generates ‘‘SC islands
~dark regions! with large pairing amplitude separated by an insul
ing ‘‘sea’’ ~white regions! with negligible pairing amplitude.
01450
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density profile in the presence of disorder. In Figs. 7~a! and
7~c! we show densityn(r i) andD(r i) in a gray-scale plot for
a particular realization of the random potential at a disor
strengthV53t. As expected, the density varies rapidlyon
the scale of the lattice constantin response to the random
potential. This is emphasized by the density-density corre
tions being extremely short ranged in Fig. 7~b!. In contrast,
the pairing amplitude shows structure, i.e., the formation
SC islands on the scale of the coherence lengthj, which is
several lattice spacings.~The coherence length20 of the cor-
responding nondisordered system isj0.10).

We next ask: where~in space! are these ‘‘SC islands’’
formed? This will be very important in our understanding
the origin of the finite energy gap at large disorder. By c
relating the locations of the islands with the underlying ra
dom potential for many different realizations, we find th
large D(r ) occurs in regions whereuVi2m̃ i u is small and
allows for considerable particle-hole mixing. On the oth
hand, deep valleys and high mountains in the potential
ergy landscape contain a fixed number of particles per s
two on a valley site or zero on a mountain site. As a res
the local pairing amplitude vanishes in such regions.

l

-

FIG. 7. ~a! Gray-scale plot of densityni for a given disorder
realization, forV53t, with darker regions indicating higher dens
ties. ~b! Plot of disorder-averaged correlation functionninj as a
function of the distancer[ur i2r j u. Note that density correlations
decay within a lattice constant. They axis is scaled byni

2 ~a
V-dependent number, which is 1.27 forV53) so that the function is
normalized to unity atr 50. ~c! Gray-scale plot of of pairing am-
plitudeD(r i) on the lattice for the sameV and same realization as i
~a!. ~d! The disorder-averaged correlation functionD(r i)D(r j ) ~nor-
malized to be unity at zero separation! showing that the correlations
persist to distances of order several lattice spacings, which is
size of the SC islands.
1-5
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D. Persistence ofEgap with disorder

To get a better understanding of the finite spectral g
Egap, it is useful to study the eigenfunctions for the lo
energy excitations. In Fig. 8 we show in gray-scale plots
local pairing amplitudeD(r i) and uun(r )u21uvn(r )u2 for the
lowest four excited state wave functions, for a particular
alization of disorder at a high value ofV53t. We immedi-
ately notice the remarkable fact~which we have checked fo
many different realizations! that all the low-lying excitations
live on the SC islands. Therefore it is no surprise that o
ends up with a finite pairing gap.

The next question is: Why cannot one make a low-ene
excitation that lives in the large ‘‘sea,’’ in between the S
islands, where there is no pairing gap? We argued earlier
the ‘‘non-SC’’ regions correspond, roughly speaking, to t
high mountains and deep valleys in the random potentia
is not possible to inject an electron into a deep valley sinc
is already doubly occupied, and there is a large~potential!

FIG. 8. ~a! Gray-scale plot of the local pairing amplitudeD(r i)
for a particular realization of the random potential atV53t. ~b1!–
~b4! are gray-scale plots ofuun(r )u21uvn(r )u2 for the lowest four
excitations (n51, . . . ,4) with corresponding eigenvalue
E(1), . . . ,E(4). We seethat a particle added to~or extracted from!
the system has a high probability of being found in regions wh
D(r i) is large. This leads to a nonzero energy gap for high disor
~see text!.
01450
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energy cost to extract an electron from such sites. Simila
it is energetically unfavorable to create an electron on top
a high mountain in the random potential, and there are
electrons available to extract from such sites. Thus in
‘‘non-SC’’ regions, the random potential does not perm
low-energy excitations.

The lowest excitations then correspond to either inject
or extracting an electron from regions whereuVi2m̃u is
small, which are precisely regions with largeD(r i). Thus we
see why these excitations have a finite pairing gap.~An un-
derstanding of the nonmonotonic behavior ofEgap and its
eventual increase at largeV will come from the analysis of
Sec. IV.!

An immediate consequence of these ideas is that, w
the islands may be thought of as locally superconducting,
sea separating them can be thought of as ‘‘insulating’’ wit
large gap determined primarily by the random potential. T
can be tested by the local density of states at different
gions in the highly disordered regime as shown in Fig. 1

E. Superfluid stiffness

It is important to understand how disorder, and in partic
lar the formation of the inhomogeneous ground state, affe
the phase rigidity. We calculate the superfluid stiffnessDs
given by the usual Kubo formula24

Ds

p
5^2kx&2Lxx~qx50,qy→0,iv50!. ~8!

The first term^2kx& is the kinetic energy along thex direc-
tion and represents the diamagnetic response to an ext
magnetic field. The second term is the paramagnetic
sponse given by the~disorder-averaged! transverse current
current correlation:

Lxx~q,ivn!5
1

NE0

1/T

dt eivnt^ j x
p~q,t! j x

p~2q,0!& ~9!

with j x
p(q) the paramagnetic current andvn52pnT.

The stiffness calculated within the BdG approximati
will be denoted byDs

0 (Ds will be used for the renormalized
stiffness defined later!. Using Eq. ~4! we find ^2kx&
5(4t/N)^( r ,nvn(r )vn(r1 x̂)&, and atT50

Lxx~1,2,ivn50!52t2 (
n1 ,n2

1

~E1E8!
@v8~21 x̂!u~2!

1v~21 x̂!u8~2!] 3@u~11 x̂!v8~1!

1v~1!u8~11 x̂!2u~1!v8~11 x̂!

2v~11 x̂!u8~1!#1@u↔v,v↔u#.
~10!

Herex̂ is the unit vector alongx, and to simplify notation we
use unprimed~primed! symbols to denote quantities wit
subscriptn1 (n2), andr i51,r j52. After disorder averaging
we recover translational invariance, so thatLxx(r i ,r j ,0)
5Lxx(r i2r j ,0) One can then Fourier transform toq to ob-

e
r
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INHOMOGENEOUS PAIRING IN HIGHLY DISORDERED . . . PHYSICAL REVIEW B65 014501
tain Lxx(qx50,qy ,ivn50), which can be shown to vary a
A1Bqy

2 for small qy . We verify thisqy dependence in ou
numerical results and use it to take the required limit in E
~8!.

In Fig. 9 we show the behavior of the BdG phase stiffne
Ds

0/p as a function of disorder. The very large reduction
Ds

0 , by almost two orders of magnitude, can be intuitive
understood by the following argument~which is also sche-
matically illustrated in Fig. 10!. Within mean-field theory the
phases of the order parameter at different sites are c
pletely aligned in the ground state. When anexternalphase
twist u is imposed the energy of the SC increases, leadin
a nonzero superfluid stiffnessDs

0;d2E(u)/du2. In a uni-
form system the external twist is uniformly distribute
throughout the system. However, in an disordered sys
where the amplitude is highly inhomogeneous the sys
will distribute the phase twists nonuniformly in order
minimize energy with most of the twist accommodated
regions where the amplitude is small. Thus an inhomo
neous system will be able to greatly reduce its superfl
stiffnessDs .25

We emphasize that despite this dramatic reduction inDs
0 ,

the superfluid stiffness continues to remain nonzero wit
the BdG approximation. In other words, the spatial variatio
in the pairing amplitude alone are unable to drive the sys
into an insulator. In order to describe the SIT it is therefo
essential to take into account phase fluctuations as discu
in Sec. V below.

FIG. 9. The superfluid stiffnessDs
0/p calculated within the BdG

theory as a function of disorder. The energy gap is also plotted
comparison. Note that, atV50, Ds

0@Egap, a characteristic of weak
coupling superconductors. However, at large disorder one fi
Ds

0!Egap suggesting a phase fluctuation dominated regime. In
Disorder dependence of the diamagnetic and paramagnetic piec
the response function~see text!.
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F. Charge stiffness

The charge stiffnessD0 is the strength ofd(v) in the
optical conductivitys(v) and is closely related toDs

0 . It is
defined, after analytically continuingLxx to real frequency24

D0/p5^2kx&2Lxx~q50,v→0!. ~11!

Note the different order of limits compared with the defin
tion of Ds . However, for a system with a spectral gap,
general grounds one expects thatD05Ds

0 , as shown in Ref.
24. We have numerically checked this equality for all valu
of disorder. In fact, having established this, we chose to c
culateD0, rather thanDs

0 , since on finite systems it is nu
merically easier to take thev→0 limit of Lxx(0;v).A
1B8v2, rather than calculateLxx(qy→0).

IV. PAIRING OF EXACT EIGENSTATES

Although the BdG analysis described above led to vario
striking results and considerable physical insight, some
sues could not be addressed.~1! We could not study the
weak-coupling limituUu/t!1, since the exponentially larg
coherence lengthj leads to severe finite size effects in th
numerical calculations.~2! Although the existence of the ga
at large disorder could be understood, we did not get
insight into its nonmonotonic dependence on disorder.

In order to address these issues, and to gain a de
understanding of the BdG results, we now generalize And
son’s original idea of pairing the time-reversed exact eig
states of the disordered,noninteractingsystem,3 in a manner
that allows the local pairing amplitude to become spatia
inhomogeneous. We will show that this generalization p
mits us to recover most, but not all, of the qualitative featu
of the BdG results. This analysis also has the virtue of le
ing to simpler equations from which one can gain qualitat

r

s
t:

s of

FIG. 10. ~a! Schematic of a disordered SC in which the nonu
form amplitude results in the formation of SC islands. The length
the arrow denotes the amplitude and its direction the phase. W
mean-field theory the phase in the ground state is spatially unif
even though the amplitude is not.~b! Schematic illustration of the
response to an externally applied phase twist~of p/2) indicated by
the fat arrows. The system has a nonuniform response, with la
phase twists in regions where the amplitude is small. This result
a smaller stiffnessDs

0;d2E(u)/du2 compared to the case of a un
formly distributed phase twist.
1-7
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insights in the weak- and strong-disorder limits.
The noninteracting disordered HamiltonianH0 of Eq. ~1!

is quadratic and leads to an eigenvalue problem, which is
principle, soluble:H0ufa&5«aufa&, wherea labels the ex-
act eigenstates ofH0 . Following Anderson let us imagine
pairing electrons in time-reversed eigenstatesa,↑ and ā,↓.
The analog of the ‘‘reduced BCS’’ Hamiltonian in this bas
is then given by

H85(
a,s

jacas
† cas2uUu(

a,b
Ma,bca↑

† cā↓
†

cb̄↓cb↑ , ~12!

where the matrixMa,b is defined by

Ma,b5(
r i

ufa~r i !u2ufb~r i !u2
• ~13!

Here ja5(«a2m̃) is measured relative to the avera
Hartree-shiftedm̃, which fixes the electronic density.~We
will return to the question of average versus site-depend
Hartree shifts later in this section.! A BCS-like analysis of
Eq. ~12! leads to theT50 gap equation

Da5uUu(
b

Ma,b

Db

2Eb
, ~14!

whereEa5Aja
21Da

2, andm̃ is determined by

^n&5
1

N (
a

S 12
ja

Ea
D . ~15!

Our formulation generalizes Anderson’s original analysis
retaining the fullMa,b , and it is the structure of this matri

FIG. 11. Gray-scale plot of the matrix elements ofMa,b at large
disorderV56t for a 30330 noninteracting system. Thex and y
axes are thea andb indices, respectively. Note that diagonal m
trix elements are the largest.
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that will permit us to access the large disorder regime w
highly inhomogeneous pairing.

A. Nonmonotonic behavior of the energy gap

We now present a qualitative analysis of the large a
small disorder limits of the above equations, together w
their full numerical solution. Finally, these will be compare
with the BdG results of the previous section.

Let us begin with the low disorder regime. For a fini
system in two dimensions, or an infinite system in three
mensions, the eigenstatesfa(r i)’s are extended on the sca
of system. We thus findMa,b'1/N, independent ofa andb,
which we call the ‘‘uniform approximation’’ forM. The gap
equation takes the simple BCS form,D is ~spatially! uni-
form, and Anderson’s theorem applies in this limit.

The behavior ofEgap within ‘‘uniform approximation’’ is
shown in Fig. 12~a! for low V. The decrease ofEgap with
increasingV in this regime can be traced primarily to
simple density-of-states effect in the BCS result for the g
For the nearest-neighbor 2D dispersion and the filling c
sen, one finds that the average DOS at the chemical po
tial, N̄(j50), decreases with increasingV in the weak-
disorder limit.

FIG. 12. Upper panel~a!: Comparison of the energy gapEgap as
a function of disorder obtained by the generalized exact eigens
method (s) and the BdG approach (h), both implemented with an
average Hartree shift. Also shown are two asymptotic solutions
the gap at low (n) and high~pentagons! disorder. The decrease o
Egapat smallV is a DOS effect, described by the ‘‘uniform approx
mation’’ ~see text!. The increase ofEgap at largeV due to strong
localization effects on the single-particle wave functions is d
scribed by the ‘‘diagonal approximation’’~see text!. Lower panel
~b!: Comparison ofEgap as a function of disorder calculated withi
the BdG approach with an average and a site-dependent Ha
shift. While the two results are qualitatively similar, there are qu
titative differences.
1-8
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In the high-disorder regime, on the other hand, the eig
states of the noninteracting problem are strongly locali
and different states have a very small spatial overlap. We
therefore make a ‘‘diagonal approximation’’ for for theM
matrix: Ma,b'da,b( r i

ufa(r i)u4. We have numerically
checked that the diagonal elements ofM are indeed the larg
est elements as shown in Fig. 11. Moreover, the off-diago
elements are not important in the gap equation~14!, as states
that are nearby in space are far in energy and vice ve
Next we identify ( r i

ufa(r i)u4 as the participation ratio fo

the ~normalized! state fa(r i), which in turn is given by
z loc

22(a), where z loc(a) is the localization length for tha
state.18

Thus for large disorder we solve the gap equation~14!
with the kernelMa,b'da,bz loc

22(a). We find that for statesa
with energies far from the chemical potential, the solution
Da50, i.e., these states are unaffected by pairing. On
other hand, for states with smallja we find Ea

.uUu/@2z loc
2 (a)#. One thus obtains a gap

Egap5
uUu/2

z loc
2

~16!

in the high-disorder limit, wherez loc is the localization
length of the state at the chemical potential.

The diagonal approximation becomes exact in the
treme site localized limit (V→`). In this case, the exac
eigenstate labela is the siter i at which the state is localized
It is easy to show that all states for whichj r i

,uUu/2 have

finite pairing amplitude and a spectral gap ofuUu/2, which is
a well-known result.9 ~For another approach to the larg
disorder limit, see Ref. 26.!

In Fig. 12~a! we compare the small- and large-disord
asymptotic results, i.e., the ‘‘uniform’’ and ‘‘diagonal’’ ap
proximations, with the spectral gap obtained from a full n
merical solution of Eqs.~14! and~15! of the method of exac
eigenstates~where we self-consistently determinedDa’s for
all a ’s and m̃). Finally we also show in Fig. 12~a! the BdG
solution for Egap, with a uniform Hartree shift, which is in
excellent agreement with the exact eigenstates result.@Simi-
lar agreement is also found for all the other quantities suc
P(D),DOP,N(v), andDs

0 as a function ofV.#
To summarize: we now have a complete understandin

the nonmonotonic dependence of the spectral gap on d
der. The weak disorder asymptote shows that the initial d
is a simple density-of-states effect. On the other hand,
increase of the gap in the strong-disorder limit comes fr
the decrease in the localization lengthz loc as seen from Eq
~16!.

It is important to emphasize that while the numeric
comparisons in Fig. 12~a! are for a moderate value ofuUu
51.5t, the method of pairing of exact eigenstates sho
work best in the weak-coupling limit, whereuUu is the small-
est energy scale in the problem, and hence the nonintera
problem is diagonalized first. The analytical approximatio
in the small- and large-disorder limits given above are th
valid even foruUu/t!1 where we cannot do reliable numer
cal calculations.
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B. SC islands and low-lying excitations

The exact eigenstates formulation also gives analytical
sight into the large spatial overlap of the low-lying excite
states with the SC islands in the large disorder regime, wh
was observed and discussed at length in the previous sec
One can show quite generally that the pairing amplitude
real space D(r ) is related to Da through Da

5( r i
D(r i)ufa(r i)u2. The gap equation~14! can then be re-

written as

D~r i !5
uUu
2 (

a

Da

Aja
21Da

2
ufa~r i !u2. ~17!

We now specialize to the large-disorder regime and use
solution of the gap equation within the ‘‘diagonal approx
mation’’ in the preceding subsection to note that the onlya ’s
that contribute to the sum are those withj0'0, since other-
wise Da50. The above equation then simplifies toD(r i)
'uUu(a8 ufa(r i)u2/2 with the sum restricted to states near t
chemical potential. This immediately shows the strong c
relation between the spatial structures of the regions
D(r i), the SC islands, and that of the eigenstatesfa(r i) of
the noninteracting problem, which are the low-lying excit
tions.

C. Importance of site-dependent Hartree shifts

Having seen the great success of the exact eigens
method in reproducing the BdG results, we finally turn to t
one important feature of the BdG analysis that isnot cap-
tured by this method. We saw in Eq.~3! that the BdG equa-
tions incorporate site-dependent Hartree shifts, while
method of exact eigenstates did not. We now discuss
effects of inhomogeneous Hartree terms and why such te
are not easy to deal with in the exact eigenstates formali
We are not aware of any previous work that has looked at
effects of such inhomogeneous Hartree shifts.

First, inclusion of site-dependent Hartree terms leads
quantitative differences with the uniform~average! Hartree
approximation forEgap as a function ofV as seen from the
lower panel of Fig. 12.

Second, a much more dramatic qualitative effect can
seen in the DOS plotted in Fig. 13. The calculation with
average Hartree shift has a BCS-like pile-up in the DOS
the gap edge, while the result with the site-dependent sh
shows that this pile-up is completely smeared out with sta
pushed out to the band tails. The occurrence of the DOS p
within the theory of exact eigenstates~with homogeneous
Hartree shift! has the same origin as that in BCS theory. T
inhomogeneity in the Hartree shift acts like a random pert
bation that breaks the degeneracy of states near the gap

It would have been nice to incorporate a site-depend
Hartree shift in the exact eigenstates approach. Howeve
this case the ‘‘normal state’’ Hamiltonian whose exact eige
states one would have to solve for would be
1-9
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Hnormal52t (
^ i j &,s

~cis
† cj s1H.c.!

1(
i ,s

~Vi2m2uUu^ni&/2!nis .

One then loses much of the simplicity of the exact eigens
formalism sinceHnormal is itself an interacting problem,
which needs to be solved self-consistently. Further, there
problems~which we will not discuss here! associated with
treating U at the Hartree level alone, before incorporati
pairing, in the large-disorder regime.27

In conclusion, while the generalized pairing of exa
eigenstates is able to give much insight into the behavio
the spectral gap and pairing amplitudes, and gives qualita
information about the weak-coupling limit, the BdG meth
with site-dependent Hartree shifts is the best scheme
quantitative results.

V. QUANTUM PHASE FLUCTUATIONS

In Sec. III E, we found that the BdG analysis leads to
large suppression of the superfluid stiffness, but the disor
induced amplitude inhomogeneity is not sufficient to dri
Ds to zero. In order to understand the transition to an in
lating state, we must focus on the phase degrees of free
which are ignored~or frozen! in the mean-field description
used thus far. We use the 2D quantumXY action in imagi-
nary time to describe the dynamics of the phase varia
u(r ,t) defined on a coarse-grained square lattice of lat
spacingj:

FIG. 13. Comparison of the density of states obtained from
BdG analysis that includes the local self-consistent Hartree s
~top panel! with the result of the exact eigenstates method with
average Hartree shift~bottom panel!. The latter leads to a spuriou
pile-up in the DOS at the gap edge.
01450
te

re

t
f

ve

or

r-

-
m

s
e

Su5
kj2

8 E
0

b

dt(
r

S ]u~r ,t!

]t D 2

1
Ds

0

4 E
0

b

dt

3(
r ,d

$12cos@u~r ,t!2u~r1d,t!#%. ~18!

We can motivate the use of anXY model in both the
weak- and strong-disorder limits, and therefore use it for
disorder strengths. At weak disorder, one can follow the d
vation of Ref. 11 to derive an effective action for the pha
variables in a disordered system, and then coarse grain to
scale ofj using the method of Ref. 28 to obtain the abo
action. This coarse graining shows that the coefficient of
time derivative term isj2k in two dimensions wherek
5dn/dm is the static, long-wavelength compressibility ca
culated at the mean-field level, and the coefficient of
cosine term is the mean-field phase stiffnessDs

0 .
In the opposite high-disorder limit one can view Eq.~18!

as describing a Josephson junction array of the SC isla
embedded in an insulating sea~see Fig. 6!. In this case, the
first term represents the charging energy of the islands
the second term the Josephson coupling between isla
Further we make the crude approximation of ignoring t
random variations of the charging and coupling energies
this random system, and simply using the mean-field val
obtained from the BdG analysis. We also ignore the disor
dependence of the coherence lengthj, and for simplicity use
its V50 valuej0.

The nonlinearities in the cosine term lead to a renorm
ization of the stiffness. Within the self-consistent harmon
approximation29 ~SCHA!, this is determined by choosing th
optimal Gaussian action

S05
kj2

8 E
0

b

dt(
r

S ]u~r ,t!

]t D 2

1
Ds

8 E
0

b

dt(
r ,d

@u~r ,t!2u~r1d,t!#2, ~19!

which minimizes the free energy. The renormalized stiffne
Ds is given by29

Ds5Ds
0 exp~2^u i j

2 &0/2!. ~20!

Here ^u i j
2 &0 is the mean square fluctuation of the nea

neighbor phase difference

^u i j
2 &05

2

Nj (
Q

F «Q

Dsk
G1/2

, ~21!

with «Q52@22cos(Qx)2cos(Qy)#, and the momentum sum
is restricted toQi,p.

Defining the renormalization factorX5Ds /Ds
0 , and

Aa5
1

jADs
0k

S 1

N (
Q

«Q
1/2D , ~22!

one can write Eq.~20! as

e
ift
n

1-10
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INHOMOGENEOUS PAIRING IN HIGHLY DISORDERED . . . PHYSICAL REVIEW B65 014501
X5exp~2Aa/X!. ~23!

We solve Eq.~23! to determine the renormalizedDs(V),
using as input fora the BdG results for the bare stiffnessDs

0

and compressibilityk for each value ofV. The BdG com-
pressibility is plotted in Fig. 14~a!. We do not have a simple
physical picture for the small maximum ink at low disorder,
which is a parameter-dependent feature absent for larger
ues of uUu. However, our results for the renormalization
Ds are insensitive to the presence or absence of this n
monotonicity.

The renormalizedDs obtained from the SCHA is plotted
in Fig. 14~b! as the full line. Quantum phase fluctuatio
lower the stiffness and beyond a certain critical disor
drive it to zero, unlike the bare~BdG! stiffness, which is
always nonzero. Thus the SCHA gives a transition to a n
superconducting state, even though it is unreliable in the
cinity of the transition. In particular, Eq.~23! predicts a tran-
sition at acrit54 exp(22) with a jump discontinuity of
exp(22) in the value ofX. We believe that this discontinuity
is an artifact of the approximation, although the critical d
order obtained from such a calculation is in reasona
agreement with quantum Monte Carlo results17 for parameter
values (uUu/t54) for which a comparison can be made.14

We next argue that quantum phase fluctuations donot
have a significant effect on the electronic excitation sp
trum. This is because the spectral gap at large disorder a
from low-energy excitations that liveon a SC island, which
is relatively unaffected by phase fluctuations. On the ot

FIG. 14. ~a! Left panel: The compressibilityk5dn/dm as a
function of disorderV. ~b! Right panel: Evolution of superfluid
stiffnessDs /p upon including the quantum phase fluctuations. T
bare BdG stiffnessDs

0 is plotted as symbols with a dashed lin
through them, while the renormalized stiffnessDs /p is shown by
the full line. Ds vanishes atVc51.75t beyond which the system i
insulating.
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hand, as we have seen above, these fluctuations have a
found effect on suppressing the coherencebetweenSC is-
lands. Thus the nonsuperconducting state continues to ha
finite spectral gap for one-electron excitations even after
effects of phase fluctuations are included, and is an insula
Finally the absence of low-lying electronic excitations ne
the transition implies that the quantum phase transition
this electronic model is in the superfluid-Bose insulator u
versality class.15

VI. PHASE DIAGRAM

In this section we discuss theT50 phase diagram for the
disordered, attractive Hubbard model in the (uUu/t,V/t)
plane. It is known18 that, on theuUu50 axis, for all values of
disorderVÞ0, one has an Anderson insulator with gaple
excitations in two dimensions. On theV50 axis one simply
has a crossover as a function ofuUu/t from a BCS supercon-
ductor to a condensate of interacting~hard core! bosons.30

The four symbols marked in Fig. 15 are the result o
BdG analysis supplemented by the simple phase fluctua
analysis described above. Despite the simplifying appro
mations involved, and the lack of a detailed study of fin
size effects, we nevertheless believe that our results do
a reasonable qualitative idea about the critical disor
Vc(U) separating the SC phase from an insulator with a g
in its single-particle excitation spectrum. Further, our es
mated Vc at uUu/t54 is in reasonable agreement14 with
quantum Monte Carlo results.17

FIG. 15. Schematic phase diagram atT50 of the disordered,
attractive Hubbard model in the disorder-attraction (V-uUu) plane.
The entirey axis (uUu/t50) corresponds to an Anderson insulat
with gapless excitations. At finiteuUu/t there are two phases: a S
phase at low disorder and a gapped insulating phase at high d
der. ThusU is a singular perturbation in that the smallestuUu in-
duces a gap. The symbols denote the critical disorderVc(U), sepa-
rating the SC and the insulating phases, estimated from
calculations described in the text. We argue against possibilities~b!
and~c! for the form of the phase boundary in theuUu→0 limit, and
suggest thatVc(U→0) approaches a finite value of order unity,
shown schematically by curve~a!. We find no evidence for a gap
less Fermi insulator phase at nonzerouUu/t.
1-11
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In principle, there are three possibilities for the continu
tion of theVc(U) phase boundary asuUu/t→0, a limit which
we cannot address numerically. As shown in Fig. 15 these
~a! Vc(U→0) is a finite number of order unity;~b! Vc(U
→0) diverges to infinity; or~c! Vc(U→0) vanishes. We will
now argue against~b! and ~c!, suggesting that~a! is in fact
the correct result.

First we examine possibility~b! by looking at the case o
a fixed smalluUu/t with V→`. From the large-disorder as
ymptotics of the preceding section~within the ‘‘diagonal ap-
proximation’’ for the matrixM ) we found that one obtain
SC islands whose size is the localization length. Thus
effective coherence length is determined byz loc , i.e., the
disorder and not by the weak coupling. Since this len
scale becomes very small for largeV, we expect phase fluc
tuations to destroy the long-range phase coherence betw
the small SC islands. Thus we find it very hard for SC
persist out to very large disorder as required by possib
~b!.

Next consider possibility~c! by studying the case of a
fixed, smallV taking the limit uUu/t!1. Here one can jus
use the standard theory of dirty superconductors. The p
(V50) coherence lengthj0 is exponentially large inuUu/t,
and even if the coherence length in the disordered proble
given byj;Aj0l , j nevertheless grows asuUu/t is reduced.
With a growing coherence length, both amplitude and ph
fluctuations are suppressed, and we cannot see how SC
be destroyed as required by possibility~c!.

There have been suggestions31 from QMC studies oftwo
insulating phases: a gapless ‘‘Fermi’’ insulator at smalluUu
and a gapped ‘‘Bose’’ insulator at largeuUu for the model in
Eq. ~1!. It is possible that a vanishing gap may have be
observed because of the finite temperature in the simulati
We see absolutely no evidence for a ‘‘Fermi’’ insulator, aw
from the uUu50 line, and we have presented strong nume
cal evidence and arguments for a finite gap in the non
state for anyuUu.0.

In the uUu/t@1 our Hamiltonian maps on to the proble
of hard core interacting bosons, with an effective hopp
tBose;t2/uUu, in a random potential. For this problem on
expectsVc(uUu→`);t2/uUu, which gives us an understand
ing of the decrease inVc with uUu. Further, in this limit the
insulating phase is precisely the Bose glass phase.15

VII. EXPERIMENTAL IMPLICATIONS

In this section we discuss some implications of our res
for experiments.32

A. Prediction for STM measurement

In Sec. III C we showed that, at large disorder, the syst
consists of ‘‘SC islands’’ with significant pairing amplitud
that are separated from each other by an insulating sea
also discussed in detail that the spectral gap in the insula
regions ~determined mainly by the random potential! is
larger than the pairing gap on the SC islands. This is m
clearly seen in our results for the local density of sta
~LDOS! plotted in Fig. 16. Further, the SC regions~upper
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panel! show, as expected, a large pile-up in the DOS at
gap edge, while the non-SC regions~lower panel! have no
such pile-up and instead the states are spread out over a
energy range, features often associated with pseudogap
other contexts. It should be possible to measure the LD
using an STM probe, as has already been demonstrate
other systems@magnetic impurities ins-wave SC~Ref. 33!
and impurities in the high-Tc d-wave SC~Refs. 34 and 35!#.

B. ‘‘Homogeneously’’ disordered versus granular systems

Depending on the material, the substrate, and growth c
ditions it is experimentally possible to grow two types
films: ~a! ‘‘homogeneously’’ disordered films36 that are dis-
ordered on an atomic scale and~b! granular films.37,38 It is
often argued that the nature of the SC-insulator transit
~SIT! in these two types of films is quite distinct. The SIT
‘‘homogeneous’’ films is thought to be driven by the collap
of the SC amplitude as a function of disorder, whereas tha
the granular film category~b! is driven by the loss of phas
coherence.

Our work shows that this distinction is not valid, at lea
for the model studied. Even though our model is ‘‘homog
neously’’ disordered on a microscopic scale, with increas
disorder the system self-organizes into a nanoscale gran
structure in terms of the local pairing amplitude. In the hig
disorder regime, the inhomogeneous state consists of SC

FIG. 16. ~a! Upper panel: The local density of states~LDOS! at
sites where the pairing amplitudeD is large. These regions corre
spond to the ‘‘SC islands’’ which have a small local supercondu
ing gap and a coherence peak at the gap edge.~b! Lower panel:
LDOS at sites withD'0. These regions correspond to the ‘‘ins
lating sea’’ showing a larger spectral gap, without any cohere
peak features at the gap edge, reminiscent of pseudogap beha
1-12
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lands whose phases are Josephson coupled through the
lating regions between the islands. As described in deta
Sec. V it is the competition between the charging energy
the islands and the Josephson coupling that leads to the
at T50. In the highly disordered regime we expect that,
temperature is reduced, SC sets in in two steps: first
individual SC islands become superconducting but they
not phase coherent, and the system is in a resistive state
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the temperature is lowered the Josephson coupling betw
the SC islands leads to global phase coherence atTc .

ACKNOWLEDGMENTS

We would like to thank Allen Goldman, Art Hebard, Aru
Paramekanti, Subir Sachdev, and Jim Valles for useful
cussions. M.R. was supported in part by the DST under
Swarnajayanti scheme.
aller

-

. B

rch,

S.

s.

our
in

.

C.

d

1A. Hebard, inStrongly Correlated Electronic Systems, edited by
K. Bedell et al. ~Addison-Wesley, New York, 1994!.

2A. M. Goldman and N. Markovic´, Phys. Today51 ~11!, 39
~1998!.

3P. W. Anderson, J. Phys. Chem. Solids11, 26 ~1959!.
4A. A. Abrikosov and L. P. Gorkov, Zh. E´ksp. Teor. Fiz.36, 319

(1959) @Sov. Phys. JETP9, 220 ~1959!#.
5D. Belitz and T. Kirkpatrick, Rev. Mod. Phys.66, 261 ~1994!.
6M. Sadovskii, Phys. Rep.282, 225 ~1997!.
7A. I. Larkin and Y. N. Ovchinnikov, Zh. E´ksp. Teor. Fiz.61, 2147

(1971) @Sov. Phys. JETP34, 1144~1972!#.
8H. Fukuyama, H. Ebisawa, and S. Maekawa, J. Phys. Soc.

53, 3560~1984!.
9M. Ma and P. A. Lee, Phys. Rev. B32, 5658~1985!.

10G. Kotliar and A. Kapitulnik, Phys. Rev. B33, 3146~1986!.
11T. V. Ramakrishnan, Phys. Scr.T27, 24 ~1989!.
12R. A. Smith and V. Ambegaokar, Phys. Rev. B45, 2463~1992!.
13A. M. Finkel’stein, Physica B197, 636 ~1994!.
14A. Ghosal, M. Randeria, and N. Trivedi, Phys. Rev. Lett.81, 3940

~1998!.
15M. P. A. Fisher, G. Grinstein, and S. M. Girvin, Phys. Rev. Le

64, 587 ~1990!.
16The importance of spatial amplitude fluctuations in the dirty b

son problem was emphasized by K. Sheshadri, H. R. Krish
murthy, R. Pandit, and T. V. Ramakrishnan, Phys. Rev. Lett.75,
4075 ~1995!.

17N. Trivedi, R. T. Scalettar, and M. Randeria, Phys. Rev. B54,
R3756~1996!; R. T. Scalettar, N. Trivedi, and C. Huscroft,ibid.
59, 4364~1999!.

18P. A. Lee and T. V. Ramakrishnan, Rev. Mod. Phys.57, 287
~1985!.

19The effect of disorder on the Coulomb interactions throughm*
has been studied~see Ref. 5 and references therein!. However,
Coulomb interactions in an inhomogeneous system could
duce qualitatively new effects. For example,~a! the effective
attraction between electrons could become inhomogeneous
ducing regions where the pairing amplitude is suppressed
locally gapless excitations.~b! Coulomb effects plus disorde
could produce local moments that could be pair breaking.@M.
Milovanovic, S. Sachdev, and R. N. Bhatt, Phys. Rev. Lett.63,
82 ~1989!; S. Sachdev, Philos. Trans. R. Soc. London, Ser
356, 173 ~1998!#. These are important directions for furthe
study.

20For uUu51.5t and^n&50.875, we estimate, from the asymptot
n.

.

-
a-

o-

ro-
th

decay of the BCS pair wave function, that the pure (V50) limit
coherence lengthj0.10 ~in units of the lattice spacing!. In the
presence of disorder, the coherence length can only be sm
than this estimate.

21P. G. de Gennes,Superconductivity in Metals and Alloys~Ben-
jamin, New York, 1966!.

22T. Xiang and J. M. Wheatley, Phys. Rev. B51, 11 721~1995!; M.
Franz, C. Kallin, A. J. Berlinsky, and M. I. Salkola,ibid. 56,
7882 ~1997!; W. A. Atkinson, P. J. Hirschfeld, and A. H. Mac
donald, Phys. Rev. Lett.85, 3922~2000!.

23A. Ghosal, M. Randeria, and N. Trivedi, Phys. Rev. B63,
020505~R! ~2000!.

24D. J. Scalapino, S. R. White, and S. C. Zhang, Phys. Rev. B47,
7995 ~1993!.

25This idea can be used to obtain an upper bound onDs as shown
by A. Paramekanti, N. Trivedi, and M. Randeria, Phys. Rev
57, 11 639~1998!.

26I. Herbut, Int. J. Mod. Phys. B14, 575 ~2000!.
27A. Ghosal, Ph.D. thesis, Tata Institute of Fundamental Resea

2000.
28A. Paramekanti, M. Randeria, T. V. Ramakrishnan, and S.

Mandal, Phys. Rev. B62, 6786~2000!.
29D. Wood and D. Stroud, Phys. Rev. B25, 1600 ~1982!; S.

Chakravarty, G.-L. Ingold, S. Kivelson, and A. Luther, Phy
Rev. Lett.56, 2303~1986!.

30For a review, see M. Randeria, inBose-Einstein Condensation,
edited by A. Griffin, D. Snoke, and S. Stringari~Cambridge
University Press, Cambridge, 1995!.

31C. Huscroft and R. T. Scalettar, Phys. Rev. Lett.81, 2775~1998!.
32One must keep in mind here that the main assumption of

model is the neglect of Coulomb interactions as discussed
Sec. II and Ref. 19.

33A. Yazdani, B. A. Jones, C. P. Lutz, M. F. Crommie, and D. M
Eigler, Science275, 1767~1997!.

34T. Cren, D. Roditchev, W. Sacks, J. Klein, J. B. Moussy,
Deville-Cavellin, and M. Lagues, Phys. Rev. Lett.84, 147
~2000!.

35S. H. Panet al. ~unpublished!.
36D. B. Haviland, Y. Liu, and A. M. Goldman, Phys. Rev. Lett.62,

2180~1989!; J. M. Valles, R. C. Dynes, and J. P. Garno,ibid. 69,
3567 ~1992!.

37A. E. White, R. C. Dynes, and J. P. Garno, Phys. Rev. Lett.33,
3549~1986!; H. M. Jaeger, D. B. Haviland, A. M. Goldman, an
B. G. Orr, Phys. Rev. B34, 4920~1986!.

38D. Shahar and Z. Ovadyahu, Phys. Rev. B46, 10 917~1992!.
1-13


